
Thesis for The Degree of Licentiate of Engineering

Towards Better Representation Learning
in the Absence of Sufficient Supervision

Arman Rahbar

Division of Data Science and AI
Department of Computer Science and Engineering

Chalmers University of Technology | University of Gothenburg
Gothenburg, Sweden, 2022

Towards Better Representation Learning in the Absence of Sufficient
Supervision

Arman Rahbar

© Arman Rahbar, 2022
except where otherwise stated.
All rights reserved.

ISSN 1652-876X

Department of Computer Science and Engineering
Division of Data Science and AI
Chalmers University of Technology | University of Gothenburg
SE-412 96 Göteborg,
Sweden
Phone: +46(0)31 772 1000

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2022.

To my Anahita, Mahmoud, Sakineh and Erfan
	
àA

	
Q̄« ÐPX@QK. ð é

	
JJ
º� ÐPXAÓ , XñÒm× ÐPYK� , ÐQå�Òë A

�
JJ
ëA

	
K
�
@ éK. Õç'
Y

�
®
�
K

i

Towards Better Representation Learning in the Absence
of Sufficient Supervision
Arman Rahbar

Department of Computer Science and Engineering
Chalmers University of Technology |University of Gothenburg

Abstract

We focus on the problem of learning representations from data in the situation
where we do not have access to sufficient supervision such as labels or feature
values. This situation can be present in many real-world machine learning
tasks. We approach this problem from different perspectives summarized as
follows.

First, we assume there is some knowledge already available from a different
but related task or model, and aim at using that knowledge in our task of
interest. We perform this form of knowledge transfer in two different but
related ways: i. using the knowledge available in kernel embeddings to improve
the training properties of a neural network, and ii. transferring the knowledge
available in a large model to a smaller one. In the former case, we use the
recent theoretical results on training of neural networks and a multiple kernel
learning algorithm to achieve a high performance in terms of both optimization
and generalization in a neural network.

Next, we tackle the problem of learning appropriate data representations
from an online learning point of view in which one should learn incrementally
from an incoming source of data. We assume that the whole feature set of a
data input is not always available, and seek a way to learn efficiently from a
smaller set of feature values. We propose a novel online learning framework
which builds a decision tree from a data stream, and yields highly accurate
predictions, competitive with classical online decision tree learners but with a
significantly lower cost.

Keywords

Representation learning, Supervision, Neural network, Knowledge transfer,
Kernel embedding, Online learning, Feature acquisition, Decision tree

iii

List of Publications

Appended publications

This thesis is based on the following papers:

[Paper I] Arman Rahbar, Emilio Jorge, Devdatt Dubhashi, and Morteza
Haghir Chehreghani, Do Kernel and Neural Embeddings Help in Training
and Generalization?
Neural Processing Letters, 2022.
[Contributed in: design of the study, empirical evaluation and analysis,
writing the manuscript]

[Paper II] Ashkan Panahi, Arman Rahbar, Chiranjib Bhattacharyya, Devd-
att Dubhashi, and Morteza Haghir Chehreghani, Analysis of Knowledge
Transfer in Kernel Regime
In Proceedings of the 31st ACM International Conference on Information
and Knowledge Management (CIKM ’22) 2022.
[Contributed in: empirical evaluation and writing the manuscript]

[Paper III] Arman Rahbar, Ziyu Ye, Chaoqi Wang, Yuxin Chen, Morteza
Haghir Chehreghani, Efficient Online Decision Tree Learning by Utility
of Features
To be submitted.
[Contributed in: design of the study, empirical evaluation and analysis,
writing the manuscript]

v

Acknowledgment

First and foremost, I would like to thank my main supervisor Morteza Haghir
Chehreghani for all his support, and his invaluable guidance. I really feel blessed
to be part of your research group. I am also very grateful to my co-supervisor
Hossein Azizpour, as well as my examiner Graham Kemp.

In the last few years, I have enjoyed collaborating with exceptional people.
Thus, I want to thank Devdatt, Ashkan, Emilio, Chiranjib, Ziyu, Chaoqi, and
Yuxin for their help and support.

During these years of my PhD life, I am really happy to have met and
worked with great people. Many thanks to Niklas, Fazeleh, Mehrdad, Emil,
Amir, Mehrzad, Shirin, Hannah, Mohammad, Hamid, Mehdi, Siavash, Ebrahim,
Tobias, Linus, David, Adam, Jonah, Peter, Adel, Christos, Victor, Ola, Hannes,
Birgit, Divya, Hampus, Lovisa, Fredrik, Richard, Simon, Newton, Christopher,
Anton, Nasser, Mena, Tobias, Simon, Vladimir, Markus, Alexander, Selpi,
Lena, Kolbjörn, Juan, and Dag.

I also want to thank my dear friends Yoosof, Seyed Mohammad and Firooz.
Thank you for keeping me happy, and providing pleasant distractions from
work.

My deepest gratitude would, of course, go to my parents and parents in law.
Thank you Mahmoud, Sakineh, Dariush, and Nazi for all your support and
sacrifices. I would also like to express my gratitude to my little brothers Erfan
and Danial. Thank you for always supporting me, and making me laugh.

Last, but not least, I have to thank my incredible wife Anahita. I could not
have undertaken this journey without your endless love and belief in me.

This research has been supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, project ”Under-supervised Representation Learning” grant nr.
37200022.

Arman Rahbar
Gothenburg, Sweden
November, 2022

vii

Contents

Abstract iii

List of Publications v

Acknowledgement vii

I Introductory Chapters 1

1 Introduction 3

2 Background 5
2.1 Neural networks and kernels . 5

2.1.1 Theoretical results for optimization and generalization
in neural networks . 5

2.1.2 Kernels . 7
2.2 Knowledge transfer . 8
2.3 Online learning . 10

2.3.1 An online learning framework 10
2.3.2 Online decision tree learning 11
2.3.3 Decision making with adaptive information acquisition . 12

3 Summary of Included Papers 15
3.1 Paper I . 15
3.2 Paper II . 15
3.3 Paper III . 16

4 Concluding Remarks 17

Bibliography 19

II Appended Papers 23

Paper I - Do Kernel and Neural Embeddings Help in Training
and Generalization?

ix

x CONTENTS

Paper II - Analysis of Knowledge Transfer in Kernel Regime

Paper III - Efficient Online Decision Tree Learning by Utility of
Features

Part I

Introductory Chapters

1

Chapter 1

Introduction

The success of machine learning methods including deep neural networks and
linear models like Support Vector Machines (SVMs) is highly dependant on
the type of data features (also referred to as data representation) they use. A
feature is a single descriptive aspect of a data point. For instance, assume we
would like to predict if an email is spam or not (known as spam detection).
Then a potential set of features is the frequencies of certain terms in the email
body. Traditionally, in order to find relevant features from data, machine
learning practitioners used to get help from domain experts. This classical
way of finding features is called feature/representation engineering. Feature
engineering can be highly expensive in both the required time and human effort.
To address this challenge, there has been a lot of effort to substitute the feature
engineering process with feature/representation learning [1] which refers to
a set of methods that automatically find representations from data. Feature
selection (i.e., selecting a subset of available features) can also be viewed as a
special type of representation learning.

Representation learning can be conducted in both supervised and unsuper-
vised ways. Similar to any other machine learning procedure, in supervised
representation learning, we aim at learning a proper representation from data
inputs together with their target variables (e.g., labels), whereas in the unsu-
pervised setting the representations are learned without the target data.

Principal Component Analysis (PCA) [2], [3] and Independent Component
Analysis (ICA) [4] are common methods used for unsupervised learning of
representations. Unsupervised representation learning can also be implemented
using neural networks. One of the most popular unsupervised neural networks
for representation learning is Autoencoder [5]. Deep neural networks are also
widely used for supervised representation learning, and are applicable in many
applications such as Computer Vision, Speech Recognition, etc.

Representation learning can also be of a very high importance in the online
learning setting where data points arrive in the form of a data stream and
should be processed rapidly. In this setting, we are generally interested in
feature selection. Most of the works in online feature selection (e.g., [6] and
[7]) focus on the streaming features setting. Streaming features mean that the

3

4 CHAPTER 1. INTRODUCTION

features arrive sequentially, and we have a fixed number of training examples.
On the other hand, works like [8] and [9] consider feature selection from a
sequence of training examples. For instance, the work in [8] uses an online
perceptron algorithm, and selects the features with highest weights in each
time step.

In this thesis, we consider a specific setting for representation learning. In
particular, we aim at learning proper representations from data when sufficient
supervision is not available. We tackle this problem in a few different ways.
One possible approach is using knowledge transfer. Inspired by the recent
theoretical results in [10], we investigate knowledge transfer in two different
settings. First, we consider transferring the knowledge available from kernels
and neural embeddings to improve the training and generalization properties
of neural networks. We study this setting in the appended [Paper I]. The
second knowledge transfer approach we use for representation learning is based
on the Student-Teacher scheme. In this scheme, the knowledge learned in a
large model (the teacher) is distilled into a smaller model (the student). In the
appended [Paper II], we introduce a new framework for knowledge transfer in
neural networks and analyze it.

Finally, we consider interactive learning methods. Specifically, we aim at
finding the most valuable features to learn from data streams. In the appended
[Paper III], we propose a novel and efficient framework for learning an online
decision tree. Our online decision tree learning method has several advantages
over previous ones. This framework can be effective in the online learning
settings where it is not always possible to access all feature values in the
incoming data points.

Chapter 2

Background

In this chapter, we will briefly introduce some of the concepts and methods
used throughout this thesis.

2.1 Neural networks and kernels

Neural networks have empirically shown to be very successful in different
machine learning tasks from classification and regression to object detection
[11] and recommender systems [12]. Despite their huge success, neural networks
have not been theoretically well understood. However, recently there has been
a line of work which tries to theoretically analyze the training behavior and
generalization properties of neural networks. In this thesis, we exploit these
results together with kernel methods to achieve a higher performance in terms
of both generalization and optimization in a neural network. In what follows,
we first provide an overview of a recent theoretical result that sheds new light
on explaining the training behavior of neural networks. We continue with an
introduction to kernels, and describe how we benefit from them to improve the
training procedure in a neural network.

2.1.1 Theoretical results for optimization and generaliza-
tion in neural networks

The work in [13], with cleverly designed experiments, shows that the traditional
theory (e.g., VC-dimension and Rademacher complexity) may fail to explain
the very good generalization of neural networks. They showed that a deep
neural network can easily fit a random set of labels (instead of true labels)
meaning that the network can reach zero error on training data even when
using random labels, but the generalization error would definitely go high with
this kind of randomization. This observation implies that the capacity of a deep
neural network is enough to memorize the whole data set. The slight difference
when training on random labels is that the training time is higher compared to
that of true labels. They argue that the results of their experiments prevent
the classic theory to explain the generalization in neural networks. Moreover,

5

6 CHAPTER 2. BACKGROUND

they found out that the role of regularization in the generalization error of
neural networks is not well explained by the traditional theory.

