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Abstract
As part of building the smart grid, there is a massive deployment of so-called smart meters that aggregate information and
communicate with the back-end office, apart from measuring properties of the local network. Detailed measurements and
communication of, e.g., consumption allows for remote billing, but also in finding problems in the distribution of power and
overall to provide data to be used to plan future upgrades of the network. From a security perspective, a massive deployment
of such Internet of Things (IoT) components increases the risk that some may be compromised or that collected data are used
for privacy-sensitive inference of the consumption of households. In this paper, we investigate the privacy concerns regarding
detailed readings of smart meters for billing purposes. We present Gridchain, a solution where households can opt-in to
hide their consumption patterns and thus make Non-Intrusive Load Monitoring (NILM) more challenging. Households form
groups where they can trade real consumption among themselves to achieve reported consumption that would be resistant to
NILM. Gridchain is built on a publish/subscribe model and uses a permissioned blockchain to record any trades, meaning
that dishonest households can be discovered and punished if they steal from other households in the group or the electricity
company in the end.We implement and release a proof of concept of Gridchain and use public datasets to allow reproducibility.
Our results show that even if an attacker has access to the reported electricity consumption of any member of a Gridchain
group, this reported consumption is significantly far from the actual consumption to allow for a detailed fingerprint of the
household activities.

Keywords Privacy · Smart grid · NILM

1 Introduction

We are witnessing a transformation of the existing electric-
ity grid to a new type of infrastructure. This new model is
usually referred to as the “Smart Grid” and includes changes
related to telecommunications, automation, distributed tech-
nologies, and IoT devices. The goals of the changes include
resilience to system failures, providing self-configuration to
the stakeholders, and a better understanding and control in
near real time of the energy flow in the system.

Changes happen from the production through the trans-
mission down to the distribution network. One example is
the massive deployment of smart meters for electricity and
gas. Over 200 million smart meters for electricity have been
planned to be deployed by the end of 2020 [23]. In terms of
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adoption, this would translate into almost 72% of European
consumers having a smart meter for electricity and 40% for
gas. Other reports give similar estimates regarding the mag-
nitude of this deployment [25].

Focusing on electrical smart meters, they are capable
of supporting different services such as remote billing—by
recording the consumption based on different cost mod-
els, like total consumption and peak consumption, and a
so-called low-voltage Supervisory Control And Data Acqui-
sition (SCADA) in that they—in real time—can monitor
properties of the grid, like voltage control and power flow.
The information that can be aggregated and refined based
on electrical consumption is invaluable. For instance, grid
suppliers might use this information in real time to trace
consumption patterns in some areas and adjust the electricity
production accordingly.

However, this information might also be misused. For
instance, an attacker, by having access to the electricity
consumption, can execute a set of Non-Intrusive LoadMoni-
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toring (NILM) algorithms to infer when a household turns on
the heater(s), has breakfast, leaves late for work, or even the
number and the age of the people living at home [49,58]. As
a consequence, consumer skepticism and concerns related to
privacy have slowed down the adoption of smart meters [36].

To mitigate these privacy issues, the European Com-
mission proposed the use of cryptographic protocols over
aggregated data as a promising tool for securing data man-
aged by Smart Grids [21]. Concretely, smart meters can form
groups, and an aggregated consumption value is periodi-
cally sent to the energy supplier. Researchers have proposed
solutions based on homomorphic encryption [42], privacy
preservation schemes [43], secure multiparty computation
[59], elliptic curves [45] or secret sharing functions [17]
among others. Despite being promising, the real deployment
into smart meters is still challenging due to the high com-
putationally demanding operations of these schemes [6] and
inherent risks with the aggregated data [19]. New security
protocols that protect the data of the users are needed [3].

