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Data-Driven Estimation of Capacity Upper Bounds
Christian Häger, Member, IEEE and Erik Agrell, Fellow, IEEE

Abstract—We consider the problem of estimating an upper
bound on the capacity of a memoryless channel with unknown
channel law and continuous output alphabet. A novel data-driven
algorithm is proposed that exploits the dual representation of
capacity where the maximization over the input distribution
is replaced with a minimization over a reference distribution
on the channel output. To efficiently compute the required
divergence maximization between the conditional channel and
the reference distribution, we use a modified mutual information
neural estimator that takes the channel input as an additional
parameter. We numerically evaluate our approach on different
memoryless channels and show empirically that the estimated
upper bounds closely converge either to the channel capacity or
to best-known lower bounds.

Index Terms—Autoencoders, channel capacity, divergence esti-
mation, duality, dual capacity representation, mutual information
neural estimation, neural networks, upper capacity bounds.

I. INTRODUCTION

The capacity of a communication channel is the maximum
rate that can be reliably transmitted [1]. Even though capacity
is of fundamental importance for both theory and practice,
exact analytical expressions are only available in relatively
few cases. If the underlying channel law is known, numerical
techniques can be used to approximately compute capacity
such as the well-known Blahut–Arimoto algorithm [2], [3] and
its many variations, see, e.g., [4] and references therein.

Recently, there has been significant interest in developing
capacity estimation algorithms based on machine learning
[5]–[11]. These approaches have their origin in the seminal
work [12], where the authors propose to reinterpret the com-
munication problem as a reconstruction task using param-
eterized transmitters and receivers, similar to autoencoders
(AEs) in machine learning. It can be shown that the cross-
entropy minimization commonly used to train AEs maximizes
a lower bound on mutual information, whereas the transmitter
optimization can be regarded as shaping a discrete input
distribution. Using this approach, tight lower bounds on the
capacity of a nonlinear phase noise (NLPN) channel were for
example obtained in [5].

A disadvantage of the AE approach is that it requires a dif-
ferentiable channel model to compute gradients for the trans-
mitter optimization. To address this problem, [6] proposes
to use the sample-based mutual information neural estimation
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(MINE) technique from [13] and train the AE transmitter
based on the (differentiable) MINE. Related approaches were
subsequently proposed for more general channels that may
include feedback and/or memory1 in [7] and for memoryless
multiple-access channels in [9]. Moreover, a hybrid approach
that regularizes the cross-entropy-based AE training using
MINE is proposed in [10]. Comparisons of various sample-
based mutual information estimators similar to MINE can be
found in [8] and [11].

All of the above learning-based approaches target the es-
timation of lower capacity bounds using the conventional
maximization of mutual information (or directed information
in [7]) over the input distribution, see (1) below. In this
paper, we follow a different path and consider the problem
of estimating an upper capacity bound by exploiting the
dual representation of channel capacity, which is described in
Sec. II. Our work relies on a variation of MINE for estimating
the divergence between the conditional channel and a given
reference distribution. Compared to the conventional Blahut–
Arimoto algorithm, the main advantage of our approach and
similar works on neural capacity estimation in [5]–[11] stems
from the fact that no knowledge about the underlying channel
law is required. As such, the resulting estimators can be used
in settings where the channel is only accessible via input–
output samples (e.g., in experimental setups) and the precise
channel law is unknown.

Notation: Random variables are denoted by upper-case
letters (e.g., X), realizations by lower-case letters (e.g., x), and
sets by calligraphic letters (e.g., X ). The probability distribu-
tion of a random variable X is denoted by fX . Expectation is
denoted by E[·], mutual information by I(·; ·), and Kullback–
Leibler divergence by D(·||·). For an integer N , we define the
set [N ] = {1, 2, . . . , N}.

II. DUAL REPRESENTATION OF CHANNEL CAPACITY

We consider a memoryless channel2 with input X ∈ X and
output Y ∈ Y . The channel law conditioned on a particular
input x is denoted by fY |X=x(y). In general, the input is
assumed to be constrained by a cost function c : X → R≥0.
The capacity of such a channel is

C = max
fX :EfX

[c(X)]≤P
I(X;Y ), (1)

where P denotes the maximum average cost. In the following,
we work with the dual representation [15, p. 142]

C = min
γ≥0

[F (γ) + γP ] , (2)

1See also the earlier work in [14] based on reinforcement learning, which,
however, requires knowledge about the channel law.