The study in [10] theoretically analyzes both optimization and generalization
properties of neural networks. In particular, inspired by the findings in [13],
they answer two fundamental questions about neural networks:

• Why do true labels result in a faster rate of convergence when using
gradient descent than random labels?

• What is the complexity measure that differentiates the true set of labels
and random ones?

The authors of [10] consider a neural network with one hidden layer and
the ReLU activation function. Specifically, they analyze the following neural
network:

f(x) =

m∑

k=1

ak√
m
σ(wT

k x), (2.1)

where {wk}mk=1 are the weights of the hidden layer which has m units, σ(.)
is the activation function, {ak}mk=1 are the weights of output layer, and are
fixed. The network is trained with randomly initialized gradient descent with
a quadratic loss over a data set S = {(xi, yi)}ni=1. Precisely, the optimization
problem is:

min
{wk}m

k=1

∑

i

(yi − f(xi))
2. (2.2)

The analysis is based on a Gram matrix defined over a set of data points
{xi}ni=1:

H∞
i,j := Ew∼N (0,I)[x

T
i xj1{wTxi ≥ 0,wTxj ≥ 0}]

=
xT
i xj(π − arccos (xT

i xj))

2π
.

(2.3)

The results in [10] answer the above mentioned questions by a spectral analysis of
H∞. Their analysis enables us to distinguish the convergence rates for different
sets of labels. In particular, they found out that to achieve a faster rate of
convergence, we want the projections of the label vector on top eigenvectors of
H∞ to be bigger.

In addition, they provide a bound on the generalization error which is
controlled by: √

2yT (H∞)−1y

n
, (2.4)

where y is the label vector. More details can be found in appended [paper II].

In this thesis, we experimentally investigate the implications of the theor-
etical results mentioned above to deeper networks with the help of (kernel)
feature representations. In the following, we introduce the notion of kernel
(adapted from [14]), and explain how one can use them to produce new features
for data points.

2.1. NEURAL NETWORKS AND KERNELS 7

Figure 2.1: Feature extraction

2.1.2 Kernels

In a general learning setup, there is no assumption about the space X where
input comes from. However, in many learning algorithms like Support Vector
Machine (SVM) or Lasso/Ridge regression it is assumed that the input features
come from X = Rd for some integer d > 0. To be specific, for example for SVM,
the output of the learning algorithm is an element of the following hypotheses
space (here a collection of functions):

H = {x 7→ wTx+ b|w ∈ Rd, b ∈ R} (2.5)

So to make predictions on data that are not originally in Rd we need to
somehow map them to Rd for some d. Therefore, in a sense, we wish to do
feature extraction which is schematically shown in Figure 2.1.

Formally, feature extraction introduces a feature map Φ : X → Rd. Then
the hypotheses space becomes:

H = {x 7→ wTΦ(x) + b|w ∈ Rd, b ∈ R} (2.6)

Here, there is no assumption on the space X . For example X may be a
subset of R2, but we might need other types of features to improve the learning
procedure (imagine the case where with original features we can not separate
two classes with a straight line).

But, what if we need a very large number of features? In that case, the
memory and computational cost required for learning would be very high. In
this situation kernel methods come into play. We say a learning method is
kernelized if the inputs never appear outside an inner product like Φ(xi)

TΦ(xj)
for some xi,xi ∈ X . The kernel function corresponding to a feature map Φ is
defined as:

k(xi,xj) = Φ(xi)
TΦ(xj) (2.7)

The matrix K with Kij = k(xi,xj) is called the kernel matrix (or sometimes
Gram matrix). The reason for introducing this kernel function is that it is
possible to compute k(xi,xj) without a direct access to the feature map Φ.
This is a significant computational advantage when we have a large number
of features. Probably the most well-known kernelized method is SVM, and
some important kernel functions are the Polynomial kernel, Gaussian kernel
and Quadratic kernel.

For a kernelized method, the computational cost depends on the number
of data points (not on the number features) once we have computed k(xi,xj)

8 CHAPTER 2. BACKGROUND

for all (xi,xj) pairs. This is known as the kernel trick. It is worth noting that
some kernels (including the Gaussian kernel) correspond to an infinite number
of features.

With this introduction to kernels, we now move on to the specific way we use
kernels in this thesis. Actually, we do not use the kernel trick, and, conversely,
we use kernels to produce new features for data points, and employ those
features directly to improve the optimization (and generalization) behavior of
a neural network.

As illustrated in section 2.1.1, the optimization and generalization properties
of a neural network is related to the data representation through the Gram
matrix H∞. So, we provide better data representations to the network to
improve both optimization and generalization. These better representations
are obtained from three specific kernels: i. the Gaussian kernel, ii. kernels
that try to mimic the representations produced by neural networks, and iii. an
optimal kernel that is designed to make the data representations align with the
label vector.

The optimal kernel mentioned above comes from the notion of kernel-target
alignment [15], [16]. Since in [10] it is suggested that we need representations
making the label vector align well with the top eigenvectors of the Gram
matrix, we might use the kernel-target alignment to produce such feature
representations.

Finally, since kernels like Gaussian kernel (and other kernels that we use in
this thesis) have infinite number of features1, we need to somehow approximate
the feature representations corresponding to a kernel. Specifically, we use two
main approximation methods which are briefly summarized below.

The first kernel feature approximation method is called random Fourier
features (RFF) [17] which constructs an explicit feature map. The constructed
feature map has a dimension much lower than the number of observations, and
at the same time the resulting inner product is close to the kernel function.
The feature map produced by RFF is randomized.

The second approximation method that we use originates from a low-
rank matrix approximation method called the Nyström method [18]. In the
Nyström method, an n× n positive semi-definite matrix (e.g., a kernel matrix)
is approximated using m available rows where m < n. This method can be
used to find a matrix Φ such that ΦΦT = K where K is the kernel matrix.
Then the rows of Φ are approximated kernel feature representations.

2.2 Knowledge transfer

A well-known technique to improve the performance of machine learning systems
is to use the knowledge we have already learned in other tasks or models. This
technique is generally known as knowledge transfer (Figure 2.2). Knowledge
transfer has been studied in many different forms and settings, and has shown
great effectiveness in many machine learning tasks including but not limited to

1The features corresponding to a kernel are sometimes called kernel embedding.

2.2. KNOWLEDGE TRANSFER 9

Figure 2.2: Knowledge transfer

computer vision [19], Natural Language Processing (NLP) [20] and recommender
systems [21].

A very important type of knowledge transfer is that of privileged information
which was introduced in [22]. In privileged information, there are two learning
systems/models involved: a ”student” and a ”teacher”. The teacher is most
often a trained model, and the student will use the obtained information from
the teacher during the training process. In particular, as discussed in [22],
privileged information tries to imitate the notion of learning by humans so as
to make the process of learning by examples more efficient. So, together with
the data points and their labels (or any other target variables), the teacher
provides some additional information.

More formally, in the classical learning setting, the learner is provided
with a set of training data points in the form of pairs {(xi, yi)}ni=1. However,
in the privileged information setting, a new piece of information x∗

i is also
provided along with (xi, yi), and the training data points will be of the form
(xi,x

∗
i , yi). The ultimate goal of privileged information setting is identical

to that of classical learning: to learn a function f such that f(xnew) = ynew
for a new example (xnew, ynew). Note that the additional information is not
available in the testing phase, so it can only be used for training.

In [23], the privileged information paradigm is extended to be used in
training of neural networks. In this thesis, we introduce a knowledge transfer
framework for neural networks which can be viewed as a special case of the one
presented in [23]. We will analyze the introduced framework both theoretically
and experimentally.

10 CHAPTER 2. BACKGROUND

2.3 Online learning

In this thesis, we propose a novel framework for the problem of online decision
tree learning. Online learning has received a significant attention in the past
few years. The main reason behind this is the massive amount of data being
produced constantly, where one would need an efficient method to exploit this
amount of data. Previously, the main bottleneck for learning systems was the
amount of data available to the learning algorithm. As a result, the learning
procedure would be prone to overfitting due to small sample size, and a large
fraction of computational power would remain unused.

Nowadays the situation is completely different, and the bottleneck has
switched to the computational power. Therefore, we need efficient algorithms
to exploit the huge amount of data produced, and thus prevent underfitting
[24].

In what follows, we will introduce a general framework for online learning.
After that, we will discuss the previous efforts related to online learning of
decision trees, and finally we will briefly present the tools we use to develop
our online decision tree learning framework.

2.3.1 An online learning framework

In online learning, the main goal is to learn from an incoming sequence of data
points (or a data stream). In addition to learning, we most often also need to
predict something about the current data point. This prediction might be a
class label or some real-valued target variable (as in a regression problem). We
will now continue with a formal definition of the online learning problem which
is adapted from [25].

At each time (round) t, we receive data point xt ∈ X where X is called
the instance domain. In real applications, the instance domain is very often a
subset of Rd for some integer d > 1. The learning system is asked to output
some prediction ŷt for xt. Then the learning environment announces the true
prediction yt. The revealed prediction causes the learner to incur a loss l(ŷt, yt).
Generally, ŷt and yt can come from different domains, but usually the domains
are the same. The online learning paradigm is shown in Algorithm 1.

Algorithm 1 Online Learning

1: for t= 1, 2, . . . do
2: receive data point xt

3: make a prediction ŷt
4: observe the true prediction yt
5: suffer loss l(ŷt, yt)
6: end for

The ultimate goal of an online learning algorithm is to minimize the cumu-
lative loss it suffers from the start to the end of learning that is

∑T
t=1 l(ŷt, yt)

where T is the total number of rounds. But it is possible that the environment
(also sometimes called the adversary) makes the cumulative loss suffered by an

2.3. ONLINE LEARNING 11

online learning algorithm arbitrarily large. For instance, if the environment
sees the learner’s prediction, it can just produce some y that makes the loss
maximum.

In online learning literature, it is common to put some restrictions on the
problem setting in order to solve the above stated problem. One usual restriction
is to assume that the pairs (xt, yt) are generated from some hypothesis h∗ ∈ H
i.e., for all t we have yt = h∗(xt). This kind of simplification is often referred
to as the realizability assumption. With the realizability assumption the online
learning problem reduces to finding the true hypothesis h∗. Two famous online
classification algorithms that operate in this setting are the Consistent and
Halving algorithms. Both of these algorithms assume that the number of
hypotheses in H is finite i.e. |H| <∞ (see chapter 21 of [26] for details).