This paper investigates privacy concerns regardingdetailed
readings for billing purposes. Others have previously sug-
gested that a local supply (battery) can be used to anonymize
the usage patterns so that less information about the house-
hold can be gained from the energy traces [33,68]. This
supply can either be used directly to hide consumption pat-
terns or as an external source to disturb the signal in a
differential-private way. Even though some households may
have large-scale batteries in the future in the form of elec-
tric cars, today, there is no such deployment making these
schemes exciting but challenging to use in practice.

We present Gridchain, a solution where households can
opt-in to hide their consumption patterns and thus make
Non-Intrusive Load Monitoring (NILM) more challenging.
Households form groups where they can trade real consump-
tion among themselves to achieve a reported consumption
that would be resistant to NILM. In comparison to other pro-
posals based on themodification of the consumption [31,69],
Gridchain guarantees that both the real consumption and the
reported one always are the samewhen required, for instance,
at billing time.

Gridchain is built on a publish/subscribe model and uses a
permissioned blockchain to record any trades, meaning that
dishonest households can be discovered and punished if they
steal from other households in the group or the electricity
company in the end. No costly hardware or batteries are
needed but just minor revisions of the software of the smart
meters. However, any battery for some members would ben-
efit the group.
Contributions Section 2 sets the basis for a better under-
standing of the rest of the paper whereas our contributions
can be summarized as follows:

Cyber Space

Sensor
Actuator

Sensor
Actuator

Sensor
Actuator

Sense / Act

Network Network Network

Sense / Act Sense / Act

Physical Space

Fig. 1 Classical architecture of Cyber Physical Systems

– We present Gridchain, a privacy compliant real-time col-
laborative solution for smart meters (see Sect. 3).

– We provide a proof of concept of Gridchain and simulate
multiple smart meters using a public dataset of electricity
consumption (see Sect. 4).

– We evaluate the privacy acquired by the proof of concept
and show how the reported electricity consumption sig-
nificantly differs from the real one, thus increasing the
privacy of the users (see Sect. 5).

In Sect. 6, we discuss the limitation of our work, describe
the future work as well as some open issues we identified
during our research. Related work can be seen in Sect. 7
while this paper ends with some conclusions in Sect. 8.

2 Background

In this section, we shortly define some well-known terminol-
ogy and concepts used in the literature that facilitates reading
this paper.
Consumers and Smart Meters Consumers and customers are
the final elements in the electricity network, that is, the ones
that use the electricity. Smart meters are usually placed at
the consumer location and are part of Cyber Physical Sys-
tems (CPSs) networks (see Figure 1). They are small and
constrained devices in charge of measuring the electricity
consumption with a predefined frequency and sending such
data to other parties in the network. Smart meters decrease
metering errors, help in debt management, identify frauds
and reduce the gap between peak demand and the available
power at any given time [22]. Some of them can even interact
with the environment.
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Smart Meter
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Electricity Provider
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Fig. 2 Billing example in a electrical smart metering scenario

Grid Supplier The grid supplier is in charge of supplying
electricity to the network. It controls all the electricity in the
network, i.e., its distribution and the needed infrastructure.
The information measured by the smart meters might be cru-
cial to provide load balancing and adapt the network to peaks
of electricity consumption in real time.
Aggregator The aggregator is usually a device provided by
the grid supplier. It essentially receives the measured elec-
tricity consumption of the smart meters. It generates the data
used for the billing companies (electricity providers) and the
grid suppliers to provide other services such as load balanc-
ing.
Electricity Provider The electricity provider, also called elec-
tricity producer, is usually a company different from the grid
supplier in charge of selling the electricity to the final con-
sumers. We included in Figure 2 a simple example of how
electricity providers compute the electricity billings for the
final customers.
Communication It has been shown that a middleware layer
can improve the efficiency, reliability, and security of Smart
Grids [5]. There are two conditions that the middleware
has to satisfy: communication with service providers and
cooperation between the smart houses. Themessage-oriented
middlewares, like the publish/ subscribe protocol [20], were
identified as a promising mechanism to achieve the afore-
mentioned requirements [5].
Aggregation Schemes One of the most promising ideas to
provide privacy is to create clusters of smart meters so that
only the aggregated consumption of the cluster is reported
to the energy supplier instead of individual measurements
[11]. In more detail, the way it works is the following: smart
meters measure the electricity consumption and, with a given
temporal granularity, they send the sensed consumption to the
aggregator.When received, the aggregator computes the sum
of the consumption from all the smart meters in the network
and then reports such consumption to the electricity provider.
Blockchain A blockchain is a distributed ledger, in the
form of an append-only data structure, replicated by mul-
tiple nodes [52]. Due to the blockchain’s transparent and

