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Capacity Bounds under Imperfect Polarization
Tracking

Mohammad Farsi, Student Member, IEEE, Magnus Karlsson, Senior Member, IEEE, and
Erik Agrell, Fellow, IEEE

Abstract—In optical fiber communication, due to the random
variation of the environment, the state of polarization (SOP) fluc-
tuates randomly with time leading to distortion and performance
degradation. The memory-less SOP fluctuations can be regarded
as a two-by-two random unitary matrix. In this paper, for what
we believe to be the first time, the capacity of the polarization
drift channel under an average power constraint with imperfect
channel knowledge is characterized. An achievable information
rate (AIR) is derived when imperfect channel knowledge is
available and is shown to be highly dependent on the channel
estimation technique. It is also shown that a tighter lower bound
can be achieved when a unitary estimation of the channel
is available. However, the conventional estimation algorithms
do not guarantee a unitary channel estimation. Therefore, by
considering the unitary constraint of the channel, a data-aided
channel estimator based on the Kabsch algorithm is proposed,
and its performance is numerically evaluated in terms of AIR.
Monte Carlo simulations show that Kabsch outperforms the least-
square error algorithm. In particular, with complex, Gaussian
inputs and eight pilot symbols per block, Kabsch improves the
AIR by 0.20 to 0.30 bits/symbol throughout the range of studied
signal-to-noise ratios.

Index Terms—Achievable information rate, constant modulus
algorithm, capacity, channel estimation, decision-directed least
mean square, Kabsch algorithm, lower bound, least square
error, mutual information, multimode fiber, multicore fiber,
polarization-mode dispersion, state of polarization, space-division
multiplexing.

I. INTRODUCTION

THE growing demand for reliable long-distance commu-
nication makes it essential to determine the capacity

limits of optical links [1]–[3]. The emergence of coherent op-
tical communication systems enabled digital signal processing
(DSP) and polarization-division multiplexing to achieve higher
spectral efficiencies. However, higher data rates come with
increased sensitivity to impairments such as polarization-mode
dispersion (PMD) and state of polarization (SOP) fluctuations,
which must be tracked dynamically in the receiver [4]. Due
to the random variation of both internal and environmental
impairments, the SOP fluctuates randomly with time [5].
Previous long-term measurements showed that the SOP drift
might vary from days and hours in buried fibers [6], [7] to
microseconds in aerial fibers [8]–[10].
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The conventional DSP solutions for SOP tracking are replete
with both blind and data-aided algorithms. The constant mod-
ulus algorithm (CMA) [11], thanks to its low complexity and
tolerance to phase noise (PN), has been widely considered for
blind polarization tracking [12]–[14]. Many studies have been
conducted to overcome the so-called “singularity” problem of
CMA [15]–[17], where the two estimated channels converge
twice to the same polarization. The radially directed equalizer
(RDE) and its variants were proposed to account for higher-
order quadrature amplitude modulation (QAM) in [18]–[20].
The multi-modulus algorithm (MMA) [21] is also applicable
to higher-order modulations. The decision-directed least mean
squares (DDLMS) algorithm removed the modulation format
dependence of the blind algorithms [13]. Furthermore, block-
wise CMA (BW-CMA) and DDLMS (BW-DDLMS) were
proposed in [22] for block-constant channels. More reliable
convergence can be obtained using data-aided algorithms such
as least mean square (LMS), which was adopted for SOP
estimation by [13], [23], or standard least-square error (LS),
which has been extensively studied for both wireless and opti-
cal applications [24]–[27]. While the LMS algorithm performs
real-time continuous equalization, LS applies to block-based
estimation.

While the dual-polarization (DP) channel can be represented
by a unitary matrix, the majority of the available estimation
techniques including LS and LMS have no unitary constraint
on the estimated channel, leading to sub-optimal solutions.
This makes room for algorithms that provide a unitary esti-
mation of the DP channel. Louchet et al. [28] proposed the
Kabsch algorithm [29] as a joint blind PN and PMD estimation
method. In [30], a blind modulation-format-independent joint
PN and polarization tracking algorithm was proposed, and its
performance was compared with the blind Kabsch algorithm.

Depending on the estimation algorithm, the speed of the
fluctuations, or the additive noise, the polarization tracking
might be imperfect. This makes it relevant to ask how the
capacity is affected by such an estimation error? While there
are no capacity studies regarding the polarization drift chan-
nels, to the best of our knowledge, the literature is replete
with fiber capacity results. The first finite capacity limit for
the single-wavelength optical channel based on a sort of
Gaussian Noise (GN) model was introduced in [31], [32],
showing a lower bound that increases with the power until it
reaches a maximum, and then it decreases due to the nonlinear
impairments (NLI). Although different nonlinear models were
applied, similar results were reported in [33], [34]. Since the
GN model cannot truly describe the NLI [35], some modeled
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the NLI as a linear time-variant distortion highly correlated
over time [36], [37]. This made it possible to counteract
NLI using the techniques that were conventionally used for
linear impairments (e.g., PN, chromatic dispersion, PMD,
and SOP [38]–[40]). For example, in [41], a tighter lower
bound for single-polarization, dispersion-unmanaged systems
was achieved by considering the PN.

