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ABSTRACT: Loading quantum information deterministically onto a quantum node is
an important step toward a quantum network. Here, we demonstrate that coherent-state
microwave photons with an optimal temporal waveform can be efficiently loaded onto a
single superconducting artificial atom in a semi-infinite one-dimensional (1D)
transmission-line waveguide. Using a weak coherent state (the number of photons
(N) contained in the pulse <1) with an exponentially rising waveform, whose time
constant matches the decoherence time of the artificial atom, we demonstrate a loading
efficiency of 94.2% + 0.7% from 1D semifree space to the artificial atom. The high
loading efficiency is due to time-reversal symmetry: the overlap between the incoming
wave and the time-reversed emitted wave is up to 97.1% + 0.4%. Our results open up
promising applications in realizing quantum networks based on waveguide quantum
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electrodynamics.
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uantum networks,' consisting of quantum nodes and

quantum channels, are a topic of intense research,
spurred by the vision of a global quantum Internet.” Quantum
nodes can process quantum information, whereas quantum
channels can transmit it. The connectivity and scalability of
quantum networks strongly depend on the ability to
deterministically load quantum information from photons in
quantum channels (e.g, free space) onto quantum nodes (e.g.,
qubits). This loading requires a strong interaction between the
qubit and the photons, but this is very hard to achieve in three-
dimensional (3D) free space due to a spatial mode mismatch.’
Attempts have been made using atomic ensembles* to enhance
the atom—field interaction. However, the loading efliciency
only reached 20%.

A strong interaction between a single artificial atom (a
superconducting qubit) and propagating microwave photons
has been achieved in a one-dimensional (1D) open trans-
mission line.”~* This has enabled many important quantum—
optical experiments in 1D waveguide quantum electro-
dynamics (QED) in superconducting circuits in the past
decade.”™""~** Temporal dynamics has been studied for both
a single artificial atom in such a system®* and a single real atom
in free space.”” >’ Moreover, single-photon emission from
superconducting qubits has also been implemented,”*
where the qubit absorbs only one photon from many input
photons of the excitation pulse, leading to a very low loading
efficiency. Impressive progress has been achieved when using a
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cavity for loading33 (catching) in the optical (microwave®***)

regime and for quantum-state transfer.”® Recently, determin-
istic qubit entanglement in a quantum network has been
demonstrated through the standing-wave modes in a multi-
mode cavity (a long cable) between two nodes.”” In this type
of setup, the distance between nodes will be limited and
precise timing is required. However, deterministic loading of
propagating photons directly onto a single atom (qubit) in the
time domain, which would be an important component in a
quantum network, has not yet been achieved. Such an interface
would be preferable to enable quantum computation at the
node without needing to convert the loaded quantum state
further. Moreover, as compared to the methods in refs 33—37,
our system is more compact and scalable, since no cavity is
needed. Additionally, the resonance frequency of a super-
conducting qubit can be made tunable over a wide range'>**
to allow the loading of photons at different wavelengths.

In this Letter, we demonstrate that photons in a weak
coherent state can be efficiently loaded onto a single artificial
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atom in a semi-infinite 1D free space. Our sample, depicted in
Figure 1, is a superconducting circuit with a transmon qubit’®

Figure 1. (a) Setup sketch. A superconducting artificial atom (yellow)
in a semi-infinite 1D space, terminated by a mirror. The green half-
disk is the mirror image of the yellow atom, indicating that
propagating microwaves can interact with the atom twice, instead of
once in the open transmission line case. Here, the mirror is used to
ensure that the loaded photons can only emit into a single waveguide
channel and enhance the maximal loading efficiency compared to the
case of a qubit along an infinite transmission line. A resonant coherent
drive with voltage V;,(t) and exponentially rising waveform is sent
toward the atom. After interaction with strength I" between the atom
and the input field, the atom emits an exponentially decaying output
field V,,(£). (b) Photo of sample 2 showing a transmon qubit located
at the end of a transmission line, terminated by an open-end capacitor,
which can be seen as having a mirror at a distance equal to 0. The
transmon contains a superconducting quantum interference device
(SQUID, indicated by the red arrow and magnification shown on the
left) loop. Therefore, the atomic resonance frequency is tunable by an
external magnetic flux.