immutable smart contracts, multiple users can establish trust-
ful relationships without complex algorithms [12]. Since its
first appearance in 2008, blockchain has successfully been
applied to different scenarios to fight against selfishness
nodes in decentralized networks [1,41], healthcare environ-
ments [48], smart contracts [14], finances [24,52] and IoT
[15] just to mention a few areas.

2.1 Non-Intrusive LoadMonitoring

When the smart meters send the measured electricity con-
sumption to the aggregator, the aggregator aggregates the
consumption and reports it to the electricity provider, the
grid supplier, or any other party with enough privileges. For-
mally, the consumption at a given instant t can be seen as:
P(t) = p0(t) + p1(t) + . . . + pi−1(t) + pi (t) where pi is
the individual consumption of a smart meter i .

Non-Intrusive Load Monitoring (NILM) algorithms try
to decompose P(t) to detect appliances of single smart
meters. This is done by detecting changes in consumption
and comparing them with the pattern of the consumption
of well-known appliances. According to Hart [29], Zeifman
and Roth [72], and Baranski and Voss [9], there are four main
families of appliances based on their operational states:

1. Appliances with two states, ON/OFF, e.g., lamp and
toaster;

2. Finite state machines, that is, appliances with multiple
states such as washing machines, ovens, and tumble dry-
ers;

3. Appliances that do not follow a pattern in their consump-
tion such as power drills and dimmer lights; and

4. Appliances that remain connected during long periods of
time such as TV and smoke detectors.

The fingerprinting or signature of the appliances is
obtained by detecting significant changes in the electricity
consumption, i.e., NILM algorithms detect peaks in the elec-
tricity consumption, and by matching them with the known
signatures, they extract the appliances [2,74].

3 Gridchain: a real-time collaborative system
for electricity networks

Gridchain is designed to be a privacy-compliant electricity
solution where households can opt-in to hide their consump-
tion patterns and thus make NILM more challenging by
flattening the consumption curve [61], that is, avoid as many
peaks as possible or changing them to avoid inferring attacks
[49].

In order to ease the readability, next, we introduce and
define some key concepts we use throughout the rest of
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the paper. Later, we introduce the architecture, the attacker
model, and a general description of Gridchain.

3.1 Definitions

Threshold β One key aspect of our proposal revolves around
estimating the energy consumption of the next time window.
We overcome the challenges of providing such an estimate
by allowing the smart meters to be as fine-grained as desired.
That is, the smart meter can compute an aggregated function
of the consumption of the last N days, being possible to
distinguish between different days (e.g., holidays, weekends,
and working days) or different moments within the day. By
doing so, the smart meter can make a prediction based on
previous patterns and incorporate new knowledge or patterns
into estimating the next slot.
Trading In Gridchain, meters can trade the electricity con-
sumption they measure. Thus, we define the terms publish,
consume, transactions, and debts as:

(1) the act of sending (part of) the measured consumption by
a smart meter (said to be the publisher);

(2) the act of taking electricity consumption of other smart
meter(s) (said to be the consumer);

(3) the amount of electricity that both publishers and con-
sumers agree on trading, and finally;

(4) the amount of electricity that the publisher owes the con-
sumer

respectively.
Consumption We differentiate between real and reported
consumption. Real consumption (kWhreal) is the actual elec-
trical consumption that a smart meter measures. Reported
consumption (kWhreported) is the electricity consumption
reported to the aggregator and later to the electricity provider.
When the consumption is reported (e.g., to generate the
invoice of the customer), a boundary condition is that the
sum of both types of consumption should be equal:∑

kWhreal =
∑

kWhreported.
Trust There must be a mechanism that prevents non-
repudiation attacks [38] and provides data consistency for
accountability and auditing when required. In other words,
there must be a conflict resolution protocol; that is, if some-
one denies having participated in a specific transaction, one
must be able to trace back the transactions and clarify any
problem that could have appeared. In Gridchain, this is pro-
vided by the blockchain, as explained later.