In this paper, for the first time, we study the capacity
of the polarization drift channel in the presence of imper-
fect knowledge of the channel (e.g., imperfect polarization
tracking). Using the mismatched decoding method, we derive
an AIR, which is a lower bound on the capacity, in the
presence of a channel estimation error. We show that a unitary
estimation of the channel leads to a tighter lower bound,
which makes it reasonable to seek unitary estimators. A
data-aided version of the Kabsch algorithm is proposed for
DP channel estimation, for the first time to the best of our
knowledge. We compare Kabsch with an LS algorithm in
terms of achievable information rate (AIR) and show that
Kabsch outperforms LS throughout the range of considered
signal-to-noise ratios (SNRs). For instance, with only eight
pilot symbols per channel and block, Kabsch improves the
AIR by at least 0.2 bits per symbol compared to LS.

Notation: Column vectors are denoted by underlined letters
x and matrices by uppercase roman letters X. We use bold-
face letters x for random quantities and the corresponding
nonbold letters x for their realizations. Probability density
functions (pdfs) are denoted as px(x) and conditional pdfs
as py|x(y|x), where the subscripts will sometimes be omitted
if they are clear from the context. Expectation over random
variables is denoted by E[·]. Sets are indicated by uppercase
calligraphic letters X . The complex zero-mean circularly
symmetric Gaussian distribution of a vector is denoted by
x ∼ CN (0,Λx), where Λx = E[xx†] is the covariance matrix.
The logarithm log refers to base 2. In the context of matrix
operations, | · |, (·)T , (·)†, and ∥.∥ represent the determinant,
transpose, conjugate transpose, and Frobenius norm operators,
respectively.

II. CHANNEL MODEL AND MUTUAL INFORMATION

A. Channel Model

We consider transmission over n channels in the presence
of amplified spontaneous emission (ASE) noise at the receiver.
The channel is assumed to be constant during a transmission
block of length N , and changes randomly and independently
between the blocks. The assumption that the channel does
not change within a block is consistent with the fact that the
SOP drifts at a much slower rate than typical transmission
rates in optical links [6], [7] and is well established in optical
communications literature [39], [41]. The block length N
is chosen based on the application and the drift speed of
the channel. The independence between random blocks is
an idealized, not fully realistic, assumption, which is well
established in the literature, where the SOP fluctuation is often
modeled as a constant randomly chosen rotations [42], [43]
or deterministic cyclic/quasi-cyclic changes [13], [44], [45].
In most optical communication systems, there is no feedback

channel between the transmitter and the receiver. Therefore,
the problem of input distribution optimization, corresponding
to the case that the channel is known at the transmitter, is
not investigated. It is assumed that PMD is negligible and all
channel impairments, including nonlinearities and chromatic
dispersion are ideally compensated, with the exception of
polarization fluctuation and ASE noise, which are modeled by
a unitary matrix and additive white Gaussian noise (AWGN),
respectively. Although neglecting most real-life impairments is
not fully realistic, it is the simplest case and nevertheless never
before investigated. Indeed, adding more impairments would
make the analysis more realistic but also more complex.

Since different blocks are independent, we just model the
symbols in one transmission block in the following. The
transmitted signal in each channel at time k = 0, . . . , N − 1 is
an n-dimensional random complex vector sk, where n = 2 for
DP, single-mode, single-core transmission.1 The signal vectors
sk take on values from a set S of zero-mean constellation
points. After filtering and resampling the received signals into
one sample per symbol, the vector of received samples xk can
be expressed as

xk = Hsk + zk, (1)

where the n×n matrix H represents a multiple-input multiple-
output (MIMO) channel and zk denotes the complex ASE
noise samples at time k, which is assumed to be CN (0, σ2

zIn)
and independent of sk. In the remainder of this paper, we will
omit the time index k explicitly for notational convenience.
This is possible because the input and noise are independent
and identically distributed (i.i.d.) over time. We define the
covariance matrix of the input vector as

Λs = Es[ss
†]. (2)

In order to maintain the generality of the results, they are
given for an arbitrary number of channels n whenever possible.
Thus, the MIMO-AWGN channel (1) can describe a wide
range of applications and impairments. However, for the
purpose of DP optical channel modeling, we are particularly
interested in the special case of n = 2 and H being unitary,
denoted by Hu.