If the realizability assumption is not desirable, we usually make the online
learning algorithm to compete with the best hypotheses h∗ ∈ H. The notion
of regret arises from this competition, and is defined by equation (2.8).

RegretT (H) =
T∑

t=1

l(ŷt, yt)− min
h∗∈H

T∑

t=1

l(h∗(xt), yt) (2.8)

We want an online learning algorithm to incur the lowest regret possible with
respect to H. Specifically, we desire that the learning algorithm has a regret

that is a sublinear function of time, meaning that limT→∞
RegretT (H)

T = 0.

2.3.2 Online decision tree learning

Decision tree learning [27] is one of the most widely used learning algorithms
that has been employed for different learning tasks including classification
and regression. Like any other classification algorithm, a traditional (offline)
decision tree classification algorithm receives a set of n training data points
{(xi, yi)}ni=1 where xi is the feature vector and yi is the associated label. The
goal of a decision tree classifier is to learn a function f in the form of a decision
tree that is able to accurately predict the label y of a future feature vector x.
This means that ideally we want f(x) = y. A decision tree is a tree whose nodes
represent a test on a feature, and a leaf node corresponds to one of the possible
classes. The tree is learned using a particular criterion. Specifically, we build
the tree recursively by substituting the leaves with a test node. The feature
for the new test node is the one that works best according to the criterion.

But with the procedure described above it is impossible to learn a decision
tree in an online manner from a data stream as it is required that all training
data points are available at the time of learning. To remedy this problem, there
has been a line of work starting with the Very Fast Decision Tree (VFDT)
algorithm [24], and continuing with Concept-adapting Very Fast Decision
Tree (CVFDT) [28] and Extremely Fast Decision Tree (EFDT) [29]. Both
CVFDT and EFDT are built based on VFDT but with minor improvements.
In particular CVFDT tries to learn a decision tree in a concept-drifting2

2We say that a data stream has concept drift if the dependency of labels to features
changes over time.

12 CHAPTER 2. BACKGROUND

environment, and EFDT introduces a modification to VFDT that improves
its performance and efficiency. We continue with an overview of the VFDT
algorithm.

The main idea behind VFDT is to use the Hoeffding bound [30], [31] in
order to choose the features to be tested at each node. The Hoeffding bound
bounds the mean of a random variable based on its observations. Specifically,
suppose we have made N independent observations of a random variable X
with range R, and the empirical mean of these observations is X̄. Based on the
Hoeffding bound the true mean of X is at least X̄ − ϵ with probability 1− δ,
where:

ϵ =

√
R2 log(1/δ)

2N
(2.9)

VFDT uses this bound in a clever way. Suppose M(Xi) is the criterion
used to determine the test features at each node. The goal here is to be certain
with a high probability that the feature chosen using N training examples is
the same feature as the one chosen with the whole data set. Assuming that we
want to maximize M , let X1 and X2 be the first and second best features in
terms of M with N training samples for which we denote the averages with
M̄(X1) and M̄(X2). Let ∆M̄ = M̄(X1)− M̄(X2) ≥ 0. Then with a desired δ,
Hoeffding bound assures that X1 is the best feature with probability 1− δ if
∆M̄ > ϵ. So for a node in the decision tree we need to collect training samples
until ∆M̄ > ϵ. Then we can split that node with a high confidence using the
best feature. Training samples arriving after that will be used to determine the
best feature at a lower level. In [24], it is shown that VFDT learns trees that
are asymptotically arbitrarily close (with a particular definition of closeness)
to the ones learned by a traditional batch learner.

Despite its many advantages, VFDT has some limitations. The most
important limitation of VFDT is that it does not comply with the online
learning paradigm introduced in Section 2.3.1. Specifically, in Algorithm 1,
we require the learner to observe the true prediction only after the prediction
has been made, but in order to use the VFDT algorithm we need both data
point and true prediction. So the VFDT algorithm and its successors are not
completely online. Moreover, VFDT requires that all feature values of data
points are present for learning. However, in real-world applications it is common
that querying features is costly. For instance, conducting certain medical tests
can be very expensive. In this thesis, we introduce a new framework for online
learning of decision trees that tackles these limitations in the sense that i. it
completely acts in accordance with the learning paradigm in Algorithm 1, and
ii. it aims at making accurate predictions with a low cost.

2.3.3 Decision making with adaptive information acquisi-
tion

As mentioned above, our decision tree learning framework completely follows
the online learning framework in Section 2.3.1. Our contribution mainly focuses
on making the prediction (line 3 of Algorithm 1) with a low cost. To this

2.3. ONLINE LEARNING 13

aim, we employ a line of work that designs an adaptive policy to identify
an unknown target variable (e.g., a label). The identification of the target
variable is done by sequentially querying tests and observing their outcomes.
In particular, in this problem, one tries to find the best hypothesis with a
sequence of observations. As an example, assume we would like to find the
most accurate diagnosis through a set of costly medical observations. Then,
different medical observations would constitute the set of tests, and the set
of all different diagnoses is the hypotheses set. This problem which has been
studied in different domains (e.g., [32], [33]) can be categorized into two settings:
noiseless and noisy [34]. In the noiseless case, it is assumed that the outcome
of a test is completely determined if the true hypothesis is known.

More formally, let H = {h1, h2, . . . , hn} be the set of all possible hypotheses.
We also have B different tests available which are in a set T = {1, 2, . . . , B}.
Each of these B tests would result in a cost. Specifically, a test i will have
cost c(i) where c : T → R+ is the cost function. The goal here is to find
the true hypotheses by performing a sequence of tests with as low cost as
possible. If H is the random variable for the hypotheses, and Xi is the random
variable for the outcome of test i, then in the noiseless setting, the probability
P (X1, . . . , XB |H = h) is deterministic [34] and otherwise we are in the noisy
setting.

Finding a policy that always leads to the true hypothesis and has the lowest
cost is computationally intractable. Here, a policy is a mapping from the
current observations (of tests) to the remaining tests. More accurately, finding
a policy which has cost at most c∗ × o(log n) is NP-hard, where c∗ is the cost
of optimal policy [34], [35].

There has been some heuristics proposed to solve the noiseless version of
the problem stated above. The two most well known heuristics are Information
Gain and Generalized Binary Search. Both of these algorithms are shown to
have near-optimal cost in the noiseless setting of the problem. Unfortunately, in
the noisy setting these algorithms may perform badly. To tackle this problem,
in [34], another algorithm is proposed which uses the notion of adaptive
submodularity [36], [37]. This algorithm is called EC2. The details of EC2

can be found in the appended [paper III]. In our proposed online decision tree
learning framework, one can easily exploit each of the mentioned algorithms
including Information Gain, Generalized Binary Search and EC2. However,
due to the provided theoretical guarantees for EC2, we mainly focus on this
algorithm.

14 CHAPTER 2. BACKGROUND

Chapter 3

Summary of Included
Papers

In this chapter, we provide a brief summary of the contributions and results
from the papers included in this thesis.

3.1 Paper I

In [paper I], we experimentally investigate the implications of the theoretical
results in [10] applied to deep neural networks, and illustrate how one can
make use of kernel and neural embeddings to improve the generalization and
optimization properties of neural networks. In particular, we design an extensive
set of experiments with a careful choice of kernels which enable us to find better
representations for data inputs.

A key part of this paper is the investigation of an optimized kernel embedding
which is obtained from maximizing the kernel-target alignment. Specifically,
we use the multiple-kernel learning algorithm proposed in [15] to learn a kernel
with a high alignment with label vectors. The corresponding kernel is then
used to find kernel embedding with the Nyström method. We show that using
this kernel embedding reaches the best results in terms of both optimization
and generalization. This result is consistent with the theoretical results in [10],
and provides a practical way to improve the performance of neural networks.

Furthermore, we use kernel embeddings corresponding to neural networks
which also help optimization and generalization. Our results can be a starting
point to extend the recent theoretical results for (shallow) neural networks to
deeper networks.

3.2 Paper II

In [Paper II], we consider the concept of knowledge transfer in neural networks,
which is a practical way to improve the representations learned in small neural
networks. Specifically, in [Paper II] we introduce an optimization framework

15

16 CHAPTER 3. SUMMARY OF INCLUDED PAPERS

for neural knowledge transfer which uses the privileged knowledge from a large
teacher network in the form of a regularization term. Then the training of the
student is analyzed using the theoretical tools developed for understanding
infinitely wide neural networks.

Our notion of knowledge transfer is general, but we focus on the case that
privileged information is selected from the hidden neurons of a trained teacher
neural network. We also provide extensive experiments for our knowledge
transfer framework demonstrating its various aspects.

3.3 Paper III

[Paper III] introduces a novel framework for the construction of an online
decision tree. This online decision tree is built in a cost-effective manner in
the sense that it queries a low number of features. This cost-effectiveness is
not considered in the classical algorithms for online decision tree learning (e.g.,
VFDT). In addition, our framework is truly online, meaning that we observe
the target variable (i.e., label) only after making the prediction. This condition
is also not met in the VFDT method (and its successors).

In our online learning framework, we employ the well-known posterior
(Thompson) sampling [38] policy to trade off between exploration and exploita-
tion. In simple words, in each online learning session, we sample an environment,
and find the optimal prediction with low cost in the sampled environment.
This is done through using efficient algorithms for low-cost hypothesis/decision
region identification. At the end of the session, we update our knowledge about
the environment which is in the form of a posterior distribution.

Using the theoretical results for Thompson sampling we provide regret
bounds for our framework and evaluate its effectiveness through extensive
experiments. The experiments show that our online decision tree learner
achieves a high level of accuracy with a much lower cost compared to baseline
models. Moreover, using Thompson sampling provides us with a simple and
elegant way to handle a concept-drifting situation in online environments. This
property is also verified in our experiments.

Chapter 4

Concluding Remarks

In this chapter, we provide brief discussions about the contributions of this
thesis, and point to some possible future directions.

In this thesis we tackled the problem of learning appropriate representations
when we do not have access to enough supervision. We approached this problem
through different scenarios. We first considered the knowledge transfer setting
in which we transfer the knowledge learned in other tasks to the task of interest.
The knowledge transfer scenario was studied with two different but related
approaches:

• Transferring the knowledge available in kernels to improve the represent-
ations learned in neural networks.

• Transferring the knowledge from a large pre-trained teacher model to a
smaller student model which makes the student training more efficient.