3.2 Architecture

Agraphical representation orGridchain can be seen in Figure
3. In the following, we describe all entities that take part in
our model.

Smart Meters. Smart meters are electronic devices in
charge of measuring electricity consumption. In Grid-
chain, smart meters are grouped into clusters or private
networks. For instance, we say that a network has six
smart meters if there are six apartments/houses that all
belong to the same cluster. Additionally, smartmeters can
communicate with each other within the same network
to trade electricity.
Aggregator. In our model, the aggregator is similar to
the traditional model. It computes the total consumption
that the smart meters report and sends that information to
other parties in the network, e.g., the electricity provider
in the case of computing the bills. Aggregators are thus
entirely agnostic for the electricity sharing algorithm that
smart meters execute.
Justice. If a customer manually tampers with the smart
meter and starts misbehaving, justice steps in. An exam-
ple of misbehavior is when a smart meter only trades its
own consumption but never accepts trades of other smart
meters’ consumption, thus breaking the boundary condi-
tion described above and owing money at the end of the
billing period to other customers. In a real system, justice
could take the role of representatives from the electricity
company. However, it could also result in a smart meter
being excluded from a cluster and not allowed to partic-
ipate in future rounds of GridChain.

3.3 Attacker model

We consider two types of attackers: an honest-but-curious
attacker [26] and active attackers. In the honest-but-curious
model, attackers follow the protocol as expected. However,
they try to extract as much information as possible from the
protocol execution or the data.Contrarily, active attackers can
actively alter the protocol and the data to exploit the system.

More specifically, we assume that the aggregator follows
the honest-but-curious model, whereas the smart meters can
be tamperedwith to behave selfishly. In our setting, that could
include a smart meter configured to trade its own consump-
tion but never accepts any trades with consumption from
others (with the perceived cost).

In summary, all the possible attacks our model considers
are:

(i) selfishness;
(ii) trust;
(iii) non-repudiation; and
(iv) passive attacks to extract sensitive information and pro-

filing consumers through the electricity consumption by
running NILM algorithms in the aggregator device.
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Fig. 3 Gridchain architecture overview

3.4 Protocol description

In Gridchain the goal is to remove one of the most important
features of the consumption patterns that NILM algorithms
use to identify appliances: peaks [2,11,47]. The consequence
is that whenmeters report the consumption (kWhreported), the
aggregators, even though they might execute NILM algo-
rithms, will not be able to know the real consumption of the
consumers.

We can differentiate three main parts in Gridchain:

(1) the setup of the system;
(2) trading; and
(3) billing.

Note that billing does not necessarily need to be a peri-
odic monthly executed task, but it can be executed anytime
a service of an authorized party requires it, e.g., electricity
provider, grid supplier and justice.
Setup The setup phase is the initial algorithm to cluster smart
meters into private networks. The smart meters can act as
both publishers and consumers in order to share and con-
sume electricity to/from other smart meters in the network,
respectively. In addition to the clustering, this stage is when
a mechanism to keep track of the transactions to avoid non-
repudiation attacks should be deployed.
Trading InAlgorithms 1 and 2,we include the pseudocode of
both publishers and consumers, respectively. Note these are a

high level description of the algorithms where for simplicity,
we did not include

(1) the source code needed to calculate the threshold (β);
(2) the source code that both publishers and consumers need

in order to agree on the final amount of electricity to
give/take;

(3) the performance improvements to solve the already on-
going transactions and debts; and,

(4) the billing procedure needed to generate the final invoice
for the customer.

