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Abstract

Recent work (Xu et al., 2020) has suggested that numeral sys-
tems in different languages are shaped by a functional need
for efficient communication in an information-theoretic sense.
Here we take a learning-theoretic approach and show how effi-
cient communication emerges via reinforcement learning. In
our framework, two artificial agents play a Lewis signaling
game where the goal is to convey a numeral concept. The
agents gradually learn to communicate using reinforcement
learning and the resulting numeral systems are shown to be ef-
ficient in the information-theoretic framework of Regier et al.
(2015); Gibson et al. (2017). They are also shown to be simi-
lar to human numeral systems of same type. Our results thus
provide a mechanistic explanation via reinforcement learning
of the recent results in Xu et al. (2020) and can potentially be
generalized to other semantic domains.

Keywords: efficient communication; reinforcement learning;
numeral systems

Introduction
Why do languages partition mental concepts into words the
ways they do? A recent influential body of work suggests
language is shaped by a pressure for efficient communi-
cation which involves an information-theoretic tradeoff be-
tween cognitive load and informativeness (Kemp and Regier,
2012; Gibson et al., 2017; Zaslavsky et al., 2019). This means
that language is under pressure to be simultaneously infor-
mative, to support effective communication, while also being
simple, in order to minimize the cognitive load.

While the information-theoretic framework is insightful
and has broad explanatory power across a variety of domains,
see the reviews by Kemp et al. (2018); Gibson et al. (2019),
a fundamental question that is left unaddressed is if there
is mechanistic explanation for how such efficient communi-
cation schemes could arise. We address this question here
from a learning-theoretic viewpoint: is there a computational
learning mechanism that leads to efficient communication?

We can relate our approach to previous work using the
influential ”three levels of analysis” framework posited by
David Marr (Marr, 1982) which has been described as one of
the most enduring constructs of twentieth century cognitive
science and computational neuroscience. While the previous
work such as Kemp and Regier (2012); Kemp et al. (2018);
Gibson et al. (2019) is situated at the first or ”theory” level
of Marr, our analysis is at the representation and algorithmic
level. In particular, we propose very natural reinforcement

learning mechanisms that are able to learn such efficient com-
munication schemes. The learning aspect is emphasised by
Tomaso Poggio (Poggio, 2012) in an update of Marr:

it is ... important to understand how an individual or-
ganism, and in fact a whole species, learns and evolves
[the computations and the representations used by the
brain] from experience of the natural world ... a descrip-
tion of the learning algorithms and their a priori assump-
tions is deeper, more constructive, and more useful than
a description of the details of what is actually learned ...
the problem of learning is at the core of the problem of
intelligence and of understanding the brain ... learning
should be added to the list of levels of understanding ...

Recent research gives evidence that the style of learning al-
gorithms we consider here seem to be centrally implicated
in exploration strategies used by humans (Schulz and Gersh-
man, 2019).

Reinforcement learning has been proposed recently as
a mechanistic explanation for how efficient communica-
tion arises in the colour domain (Kågebäck et al., 2020;
Chaabouni et al., 2021) and it was observed that this approach
could potentially be applied to other domains. Here we inves-
tigate the reinforcement learning approach in the domain of
numeral systems. It has been shown recently that numeral
systems across languages reflect a need for efficient commu-
nication (Xu et al., 2020). Numeral systems come in many
shapes, some are recursive like English and can express any
numeriosity while other non-recursive systems only consists
of a small set of words (Comrie, 2013). These non-recursive
systems could be either exact restricted - in the sense that ex-
act numerosities can only be expressed on a restricted range,
or approximate like in the language Mundurukú where most
numeral words have an imprecise meaning (Pica et al., 2004).
Here we only consider non-recursive systems.

We show that reinforcement learning mechanisms can in-
deed be used to learn exact and approximate numeral systems
which are near-optimal in an information-theoretic sense and
similar in structure to human numeral systems of the same
complexity. Unlike Kågebäck et al. (2020), who use a policy-
gradient method, we use a Q-learning algorithm with an im-
plicit Thompson Sampling exploration scheme (Sutton and
Barto, 1998).
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“A few”

Figure 1: Illustration of the communication setup presented
in Xu et al. (2020). The sender wants to convey the numeral
concept 4 and utters “a few”. The listener is unsure of which
numeral the sender is referring to and produces a probability
distribution over possible numerals.

Learning to Communicate: Signalling Games
We consider the communication framework developed in
Regier et al. (2015); Xu et al. (2020) which consists of a
sender and a listener. The sender has a concept in mind and
wishes to convey this to a listener over a discrete commu-
nication channel. The listener then tries to reconstruct the
concept. This is illustrated schematically in Figure 1.