Now we continue with an overview of the contributions provided in each of the
items above:

We empirically studied the implications of the theoretical results in [10] to
deeper networks. This was achieved by viewing the layers before the last layer
as constructing better representations of data. We studied various kernel and
neural embeddings, and experimentally showed that these representations can
benefit both generalization and optimization properties of a neural network.
Our experiments involve various benchmark data sets including CIFAR-10,
LSUN [39], and MNIST[40].

Furthermore, we addressed knowledge transfer in neural networks in the
student-teacher scheme. We considered the general concept of privileged
information (reflected in our optimization framework), and provided insights for
related paradigms such as knowledge distillation. We also conducted extensive
numerical studies which confirms the effectiveness of the student-teacher scheme
in efficient training of small neural networks, and their generalization power.

Next, we situated ourselves in an online learning environment where we
would like to learn appropriate representations of data inputs which arrive in
an incremental manner as a data stream. We provided a novel and efficient

17

18 CHAPTER 4. CONCLUDING REMARKS

framework to learn online decision trees. Our framework does not require
the availability of all feature values, and it only observes the class label after
making a prediction. These properties make our framework completely in
accordance with the general online learning paradigm, and additionally makes
it cost effective (i.e., it does not query all features of incoming data points).

To make our framework cost effective, we exploit an adaptive submodular
surrogate objective function. The objective function is used to find informative
features in a sampled environment which is provided via a posterior sampling
procedure. Using posterior sampling also allows us to address the concept
drift problem in a simple way. We analyze the regret of our online learning
procedure in prior-independent and prior-dependant settings. Our extensive
experiments confirm the cost-effectiveness of our online learning method, and
show its competitiveness with baseline online decision tree learning models.

In the future, we can extend our method in different ways. First, we may
generalize the online learning framework to address machine learning tasks
other than classification (e.g., regression), and be able to accept various data
types. Second, we can replace the active planning part of our framework with
other techniques, including neural networks. For instance, a neural network
might be used to estimate the informativeness of a given feature based on
the previous observations, and thus help with the feature selection procedure.
Lastly, one can extend the current setting to other kinds of feedback, meaning
that we learn from observations other than the true label.

Bibliography

[1] Y. Bengio, A. C. Courville and P. Vincent, “Unsupervised feature learning
and deep learning: A review and new perspectives,” CoRR, vol. abs/1206.5538,
2012. arXiv: 1206.5538. [Online]. Available: http://arxiv.org/abs/
1206.5538 (cit. on p. 3).

[2] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.,” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933 (cit. on p. 3).

[3] I. T. Jolliffe, Principal component analysis for special types of data.
Springer, 2002 (cit. on p. 3).

[4] P. Comon, Independent component analysis, 1992 (cit. on p. 3).

[5] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006 (cit. on p. 3).

[6] X. Wu, K. Yu, W. Ding, H. Wang and X. Zhu, “Online feature selection
with streaming features,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 5, pp. 1178–1192, 2012 (cit. on p. 3).

[7] J. Zhou, D. P. Foster, R. A. Stine, L. H. Ungar and I. Guyon, “Streamwise
feature selection.,” Journal of Machine Learning Research, vol. 7, no. 9,
2006 (cit. on p. 3).

[8] J. Wang, P. Zhao, S. C. Hoi and R. Jin, “Online feature selection and its
applications,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 3, pp. 698–710, 2014. doi: 10.1109/TKDE.2013.32 (cit. on
p. 4).

[9] Y. Wu, S. C. H. Hoi, T. Mei and N. Yu, “Large-scale online feature
selection for ultra-high dimensional sparse data,” ACM Trans. Knowl.
Discov. Data, vol. 11, no. 4, 2017, issn: 1556-4681. doi: 10.1145/3070646.
[Online]. Available: https://doi.org/10.1145/3070646 (cit. on p. 4).

[10] S. Arora, S. Du, W. Hu, Z. Li and R. Wang, “Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural net-
works,” in Proceedings of the 36th International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings of
Machine Learning Research, vol. 97, PMLR, 2019, pp. 322–332. [Online].

19

20 BIBLIOGRAPHY

Available: https://proceedings.mlr.press/v97/arora19a.html (cit.
on pp. 4, 6, 8, 15, 17).

[11] Z.-Q. Zhao, P. Zheng, S.-T. Xu and X. Wu, “Object detection with
deep learning: A review,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019. doi: 10.1109/
TNNLS.2018.2876865 (cit. on p. 5).

[12] S. Zhang, L. Yao, A. Sun and Y. Tay, “Deep learning based recommender
system: A survey and new perspectives,” ACM Comput. Surv., vol. 52,
no. 1, 2019, issn: 0360-0300. doi: 10.1145/3285029. [Online]. Available:
https://doi.org/10.1145/3285029 (cit. on p. 5).

[13] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, “Understanding
deep learning (still) requires rethinking generalization,” Commun. ACM,
vol. 64, no. 3, 107–115, 2021, issn: 0001-0782. doi: 10.1145/3446776.
[Online]. Available: https://doi.org/10.1145/3446776 (cit. on pp. 5,
6).

[14] D. S. Rosenberg, Lecture slides on foundations of machine learning, 2017
(cit. on p. 6).

[15] C. Cortes, M. Mohri and A. Rostamizadeh, “Algorithms for learning
kernels based on centered alignment,” J. Mach. Learn. Res., vol. 13, no. 1,
795–828, 2012, issn: 1532-4435 (cit. on pp. 8, 15).

[16] N. Cristianini, J. Shawe-Taylor, A. Elisseeff and J. Kandola, “On kernel-
target alignment,” in Advances in Neural Information Processing Systems,
T. Dietterich, S. Becker and Z. Ghahramani, Eds., vol. 14, MIT Press,
2001. [Online]. Available: https://proceedings.neurips.cc/paper/
2001/file/1f71e393b3809197ed66df836fe833e5-Paper.pdf (cit. on
p. 8).

[17] A. Rahimi and B. Recht, “Random features for large-scale kernel ma-
chines,” in Advances in Neural Information Processing Systems, J. Platt,
D. Koller, Y. Singer and S. Roweis, Eds., vol. 20, Curran Associates, Inc.,
2007. [Online]. Available: https://proceedings.neurips.cc/paper/
2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf (cit. on
p. 8).

[18] C. Williams and M. Seeger, “Using the nyström method to speed up
kernel machines,” in Advances in Neural Information Processing Systems,
T. Leen, T. Dietterich and V. Tresp, Eds., vol. 13, MIT Press, 2000.
[Online]. Available: https://proceedings.neurips.cc/paper/2000/
file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf (cit. on p. 8).

[19] Y. Lu, L. Luo, D. Huang, Y. Wang and L. Chen, “Knowledge transfer in
vision recognition: A survey,” ACM Comput. Surv., vol. 53, no. 2, 2020,
issn: 0360-0300. doi: 10.1145/3379344. [Online]. Available: https:
//doi.org/10.1145/3379344 (cit. on p. 9).

[20] Z. Alyafeai, M. S. AlShaibani and I. Ahmad, A survey on transfer learning
in natural language processing, 2020. doi: 10.48550/ARXIV.2007.04239.
[Online]. Available: https://arxiv.org/abs/2007.04239 (cit. on p. 9).

BIBLIOGRAPHY 21

[21] A. K. Sahu and P. Dwivedi, “Knowledge transfer by domain-independent
user latent factor for cross-domain recommender systems,” Future Gen-
eration Computer Systems, vol. 108, pp. 320–333, 2020, issn: 0167-739X.
doi: https://doi.org/10.1016/j.future.2020.02.024. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167739X19316176 (cit. on p. 9).

[22] V. Vapnik and A. Vashist, “A new learning paradigm: Learning using
privileged information,” Neural Networks, vol. 22, no. 5, pp. 544–557, 2009,
Advances in Neural Networks Research: IJCNN2009, issn: 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2009.06.042. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0893608009001130 (cit. on p. 9).

[23] V. Vapnik and R. Izmailov, “Knowledge transfer in svm and neural
networks,” Annals of Mathematics and Artificial Intelligence, vol. 81,
no. 1, pp. 3–19, 2017 (cit. on p. 9).

[24] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’00, Boston, Mas-
sachusetts, USA: Association for Computing Machinery, 2000, 71–80,
isbn: 1581132336. doi: 10.1145/347090.347107. [Online]. Available:
https://doi.org/10.1145/347090.347107 (cit. on pp. 10–12).

[25] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends® in Machine Learning, vol. 4, no. 2, pp. 107–194,
2012, issn: 1935-8237. doi: 10.1561/2200000018. [Online]. Available:
http://dx.doi.org/10.1561/2200000018 (cit. on p. 10).

[26] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014. doi:
10.1017/CBO9781107298019 (cit. on p. 11).

[27] L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification And
Regression Trees. Routledge, 1984. doi: 10.1201/9781315139470 (cit. on
p. 11).

[28] G. Hulten, L. Spencer and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’01,
San Francisco, California: Association for Computing Machinery, 2001,
97–106, isbn: 158113391X. doi: 10.1145/502512.502529. [Online].
Available: https://doi.org/10.1145/502512.502529 (cit. on p. 11).

[29] C. Manapragada, G. I. Webb and M. Salehi, “Extremely fast decision
tree,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’18, London, United
Kingdom: Association for Computing Machinery, 2018, 1953–1962, isbn:
9781450355520. doi: 10.1145/3219819.3220005. [Online]. Available:
https://doi.org/10.1145/3219819.3220005 (cit. on p. 11).

22 BIBLIOGRAPHY

[30] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding, N. I. Fisher
and P. K. Sen, Eds. New York, NY: Springer New York, 1994, pp. 409–
426, isbn: 978-1-4612-0865-5. doi: 10.1007/978-1-4612-0865-5_26.
[Online]. Available: https://doi.org/10.1007/978-1-4612-0865-
5_26 (cit. on p. 12).

[31] O. Maron and A. Moore, “Hoeffding races: Accelerating model selection
search for classification and function approximation,” in Proceedings of
(NeurIPS) Neural Information Processing Systems, Morgan Kaufmann,
1993, pp. 59 –66 (cit. on p. 12).

[32] S. Dasgupta, “Analysis of a greedy active learning strategy,” in Advances
in Neural Information Processing Systems, L. Saul, Y. Weiss and L.
Bottou, Eds., vol. 17, MIT Press, 2004 (cit. on p. 13).

[33] R. Nowak, “Noisy generalized binary search,” in Advances in Neural
Information Processing Systems, Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams and A. Culotta, Eds., vol. 22, Curran Associates, Inc., 2009.
[Online]. Available: https://proceedings.neurips.cc/paper/2009/
file/556f391937dfd4398cbac35e050a2177-Paper.pdf (cit. on p. 13).