Algorithm 1 Sharing electricity’s algorithm (Publishers)
1: β = getElectricityPrediction(timeWindow)
2: if currentConsumption > β then
3: toShare = currentConsumption - β

4: neighboursElectricity = publishElectricity(toShare)
5: for neighbourElectricity in neighboursElectricity do
6: makeTransaction(neighbour, electricity)
7: end for
8: end if

In more detail, the first step for both algorithms is to cal-
culate a local threshold (β) used to determine whether this
particular smart meter should act as a publisher or a con-
sumer. This threshold is valid for some time and can be
as fine-grained as desired. For instance, β can be valid for
the time window considering red days, weekends, holidays,
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Algorithm 2 Consuming electricity’s algorithm (Con-
sumers)
1: β = getElectricityPrediction(timeWindow)
2: if currentConsumption < β then
3: neighbour, electricity = consumeElectricity()
4: electricity = min(electricity, (β - currentConsumption))
5: makeTransaction(neighbour, electricity)
6: end if

working days, and the past consumption time window. There
are then three cases:

(1) the current electricity consumption measured by the
smart meter is greater than β. In this case, the smart meter
is willing to shed electricity consumption to other smart
meters in the network (to reduce peaks), i.e., it becomes
a publisher;

(2) the current value is lower than β. In this case, the smart
meter becomes a consumer and looks for smart meters
in the network to increase its apparent consumption (to
avoid troughs); and

(3) β is equal to the current consumption. In this case, the
smart meter neither publish nor consume electricity (as
it is at an optimal level).

After that, the algorithms compute different values depend-
ing on whether the smart meter is a publisher or a consumer.
In the case of publishers, they compute the remaining
electricity, that is, the difference between the current con-
sumption andβ. The remaining electricity is published so that
consumers can consume it. In the case of the consumers, they
compute the amount of maximum electricity consumed (i.e.,
β - currentConsumption). Finally, when both consumers and
publishers agree on sharing an amount of energy, they have
to keep track of such agreements to avoid non-repudiation
attacks.

Billing When the billing algorithm is fired, i.e., when the
electricity provider wants to compute the customers’ elec-
tricity consumption to generate the bill, it is entirely agnostic
to the trading and the transactions carried out internally by
the smart meters. The company takes the reported electricity,
obtains the consumption of each smart meter, and gener-
ates the bill having that Gridchain always guarantees that

∑

kWhreal =
∑

kWhreported at the end of the designed billing
window.

Conflict resolution protocol
Assuming smart meters to be active attackers, a smart

meter (consumer) may alter the consumption at any point
in the protocol, either during transactions or by modifying
the kWhreported to pay for less than used. However, this is
easily detected as the electricity provider would know the
electricity consumed by the cluster and compare this with the

reported consumption. Gridchain implements a conflict reso-
lution protocol with a verification mechanism for customers,
electricity providers, and justice to check which smart meter
is misbehaving by either spoofing the reported consump-
tion or denying having participated in a transaction. In the
current version, all transactions are stored in a blockchain
with non-repudiation, as explained in Sect. 4.When required,
authorized parties can access needed transactions and obtain
the real consumption to check who is misbehaving and (if
needed) to perform legal actions. However, note that such a
resolution protocol only needs to be invoked when a party
is malicious; as this is easily detected, it is expected to be
needed very rarely as an attacker will realize any attempt of
misreporting can be resolved among the parties.

4 Gridchain: a proof of concept

We deployed an instance of Gridchain in a computer with
Intel(R) Core(TM) i7-4790 CPU @3.60GHz and 16Gb of
RAM running Linux. We executed the same experiment
100 times independently to avoid bias. In the following, we
present and discuss the implementation decisions we made
in Gridchain, i.e., how to

(i) simulate consumption;
(ii) cluster smart meters;
(iii) allow trading;
(iv) implement trust; and
(v) estimate the threshold β.