coupled to a 1D semi-infinite waveguide, terminated by a
mirror.'”*” We perform experiments using a weak coherent
state with exponentially rising (the time-reversed shape of a
photon emitted by decay) waveforms. When an incident
exponentially rising coherent state interacts with the qubit,
destructive interference between the atomic emission and the
incident field reflecting from the mirror leads to extinction of
the output field. This perfect destructive interference occurs
when mode matching is achieved. After the pulse is turned off,
the atom emits an exponentially decaying field. The loading
efficiency is characterized by the ratio of the coherent output
energy and the coherent input energy, and the symmetry factor
is characterized by the overlap between the incoming wave and
the time-reversed emitted wave. In a perfect loading process
with excitation and emission in the same line and a fixed
coupling, the incoming wave and the emitted wave are time-
reversed versions of each other. We achieved a loading
efficiency and symmetry factor up to 94.2% + 0.7% and 97.1%
+ 0.4%, respectively.

We have measured two samples in this work. We first
characterize the transmon qubit using single- and two-tone
spectroscopy’”*' where we obtain the qubit transition
frequency (@;,) and the relaxation rate (I'), and y = 1/T,
with T, being the decoherence time. The extracted parameters
are summarized in Table 1. For both samples, the values of y/
27 are around 1 MHz.

We can also easily study the qubit dynamics in the time
domain by using a digitizer with nanosecond resolution where

our qubit dynamics is on the order of T, ~ 150 ns. Although
the value of I" is weak compared to many other experiments in
superconducting waveguide QED,”'®'” the qubit-field cou-
pling is still in the strong coupling regime, where I" is much
greater than Iy, = I',/2 + ', with [y being the pure
dephasing rate and I'; being the nonradiative relaxation rate.
We use all these extracted parameters to simulate the qubit
response in the time-domain measurements in the rest of the
paper. Further details on the experimental setup and
characterization of the two samples are given in Sections S1I
and S2 in the Supporting Information.

We now study the time dynamics of the qubit*” response to
a short pulse. We input an exponentially rising pulse with
voltage amplitude

Vo (t) = VO(t, — £)el /7 (1)

where © is the Heaviside step function, t; is the time when the
pulse is turned off, and 7 is the characteristic time of the
exponentially rising waveform. Given V and 7, the number of
photons (N) contained in the pulse

[N = ["B.(t) dt/ (heoyo) | s fixed; Po(t) = Vi(0*/(22,)

where P, (t) is the input power and Z, is the 50 € impedance
of the transmission line. For example, N = 0.09 for V?/(2Z,) =
—144 dBm (the critical power in the single-tone spectroscopy)
and 7 = 145 ns (close to T,). For further comparison, we also
study three other input pulse shapes in Section S4 in the
Supporting Information: exponentially decaying, square, and
Gaussian.

We fix N = 0.09 and vary the characteristic time (z) from 40
to 600 ns (see Figure S3 in the Supporting Information). For
resonant excitation, input—output theory gives

() = a, () + VT (6_(1)) @)

where oy, (@) is the amplitude of the output (input)
coherent field in units of /photons/s and 6, is the atomic
raising/lowering operator. This gives the Rabi frequency
Q(t) = Zﬁain(t) = kB, (t). The atom-field coupling
constant (k) is calibrated by frequency-domain character-
ization (see Figure S2 in the Supporting Information), which
allows one to calculate V_, at the sample.