B. Mutual Information with Perfect Knowledge of Channel at
the Receiver

The conditional mutual information (MI) between two ran-
dom vectors s, x, when the channel H is given, is defined as
[46, Eq. (2.61)]

I(s;x) = Es,x

[
log

(
p(x|s,H)

p(x|H)

)]
. (3)

The capacity of this channel under an average power constraint
is [47]

C = max
p(s)

I(s;x) s.t. tr(Λs) ≤ P, (4)

1The extension to space-division-multiplexed channels, for which n > 2,
is straight-forward.
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where P > 0 is the transmission power constraint. For the
MIMO-AWGN channel in (1), the channel law given H and s
is characterized by the pdf

p(x|s,H) = 1

πnσ2n
z

exp

(
−∥x−Hs∥2

σ2
z

)
. (5)

Then, the pdf of the channel output can be calculated as

p(x|H) = Es [p(x|s,H)]. (6)

Given H, the capacity-achieving distribution of the MIMO-
AWGN channel law (5) is CN [48]. Therefore, assuming
CN (0,Λs) inputs, the covariance matrix of the received sam-
ples when the channel is given, can be written as

Λx = Ex

[
xx†]

= HΛsH
† + σ2

zIn. (7)

The MI of a general MIMO system for a given channel is [48]

I(s;x) = log
∣∣In +H†HQ

∣∣ , (8)

where

Q = Λs/σ
2
z , (9)

and hence tr(Q) ≤ nη, where η = P/(nσ2
z) is the SNR of

each channel. If the channel matrix H is confined to the set
of unitary matrices (i.e., H = Hu), (8) gives

I(s;x) = log |In +Q| . (10)

The capacity of a unitary MIMO-AWGN channel is the
supremum of (10) for all possible Q. In general, Q needs
to be optimized for each realization of the channel H, if
it is known at the transmitter; however, based on (10), the
MI is independent of H. Since maximizing (10) is equiva-
lent to maximizing |In +Q| and Q is positive definite, the
nondiagonal elements of Q must be zero, yielding Q to be
a diagonal positive definite matrix. From the well-known
theorem that the geometric mean is always upper-bounded by
the arithmetic mean, it is straight-forward to show that uniform
power distribution at the transmitter (i.e., Q = ηIn) maximizes
(10). Thus, the capacity of an n-dimensional unitary MIMO-
AWGN channel, still assuming that the channel is perfectly
known at the receiver, is

C = n log (1 + η) . (11)

The capacity of the DP channel is given by simply setting
n = 2 in (11).

Using (3), the MI of the channel for a uniformly distributed
discrete input can be expressed as

I(s;x) = Es,x

log
 |S| exp(−∥x−Hs∥2

σ2
z

)∑
s′∈S

exp(−∥x−Hs′∥2

σ2
z

)


 , (12)

where the expectations can be estimated numerically.

III. THE MUTUAL INFORMATION IN PRESENCE OF
CHANNEL ESTIMATION ERROR

We derived the capacity of the DP channel with the assump-
tion of perfect channel knowledge at the receiver in (11). In
this section, we derive a lower bound on the MI of the channel
in the presence of an estimation error.

A. Arbitrary channel, arbitrary estimate

As already shown in [48], when the channel is known,
the capacity-achieving distribution is a zero-mean CN input
with a power constraint. Thus, keeping the capacity-achieving
distribution, i.e., s ∼ CN (0,Λs) seems reasonable for the
imperfectly estimated channel as well.

Many mismatched decoding metrics are available in the
literature that provide lower bounds on the capacity, including
generalized mutual information (GMI) [49] and the well-
known LM rate [50], [51]. The LM rate is proven to be tight
for binary input |X | = 2 [52]. However, the LM rate is not
tight in general [53]. As a lower bound on the MI (3) between
s and x, we use the GMI definition [49, Eq. (12)]

I(s;x) ≥ Iq = sup
ν≥0

Ex,s

[
log

(
q(x|s)ν

Es[q(x|s)ν ]

)]
, (13)

where q(·) stands for the pdf of an auxiliary channel. Note
that this inequality holds for an arbitrary distribution of q(·).
For ν = 1, (13) converges to the well-known mismatched
decoding inequality [54, Eq. (34)]. The mismatched channel
law is here assumed to be

q(x|s) = p(x|s, Ĥ), (14)

which is obtained by replacing H in (5) with the estimated
channel Ĥ. This leads to

Es[q(x|s)ν ] = Es

 1

πnνσ2nν
z

exp

−

∥∥∥x− Ĥs
∥∥∥2

σ2
z/ν




=
πn(σ2

z/ν)
n

πnνσ2nν
z

1

πn|Λ̂x|
exp

(
−x†Λ̂−1

x x
)
, (15)

where

Λ̂x = ĤΛsĤ
† +

σ2
z

ν
In. (16)

Substituting (14) and (15) in (13) gives

Iq = sup
ν≥0

Ex,s

log


1

(σ2
z/ν)

n
exp

(
−∥x−Ĥs∥2

σ2
z/ν

)
1

|Λ̂x|
exp

(
−x†Λ̂−1

x x
)


 . (17)

The numerator and denominator inside the log(·) in (17) are,
by definition, CN (Ĥs, σ2

z/νIn) and CN (0, Λ̂x), respectively.
This indicates that the optimization over ν for Gaussian
channels is analogous to optimizing the noise variance of the
auxiliary channel [55, Example 2].