We extend this setup to a Lewis signaling game (Lewis,
1969), by considering two artificial agents starting tabula
rasa and gradually learning to communicate efficiently via
a reinforcement learning algorithm (introduced in detail in
later sections) by playing several rounds of the game. In each
round of the game, a number n ∈ N from the interval N is
sampled according to a need probability of the environment,
p(n), which represent how often a numeral concept has to
be referred to in the environment. The sampled number n is
then given to the sender which has to pick a word w from
the vocabulary W and utter to the listener. Having received
a word w, the listener guesses a number n̂ ∈ N and a shared
reward, r(n, n̂), is given to both agents based on the distance
between the guess n̂ and the true number n. Here we explore
three different reward functions, one linear, one inverse and
one exponential

rlinear(n, n̂) = 1− |n− n̂|
|N |

,

rinverse(n, n̂) = (1+ |n− n̂|)−1,

rexp(n, n̂) = e−|n−n̂|.

One round of the signaling game is visualized in Figure 2
and one could interpret it as follows: the agents are playing a
cooperative game which involves solving a common task in
which success depends on how well the listener reconstructed
the number the sender had in mind. The reward functions
considered were chosen in order to model different pressure
for how precise the listener’s reconstruction has to be.

Reinforcement Learning for Efficient
Communication
Reinforcement learning is an area of machine learning which
studies how agents in an environment can learn to pick actions

Figure 2: Illustration of one round of our Lewis signaling
game, which will be formally introduced in later sections.
The sender is given a number n and samples a model fS from
FS using dropout and conveys the word w giving highest re-
ward according to fS. The listener proceeds in similar fash-
ion, given w it samples a model fL from FL and guesses the
number n̂ that yields most reward according to fL. A shared
reward is given to both agent based on how close n̂ is to n.

given states as to maximize a reward signal (Sutton and Barto,
1998) and recent studies suggests that reinforcement learning
may be an component in neural mechanisms such as the pha-
sic activity of dopamine neurons (Niv et al., 2005; Dabney
et al., 2020). In this work our agents will learn to communi-
cate efficiently using reinforcement learning by maximizing
the reward in the Lewis signaling game, Figure 2. For the
sender this translates into conveying the word w which yields
highest expected reward given the number n and for the lis-
tener to guess the number n̂ yielding highest expected reward
given the word w.

Inherent in this setup is an exploration-exploitation
tradeoff—the agents have to balance between exploring un-
certain actions in order to gain new insights about the envi-
ronment and exploiting it current knowledge in order to maxi-
mize the reward signal. Recent work in neuroscience suggests
that classical machine learning strategies, such as Thompson
sampling (Thompson, 1933), seem to mechanistically corre-
spond to exploration strategies used by humans (Schulz and
Gershman, 2019).

In this work we will use the Bayesian approach and
Thompson sampling in order to handle the exploration-
exploitation tradeoff. This means that each agent keeps a be-
lief, or posterior distribution, over possible models of the en-
vironment and at each time step it samples a plausible model
from the belief and acts optimal according to the sampled
model. After getting feedback from the real environment an
agent updates its belief over possible models accordingly. We
will use an implicit form of Thompson sampling presented in
Gal and Ghahramani (2016) where each agent will be repre-
sented as a feedforward neural network1 that maps input and
action to expected reward

FS : N ×W −→ [0,1]
FL : W ×N −→ [0,1].

1From now on we will use the subscript S for the sender and the
subscript L for the listener.

287



Given a new round of our signaling game each agent samples
a smaller network fS ∼ FS and fL ∼ FL from its neural net-
work using the regularization technique dropout (Srivastava
et al., 2014) which means that the activation at each neuron
in the network is randomly set to 0 with probability p. In
this way the agents sample, via dropout, one out of all pos-
sible models of the expected rewards spanned by FS and FL.
Hence, the networks fS and fL become the current internal
models of the expected reward of the speaker and listener.
Given an input, each agent acts greedily w.r.t. the smaller
networks fS and fL; given the number n, the sender conveys
the word ŵ yielding highest expected reward according the
sampled model

ŵ = argmax
w∈W

fS(n,w)

Similarly, given the word ŵ, the listener guesses the number
n̂ satisfying

n̂ = argmax
n′∈N

fL(ŵ,n′).

After playing the game for m rounds, each agent update the
weights in FS (or respectively FL) by finding the values which
minimize the mean-squared error (MSE)

MSES =
1
m

m

∑
i
( fS(ŵi,ni)− ri)

2,

MSEL =
1
m

m

∑
i
( fL(n̂i, ŵi)− ri)

2.