The dynamics of the output field is governed by (6_(t)),
which is given by the Bloch equations

046, = — r(6,) + Q(t)(6,)/2 3)
9{6,) = = T(1 +(6)) — Q&) + (6.)) (4)

where &, is the third Pauli spin operator. We numerically solve
eqs 3 and 4 with a known arbitrary input waveform Q(t) and
the parameters in Table 1. All theory curves shown in the
whole paper have no free fitting parameters. Since the qubit is
initially in the ground state, we have (6,(0)) =0 and

(6,(0)) = —1. After the pulse stops at t,, the emission decays

Table 1. Extracted and Derived Qubit Parameters for Samples 1 and 27

sample  distance [mm]  @,o/27 [GHz] I'/2n [MHz] T'y,./27 [MHz] y/2r [MHz] T, [ns] n [%] S [%]
1 12 4.8514 1.686 + 0.007 0.113 + 0.009 0.956 + 0.005 166 + 1 77.7 £ 1.6 882 + 0.8
2 0 4.8187 2.046 + 0.003 0.031 + 0.004 1.054 + 0.003 151 + 04 942 + 0.7 97.1 + 0.4

“Sample 2 has a better loading efficiency (77) and a higher symmetry (S) than sample 1 due to the better ratio of I'/2y.
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Figure 2. Loading a coherent state with exponentially rising waveforms onto a qubit (sample 1). Experimental data are shown as either square or
round markers. Theoretical calculations, based on the parameters in Table 1 and the equations in the main text, are shown as curves. (a) Output
magnitude for resonant input V., where the qubit first absorbs the input field and then emits a field when the pulse stops at £, = 2.63 s (f5* = 2.64
s and £ = 2,62 ys; see Section S3 in the Supporting Information). Inset: output magnitude for the off-resonant input pulse (V,g.s) with four
different rise times (40, 170, 230, and 600 ns) with constant N = 0.09. A magnification of (a) and the inset are provided in Figure S4 in the
Supporting Information. (b) Loading efficiency (17) and (c) symmetry factor (S) as a function of 7 for different input photon numbers (N) of 0.09
and 0.2. The maximum loading efficiency (symmetry) occurs around 7 = T,, consistent with the input pulse being the time-reversed version of the
output. For higher input power, power broadening of the qubit line width causes the maximum loading efficiency (symmetry) to occur at an earlier
time. The red dashed curve shows the analytical result from eq 8 for 77 and S as a function of 7 assuming a weak drive, N < 1. In Section S3 in the
Supporting Information, we show step by step how the raw data in (a) was converted to the values in (b, c).
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Figure 3. Loading a coherent state with exponentially rising waveforms onto a qubit at fixed 7 ~ T,. (a) Loading efficiency, #, and (b) symmetry
factor, S, as a function of N for samples 1 and 2. As expected, at N > 1, incoherent emission becomes dominant,’ leading to # = 0 and S = 0.
Note that the revival for S at large N values is due to Rabi oscillations. For N < 1 and 7 = T), according to eq 8, S = ,/7; this expression also holds
when 7 = 1/y only. Therefore, the variations of S and 7 are related by AS = A#/2, leading to a larger fluctuation in (a) than (b). In sample 2, for N
< 1,7 =94.2% + 0.7% and S = 97.1% + 0.4%, according to eq 8. (c) Input (black) and emitted (red) voltage at low N values [the point marked by
purple arrows in panels (a) and (b)] for sample 2, showing the time-reversal symmetry between the input and output fields. The time resolution for
measuring samples 1 and 2 is S and 10 ns, respectively. The error in measurement of # and S is mainly from Vy and digitizer resolution.

. A . _ N t

on the T, time scale from (6 _(t,)), since a,,(t) = JT(6_(1)) B ~ /t‘ 0 (V. () — VP dt “
Figure 2a shows the qubit response to off-resonant input .

(Vogies) and on-resonant input (V,,), respectively. The 2D E. ~ / f[|V (t) — |VN|]2 dt
to