2To keep the notation simple, we focus on scalar channels. However, our
approach generalizes to (block-wise) memoryless channels where the input
and outputs are (possibly complex-valued) random vectors, see Sec. VI-C.
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where

F (γ) = min
qY

max
x∈X

[
D(fY |X=x||qY )− γc(x)

]
. (3)

The minimization in (3) is over all distributions qY on Y . Note
that any fixed choice for the reference distribution qY leads to
an upper bound in (3) and hence on the capacity (2).

According to [16], the above dual approach first originated
in [17] and was further developed in [18], [15], and [19].
Recent work exploiting this approach has mostly focused on
choosing qY to obtain a tractable analytical expression for the
resulting upper bound, see, e.g., [16], [19]. In this paper, we
will instead use (3) as a blueprint for an iterative optimization
procedure that alternates between training a divergence estima-
tor (see Sec. III) and the reference distribution qY (see Sec. IV)
based on the obtained estimator. The resulting algorithm is
described in Sec. V.

III. DATA-DRIVEN DIVERGENCE ESTIMATION

We use the approach proposed in [13] to estimate the
divergence term in (3). This approach is based on the Donsker–
Varadhan (DV) representation [13, Th. 1]

D(fY |X=x||qY ) = sup
T∈T

EfY |X=x
[T (Y )]− log

(
EqY [e

T (Y )]
)
,

(4)

where the supremum is over all functions T : Y → R such
that the expectations in (4) are finite. The idea in [13] is to
approximate the class of functions T using a neural network
(NN) Tθ : Y → R, where θ are the NN parameters. Tθ is
also referred to as the statistics network. For a fixed set of
parameters θ, the resulting estimator is

D̂θ =
1

B

B∑
i=1

Tθ(y
(i))− log

(
1

B

B∑
i=1

eTθ(ỹ
(i))

)
, (5)

where B is the batch size, y(1), . . . , y(B) ∼ fY |X=x, and
ỹ(i), . . . , ỹ(B) ∼ qY . This estimator can be iteratively trained
by running gradient ascent on (5), see [13, Alg. 1] for details.

Remark: We use the above estimator mainly for its sim-
plicity and the fact that it empirically tends to work well (see,
e.g., [11]). However, one should be aware that using the lower-
bound estimator (5) does not guarantee to result in a true
upper bound on capacity, which would in principle require
a full optimization over T . Moreover, the gradients resulting
from (5) are biased [13] and the estimator has high variance,
especially if the true underlying divergence is large [20]. We
comment on potential alternative approaches in Sec. VII.

Note that the estimator (5) assumes a fixed channel input
x. A different statistics network Tθ would thus be required for
each input to evaluate the maximization in (3) over the input
alphabet. However, this quickly becomes infeasible if the size
of the input alphabet is large or infinite. To circumvent this
problem, we propose a modified version of (5) where the input
x is taken as an additional input to the statistics network Tθ,
i.e., Tθ : Y × X → R. The resulting modified estimator is
denoted by

D̂θ(x) =
1

B

B∑
i=1

Tθ(y
(i), x)− log

(
1

B

B∑
i=1

eTθ(ỹ
(i),x)

)
. (6)
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Fig. 1: Accuracy and generalization ability of the trained divergence estimator
(6), where Xt = {−1,−0.8, . . . ,+1}.

z(i,j)∼fZ ỹ(i,j)∼qY

z(i,j)∼fZ
norm.
(batch)

channel
fY |X=x

ỹ(i,j)∼qY

Fig. 2: Two approaches for implementing the neural distribution transformer
(NDT) that generates samples from the reference distribution qY .