It should be noted that this game is only partially
observable—in each round of the game the sender observes
the tuple (n, ŵ,r) while the listener observes (ŵ, n̂,r).

Numeral Systems
We study two of the three types of numeral systems presented
in Xu et al. (2020). First, we consider the exact restricted sys-
tems, or simply exact systems, where exact numerosities can
only be expressed on a restricted range. An example of this is
the numeral system one, two, three and more than three. With
this system precise communication can only be achieved for
the first three numerals and it is clear which part of the num-
ber line each numeral word corresponds to.

The second type is approximate numeral systems where
the meaning of numerals are approximate. Example of such
inexact numerals are a few and many which do not cover a
precise restricted range.

We do not address recursive numeral systems in this work
since it require a different way of modelling the agents and
we leave it for future work.

Artificial Numeral Systems
Given that a sender-listener pair has played the signaling
game in Figure 2 for a certain number of rounds we would
like to compute the resulting numeral system. We do this

by first estimating the conditional probability p(w|n), i.e the
probability that the sender refers to the number n with the
word w, by running m = 1000 rounds of the game, without
updating the agents, with the number n given to the sender
and count how many times each word is used. Hence, we do
the following Monte-Carlo estimation

p(w|n)≈ 1
m

m

∑
i=1

1(w = argmax
ŵ

fS,i(ŵ,n))

where 1(·) is the indicator function. We check if the resulting
conditional distribution is peaked, i.e if it for each n assigns
more than 0.90 probability mass to one token w, if not we
interpret it as an approximate numeral system. Moreover, we
consider the mode of p(w|n) to be an exact numeral system.

Complexity and Communication Cost
We measure complexity of a numeral system simply as the
number of words used in the system. In Xu et al. (2020) a
grammar based complexity measure was used. This is not
needed here since we do not consider recursive numeral sys-
tems and for exact and approximate systems there is no pres-
sure for systematicity.

Given a sender distribution S and a listener distribution Lw
we measure the communicative cost of conveying a number
n as the information lost in the listener’s reconstruction of the
sender distribution given the numeral w. As has been done
in previous studies (Xu et al., 2020), we model this as the
Kullback-Leibler divergence (KL) between S and Lw. Under
sender certainty, S(n) = 1, this reduces to the surprisal

KL(S||Lw) = ∑
i

S(i) log
S(i)

Lw(i)
=− logLw(n),

which can be viewed as how surprised the listener would be
by the fact that the sender uttered w if they knew the true
number n.

In order to measure the full communication cost of a nu-
meral system we compute the expected surprisal as

C =−∑
n,w

p(w|n)p(n) logLw(n),

where Lw(n) is computed using Bayes rule

Lw(n) =
p(w|n)p(n)

∑w′ p(w′ |n)p(n)
.

Here p(w|n) denotes the sender partition of the number line
and p(n) the need probability of the environment. The mea-
sure of the total communication cost of a numeral system
used here is exactly the measure of communication cost used
in Gibson et al. (2017) and by taking a deterministic sender,
i.e a sender which for each n assigns all probability mass to
a single word w, we get the measure of communication cost
used in Xu et al. (2020).

Note that we use the speaker model to compute the listener
distribution, instead of the listener model, because given a
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(c) Reward: Exponential, Prior: Power law
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(e) Reward: Linear, Prior: MaxEnt
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(f) Reward: Linear, Prior: Uniform

Figure 3: Term usage vs communication cost. Note that our agents are not restricted to model the words as Gaussian distribu-
tions and can create other probability distributions. This explains why the line goes below the convex hull, for 2 terms, which
was computed assuming Gaussian distributions. We plot the numeral systems from the human languages presented Table 1 and
since many of them are very similar we only get a few distinct points for human languages in the figure.

number the sender is forced to assign positive probability to at
least one word while the listener can choose to never guess on
a number no matter which word is conveyed from the sender.
For example the word “many” might refer to a large, or possi-
ble infinite, of numbers while the listener may choose to only
guess on small subset of these numbers given that “many”
has been uttered. Another argument for computing the lis-
tener distribution using Bayes rule is because, given a sender
distribution, it minimizes the communication cost in the in-
formation bottleneck framework presented in Zaslavsky et al.
(2018). The proof of this is presented in the supplementary
files of Zaslavsky et al. (2018).