The average AIR when the estimated channel is random can
be written as

Īq = EĤ[Iq]. (18)



4

In the following, we first derive an AIR for the MIMO-
AWGN channel model with a fixed channel H and estimated
channel Ĥ. Then, we extend the derived AIR to n-dimensional
unitary channels. By assuming a unitary estimate of the
channel (i.e., ĤĤ† = In), a tighter AIR is derived. Finally,
we use (18) to consider a random estimated channel Ĥ.

Theorem 1: Consider an arbitrary complex MIMO channel
matrix H and a fixed (deterministic) estimation error E.
Defining the estimated channel matrix Ĥ = H− E, the AIR
is

Iq = sup
ν≥0

(
log
∣∣∣In + νĤQĤ†

∣∣∣− 1

ln 2
ν tr

(
QE†E

)
− 1

ln 2
tr
(
νIn − ΛxΛ̂

−1
x

))
, (19)

where the definitions of Λx, Q, and Λ̂x can be found in (7),
(9), and (16), respectively.

Proof: One may rewrite (17) as

Iq = sup
ν≥0

(
log

(
|Λ̂x|

(σ2
z/ν)

n

)
+

1

ln 2

A︷ ︸︸ ︷
Ex

[
x†Λ̂−1

x x
]

(20)

− 1

ln 2

B︷ ︸︸ ︷
1

σ2
z/ν

Es,x

[∥∥∥x− Ĥs
∥∥∥2]). (21)

Using (7), given H, the first term A can be calculated as

A = Ex

[
x†Λ̂−1

x x
]

= tr
(
ΛxΛ̂

−1
x

)
, (22)

where the last step follows by the cyclic permutation rule of
the trace. For the second term, B, when H is given, we use
(5) and (14) to obtain

B =
1

σ2
z/ν

Es,x

[∥∥∥x− Ĥs
∥∥∥2] (23)

=
1

σ2
z/ν

Ez,s

[∥∥∥(H− Ĥ)s+ z
∥∥∥2]

=
1

σ2
z/ν

(
Es

[
∥Es∥2

]
+ Ez

[
∥z∥2

])
(24)

=
1

σ2
z/ν

tr
(
σ2
zIn + EΛsE

†) (25)

= ν tr
(
In +QE†E

)
, (26)

where (24) follows from the fact that z and s are independent,
and the cyclic permutation rule of the trace is used in (25).
Finally, substituting (22) and (26) into (21) completes the
proof.

For discrete inputs, the pdf of the output of the auxiliary
channel is

q(x) =
∑
s∈S

P (s)q(x|s), (27)

where q(x|s) is defined in (14). Using (13), (14), and (27),
the average AIR for a uniformly distributed discrete input can
be expressed as

Īq ≥ E

log
 |S| exp(−ν

∥x−Ĥs∥2

σ2
z

)∑
s′∈S

exp(−ν
∥x−Ĥs′∥2

σ2
z

)


 , (28)

where the expectation is over s, x, and Ĥ, which can be
estimated numerically.

B. Unitary channel, arbitrary estimate

For the sake of keeping Theorem 1 as general as possible,
no assumption is made about the transmitter knowledge of
the estimated channel. However, in the context of the optical
communications, we are more interested in the case that the
transmitter has no channel knowledge. In that case, the trans-
mitter may model the unknown channel matrix H as random,
and if this random matrix has a symmetrical distribution
with respect to the components of s, then a uniform power
distribution Λs = P In/n is optimal. For example, this is the
case if the channel matrix is uniformly distributed over the set
of all possible unitary channel matrices.

Corollary 1: Assume that the channel is unitary (i.e.,
H = Hu) and that uniform power distribution takes place at
the transmitter. Then the AIR of a unitary channel can be
written as

Iq = sup
ν≥0

(
log
∣∣∣In + νηĤĤ†

∣∣∣− νη

ln 2
tr
(
E†E

)
− ν

ln 2
tr
(
In − (1 + η)(In + νηĤĤ†)−1

))
. (29)

Proof: The uniform power distribution Λs = P In/n
yields Q = ηIn. Knowing the channel is unitary (i.e.,
HuHu

† = In) and using (7) and (16), we can write
Λx = σ2

z(1 + η)In and Λ̂−1
x = σ−2

z ν(In + νηĤĤ†)−1. Fi-
nally, substituting Q, Λx, and Λ̂−1

x in (19) completes the proof.