This formulation allows us to train a single statistics network
that works well for a range of different channel inputs. In
particular, this can be accomplished by jointly considering
multiple inputs {x(1), . . . , x(Nt)} = Xt ⊆ X and running gra-
dient descent on an average loss − 1

Nt

∑
j D̂θ(x

(j)). However,
averaging the logarithms in (6) leads to a geometric mean
1
Nt

∑
j log aj = log((

∏
j aj)

1/Nt). We found that replacing
this geometric mean with an arithmetic mean gives a numeri-
cally more stable training behavior, resulting in

Lθ =− 1

NtB

Nt∑
j=1

B∑
i=1

Tθ(y
(i,j), x(j))

+ log

 1

NtB

Nt∑
j=1

B∑
i=1

eTθ(ỹ
(i,j),x(j))

 , (7)

where y(1,j), . . . , y(B,j) ∼ fY |X=x(j) and ỹ(1,j), . . . , ỹ(B,j) ∼
qY . Note that (7) has the same functional form as the Monte
Carlo approximation of the DV representation of −I(X;Y ),
assuming that the input is uniformly distributed over Xt.

Example: Assume that fY |X=x and qY correspond to
N (x, 1) and N (1, 2), respectively. To optimize the parameters
θ, we set Xt = {−1,−0.8, . . . ,+1} and train the statistics net-
work3 using the loss (7). Fig. 1 compares the accuracy of the
resulting estimator D̂θ∗(x) to the true divergence as a function
of x, where θ∗ refers to the optimized parameters. Note that
D̂θ∗(x) generalizes well even to values of x that were not seen
during training, as illustrated by the red triangles.

IV. REPRESENTATION OF THE REFERENCE DISTRIBUTION

To allow for the gradient-based optimization of the reference
distribution qY , two different approaches are described in the
following for generating the samples ỹ(1,j), . . . , ỹ(B,j) ∼ qY
in (7) using NNs. The corresponding block diagrams are
shown in Fig. 2. Similar to [7], we refer to the resulting
transformation as the neural distribution transformer (NDT).

3The NN architecture and all other training hyperparameters for this
example are the same as for case (i) in Tab. I below.
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In the first approach (Fig. 2, top), the NDT consists of
an NN fτ with parameters τ , which is then followed by a
batch-wise normalization procedure and transmission over the
channel. Thus, this approach generates channel inputs as an
intermediate step. The normalization procedure enforces the
average cost constraint4 via

s̃(i,j) =
s(i,j)

c−1
(

1
P

∑B
i=1 c(s

(i,j))
) , (8)

where s(i,j) = fτ (z
(i,j)), i ∈ [B], j ∈ [Nt] is the NN output

and z(i,j) ∈ Rl is a random vector sampled from a fixed latent
probability distribution fZ . Note that (8) implicitly assumes
that the cost function distributes over division, i.e., c(a/b) =
c(a)/c(b), which is the case for all cost functions considered
in this paper. The above approach ensures that qY is a valid
output distribution for the channel under consideration, given
the cost constraint. However, it should be noted that it requires
a differentiable channel model in order to compute gradients
with respect to τ .

In the second approach (Fig. 2, bottom), the NDT directly
generates samples from the channel output alphabet and sim-
ply consists of an NN fτ as before but without any additional
post-processing, i.e., ỹ(i,j) = fτ (z

(i,j)). While this approach
does not necessarily ensure that qY is a valid output distri-
bution for cost-constrained channels (which is not required
to obtain an upper bound in (3)), it is more universal and
can be used even if the channel is only accessible as a black
box through input–output samples (e.g., in an experimental
setting). On the other hand, we found that this representation
typically requires more training steps when optimizing the NN
parameters τ .

V. PROPOSED ALGORITHM

The proposed capacity estimation algorithm is detailed
in Algorithm 1. It alternates between training the statistics
network Tθ (lines 3–5) and the NDT network fτ (lines 6–8)
for a total of M iterations. The latter optimizes the reference
distribution qY based on the loss function (cf. (3))

F̂τ (γ) = max
j∈[Nd]

[
D̂θ(x

(j))− γc(x(j))
]

= max
j∈[Nd]

[
1

B

B∑
i=1

Tθ(y
(i,j), x(j))

− log

(
1

B

B∑
i=1

eTθ(ỹ
(i,j),x(j))

)
− γc(x(j))

]
,

(9)

where the dependence of F̂τ (γ) on the parameters τ is implicit
through the samples ỹ(i,j) generated by the NDT. Compared
to (3), the outer minimization over qY is encapsulated in the
NN parameters τ , which are optimized via gradient descent in
Algorithm 1.