[34] D. Golovin, A. Krause and D. Ray, “Near-optimal bayesian active learning
with noisy observations,” in Advances in Neural Information Processing
Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel and A.
Culotta, Eds., vol. 23, Curran Associates, Inc., 2010 (cit. on p. 13).

[35] V. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi and M. Mohania,
“Decision trees for entity identification: Approximation algorithms and
hardness results.,” Jan. 2007, pp. 53–62 (cit. on p. 13).

[36] D. Golovin and A. Krause, “Adaptive submodularity: A new approach to
active learning and stochastic optimization,” CoRR, vol. abs/1003.3967,
Jul. 2010 (cit. on p. 13).

[37] D. Golovin and A. Krause, “Adaptive submodularity: Theory and applica-
tions in active learning and stochastic optimization,” Journal of Artificial
Intelligence Research, vol. 42, Mar. 2010. doi: 10.1613/jair.3278 (cit.
on p. 13).

[38] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3-4, pp. 285–294, 1933 (cit. on p. 16).

[39] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” arXiv preprint arXiv:1506.03365, 2015 (cit. on
p. 17).

[40] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998 (cit. on p. 17).

Part II

Appended Papers

23

Paper III

Efficient Online Decision Tree Learning by
Utility of Features

Arman Rahbar, Ziyu Ye, Chaoqi Wang, Yuxin Chen, Morteza Haghir
Chehreghani

To be submitted

EFFICIENT ONLINE DECISION TREE LEARNING BY UTILITY OF
FEATURES

A PREPRINT

Arman Rahbar
Chalmers

armanr@chalmers.se

Ziyu Ye
University of Chicago

ziyuye@uchicago.edu

Chaoqi Wang
University of Chicago

chaoqi@uchicago.edu

Yuxin Chen
University of Chicago

chenyuxin@uchicago.edu

Morteza Haghir Chehreghani
Chalmers

morteza.chehreghani@chalmers.se

September 26, 2022

ABSTRACT

We consider the online decision tree learning problem. Existing works are usually limited in the
settings where labels are given when streaming data arrives, which is impractical in fully online
scenarios; or all features of the data are presented and queried to build the decision tree, which can be
inefficient and costly when the feature dimension is large. Our work provides a fresh perspective to
tackle those limitations. To learn efficiently with less time, we employ a posterior sampling scheme.
To predict efficiently with lower cost, we propose a surrogate objective function on utility of features,
enabling near-optimal performance with low feature acquisition cost. We provide a rigorous regret
guarantee, and illustrate the efficiency and effectiveness of our framework, via extensive experiments
on various real-world datasets. Our work also enables an exceptionally simple and elegant solution to
the concept drift problem, and is shown to be competitive with baseline models while being more
flexible.

1 Introduction

Decision trees constitute one of the most fundamental and crucial machine learning models, due to their interpretability
and extensibility. An important variant developed for online setting has been employed in various impactful real-world
applications such as medical diagnosis [Podgorelec et al., 2002], intrution detection [Jiang et al., 2013], network
troubleshooting [Rozaki, 2015], etc.

Classical models aim to construct an online decision tree incrementally with streaming data. However, such models
have several disadvantages. First, they require that all features are presented to determine splitting node. However,
querying feature values can be costly in real-world scenarios, e.g., conducting medical tests for medical diagnosis can
be quite expensive. Second, classical models are typically not fully trained online, where labels are assumed to be
known for each point in the data steam. In contrast, our work takes feature acquisition cost (see formal definition in
section 3) into considerations and we aim at the more challenging fully online case: we receive a data point at each step,
and we need make accurate prediction of its label with low feature acquisition cost; the true label will only be observed
after we make the prediction.

Our goal is to construct online decision trees efficiently. Specifically, we interpret the efficiency of our framework from
two aspects: first, it requires less streaming data points (or time steps) to learn a well-performed decision tree, i.e.,
faster learning; second, it incurs lower cost for the label prediction for each data point, i.e., cheaper prediction. We
refer our framework as UFODT, i.e., Utility of Features for Online learning of Decision Trees. As shown in Figure 1,
our framework can be interpreted as an active planning oracle nested within an online learning model.

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

Figure 1: The proposed UFODT framework.

The online learning part employs a posterior sampling scheme to learn the environment of the streaming data, which is
guaranteed to have good performance [Osband and Van Roy, 2017]; an additional advantage is that posterior sampling
can effectively leverage data-dependent prior knowledge, which the classical online decision tree models often fail to
capture.

The active planning oracle adopts a decision-theoretic design: we aim to optimize the utility of the features, (informally)
defined as the expected prediction error for the incoming point in the data steam, should we observe the value of the
chosen features. In order to efficiently optimize the utility of features, we consider an adaptive submodular surrogate
objective following the key insight of Golovin et al. [2010] to sequentially query features and their values, which ensure
us to predict accurately with (near-optimal) cost. In particular, the sequential feature query based on the surrogate
objective of utility of features is a natural analogy to the node splitting based on direct objective of information gain in
classical decision tree literature.

Our contributions are summarized as follows:
• We present a novel framework for efficiently constructing online decision trees in a cost-effective manner.

Moreover, our use of surrogate objective as node splitting criteria also brings new algorithmic contributions.
• We provide a rigorous regret guarantee of our framework, and extensive experiments on diverse real-world

datasets verify that our framework is able to achieve better accuracy with much lower cost, compared to
baseline models.

• Based on our framework, we design a simple yet elegant variant to handle concept drift in streaming data, and
we demonstrate the efficacy via various experiments on synthetic datasets.

Overall, the fully online setting and the considerations on feature query cost make it more practical to learn decision
trees in the real world. We believe our unique perspective and flexible framework will enable new opportunities in
online decision tree learning.

2 Related Work

Online Decision Tree. Traditional models consider to build online decision tree (ODT) incrementally. Domingos and
Hulten [2000] first propose VFDT to learn decision tree from streaming data, and use Hoeffding bound to guarantee the
model performance; VFDT later becomes the de facto baseline in this domain. Hulten et al. [2001] propose a variant to
handle concept drift, but the construction for the tree growing process is complicated to implement. Manapragada et al.
[2018] design Hoeffding Anytime Tree as an improvement for VFDT. Das et al. [2019] suggest a bootstrap strategy to
enhance the memory efficiency of VFDT. It is important to note that all those models are not fully online, nor do they
consider feature query cost. Another line of work considers applying reinforcement learning to build decision trees
online [Garlapati et al., 2015, Blake and Ntoutsi, 2018]. However, these works do not have any theoretical guarantees,
nor do they utilize prior knowledge (e.g., on the underlying state transition distributions).

Posterior sampling based online learning. Posterior sampling is first proposed in Thompson [1933] to solve bandit
problems in clinical trials, and the central idea is to select actions according to its posterior probability to be optimal.
It later becomes an important policy in online learning problems, showing excellent performance empirically and
theoretically. Osband et al. [2013], Agrawal and Jia [2017], Fan and Ming [2021] apply posterior sampling and prove
its efficiency in reinforcement learning; this line of work is generally referred to as PSRL. Our work is closest to Chen
et al. [2017a], which adapts PSRL to solve online information acquisition problems; however, in contrast to our work,
Chen et al. [2017a] consider a more constrained application domain of interactive troubleshooting, and fail to tackle
concept drift which is often crucial in data-streaming scenario; in addition, it tackles the hypothesis space in more
restricted ways.

Active feature acquisition. The line of work on active feature acquisition (AFA) seeks to solve specific tasks like
classification when data features are acquirable at a cost. Kapoor and Horvitz [2009] consider the restrictive setting

2

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

where features and labels are boolean; Bilgic and Getoor [2007] propose a decision-theoretic strategy with Bayesian
networks to calculate the value of information of features; Shim et al. [2018] suggest a joint framework to dynamically
train the classifier while acquiring features. Conducting AFA online has not been discussed until recently, for example,
Beyer et al. [2020] apply classical information acquisition techniques like information gain to handle streaming data
with missing features.

Adaptive information acquisition for decision making. As fundamentals of sequential decision making, the goal
of those works is to design an adaptive policy to identify an unknown target (i.e., a decision) by sequentially picking
tests and observing outcomes (i.e., acquiring information). There are some greedy heuristics for the adaptive policy,
e.g., Information Gain (IG) [Dasgupta, 2005], which greedily maximize the uncertainty reduction. However, such
greedy heuristics may fail arbitrarily badly. Recently, researchers propose to optimize w.r.t. submodular surrogates,
e.g., EC2 [Golovin et al., 2010], HEC [Javdani et al., 2014], ECED [Chen et al., 2017b], which are proven to have
near-optimal performance with low information acquisition cost. Those policies naturally fit into our problem and can
be used as a plug-in solver in the offline planning phase.

3 Problem Formulation

3.1 Efficient Online Decision Tree Learning

Figure 2: The Naïve Bayes model.

Simply put, our task is to predict labels (classes) of streaming data points by building a decision tree online with
low cost. At each epoch (time) t, we receive a data point xt, whose feature values and label are unknown. To make
prediction for xt, we can gather information by querying feature values; each query incurs a cost. The label of xt will
only be revealed at the end of each epoch after we make the prediction.

We now formally state the online decision tree learning problem. Let x = (x1, x2, . . . , xn) be the data point with
n features. Let Xi ∈ X ≜ {0, 1} denotes the random variable for the feature value of the ith feature1, and let
Yj ∈ Y ≜ {y1, y2, . . . , ym} be the random variable for the label of the data point. The superscript t denotes that the
data is received at epoch t.

We adopt the common Naïve Bayes assumption to model underlying probabilistic strucutre: P [Yj , X1, . . . , Xn] =
P[Yj]

∏n
i=1 P [Xi | Yj], i.e., features are conditionally independent given the class. Since we are in the online setting,

we assume that the joint distribution P [Y,X1, . . . , Xn] is initially unknown (though we may have prior knowledge on
that) and needs to be learned via our online interactions.

We define θij ≜ P [Xi = 1 | Yj], and assume that θ is distributed by a Beta distribution, Beta(αij , βij). We use
θ = [θij]n×m to denote the probabilistic table for the data distribution and assume θ ∼ Beta(α,β).

Under the above probabilistic model, each query on a feature value will provide some information about Y . We define
the set of queries as Q ≜ {1, 2, . . . , n}, and a query i ∈ Q will reveal the value of the ith feature. We define cost of the
feature query as c : Q → R≥0. For simplicity, we assume c = 1 for each query.

Upon information gathered from feature query, we make a prediction. We define the loss of our prediction as
l : Y × Y → R+. Our goal is to reach low prediction loss with low query cost on data stream.