The optimum parameter ν in (29) depends on η, Ĥ, and E.
It can be computed numerically for each channel realization,
derived analytically in a special case (see Theorem 2 below),
or approximated (see Sec. V).

Corollary 2: Assume that the channel is a fixed unitary
matrix Hu, and that the estimated channel is an arbitrary
random matrix Ĥ = Hu −E. Then with a uniform power
distribution, the average AIR for any ν = ν(η, Ĥ,E), not
necessarily optimum, is

Īq ≥ EĤ

[
log
∣∣∣In + νηĤĤ†

∣∣∣]− η

ln 2
tr
(
EE[νE

†E]
)

− 1

ln 2
tr
(
EĤ

[
νIn − ν(1 + η)(In + νηĤĤ†)−1

])
.

(30)

Proof: By applying (18) to (29) the proof is complete.
The covariance matrix of the estimation error is defined as

RE = EE[E
†E], (31)
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which is an indication of the expected squared Euclidean
distance between the estimated channel and the actual channel.
Note that EE

[
νE†E

]
= νRE for constant ν.

An important special case is when E has a zero-mean
spherically symmetric distribution. The following corollary
specializes Corollary 2 to this important case, which is valid
when the channel is estimated using pilots with orthogonal
rows as will be shown in Section IV-A.

Corollary 3: If E has a zero-mean spherically symmetric
distribution, then the right-hand side of (30) is the same for
any Hu.

Proof: For any two different Hu and Hu
′ one can define

E′ = EHu
†Hu

′ = Hu
′ − Ĥ′, (32)

where Ĥ′ = ĤHu
†Hu

′. Since E has a zero-mean spherically
symmetric distribution, it is invariant to rotation. Thus, for any
Hu and Hu

′, E′ has the same distribution as E. We can also
write

Ĥ′Ĥ′† = ĤĤ† = (Hu −E)(Hu −E)†

= (In −EHu
†)(In −EHu

†)†, (33)

and with the same logic, for any Hu, EHu
† has the same

distribution as E and ĤĤ† has the same distribution as (In−
E)(In−E)†. Since E is independent of the channel realization
Hu, (30) yields the same AIR independently of Hu.

C. Arbitrary channel, unitary estimate
We have not made any assumption on the estimation tech-

nique, so the derived lower bounds hold for an arbitrary
estimator. It can be seen that (30) highly depends on the
choice of estimation technique, so one can tighten the bound
by choosing a suitable estimator.

Corollary 4: For a complex unitary channel Hu, a unitary
estimated channel Ĥ = Hu − E, and a uniform power
distribution, an AIR is

Īq ≥ nEE [log(1 + νη)]

− η

ln 2

(
tr(EE[νE

†E]) + nEE

[
ν(ν − 1)

1 + νη

])
. (34)

Proof: By applying ĤĤ† = In to (30) and simplifying
the obtained expression, the proof is complete.

Note that (34) is independent of H, meaning that the AIR
is the same for any unitary channel. Interestingly, the unitary
estimation of the channel leads to a simpler bound.

In general, optimizing ν for each realization of the estimated
channel is a computationally demanding procedure. However,
when both the actual and the estimated channels are unitary,
the optimal ν value can be analytically obtained as a function
of η and E.

Theorem 2: Assume a complex unitary channel with uni-
form power distribution and define κ = tr(E†E)/n. Then, for
each realization of a unitary estimated channel, the supremum
in Corollary 1 is obtained for

ν = ν∗ =

{√
(4κ+1)η2+4(κ+1)η+4+η(1−2κ)−2

2η(κη+1) 0 ≤ κ ≤ 2

0 κ ≥ 2

(35)

Pilots Data Pilots Data

𝐿𝐿 𝑁𝑁 − 𝐿𝐿

Channel 𝑛𝑛

Pilots Data Pilots DataChannel 1

Fig. 1: Transmission block model

Proof: See Appendix.

IV. CHANNEL ESTIMATION

In this section, first, the well-established LS estimation
algorithm is presented. Then, a unitary estimation method is
proposed for unitary channels. As illustrated in Fig. 1, to make
data-aided channel estimation possible, the first L symbols of
the transmission block are forming the n× L matrix of pilot
symbols D = [s0, ..., sL−1], which are assumed to be known
at both transmitter and receiver. When the total transmission
power is constrained, the optimal pilot assignment D should
have the following properties [56]:

• L ≥ n,
• DD† = PL

n In,
where the first condition states that in each row of the channel
matrix there are n unknown complex parameters that must
be estimated, and to ensure the uniqueness of the estimation,
at least n pilots are needed in each row of the pilot matrix.
The second condition states that any training matrix with
orthogonal rows of the same norm

√
PL/n is optimal [57],

[58]. Note that infinitely many pilot sequences satisfy the
above conditions. The complex matrix X = [x0, ...,xL−1] of
received symbols is

X = HuD+ Z, (36)

where Z = [z0, ..., zL−1] is an n× L matrix of i.i.d. noise
samples which are assumed to be CN (0, σ2

zIn), and Hu is an
n× n random unitary channel matrix, which is assumed to
remain constant during a transmission block.