It is important to remark that these are implementation deci-
sions; for other types of environments other choices may be
more suitable within the design space as explained in Sect. 3.

4.1 Initial setup

Dataset We found that, in general, it is difficult to directly
compare the results between different researchers in this area.
We aimed to use a publicly available dataset to allow oth-
ers to compare our results. Because the Setup protocol of
Gridchain consists of grouping multiple meters into clus-
ters, we required a dataset with enough data from different
households. In particular, the London dataset contains energy
consumption (in kWh) measured in periods of half an hour.
It can be freely downloaded. 1 It is composed of 167 million
rows of data which belong to approximately 5,567 different
households. All the data were gathered between November
2011 and February 2014 in intervals of 30 minutes. We real-
ized that in this dataset, even though it is pretty detailed, some
households’ consumption has some missing values.

1 data.london.gov.uk/dataset.
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Fig. 4 Statistics of added
values. Each point represents a
file and the value is the number
of added values in the
preprocessing phase

(a) (b)

To clean the dataset, we performed a preprocessing of all
the files and automatically:

(1) deleted repeated values; and
(2) added missed values computing the standard average

between the adjacent values, e.g., when the consump-
tion corresponding to 10:00 is missing, but the values of
9:30 and 10:30 are there, we computed the average and
added it to the file.

This process took us about 1 hour and a half, and we added
on average 0.2% of values per file. We can see in Figure 4
that the added values per file have a certain spread.

To avoid manual manipulation as much as possible, we
filtered out those files whose added values were larger than
1%, i.e., files that fall above the 25th percentile, with less than
991 addedvalues per file. In total,weused for the experiments
42 files.

Neighbors clustering During the Setup we grouped smart
meters into private networks so that they can share electric-
ity consumption with others under the same domain. In order
to allow other researchers to reproduce the experiments pre-
sented in this work and not be biased, we generated these
clusters based on the digits of π . The first network com-
prises 31 neighbors, 41 the second, 59 the third, etc. In total,
we picked the first 14 decimals of π to simulate 7 networks,
i.e., 14, 15, 92, 65, 35, 89, and 79meters per network in total.
Trading The publish/subscribe model [10,20] is a subset of
message-oriented middleware and relies on an event noti-
fication service. It essentially provides an alternative to a
traditional client-server architecture where the client directly
communicates with the other party. In pub/sub model, sub-
scribers register the interest in events—or pattern of events,
by calling a subscribe() method. This subscription is secret,

i.e., is not transmitted to other publishers or subscribers and
remains in the event service. Publishers can generate events
using a publish() operation, which asynchronously spreads
the event to all the subscribers. The connection between pub-
lishers and subscribers is handled by a third component called
broker, in charge of filtering and distributing all the mes-
sages to subscribers. We modeled smart meters that act as
publishers, whereas consumers correspond to subscribers in
the pub/sub model.

Concretely, we usedRabbitMQ,2 an open-sourcemessage
broker and queuing server, for the middleware implementa-
tion. In other words, RabbitMQ is a broker that supportsmes-
saging protocols like Streaming Text Oriented Messaging
Protocol (STOMP) [62], AdvancedMessaging Queuing Pro-
tocol (AMQP) [54] and MQ Telemetry Transport (MQTT)
[50]. Even though all the communications between devices
within the same network are implemented using MQTT, any
other message-oriented protocols listed above could have
been used instead.

Trust and conflict resolutions In order to keep track of
the transactions that publishers and consumers agree on,
we deployed a blockchain per private network. By doing
so, Gridchain guarantees that two smart meters agreeing
on a transaction cannot deny having participated in it (non-
repudiation [38]). Also, the shared electricity between smart
meters is stored, providing data consistency for accountabil-
ity and auditing when required (conflict resolution protocol
in case a smart meter is not following the protocol). To be
as generic as possible, we used a fundamental blockchain.3

Furthermore, the implementation is suitable for constrained
devices since the communication is carried out by HTTP

2 https://www.rabbitmq.com.
3 https://github.com/dvf/blockchain.
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requests and it exposes an API to easily check all the trans-
actions.
Threshold β For simplicity and to be as consistent as possi-
ble, we considered the consumption of the previous time slot
in our proof of concept. We computed the median of the con-
sumption for the threshold β. For instance, to simulate 1 day
of electricity consumption, we took β = 1 day; to simulate
1 week, we set β = 7 days.