The definition of the sets Xt and {x(1), . . . , x(Nd)} = Xd ⊆
X in lines 3 and 6 depends on whether the input alphabet

4Note that this procedure enforces the average cost constraint with equality,
even if the inequality constraint was satisfied before the normalization.

Algorithm 1: Estimation of capacity upper bounds.

1 Inputs: number of iterations M , batch size B, learning rate β,
Lagrange multiplier γ (for cost-constrained channels), input sets
Xt (see Sec. III) and Xd (see Sec. V)

2 for l = 1, 2, . . . ,M do
3 ∀x(j)∈Xt, i∈ [B]: generate y(i,j)∼fY |X=x(j) , ỹ(i,j)∼qY
4 Lθ ← compute average loss according to (7)
5 θ ← θ − β∇θLθ /* update statistics network */

6 ∀x(j)∈Xd, i∈ [B]: generate y(i,j)∼fY |X=x(j) , ỹ(i,j)∼qY

7 F̂τ (γ)← estimate upper bound according to (9)
8 τ ← τ − β∇τ F̂τ (γ) /* update NDT network */

9 return F̂τ (γ)

TABLE I: NN parameters for the (i) average-power-constrained AWGN, (ii)
peak-power-constrained AWGN, (iii) OI, and (iv) NLPN channel.

NDT network fτ statistics network Tθ

layer input hidden output input hidden output

(i) # neurons 50 2 × 100 1 (linear) 2 2 × 100 1 (linear)
(ii) # neurons 50 2 × 100 1 (tanh) 2 2 × 100 1 (linear)
(iii) # neurons 50 2 × 100 1 (sigmoid) 2 2 × 100 1 (linear)
(iv) # neurons 50 2 × 150 2 (linear) 4 2 × 150 1 (linear)

is discrete or continuous. For channels with discrete input
alphabet X , we may set Xt = Xd = X .5 If the input alphabet
of the channel is continuous, we assume that the input space
has been appropriately discretized and the resulting set of
discretized inputs is given by Xd. A native, but more involved,
approach for channels with continuous inputs that does not
require any input space discretization is suggested in Sec. VII.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed ap-
proach.6 Note that for cost-constrained channels, Algorithm 1
estimates the capacity in (3) as a function of the Lagrange
multiplier γ ≥ 0. In this case, we use a golden-section search
to solve the outer one-dimensional minimization over γ in (2).

For all considered cases, we use fully-connected NNs with
rectified linear unit activation functions in the hidden layers
to represent both the NDT network fτ and the statistics
network Tθ. The NN parameters are summarized in Tab. I.
The number of input neurons for fτ depends on the latent
distribution, which we assume to be a multivariate Gaussian
distribution N (0l, Il) with l = 50. We found that the results
are relatively insensitive to the choice of l, which mainly
affects the initial distribution for qY before training. Moreover,
while we have verified both NDT approaches discussed in
Sec. IV, the following numerical results use the first approach
(Fig. 2, top) since all channel models below are differentiable.

For the gradient-based optimization steps in Algorithm 1
(lines 5 and 8), we employ the Adam optimizer [21] with
learning rate β = 10−3 and batch size B = 20000. Lastly,
we always pretrain the statistics network Tθ by running 200
initial iterations of lines 3–5 in Algorithms 1, which we found
to improve training convergence.

5In this case, the data generated in line 3 can be reused in line 6.
6The source code to reproduce all numerical results in this paper is available

at https://github.com/chaeger/upper capacity bounds.
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Fig. 3: Results for the AWGN channel.
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Fig. 4: Results for the OI channel with α = 0.4 (cf. [24, Fig. 2])

A. AWGN Channel

We start with the additive white Gaussian noise (AWGN)
channel Y = X + Z, where X is the channel input and Z ∼
N (0, σ2). For the average-power-limited case, we have c(x) =
x2 as a cost function, in which case C = 1

2 log(1+SNR) with
SNR = P/σ2. For the amplitude-limited case, we instead have
no cost constraint, |X| ≤ A, and SNR = A2/σ2. In this case,
no closed-form analytical capacity expressions exist, but upper
and lower bounds have been derived, see, e.g., [22], [23], [16].