We additionally define H = [X1, . . . , Xn] as the random variable for the hypothesis of a data point. Thus, each
hypothesis h corresponds to a full realization of the outcome of all queries in Q. Let h ∈ H ≜ {0, 1}n.

Importantly, the setH can be partitioned into m disjoint decision regions, that each class in Y corresponds to a decision
region. Later, we may use the term “decision region” to implicitly refer “label” or “class”.

1For simplicity, we assume features are binary. Our setting can be easily extended to multicagorical or continuous feature cases.

3

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

Under this construction, our goal then becomes building a decision tree which identifies the decision region for
each data point arriving to us. Such identification of decision region should be done with low cost. This enables a
decision-theoretic perspective as follows.

3.2 Utility of Features

At each epoch, we perform a set of queris F ∈ Q, and let the outcome vector be xF , which can be conceived as a
partial realization for the hypothesis h of x.

Let y be our label prediction, and denote its associated loss w.r.t. the true data label ytrue as l. We cab then naturally
define the utility of y as u ≜ −l and the conditional expected utility of y upon observing xF as U (y | xF) ≜
Eytrue [u(ytrue, y) | xF]. Note that we could define the utility similarly upon h, since h is the full realization of features.

Definition 1. (Utility of features xF)

U (xF) ≜ max
y∈Y

U (y | xF) .

Here, U(xF) represents the maximal expected utility achievable given xF . This formulation is similar to the value of
information [Howard, 1966], and can connect with the generalization error of the classical empirical risk minimization
framework [Vapnik, 1992], however, what we would like to emphasize here is that such utility relies on the partial
realization of features, that we seek to find the cheapest query set F to achieve the maximal utility.

We then define the decision region for y as the set of hypotheses for which y is the optimal label prediction:

Definition 2. (Decision region for y)

Ry ≜ {h : U(y | h) = U(h)}.

Directly optimizing U(xF) is usually intractable, and greedy heuristics may fail or be costly, as described in Section 2.
In the next, we will show how we may use a surrogate objective of U(xF) by the notion of decision regions to achieve
near optimal query planning.

4 Proposed Framework

In this section, we present our UFODT framework for efficient online decision tree learning. The high-level structure is
presented in Figure 1, which can be conceived as an offline planning oracle nested within on online learning model. We
use the posterior sampling strategy for the online learning model, and a surrogate optimization algorithm on utility of
features for the offline planning oracle.

4.1 Online Learning by Posterior Sampling

Assume that we have access to the prior of the environment parameter θ. Firstly, at the beginning of each epoch t, we
sample θt from the (posterior) distribution of θ. Then, we run a adaptive policy which sequentially queries features (i.e.,
splitting nodes) of xt, in order to optimize some objectives (e.g., information gain, utility of features, etc.); importantly,
such a policy can be conceived as an offline oracle, as its planning is fixed upon each sampled θt. The policy will
suggest a label prediction for xt. Finally, the true label for xt is revealed, and is then used to update the posterior of θ
together with the query observation xF .

Below is the pseudo-code.

Algorithm 1 Online Decision Tree Learning
Input: Prior P(θ).

1: for t = 1, 2, . . . , T do
2: Sample θt ∼ Beta(αt−1,βt−1) and receive xt;
3: Call Algorithm 3 with θt to sequentially query features (i.e., splitting nodes) and make prediction;
4: Observe xt

F and true label ytj ;
5: Call Algorithm 2 to obtain Beta(αt,βt)
6: end for

4

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

Algorithm 2 Posterior Update
Input: xt

F ; ytj ; (αt−1,βt−1).

1: for each (i, xi) ∈ xt
F do

2: if xi = 1 then αt
ij ← αt−1

ij + 1

3: else βt
ij ← βt−1

ij + 1
4: end if
5: end for

4.2 Planning by Surrogate Optimization

In the planning phase, we seek to optimize an objective of U(xF) given the sampled environment. As mentioned
earlier, traditional works usually use greedy heuristics (e.g., information gain) to optimize for that, which may fail
arbitrarily badly. We instead propose to optimize for the surrogate objective of U(xF). Specifically, we adopt the
EC2 algorithm [Golovin et al., 2010], which uses the equivalence class edge cut as the surrogate objective of U(xF).
Importantly, this surrogate objective is proved to be adaptive submodular, thus is near optimal, allowing us to make
accurate prediction with low cost. Below we present the general statement of EC2, where the description is adapted
from Chen et al. [2017b], Golovin et al. [2010].

We define a weighted graph G = (H, E), where E ≜
⋃

y ̸=y′ {{h, h′} : h ∈ Ry, h
′ ∈ Ry′}, denoting the pairs of

hypotheses with different labels. We define the weight of each edge as w ({h, h′}) ≜ P(h) · P (h′). Specifically, P(h)
may be conceived as posterior distribution upon query of some feature values. We define the weight of a set of edges as
w (E′) ≜

∑
{h,h′}∈E′ w ({h, h′}). Therefore, performing a feature query is considered as cutting an edge, which can

also be conceived as removing inconsistent hypotheses with all their associated edges. We thus have the edge set E (xi)

cut after observing the outcome of a feature query xi: E (xi) ≜ {{h, h′} ∈ E : P [xi | h] = 0 ∨ P [xi | h′] = 0}.
We now formally define the EC2 objective as:

fEC2 (xF) ≜ w

(⋃

v∈F
E (xv)

)
,

and the score of feature query is defined as:

∆EC2 (u | xF) ≜ w

(⋃

v∈F∪u

E (xv)

)
− w

(⋃

v∈F
E (xv)

)
.

The policy πEC2 will greedily query the feature which maximizes the gain cost ratio ∆EC2 (v | xF) /c(v) and stops
when only one decision region exists. We present the algorithm in Algorithm 3.

Algorithm 3 Planning by Surrogate Optimization
1: Sample hypotheses by calling Algorithm 4
2: O = ∅
3: while stopping condition for EC2 not reached do
4: Use EC2 to determine next feature i ∈ Q
5: Query feature i
6: Add (i, xi) to O
7: Update P(h | O)
8: end while
9: Return the decision region y

4.3 Hypothesis Sampling Procedure

To reduce the number of hypotheses we use a sampling procedure sketched in Algorithm 4. In this algorithm we first
sample a decision region using the prior distribution over the classes and then we exploit the current estimate of θ to
build a new sample.

5

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

Algorithm 4 Hypotheses Sampling

1: H̃ ← ∅
2: Sample decision regions from P(Y)
3: for each sampled decision region j do
4: h← ∅
5: for each i ∈ Q do
6: Sample Xi ∼ Bernoulli(θij)
7: Add the sample to h
8: end for
9: H̃ = H̃ ∪ h

10: end for

4.4 Handling Concept Drift

Concept drift is a crucial problem in streaming scenarios, where the dependency of features on the data label is changing
over time. Classical ODTs use complicated updating criteria to handle concept drift [Hulten et al., 2001]. Thanks to our
posterior sampling scheme, we are able to adopt an exceptionally easy solution to tackle the concept drift problem, by
simply adding two lines of codes upon Algorithm 2, which is shown in Algorithm 5.

Algorithm 5 Non-Stationary Posterior Update [Russo et al., 2017]
Input: xt

F ; ytj ; (αt−1,βt−1); γ; (ᾱ, β̄).

1: αt ← (1− γ)αt−1 + γᾱ
2: βt ← (1− γ)βt−1 + γβ̄
3: for each (i, xi) ∈ xt

F do
4: if xi = 1 then
5: αt

ij ← αt−1
ij + 1

6: else
7: βt

ij ← βt−1
ij + 1

8: end if
9: end for

This inspiration comes from non-stationary Thompson Sampling [Russo et al., 2017]. The central idea is that we need to
keep exploring in order to learn the time-varying concept. This technique encourages exploration by adding a discount
parameter γ for the history, and injecting a random distribution Beta(ᾱ, β̄) to increase uncertainty.

5 Algorithm Analysis

Since we are dealing with the fully online case, it is appropriate to examine the performance of our algorithm by regret
analysis. In this section, we provide a guarantee on the regret bound of our framework by a direct adaptation of the
results from Osband et al. [2013], Chen et al. [2017a]. Proof details can be found in the Appendix.

Let U(π) ≜ Eh [maxy∈Y Eytrue [u(ytrue, y) | S(π, h)]] be the expected utility of features achieved by a policy π; here,
S(π, h) represents the set of features and its values queried by policy π upon a hypothesis h.

As proved by Golovin and Krause [2011], we know that πEC2

achieves the same utility as the optimal policy π∗ under a
same environment θ, with at most (2 ln (1/pmin) + 1) · cπ∗ query cost, where pmin denotes the minimal probability of
a hypothesis h across environments and cπ∗ represents the cost of the optimal policy. Simply put, EC2 has the same
prediction as the optimal policy, while having slightly higher cost.

Let θ⋆ be the true environment and θt be the sampled environment at epoch t, we have:
Definition 3. (Immediate regret at epoch t)

∆t ≜ U(π∗
θ⋆)− U(πEC2

θt).

The total regret until epoch T is then Regret(T) =
∑T

t=1 ∆
t. Let H = (2 ln (1/pmin) + 1) · cπ∗ denote the worst-case

cost (i.e., number of queries) of EC2 in any epoch, S be the number of possible realization of H queries, n be the total
number of features, we thus have the following regret bound for Algorithm 1 based on the result of Osband et al. [2013]:

6

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

Theorem 4. (Expected total regret at epoch T)

E[Regret(T)] = O(HS
√
nT log(SnT)).

Notice that this bound depends on the worst-case cost, which could potentially be huge, and it is prior-independent such
that the effect of prior knowledge by the posterior sampling scheme is not reflected.

We here in addition provide a prior-dependent bound based on recent results from Russo and Van Roy [2016], Lu et al.
[2021]:

Theorem 5. (Prior dependent expected regret)

E[Regret(T)] ≤
√

Γ̄H(θ⋆)T .

Here, Γ̄ is the maximal information ratio2 of the algorithm, and H(θ⋆) represents the initial entropy of θ⋆. A more
informative prior will lead to smaller value of H(θ⋆), hence a better bound; this also aligns with our observations in
Figure 8, showing that our framework has the advantage over traditional ODT models that we can effectively use prior
knowledge.

6 Experimental Results

In this section, we study the empirical evaluation of our methods on various datasets. Unless otherwise specified, we
assume that we have a uniform prior on θ for each dataset initially. We evaluate the methods introduced in sections
4 from different aspects. We compute the average number of queries per session (i.e., per data point) to compare the
costs of different algorithms. We also evaluate the classification performance on the training data during learning.
Furthermore, we measure the generalization power of different classifiers via a holdout test dataset.