5 Experimentally measuring privacy

5.1 Background andmethodology

One of the open issues that the field of experimental pri-
vacy has is the lack of formal methods to compare the
achievements—in terms of privacy—of new proposals con-
cerning others. In this paper, we adopt the samemethodology
as used in the past by other seminalwork based on peak detec-
tion [11,47] and the edit distance [46] between these peaks.

On the one hand, counting the number of peaks has been
proven as one of the most significant features when NILM
algorithms are executed [11]. To extract the number of peaks,
we used the peak detection algorithm provided by Scipy4

with the default parameters—to be as general as possible, i.e.,
when a value is higher than its neighbors then it is considered
as a peak.

On the other hand, once we extracted the peaks, we calcu-
lated the edit distance between two lists of peaks. Formally,
given two strings a, b of an alphabet

∑
, the edit distance

d(a, b) is the minimum set of edit-operations needed to
transforming a into b. The basic operations defined by Lev-
enshtein [40] were deletions, insertions, and substitutions. In
our work, we used an improved variant of the Levenshtein
algorithm [60] as well as the Longest Common Subsequence
(LCS) edit distances as metrics to measure the privacy of
the users concerning the originally measured consumption.
The difference between these two functions is that the former
allows deletion, insertion, and substitution, whereas the LCS
allows only insertion and deletion but not substitution.5

Let us provide a concrete example. We simulated Grid-
chain during one day for the seven networks and randomly
picked one of the smart meters to show both the real and the
reported consumption (see Figure 5). In such a figure, it is
interesting to see that the more smart meters in the network,
the more significant the difference between the two types of
consumption; a somewhat expected behavior since there are
more parties to share the electricity with.

4 https://docs.scipy.org.
5 As the strings to be compared may have unequal lengths, the Ham-
ming distance is not suitable for our purposes even though it is also part
of the edit-distance family.

Let us now focus on one of the networks in Figure 5. For
simplicity, we used the one composed of 14 smart meters
and, more concretely, the smart meter 10 (Fig. 5a). Let S and
D be arrays containing the positions of peaks corresponding
to kWhreal and kWhreported, respectively.

⎧
⎪⎨

⎪⎩

S = [3, 5, 8, 14, 19, 21, 25, 31, 36, 39, 41, 44, 46]
D = [5, 7, 10, 14, 19, 21, 23, 25, 28, 31, 33, 36, 39,

41, 44, 46]

In this example, the edit distance is 4, the number of matches
is 11 ([5, 14, 19, 21, 25, 31, 36, 39, 41, 44, 46]) whereas the
LCS is 5 (the string composed of [36, 39, 41, 44, 46] peaks).
Finally, we have certified that

∑
kWhreal =

∑
kWhreported

holds for all the networks at the end of the specified billing
window, being equal to 0.154 kWh.

Contrarily to both the number of matches and the LCS
, in the edit distance, the idea is that the more changes the
attacker has to perform to transform the peaks of the reported
consumption into the real ones, the better. In terms of privacy,
the attacker will havemore uncertainty in guessing where the
real peaks of the electricity consumption would be.

For the rest of the results presented in this section, we
always simulated the consumption of the seven networks
during both 1 day and 1 week. We ran Gridchain 100 times
independently and computed the mean of the results. Such
simulations took us 2 and 10 days, respectively. One example
of the results we obtained from our simulations can be seen
in Table 1 where the numbers correspond to the simulation of
a network of 14 smart meters during one day. Figure Figure
5 corresponds to one of these independent experiments.