res

plots from which the linecuts in Figure 2a are taken are shown (6)
in Figure S3 in the Supporting Information. In the inset of where Vy is the system voltage noise, Ery, (Eqge) is the energy
Figure 2a, where the qubit frequency is detuned far away of the emitted (input) coherent state after (before) £, ¢, is the
through an external magnetic flux, the output field is assumed time when the input field is turned on, and t; is the time when
to be the reflected input field. Figure 2a consists of two we stop collecting the emitted field. The times # and #; are
regions: pulse on (absorption) and pulse off (emission). While chosen to be when the signal is equal to the noise level, and t,
the drive pulse is being applied, the reflected input pulse and = 2.63 and 0.825 us for samples 1 and 2, respectively. We also
the radiation emitted by the atom interfere destructively, such define the symmetry factor (S) as the correlation between
that no output is measured. One can also understand this as a Vosires and the time-reversed V.., normalized by the
storage process: the photon is converted into a qubit state, autocorrelation of Vg
which is emitted back as a photon at a later time. The ty
absorption process corresponds to interference between the S /t, [Wogres (] = IWIIIIV,ei (28 — £)1 = IVR1] it
incoming field Ofm('t) and the field VT (6_(t)) emitted from tbe /to (Vg (O] — IV dt
atom. The emission process corresponds to solely atomic f (7)
output, which is proportional to (6_) and therefore decays on The symmetry factor indicates the degree of symmetry
the time scale T, indicated by eq 3. between Vg, and V. Figure 2b,c shows # and S as a
We define the loading efficiency”* as 57 = E,/E,ges With function of 7 for two different N values for sample 1. The
8139 https://doi.org/10.1021/acs.nanolett.2c02578
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maximum loading efficiencies and symmetry factors occur

around 7 = T),, consistent with time-reversal symmetry.
Assuming a weak drive Q < 7, i.e, N < 1, the loading

efficiency and symmetry factor can be calculated analytically:

2
n= 2
yr(y + 1/7)

I
S ~ 3
(y + 1/7)

(8)

These analytical results are plotted as red dashed curves in
Figure 2b,c. In Figure 3a,b, for a constant 7 ~ T,, we show 7
and S as a function of N for samples 1 and 2. As expected, at
large N 2 1, both 7 and S approach zero. Also, both 7 and S
reach their maxima at small N < 0.01, limited by the qubit
coherence. With increasing N < 1, the high-order photon Fock
states become more important, whereas the population for the
single-photon Fock state is decreased, leading to a dramatic
reduction of #7 and S, as shown in Figure 3a,b. The details for
obtaining Figure 3a,b are shown in Section S3 in the
Supporting Information. In Figure 3c, we show the input
and emitted signals for points with high 7 and S values (weak
drive N & 0.005) from sample 2. We observe the time-reversal
symmetry between the input and output field.

We demonstrated the efficient loading of a weak coherent
state onto a qubit in a 1D semi-open waveguide using a time-
reversed waveform. We obtained a loading efficiency of 94.2%
+ 0.7% using weak exponentially rising coherent input pulses
with characteristic times equal to the qubit decoherence time.
The high loading efficiency is due to the time-reversal
symmetry between the incoming and emitted waves with
symmetry up to 97.1% + 0.4%, where the loading efficiency
can be improved further [see Section S5 in the Supporting
Information]. Furthermore, we calculated that our setup with a
qubit in front of a mirror also can be loaded with a single Fock-
state photon with a deterministic efficiency of 98.5% and
symmetry of 99.3% using the parameters measured for sample
2 [see Sections S6—S9 in the Supporting Information].

In conclusion, our results may enable promising applications
by realizing deterministic quantum networks based on
waveguide quantum electrodynamics. A next step in this
direction would be to make the coupling between the qubit
and the waveguide tunable to prevent the photon being
emitted immediately after it has been absorbed. By placing our
qubit in sample 2 in front of a mirror with a certain distance
similar to our sample 1, it is possible to suppress the qubit
decay by a factor of 50 by tuning the qubsit frequency,"” leading
to a storage time of up to 1/(I'/S0) = 4 us. Moreover, the
switching time between the node and anti-node can be within
nanoseconds.** Therefore, such a long storage time with a
short flux-switching time enables the possibility of operating
the qubit further with an additional separate control line after
absorbing single photons, since typical single-qubit gate times
are on the order of a few nanoseconds.” Finally, the
demonstrated method here can in principle also be used for
other quantum systems, such as spins*® and atoms*’ along
waveguides.
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