For the numerical estimation, we set P = 1 and A = 1
without loss of generality and vary the SNR by varying σ2.
The input space is discretized using Nd = 15 uniformly
spaced grid points in the intervals [−2.5, 2.5] and [−1, 1] for
the average-power-limited and amplitude-limited case, respec-
tively. In this paper, we always assume for simplicity that
Xt = Xd, noting that in general the set Xd can be different
from the set Xt used to train the divergence estimator. Fig. 3
shows the estimated upper bounds after M = 500 iterations,
where we compare to the upper bound in [23] and lower bound
in [16, Fig. 2] for the amplitude-limited case. Note that the
NDT network fτ for the amplitude-limited case uses a tanh
activation function in the last layer (cf. Tab. I) to enforce
the amplitude constraint. Moreover, due to the absence of
a cost constraint, no normalization procedure is applied and
the outputs of fτ are directly transmitted over the channel to
generate the NDT output samples ỹ(i,j).

B. Optical Intensity Channel

Next, we consider the optical intensity (OI) channel which
is defined by Y = X + Z with c(x) = x, X ∈ [0, A], and
Z ∼ N (0, σ2) [24]. We consider the case α = P/A = 0.4.
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Fig. 5: Results for the NLPN channel.

For the numerical estimation, we set P = 1 and discretize
the input space using 15 uniformly spaced grid points in the
interval [0, A], where A = 2.5. For this case, the NDT network
uses a sigmoid activation (scaled by A) in the last layer to
ensure that the channel input satisfies the amplitude constraint.
Results are shown in Fig. 4 after M = 500 iterations, where
we compare to the upper and lower capacity bounds developed
in [24], see in particular [24, Fig. 2]. The gap of the estimated
upper bound with respect to the lower bound is due to the fact
that the latter is not tight. Indeed, to verify that the channel
capacity is close to our estimated upper bound, we used the
Blahut–Arimoto algorithm for cost-constrained channels [15,
p. 140] (black circles). We also note that tighter analytical
upper bounds can potentially be obtained by extending the
methodology in [23] to this channel model.

C. Nonlinear Phase Noise Channel

Lastly, we consider an NLPN channel for coherent optical
communication which is based on a split-step solution of the
nonlinear Schrödinger equation without dispersive effects. The
resulting complex-valued channel is defined by the recursion

Xk+1 = Xke
ȷγL|Xk|2/K +Nk+1, 0 ≤ k ≤ K, (10)

where X = X0 ∈ C is the input, Y = XK ∈ C is the
output, Nk+1 ∼ CN (0, σ2/K), σ2 is the total noise power,
γ is a nonlinearity parameter, L is the transmission distance,
and c(x) = |x|2. This channel has a long history in terms of
capacity analysis, see [25], [26], [5], [27], [28] and references
therein. Here, we use the same parameters as in [5], [27],
i.e., K = 50, σ2 = −21.3 dBm, γ = 1.27 rad/km/W, and
L = 5000 km.

For the numerical estimation, we consider a renormalized
version of (10), where X̃k = Xk/

√
P . The input space of

the renormalized channel is discretized using 9 uniformly
spaced grid points in the interval [−1.75, 1.75] for both the real
and imaginary part, i.e., Nd = 81 total discretization points.
Separating the real and imaginary parts of the channel input
and output, respectively, the number of NDT output neurons is
increased to 2 and the number of input neurons of the statistics
network to 4. Fig. 5 shows the obtained results after M = 2500
iterations as a function of P (see the top axis for a conversion
to SNR = P/σ2). It can be seen that the estimated upper
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bound closely follows the lower bound in [27], which is based
on a Gaussian input distribution.