For the channel estimation problem, we define the number
of degrees of freedom (DOF) as the number of independent
real values that are needed to be estimated and denoted by Ω.

A. LS Algorithm
Conventional optical transmission systems often use LMS

for a real-time estimate of the channel, because LMS tracks
the channel change with each received symbol. However, in
this paper it is assumed that the channel is constant during
a transmission block and the LS method is well adapted to
block based transmissions. The LS estimator estimates the
channel by minimizing the squared error between the desired
and received signal. For a MIMO-AWGN channel, the LS
optimization problem can be expressed as [59]

min
Ĥ

∥∥∥X− ĤD
∥∥∥2 . (37)
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The LS optimization problem (37) can be translated to finding
Ω = 2n2 independent real values. Knowing D and X, the
solution of (37) is [59], [60, Ch. 8]

ĤLS = XD†(DD†)−1. (38)

However, the pilots are chosen in such a way that
DD† = PL

n In. Therefore, we can write

ĤLS =
n

PL
XD† = Hu +

n

PL
ZD†. (39)

Thus, the estimation error matrix E = − n
PLZD

† has a zero-
mean spherically symmetric distribution, and hence Corollary
3 is applicable. This is because multiplying Z and a matrix
with orthogonal rows D† does not change the distribution. It
can be shown that for the LS algorithm [59]

RE = EE

[
E†E

]
=

nσ2
z

PL
In =

1

ηL
In (40)

showing that the estimation error of the LS algorithm is
inversely proportional to the SNR and the pilot length L. The
implementation complexity of the LS algorithm is discussed
in Section IV-C.

B. Kabsch Algorithm

The problem with both blind estimation algorithms (e.g.,
CMA, RDE, and MMA) and pilot-aided estimation algorithms
(e.g., LS and LMS) is that their optimization problems are not
adopted for unitary channel estimation, making their solutions
suboptimal if H is known to be unitary. Thus, in this part, we
apply the unitary constraint of the channel to the estimation
problem of (37) and write

min
Ĥ

∥∥∥X− ĤD
∥∥∥2 s.t. ĤĤ† = In. (41)

The optimal solution to this problem is given by the Kabsch
algorithm [29] as

ĤKabsch = UV†, (42)

where UΣV† is the singular value decomposition function of
XD†. Since the channel is estimated from the pilots, unlike
the conventional blind estimators, the Kabsch algorithm is not
influenced by the choice of modulation format for the actual
data transmission, which may be different from that of the
pilot symbols. The Kabsch algorithm was proposed for optical
communication by Louchet et al. [28] as a blind polarization
tracking algorithm, where decision-directed symbols were
used instead of pilots.

In contrast to LS, no analytical result is known for RE of
the Kabsch algorithm. Although we cannot analytically prove
it, we can make an intuitive prediction by considering that
for a unitary estimation problem (41) Ω = n2 while for a
general estimation problem (37) Ω = 2n2. Since the channel
estimation problem is equivalent to finding Ω independent real-
valued quantities, one can predict that the estimation error of
Kabsch would be half of LS. More interestingly, for special
unitary channels where |Hu| = 1, the DOF is n2 − 1 and the
gain by the unitary algorithm can be even higher; however,
this gain vanishes for large n.

Note that in the case of the DP channel, the singular
value decomposition is deployed only on a two-by-two matrix,
making it less computationally complex than for higher n. The
computational complexity of the Kabsch algorithm is analyzed
in Section IV-C.

C. Implementation Complexity

The implementation complexity of the two considered al-
gorithms can be assessed by comparing their scalability in the
dimension n and pilot length L. The LS algorithm has only
one matrix multiplication XD† (39), which scales as O(n2L).
However, the Kabsch algorithm, in addition to computing
XD†, needs to calculate one extra n × n matrix multipli-
cation (42) and the singular value decomposition. Therefore,
the Kabsch algorithm scales as O(2n3 + n2L); however, as
mentioned in Sec. IV, L ≥ n, and thus the Kabsch algorithm
scales as O(2n3 + n2L) = O(n2L), which surprisingly is
the same scaling as with LS. Moreover, for the DP channel
(n = 2), the pilot length determines L and the implementation
complexity of both algorithms.