Experiments
We consider the interval N = [1,20] and each agent is mod-
elled as a feed-forward neural network with one hidden layer
consisting of 50 hidden neurons with a dropout rate of p= 0.3
and with ReLu activation 2. The agents starts with a vo-

2This interval was chosen since the need distributions are expo-
nentially decaying and very little probability mass lies beyond 20,
see Figure 5a.

cabulary W 3 of size 10 and is trained for 10000 updates
where each update is over a batch of 100 rounds of the sig-
naling game. The weights in the neural networks are updated
using a version of stochastic gradient descent called Adam
(Kingma and Ba, 2014) with an initial learning-rate of 0.001.
The dropout rate, learning rate and batch size are in the range
of what is commonly used in machine learning. However,
we also performed experiments varying these parameters and
found the downstream results to be robust.

We estimate the need probability in four different ways and
the priors are shown in Figure 5a. The power-law prior is
computed by first taking the normalized frequencies of En-
glish numerals in the Google ngram corpus English 2000
(Michel et al., 2011) and smoothing the frequencies using a
power-law distribution as done in Xu et al. (2020). We also
derive need probabilities using the capacity-achieving prior
(CAP) method (Zaslavsky et al., 2018), which infer a prior di-
rectly from naming data, and by using the maximum-entropy

3The size of the vocabulary W was taken to be equal to the
largest number of terms among the human systems analyzed in Xu
et al. (2020), which are presented in Table 1.
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Figure 4: Comparison between the optimal numeral systems w.r.t communication cost, human systems and the artificial consen-
sus systems produced by our agents under the different reward functions. We considered the experiments using the power-law
prior and the optimal systems are computed under this prior. Each color represents a numeral word and the corresponding
interval on the number line that the word represents.

(MaxEnt) method (Zaslavsky et al., 2019), which given a
naming distribution p(w|n) and word frequencies p(w) com-
putes the maximum-entropy achieving prior p(n) given these
constraints. We obtain a universal CAP by first computing a
CAP for each exact numeral system presented in Table 1 and
then averaging them together. Further, to compute a MaxEnt
prior we consider the language Gooniyandi, which has four
number terms translated to one, two, three, many, and the cor-
pus data available for the language Gooniyandi (McGregor,
2004, p. 204). When computing the MaxEnt prior the fourth
term, many, is modelled as a Gaussian distribution with mean
µ = 5 and standard deviation σ = 0.31× µ. Lastly, we con-
sider an uniform prior which was also done in Xu et al. (2020)
and the authors showed that human systems are less optimal
under this prior compare to the more skewed power-law prior,
illustrating that the near-optimality patterns found in human
numeral systems depend critically on the need probability.

We start by training 6000 independent sender-listener pairs
under the power-law prior, for each reward function. We then
fix the reward function to be linear and train 6000 indepen-
dent sender-listener pairs for each of the priors CAP, MaxEnt
and Uniform. Note that the agents are free to decide how
many terms from the vocabulary that are actually used during
communication and it is possible for the agents to converge
to a numeral system with less than 10 terms. Thus, the ac-
tual number of terms in the final numeral system will vary
over sender-listener pairs due to randomness in the initializa-
tion of the neural networks and the sampling from the need
probability.

Following Xu et al. (2020), we compute the convex hull of
hypothetical approximate and exact numeral systems to use as
baselines. For exact systems this is done using an approach
where we start from a random numeral system and greedily
updates the system until a local optima is encountered w.r.t
communication cost. For approximate systems we proceed in
similar fashion but model a numeral word as Gaussian with
a mean µw and a standard deviation σ = 0.31×µw following
Xu et al. (2020). We start from randomly chosen means and
perform greedy updates until a local optima is reached. For
both types of systems we solve for both the best and worst
performing numeral system and the optimization procedures
are repeated 1000 times for each number of terms.

Further, we compare the numeral systems developed by our
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Figure 5: a) The need probabilities, or priors, used. b) Rel-
ative frequency of term uses over sender-listener pairs using
the linear reward function and varying the need probability.
The more left-skewed the need probability is, the fewer terms
are generally used by the agents.

agents to the human approximate and exact restricted numeral
systems considered in Xu et al. (2020) which are presented
in Table 1. Most of this data was collected from Comrie
(2013) except for Chiquitano, Fuyuge, Krenák which comes
from Hammarström (2010) and Mundurukú which comes
Pica et al. (2004).

Approximate systems:
Chiquitano, Fuyuge, Gooniyandi, Mundurukú, Pirahã, Wari
Exact restricted systems:
Achagua, Araona, Awa Pit, Barasano, Baré, Hixkaryana,
Imonda, Kayardild, Krenák, Mangarrayi,
Martuthunira, Pitjantjatjara, Rama, Yidiny, !Xóõ

Table 1: Human numeral systems considered in Figure 3.