Datasets. We have used four stationary datasets in our experiments that are standard binary classification datasets
taken from UCI repository [Dua and Graff, 2017]. For concept drifting experiments, we adopt the non-stationary
Stagger dataset [Widmer and Kubat, 1996, López Lobo, 2020], where each data has three nominal attributes and the
target concept will change abruptly at some point.

Algorithms. The VFDT algorithm [Domingos and Hulten, 2000] is used as a classical baseline ODT model. Within
our proposed UFODT framework, we use three classical greedy strategies as baselines to compare with EC2. The
Information Gain (IG) algorithm, selects the feature that maximizes the reduction of entropy in labels. Similarly,
Uncertainty Sampling (US) finds the feature causing the highest reduction in entropy of hypotheses. We also use
random feature selection which randomizes the order of querying features.

We present and discuss the results of our experiments on different datasets as follows.

6.1 Experiments on stationary datasets

The UCI datasets used in our experiments are: LED Display Domain, Zoo, SPECT Heart, and Congressional Voting
Records which have 7, 153, 22, and 16 binary features respectively. The algorithms used here are UFODT-EC2,
UFODT-IG, UFODT-US, and UFODT-random all of which are using the method described in Algorithm 1. UFODT-IG,
UFODT-US, and UFODT-random change the criterion determining the next queried feature to Information Gain,
Uncertainty Sampling, and random respectively.
Utility and label complexity. Figure 3 shows the average label complexity (the number of features queried during one
session) during training as a function of the total number of hypotheses sampled. Figure 4 shows the total utility during
training versus the total number of sampled hypotheses. If a dataset is balanced we use accuracy as the utility whereas
we use f-measure for imbalanced datasets. We observe that UFODT-EC2 yields the lowest label complexity in three
cases and its utility is competitive compared to the best results. This observation shows that the UFODT-EC2 tends to
find more informative features to query, meaning that with less number of features (lower cost) it can reach a good
utility. UFODT-IG also yields a better label complexity than random feature selection and UFODT-US. On the other
hand, both UFODT-random and UFODT-US required high label complexities which do not help them to yield high
utilities. There is also one case (Voting Records) in which UFODT-EC2 has the highest cost. This high cost helps the

2Details can be found in the Appendix, and we leave the exact analytical form of Γ̄ as the future work.
3The zoo dataset has 17 features two of which are not binary.

7

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

algorithm to reach a utility that is significantly higher than any other algorithm.

Train and test utilities during training. Figures 5 and 6 show the utility (accuracy or f-measure) of the predictions
over the training data points seen so far and the utility over a holdout test dataset. In order to compute the utility over
the test dataset, we use the the current estimation of the parameters of the conditional distribution (i.e., the estimated θ
at time t) to obtain the test predictions. In this case, we do not have feature selection and we assume all features of a test
datapoint are available. For LED, Zoo and Heart datasets, we observe that the UFODT-EC2 algorithm reaches a very
good utility during training despite its lower cost. In the case of Voting Recodrs dataset, we can see that UFODT-EC2

reaches a significantly higher utility in the first steps of training with a slightly higher cost. In Figure 6 we have included
the test utility results from the VFDT algorithm as well. We note that this algorithm requires access to full features
and class label while training, unlike the other methods. We observe that our algorithm reaches test utilities that are
comparable with VFDT despite its lower cost, and we perform even better than VFDT in the case of LED and Heart
datasets.

5 25 45 65 85
#Sampled hypothesis

2

3

4

5

6

7

La
be

l c
om

pl
ex
ity

LED Display Domain

UFODT-EC2

UFODT-random
UFODT-IG
UFODT-US

8 16 24 32 40
#Sampled hypothesis

0.6

0.8

1.0

1.2

Voting Records

35 56 77 98 119 140 161
#Sampled hypothesis

4

5

6

7

Zoo

4 16 28 40 52
#Sampled hypothesis

1

2

3

4

5
SPECT Heart

Figure 3: Training cost vs. #sampled hypotheses. UFODT-EC2 has the lowest cost in three cases.

5 25 45 65 85
#Sampled hypothesis

0.2

0.3

0.4

0.5

0.6

0.7

U
til

ity

LED Display Domain

UFODT-EC2

UFODT-random
UFODT-IG
UFODT-US

8 16 24 32 40
#Sampled hypothesis

0.2

0.4

0.6

0.8
Voting Records

35 56 77 98 119 140 161
#Sampled hypothesis

0.45

0.50

0.55

0.60

Zoo

Figure 4: Training utility vs. #sampled hypotheses. We observe that despite the low cost in UFODT-EC2, its utility is
close to other methods. In the Voting Records dataset, it reaches a significantly higher utility with a slightly higher cost
than others.

0 1500 3000 5000
Time step

0.68

0.70

0.72

0.74

To
ta

l U
til

ity

LED Display Domain

UFODT-EC2

UFODT-random
UFODT-IG
UFODT-US

0 100 200 300
Time step

0.0

0.2

0.4

0.6

0.8
Voting Records

0 20 40 60
Time step

0.0

0.2

0.4

0.6
Zoo

0 50 100 150
Time step

0.3

0.4

0.5

0.6

0.7
SPECT Heart

Figure 5: Training utility during training iterations. UFODT-EC2 reaches a good utility during training steps with low
cost. For the Voting Records dataset, it reaches a high utility in the first steps with a slightly higher cost than others.

6.2 Experiments with Concept Drift Dataset

In this section, we demonstrate the effectiveness and flexibility of our framework under the concept drifting setting.
Under this setting, the non-stationary nature of the online data impose extra difficulty for online decision tree learning
problem. To handle with the non-stationary distribution, we adopt the non-stationary Thompson sampling introduced
in Russo et al. [2017]. Detailed descriptions can be found in Algorithm 5.

To simulate the concept drift scenarios, we adopt the Stagger dataset [Widmer and Kubat, 1996, López Lobo, 2020].
In this dataset, each data has three attributes, namely shape ∈ {circular, non-circular}, size ∈ {small, medium, large},
color ∈ {red, green}. Initially, the instances are labeled as positive if (color=red)∧(size=small). There are in total two

8

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

0 1500 3000 5000
Time step

0.68

0.70

0.72

0.74

0.76

Te
st

 U
til

ity

LED Display Domain

UFODT-EC2

UFODT-random
UFODT-IG
UFODT-US
VFDT

0 100 200 300
Time step

0.2

0.4

0.6

0.8

Voting Records

0 20 40 60
Time step

0.2

0.4

0.6

0.8

Zoo

0 50 100 150
Time step

0.5

0.6

0.7

0.8

0.9 SPECT Heart

Figure 6: Test utility during training iterations. We see that UFODT-EC2 reaches test utilities comparable with the ones
from VFDT despite its lower cost, and we perform even better than VFDT in the case of LED and Heart datasets.

0 50 100 150
Time step

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Adaptive vs. Non-Adaptive

0 50 100 150
Time step

Comparison with VFDT

UFODT-EC2 (Adaptive)
UFODT-EC2

UFODT-IG (Adaptive)
UFODT-IG

UFODT-US (Adaptive)
UFODT-US

VFDT

Figure 7: Time step vs. Test accuracy on Stagger dataset. Each shaded area corresponds to one target concept and the
vertical dashed line is the point where concept drifting happens.

concept drifting that happens abruptly at some point. After the first and the second concept drifting, the positive concept
will be (color=green)∨(shape=circular) and (size=medium)∨(size=large), respectively. In our experiments, we generate
60 data for each concept, and 200 data for testing. The concept drifting happens after iteration 60 and 120. To make
the conclusion more robust, we repeat each experiment with 10 random seeds and report the averaged results along
with one-standard error. In the next, we seek to understand the following questions through our carefully designed
experiments.

Test Accuracy vs. Time step. In Figure 7, we report the results of UFODT-EC2, UFODT-IG and UFODT-US with both
standard Thompson sampling and non-stationary Thompson sampling (denoted with Adaptive). For all of our methods,
we adopt the uniform prior. On the left, we can observe that all the three methods with non-stationary Thompson
sampling can adapt to the abrupt concept drift much faster, and also achieve higher test accuracy. We also compared
these three methods against to VFDT in the right figure. Though, initially, VFDT can achieve higher accuracy than our
methods, it has a big drop in accuracy after both the first and second concept drifting. This demonstrates advantages of
our methods in quickly adapting to new concepts over VFDT. In addition, we also report the averaged total number
of feature queries as a cost measure in Table 1. We observe that our approaches requires significantly fewer feature
queries (or lower cost) but still achieve higher accuracy than VFDT (see Figure 8 left).

The impact of priors. UFODT can easily incorporate expert’s knowledge by using the corresponding prior distribution,
which shows that UFODT is more flexible than classic decision tree learning algorithms. To simulate different
experts, we generate a collection of priors that interpolate between the uniform prior (uninformative) and the ‘optimal’
prior (expert). We report the average test accuracy for different priors in Figure 8. We observe that as the quality of the
prior improves, the average test accuracy will also increase and surpass VFDT by a larger margin. In general, with more
informative priors, our approaches will also performs better, which is consistent with the regret analysis in Theorem 5.

The impact of #sampled hypothesis. Since UFODT relies on hypothesis sampling (See Algorithm 4) for constructing
the graph, we further test how is the performance affected by the number of sampled hypothesis. The results are

Table 1: The averaged total number of feature queried.

Method UFODT-EC2 UFODT-IG UFODT-US VFDT
(Adaptive) (Adaptive) (Adaptive)

Cost ↓ 343.3± 11.0 350.6± 5.1 477.0± 13.9 720.0

9

Efficient Online Decision Tree Learning by Utility of Features A PREPRINT

0.0 0.2 0.4 0.6 0.8 1.0
Quality of the prior

60

62

64

66

68

A
ve

ra
ge

 T
es

t A
cc

ur
ac

y
(%

) Adaptive vs. VFDT

0.0 0.2 0.4 0.6 0.8 1.0
Quality of the prior

Non-Adaptive vs. VFDT

Figure 8: Quality of prior vs. test accuracy. Along x-axis, larger value corresponds to more accurate prior.

2 4 6 8 10 12 14 16
#Sampled hypothesis

52
54

58

62

65

A
ve

ra
ge

 T
es

t A
cc

ur
ac

y
(%

) Adaptive vs. VFDT

2 4 6 8 10 12 14 16
#Sampled hypothesis

Non-Adaptive vs. VFDT

Figure 9: The effect of #sampled hypothesis on the test accuracy.

presented in Figure 9. As expected, as the number of sampled hypothesis increases, the test accuracy will also increase.
However, the test accuracy usually saturates around #Sampled hypothesis=8 or 10. This shows that enumerating all the
possible hypothesis may not be necessary, which can potentially save the computational cost.