V. NUMERICAL RESULTS

In this section, through Monte Carlo trials, the AIR of the
DP channel (i.e., n = 2) for the estimation algorithms detailed
in Section IV is computed. While AIRs are derived for a
fixed channel matrix H, the estimated channel Ĥ is dependent
on each realization of the channel. For comparison, the BW-
DDLMS algorithm [22] is also investigated. Due to unreliable
convergence of BW-DDLMS, the BW-CMA algorithm [22]
is used in a pre-convergence phase after which we switch to
BW-DDLMS. For both BW-CMA and BW-DDLMS, the block
length is set to 1000 symbols, the step size is fixed to 10−3,
and the number of iterations is set to 5 and 20, respectively.
Refer to [22, Section III] for a more detailed implementation
description. A deterministic sequence of L quadrature phase-
shift keying (QPSK) symbols is selected to satisfy the pilot
conditions detailed in Section IV.

Numerical results verify that the estimation error of the Kab-
sch algorithm completely follows our prediction in Sec. IV-B.
Thus, to perform a fair comparison between the unitary and
nonunitary estimators, we define a new parameter called
estimation error per DOF as E2 = trRE/(nΩ). Note that
for a general nonunitary estimator Ω = 2n2 and for a general
unitary estimator Ω = n2.

Using CN inputs, Fig. 2 shows the Monte-Carlo averaged
AIR Īq of the unitary DP channel as a function of η and E2

according to (30) and (34) for n = 2. Each Monte Carlo AIR
value is generated as follows.

• For the dashed curves, a single unitary Hu is picked,
multiple E are generated from CN (0,RE) where RE =
2n2E2In and Ĥ = Hu − E is formed. Finally, (30)
is averaged over E. Note that based on Corollary 3,
for an estimation error E with a spherically symmetric
distribution, (30) is independent of Hu. Since optimizing
ν for each E realization is computationally demanding,
ν is approximated with ν∗ (35), which is a suboptimal
value for (30).
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Fig. 2: The average AIR Īq of the unitary DP channel as a
function of SNR η and estimation error per DOF E2 when
ν = ν∗. Normally, a high SNR is associated with a low E2 and
vice versa, depending on the applied estimation algorithms.

• For the solid curves, multiple E are generated from
CN (0,RE) where RE = n2E2In. For each E realization,
the ν parameter is optimized (i.e., ν = ν∗) using (35);
then, (34) is averaged over E.

The results illustrate that for each estimation error per DOF
E2, there exists a specific η which maximizes the average
AIR. This can be justified according to the right-hand sides of
(30) and (34), where the first term increases in a logarithmic
manner with respect to SNR, but the second term decreases
linearly with SNR. Therefore there is an optimum SNR that
maximizes the AIR.

With CN inputs in use, Fig. 3(a) presents the AIR of LS
and Kabsch according to (30) and (34), respectively. The solid
red line indicates the case when the receiver perfectly knows
the channel. It can be seen that choosing ν = ν∗ improves the
AIR with respect to the constant ν = 1 (i.e., the mismatched
decoding lower bound). Although ν∗ is suboptimal for the
LS algorithm, it still offers a noticeable improvement. This
is important because ν∗ is computed analytically and comes
with almost no extra computational complexity. It can also be
concluded that with L = 8, Kabsch surpasses LS throughout
the range of considered SNRs. More specifically, at 4 and
14 dB SNRs (see insets), Kabsch has at least 0.20 and 0.30
bits per symbol higher AIR, respectively. Additionally, it is
clear from the results that LS is upper-bounded by Kabsch,
and increasing the SNR cannot fill the gap. This behavior can
be justified because, unlike LS, Kabsch guarantees a unitary
estimation of the channel leading to a lower estimation error.
Moreover, as the SNR increases, the gap between Kabsch and
LS and the actual channel MI is almost constant. Since the
theoretical gap is (η/ ln 2) tr(RE) according to Corollary 4, we
conclude that the error covariance RE of Kabsch is inversely

proportional to the SNR, i.e., RE ∝ 1/η. Unlike Fig. 2, the
AIR bounds are monotonically increasing with SNR which is
due to the fact that the estimation error is decreasing with
SNR.

A comparison between LS, Kabsch, and BW-DDLMS with
DP-16-QAM inputs and ν = 1 is provided in Fig. 3(b). The MI
when the channel is perfectly known at the receiver is marked
by the dash-dotted red line. Evidently, Kabsch outperforms
LS throughout the considered range of SNRs. The results
also support the fact that Kabsch upper-bounds LS for various
inputs, which completely agrees with Fig. 2, where the unitary
estimation of the channel leads to a higher AIR. It can also
be seen that BW-DDLMS outperforms both LS and Kabsch in
the entire considered SNR range. However, this performance
comes with significantly higher complexity than the LS and
Kabsch algorithms. The BW-DDLMS algorithm is carried out
on a block of 1000 symbols for 15 iterations, while the data-
aided algorithms are executed on only 8 symbols in each
block. Besides, by setting L = 32, both LS and Kabsch will
outperform BW-DDLMS.