In Figure 3 we present the performance of our agents, w.r.t
communication cost, relative to numeral systems found in hu-
man languages and the convex hull of hypothetically possible
numeral systems, for the different need probabilities and var-
ious reward functions. We observe that our agents produce
numeral systems that are near-optimal for all need probabili-
ties and reward functions. For the left-skewed priors we ob-
serve that the communication cost of our agents are close to
the communication cost of human systems.

Furthermore, in Figure 5b we plot the relative frequency of
term usages between the sender-listener pairs when using the
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linear reward function and varying the need probability. As
expected, we observe that a more skewed distribution gen-
erally results in fewer terms used by the agents which indi-
cates that numeral systems with few terms can be sufficient
to achieve a near-optimal reward while we observe a pressure
for using more terms under the uniformed need probability.

We use Correlation Clustering (Bansal et al., 2004) to find
the consensus numeral system for each number of terms over
all experiments. Correlation Clustering is a method for find-
ing the optimal clustering, w.r.t. a similarity measure. We
create a 20× 20 matrix and each time two numbers i and
j belongs to the same partition, or word, over two different
sender-listener pairs we increase the element (i, j) of the ma-
trix by 1 otherwise we decrease it with 1. We apply Corre-
lation Clustering to the final matrix to get a consensus sys-
tem and this will be an exact numeral system. The resulting
systems for the experiments using the power-law prior are
presented in Figure 4 and we observe some similarities be-
tween the consensus systems and human systems with the
same number of terms. The main difference seems to be
that our agents produce systems that tends to be slightly less
precise for smaller numbers, especially for the linear reward
function, and this could be a result of having reward functions
that gives a fair amount of reward for imprecise reconstruc-
tion of the number the sender had in mind.

In addition, we compare the representation of numbers de-
veloped by our agents to the Gaussian model used in Xu et al.
(2020), which is inspired by the the formalization of the ap-
proximate number line presented in Pica et al. (2004). The
model assumes that a numeral word, w, is represented as a
Gaussian distribution with some mean µw and standard de-
viation σ = ν× µw where ν is the Weber fraction. We fit
this model to the distributions produced by our agents by
first computing, for each sender-listener pair i, the expected
number µi

w given a word w under the listener distribution
µi

w = ELi
w
[n|w]. We then compute a distribution according

to

pi
ν(n|w) ∝ e

−( |n−µi
w |

2ν×µi
w
)2

and search for ν ∈ [0.05,2], with a granularity of 0.01, that
minimizes the the MSE w.r.t the listener distribution of pair i.
The best fitting Weber fractions along with the corresponding
MSEs are presented in Table 2 and the Gaussian model fits the
listener distribution well with an average MSE in the interval
[0.0032,0076] over all the sender-listener pairs. These errors
are of the same magnitude as the error reported between the
Gaussian model and the numeral system of Mundurukú in
Xu et al. (2020) and with similar Weber fraction as reported
for Mundurukú adults in Piazza et al. (2013). Hence, our
agents produce approximate numeral systems via reinforce-
ment learning which exhibit similar behavior as the Gaussian
models used in Xu et al. (2020) and Pica et al. (2004) without
being explicitly programmed to do so.

Reward Best ν MSE
Linear 0.31 0.0042±0.0036
Inverse 0.31 0.0032±0.0042
Exponential 0.44 0.0076±0.0063

Table 2: The Weber fractions corresponding the Gaussian
model that on average fits the listener distribution best along
with the average MSE ±1 standard deviation for that Weber
fraction, averaged over all sender-listener pairs trained using
the particular reward function.

Conclusions and future work

We have shown that artificial agents can develop exact and
approximate numeral systems, via interaction and reinforce-
ment learning, which are near-optimal in an information-
theoretic sense and similar to human systems. Our work
offers a mechanistic explanation via reinforcement learning
of the results in Xu et al. (2020). More generally, it offers
a powerful framework to address fundamental questions of
cognition across a wide range of semantic domains using a
learning theoretic approach that complements the normative
approaches summarized in Kemp et al. (2018); Gibson et al.
(2019).

In the numerals domain, there are still several questions
that remain to be explored: Would the results be the same if
we increase the range of numbers? Can approximate arith-
metic be learned in the same way? Could the recursive sys-
tems described in Xu et al. (2020) be learned via interaction?
An interesting topic for future work is to establish a rigorous
connection between reward function and communication cost
in our setup.

In this work our artificial agents have been completely
driven by the reward signal. In the future we would like to
add a pragmatic reasoning scheme to our model, similar to
RSA (Frank and Goodman, 2012), and explore what effect
this has on the emergent behavior.
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