7 Conclusion

We developed a novel framework for online decision tree problem which does not require availability of class labels
when streaming data arrives, nor presence of all features which can be inefficient and costly. Within the framework,
we employed a posterior sampling scheme in order to learn the unknown parameters efficiently. To predict (plan)
efficiently, we developed a surrogate objective function on utility of features with near optimal performance and low
feature acquisition cost. Our framework also provides a simple and elegant solution to the concept drift problem, which
is competitive with baseline models while being more flexible. We then analyzed the regret of the online learning
scheme in prior-independent and prior-dependent settings. Finally, we investigated the proposed framework on several
datasets and showed its effectiveness in different settings.

References
Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: an overview and their use in medicine.

Journal of medical systems, 26(5):445–463, 2002.
Feng Jiang, Yuefei Sui, and Cungen Cao. An incremental decision tree algorithm based on rough sets and its application

in intrusion detection. Artificial Intelligence Review, 40(4):517–530, 2013.
Eleni Rozaki. Design and implementation for automated network troubleshooting using data mining. International

Journal of Data Mining & Knowledge Management Proces, 5(3), 2015.
Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement learning? In

International conference on machine learning, pages 2701–2710. PMLR, 2017.
Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning with noisy observations. In

Proceedings of NIPS, NIPS’10, page 766–774, Red Hook, NY, USA, 2010. Curran Associates Inc.
Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 71–80, 2000.
Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discovery and data mining, pages 97–106, 2001.

10

Chaitanya Manapragada, Geoffrey I Webb, and Mahsa Salehi. Extremely fast decision tree. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1953–1962, 2018.

Ariyam Das, Jin Wang, Sahil M Gandhi, Jae Lee, Wei Wang, and Carlo Zaniolo. Learn smart with less: Building better
online decision trees with fewer training examples. In IJCAI, pages 2209–2215, 2019.

Abhinav Garlapati, Aditi Raghunathan, Vaishnavh Nagarajan, and Balaraman Ravindran. A reinforcement learning
approach to online learning of decision trees. arXiv preprint arXiv:1507.06923, 2015.

Christopher Blake and Eirini Ntoutsi. Reinforcement learning based decision tree induction over data streams with
concept drifts. In 2018 IEEE International Conference on Big Knowledge (ICBK), pages 328–335. IEEE, 2018.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4):285–294, 1933.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling.
arXiv preprint arXiv:1306.0940, 2013.

Shipra Agrawal and Randy Jia. Posterior sampling for reinforcement learning: worst-case regret bounds. In Advances
in Neural Information Processing Systems, pages 1184–1194, 2017.

Ying Fan and Yifei Ming. Model-based reinforcement learning for continuous control with posterior sampling. In
International Conference on Machine Learning, pages 3078–3087. PMLR, 2021.

Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, and Andreas Krause. Efficient online learning for
optimizing value of information: Theory and application to interactive troubleshooting. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.
AUAI Press, 2017a. URL http://auai.org/uai2017/proceedings/papers/83.pdf.

Ashish Kapoor and Eric Horvitz. Breaking boundaries: Active information acquisition across learning and diagnosis.
Advances in neural information processing systems, 2009.

Mustafa Bilgic and Lise Getoor. Voila: Efficient feature-value acquisition for classification. In Proceedings of the
national conference on artificial intelligence, volume 22, page 1225. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007.

Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition and classification with variable-size set
encoding. Advances in neural information processing systems, 31:1368–1378, 2018.

Christian Beyer, Maik Büttner, Vishnu Unnikrishnan, Miro Schleicher, Eirini Ntoutsi, and Myra Spiliopoulou. Active
feature acquisition on data streams under feature drift. Annals of Telecommunications, 75(9):597–611, 2020.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. Advances in neural information processing systems, 17:
337–344, 2005.

Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, and Siddhartha Srinivasa. Near optimal
bayesian active learning for decision making. In Artificial Intelligence and Statistics, pages 430–438. PMLR, 2014.

Yuxin Chen, Hamed Hassani, and Andreas Krause. Near-optimal bayesian active learning with correlated and noisy
tests. In Artificial Intelligence and Statistics, pages 223–231. PMLR, 2017b.

Ronald A Howard. Information value theory. IEEE Transactions on systems science and cybernetics, 2(1):22–26, 1966.
Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural information processing

systems, pages 831–838, 1992.
Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on thompson sampling.

arXiv preprint arXiv:1707.02038, 2017.
Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and stochastic

optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.
Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling. The Journal of Machine

Learning Research, 17(1):2442–2471, 2016.
Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, and Zheng Wen. Reinforcement

learning, bit by bit. arXiv preprint arXiv:2103.04047, 2021.
Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.
Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden contexts. Machine learning,

23(1):69–101, 1996.
Jesús López Lobo. Synthetic datasets for concept drift detection purposes, 2020. URL https://doi.org/10.7910/
DVN/5OWRGB.

8 Supplementary Material

1 Proofs of The Main Theorems

1.1 Proof of Theorem 4

While in Section 6.1, we have discussed the impact of running algorithms with different numbers of sampled hypotheses,
here for simplicity we consider the optimistic case that we have sampled a sufficient number of times from the decision
region P(Y), such that all hypotheses with non-zero probability inH are enumerated4.

Proof. Our results relies on the posterior sampling for reinforcement learning (PSRL) bound as follows:
Theorem 6. (Theorem 1 of Osband et al. [2013]) Consider learning to optimize a random finite horizon M =
(B,A, RM , PM , H, ρ) in T repeated time epochs, where B denotes the state set with cardinality S, A denotes the
action set with cardinality A, RM denotes the reward function, PM

i (s′ | s) represents the transition probability from
state s to state s′ upon choosing action i, H represents the time horizon (i.e., number of actions) of each epoch, ρ is the
initial state distribution, and consider running the following algorithm: at the beginning of each epoch, we update
a prior distribution over M and takes a sample from the resulting posterior distribution, then we follow the policy
which is the optimal for this sampled distribution to take actions sequentially during the epoch. Then, for any prior
distribution of M , we have the expected regret for our algorithm as follows:

E [Regret (T)] = O(HS
√

AT log(SAT)).

Our problem can be viewed as a Partially Observable Markov Decision Process (POMDP) with a posterior sampling
algorithm, thus we can directly adapt the above bound. Specifically:

• Time horizon H: The number of feature queries made during each epoch can be considered as the time horizon.
This aligns with our definition of H in Section 5.

• Set of actions A: Each feature query at a certain time step within an epoch can be considered as an action.
Thus the cardinality A in the above bound is equivalent to n where n is defined as number of features.

• Set of states B: Intuitively, we take each action based on current observations from the feature query. Thus,
each sequential query set with the resulting outcomes can be considered as a state. The number of possible
realizations during an epoch is then equivalent to the cardinality of the state set S.

• Transition probability PM
i (s′ | s): This can be fully specified by P[Xi | Y] as described in Section 3.

• Initial distribution ρ: Similarly, this can be fully specified by P[Xi | Y] and the given P[Y].
• Reward function RM : We consider the reward to be the expected utility achieved upon termination. To be

specific, we receive zero reward if the algorithm continues to query features (i.e., stopping condition not
reached), and receive expected reward U(π | h) ≜ maxy∈Y Eytrue [u(ytrue, y) | S(π, h)] upon termination by
the proposed policy based on the true hypothesis.

• Optimal policy for M : As illustrated in Section 5, our offline planning algorithm EC2 achieves the same utility
as the optimal policy under the same environment θ. Thus, πEC2

θt can be considered as the optimal policy for
the sampled M in each epoch.

By replacing the notations on the cardinality of the action space in Theorem 6, we have the expected regret of Algorithm
1 as E[Regret(T)] = O(HS

√
nT log(SnT)), thus we complete the proof. □

1.2 Proof of Theorem 5

This prior-dependent bound for posterior sampling is first proposed by Russo and Van Roy [2016] for the multi-armed
bandit problems. The core of the analysis is the information ratio, which precisely captures the exploration-exploitation
tradeoff of the policy at each time epoch.

Such a bound may be potentially “better” than the previous bound in terms of its dependence on the (supremum of)
information ratio and the dependence on the initial epistemic uncertainty of the environment. Firstly, the information
ratio can be bounded by certain “dimension” of the problem (e.g., the feature dimension of linear bandits), which can
be vastly smaller than the cardinality of action/state space. Secondly, the initial epistemic uncertainty reflects our prior
knowledge on the environment, which previous regret bounds cannot benefit from.

4In a weaker form, it has been proved in Chen et al. [2017a] that sampling only the most likely hypotheses will leads to just an
additive factor to the regret bound. Our framework holds the similar argument, while enjoying a simpler hypothesis generating
scheme.

Proof. We define the information ratio of Algorithm 1 as follows:

ΓEC2

t =

(
E
[
U (π∗

θ⋆)− U
(
πEC2
θt

)])2

Eh

[
I
(
θ⋆; (xπEC2

θt
, yt, h) | Ht−1

)] ,

where xπEC2
θt

represents all the queries and the associated outcomes made by EC2 under the sampled θt, Ht−1 represents
all the decision and observation history up to the epoch t− 1, and I(·) represents the mutual information (i.e., entropy
reduction). We omit the Eh, Ht−1 and h terms in the following to simplify notations.

Simply put, the numerator is the square of the expected immediate regret at epoch t, and the denominator captures the
expected information gain on the true environment θ⋆ by implementing the current policy. The information ratio as a
whole can be interpreted as “the expected regret incurred per bit of information acquired” [Russo et al., 2017].

Define the maximal information ratio for the algorithm as Γ̄ = maxt∈{1,...,T} ΓEC2

t . Following the proof in Proposition
1 of Russo and Van Roy [2016], we derive the bound of Algorithm 1 as follows:

E[Regret(T)] =
T∑

t=1

E
[
U (π∗

θ⋆)− U
(
πEC2
θt

)]

=
T∑

t=1

√
ΓEC2

t I
(
θ⋆; (θt,xπEC2

θt
, yt)

)

≤

√√√√Γ̄T
T∑

t=1

I
(
θ⋆; (θt,xπEC2

θt
, yt)

)
(by Jensen’s inequality)

≤
√

Γ̄H (θ⋆)T (by the chain rule of mutual information).

This is exactly the bound we provide in Theorem 5. A promising direction to find the closed form of Γ̄ (and the
“dimension” of the problem) is to utilize the auxiliary function of entropy by Chen et al. [2017b] to establish a connection
between immediate regret and information gain, which we will leave for future work.