Fig. 4 displays the information gap between the AIRs and
the capacity of the DP channel, when (a) CN inputs with
ν = 1 and ν = ν∗ and (b) DP-16-QAM inputs are used and
ν = 1. It can be seen that setting ν = ν∗ gives a lower
information gap for both algorithms. The overall dominance
of Kabsch throughout the range of considered SNRs can be
easily verified. Evidently, it is beneficial to use higher pilot
numbers at low SNRs. Given the fact that RE ∝ 1/(Lη) for
LS (40) and that Kabsch in Fig. 4 follows the same trend
with respect to L, we can empirically conclude that RE of
Kabsch is also inversely proportional to the pilot length and
the SNR. It is also interesting to see that for Gaussian inputs,
unlike the LS algorithm, the information gap of the Kabsch
algorithm is independent of SNR (see Fig. 4(a)), which is
explained by Corollary 4 and RE ∝ 1/(Lη). On the contrary,
for discrete inputs, the information gap decreases at higher
SNRs (see blue dashed lines in Fig. 4(b)). This is because the
mutual information I and the average AIR Īq both converge
to the same asymptotic value at high SNR η, as shown in
Fig. 3(b).

It is beneficial to use Kabsch to limit the rate loss due to the
pilots. For example, a reasonable performance is achieved by
only a block of L = 16 pilot symbols, which is relatively small
compared to the transmission block size in optical communi-
cation systems, implying that the rate loss is negligible. For
instance, for a system operating at a rate of 28 Gbaud, even
if the channel remains constant for one microsecond (i.e., the
SOP drift time is one microsecond), it corresponds to a block
length N of at least 28, 000 symbols and the rate loss due to
16 pilots is negligible.

VI. CONCLUSION

The capacity of unitary MIMO-AWGN channels and
specifically DP was investigated, with applications to dual-
polarization transmission in optical fibers. An AIR with im-
perfect channel knowledge was derived and showed that the
AIR is highly dependent on the estimation algorithm. In the
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case of unitary channels, higher AIRs are obtained with a
unitary estimation of the channel where the optimum ν value
is obtained with a closed-form expression. The bounds are
derived for any n ≥ 2 dimensions, meaning that the results can
be applied to other optical channels. In particular, Theorem 1
can be directly applied to space-division multiplexed channels
which are impaired with polarization- and mode-dependent
loss. Although it is shown that the unitary estimation of the
channel yields a higher AIR, the majority of the presently
deployed estimation algorithms in the optical communications

literature are designed for general nonunitary channels. There-
fore, the data-aided Kabsch algorithm is proposed to ensure
a unitary estimate of the channel. Numerical results showed
that for various input distributions, Kabsch outperforms LS in
terms of AIR. Also, like LS, Kabsch can perform very well
with only a few pilot symbols, making the transmission rate
loss due to the pilots negligible.

As a future work, considering more real-world impairments
(e.g., PMD, chromatic dispersion, and nonlinearities) may lead
to more realistic bounds.
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APPENDIX
PROOF OF THEOREM 2

Applying ĤĤ† = I2 to (29) gives

Iq = sup
ν≥0

n log(1 + νη)− nνη

ln 2

(
κ+

ν − 1

1 + νη

)
(43)

= − nη

ln 2
inf
ν≥0

Ĩq(ν), (44)

where

Ĩq(ν) = − ln 2

η
log(1 + νη) + κν +

ν2 − ν

1 + νη
. (45)

The first derivative of (45) is

∂Ĩq(ν)

∂ν
= κ+

(νη + 2)(ν − 1)

(1 + νη)2
(46)

and the second derivative is

∂2Ĩq(ν)

∂ν2
=

η2ν + 3η + 2

(1 + νη)3
> 0 ∀ν ≥ 0. (47)

Thus, (46) is monotonically increasing with ν, and hence it is
minimum at ν = 0, yielding

∂Ĩq(ν)

∂ν
≥ κ− 2. (48)

For κ > 2, (46) is always positive, and hence (45) is
monotonically increasing with ν. Thus, the optimal ν is zero
(ν∗ = 0) yielding Iq = 0.

For 0 ≤ κ ≤ 2, we equate (46) to zero which yields

a︷ ︸︸ ︷
(κη2 + η) ν2 +

b︷ ︸︸ ︷
(2κη − η + 2) ν +

c︷ ︸︸ ︷
(κ− 2) = 0, (49)

where a > 0 and since

b2 − 4ac = (4κ+ 1)η2 + 4(κ+ 1)η + 4 > 4, (50)

both roots of (49) are real. Since c ≤ 0, (49) has only one
nonnegative root, which is

ν∗ =
−b+

√
b2 − 4ac

2a
(51)

and since the second derivative (47) is positive, ν∗ is indeed
a minimum of (45). Therefore,

ν∗ =

{√
(4κ+1)η2+4(κ+1)η+4+η(1−2κ)−2

2η(κη+1) 0 ≤ κ ≤ 2

0 κ > 2
(52)

and the proof is completed.
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