VII. DISCUSSION AND FUTURE WORK

We have proposed a novel data-driven approach for esti-
mating upper bounds on channel capacity. Similar to recent
work in [6], [7], the proposed algorithm relies on the DV
representation for estimating divergence, with the consequence
that the resulting estimates are neither true upper nor lower
bounds for a finite sample size [29]. Even assuming an infinite
sample size, one cannot guarantee that the resulting estimates
are true upper bounds on capacity, which would in principle
require a full optimization over the function class T (cf. (4)).
It is therefore important to properly choose the NN and
training parameters. For example, more training iterations were
required for the NLPN channel compared to the other cases
to ensure convergence of the NDT and statistics networks.

An overview of potential alternative divergence estimation
approaches can be found in [8] and [11]. Moreover, [9]
recently proposed an approach to obtain outer bounds on the
achievable rate region of memoryless multiple-access chan-
nels by exploiting the upper bounds based on f -divergence
inequalities from [30]. However, the histogram-based approach
to numerically evaluate these bound in [9] does not directly
lead to a differentiable loss function. Therefore, additional
modifications (e.g., based on ideas similar to [31]) would be
required to be able to use such inequalities in conjunction with
the NDT optimization in Algorithm 1.

Lastly, another reason why the proposed approach does
not necessarily compute true upper bounds for continuous-
input channels is that the maximization over x is only done
approximately via discretization. To ensure that the capacity
of the resulting input-discretized channel is close to that of
the original channel, one approach is to successively increase
the number of discretization points Nd until convergence. For
future work, it may be interesting to develop native estimation
approaches that do not require such a discretization. This could
be done, for example, by considering an auxiliary distribution
over the input space and casting the maximization in (3) as an
optimization problem over this auxiliary distribution. Similar
to the NDT, the auxiliary distribution could then again be
parameterized using an NN.
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[5] S. Li, C. Häger, N. Garcia, and H. Wymeersch, “Achievable Information
Rates for Nonlinear Fiber Communication via End-to-end Autoencoder
Learning,” in Proc. European Conf. Optical Communication (ECOC),
Rome, Italy, 2018.

[6] R. Fritschek, R. F. Schaefer, and G. Wunder, “Deep Learning for
Channel Coding via Neural Mutual Information Estimation,” in Proc.
IEEE Int. Workshop on Signal Processing Advances in Wireless Com-
munications (SPAWC), Cannes, France, 2019.

[7] Z. Aharoni, D. Tsur, Z. Goldfeld, and H. H. Permuter, “Capacity of
Continuous Channels with Memory via Directed Information Neural
Estimator,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Los
Angeles, CA, 2020.

[8] R. Fritschek, R. F. Schaefer, and G. Wunder, “Neural Mutual Information
Estimation for Channel Coding: State-of-the-Art Estimators, Analysis,
and Performance Comparison,” in Proc. IEEE Int. Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), Atlanta,
GA, 2020.

[9] F. Mirkarimi and N. Farsad, “Neural Computation of Capacity Region
of Memoryless Multiple Access Channels,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Melbourne, Australia, 2021.

[10] N. A. Letizia and A. M. Tonello, “Capacity-Driven Autoencoders for
Communications,” IEEE Open J. Commun. Soc., vol. 2, pp. 1366–1378,
Jun. 2021.

[11] F. Mirkarimi, S. Rini, and N. Farsad, “Neural Capacity Estimators: How
Reliable Are They?” arXiv:2111.07401 [cs.IT], Nov. 2021.

[12] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp.
563–575, Dec. 2017.

[13] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio,
A. Coursville, and R. D. Hjelm, “Mutual Information Neural Estima-
tion,” in Proc. Int. Conf. Mach. Learning (ICML), Stockholm, Sweden,
2018.

[14] Z. Aharoni, O. Sabag, and H. H. Permuter, “Computing the Feedback
Capacity of Finite State Channels using Reinforcement Learning,” in
Proc. IEEE Int. Symp. Information Theory (ISIT), Paris, France, 2019.

[15] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Academic Press, 1981.

[16] A. Thangaraj, G. Kramer, and G. Böcherer, “Capacity Bounds for
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