5.2 Results: peaks

We measured the number of real peaks versus the number
of reported peaks. We obtained that, in general, Gridchain
reports over 20% fewer peaks for both 1-day and 1-week
simulations than without our method. In Figure 6a, 6b we
include the graphical results of this first experiment as well
as the statistics in Table 2. It is also interesting to see that,
after running Gridchain the reported peaks are less dispersed
than the real peaks (see Std. Deviation), meaning that the
peaks produced by Gridchain in the reported consumption
are consistent, i.e., smart meters tend to produce the same
number of peaks. We included more detailed plots in Figure
7 of each network’s reported peaks in consideration.

5.3 Results: edit distance

As explained in the introduction of this section, we computed
the edit distance between both peaks in real (kWhreal) and
reported (kWhreported) consumption (see Table 3). In addition
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(a) (b)

(d)(c)

(e) (f)

(g)

Fig. 5 Example of real and reported consumption after running Gridchain during one day and different number of smart meters per network
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Table 1 Statistical results after
running Gridchain 100 times for
a network composed of 14 smart
meters during 1 day

Smart meter Peaks (kWhreal) Peaks (kWhreported) Edit distance Matches LCS

1 7 6 1 6 6

2 16 14.95 4.4 12.56 5.22

3 17 11.62 9.59 7.47 3.41

4 15 11.44 6.1 8.94 5.35

5 18 11.68 9.91 8.14 3.16

6 14 12.4 4.8 9.4 5.35

7 11 10.37 5.65 6.46 3.51

8 8 8 0 8 8

9 13 12.63 5.32 8.63 5.81

10 13 12.71 5.41 8.66 5.32

11 18 11.78 9.91 8.12 3.56

12 15 10.2 7.14 7.99 2.94

13 15 13.38 5.64 9.8 5.39

14 11 10.86 5.13 6.52 3.93

MEAN 13.64 11.28 5.71 8.33 4.78

(b)(a)

Fig. 6 Relation of real vs reported peaks after running Gridchain 1 day Figure 6a and 1 week Figure 6b

to that, we computed the number of peaks that match (see
Table 4) as well as the longest match between peaks (see
Table 5) of the consumption. The more changes between the
different types of consumption, the more privacy is offered
as it becomes more difficult for the attacker to run NILM.

In Table 3 we see that the more smart meters in the
network, the larger the edit distance is. The reason is that
the more parties to share the electricity with, the higher
the privacy level is. In more detail, Gridchain increased by
6.313±0.596 and 190.884±9.038 the number of operations
an attacker should perform to obtain the position of the real
peaks for the 1 day and 1 week of simulation, respectively.

The improvement in the privacy of the customers is also
supported by the number of perfect matches and the LCS.

In Tables 4 and 5, we can see how the total number of the
similar peaks and the LCS of both consumption (kWhreal)
and (kWhreported) is inversely correlated with the number of
smart meters the network is composed of.

Regarding the perfect matches, in the 1-day simulation,
we observe that the number of perfect matches goes from
61% of the 14 smart meters network to 52% of the network
composed of 92 smart meters. Note that in the last case—
network with 92 smart meters, almost half of the reported
peaks in (kWhreported) are different from those of the real
consumption (kWhreal).

On the other hand, the results we got from the LCS sug-
gest that even though the increase of the smart meters in the
network seems not to have a great impact on the number
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(b)

(a)

Fig. 7 Relation of real vs reported peaks after running Gridchain 1 day Figure 7a and 1 week Figure 7b
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Table 3 Edit distance statistics
for 1 day and 1 week of
Gridchain simulation with 7
networks

Network Edit distance
14 15 35 65 79 89 92

1 day Mean 5.717 5.624 6.995 6.783 6.784 6.919 6.909

Median 5.525 5.510 6.840 6.450 6.340 6.650 6.590

Std. Deviation 2.913 2.763 2.638 2.190 2.107 2.208 2.242

1 week Mean 181.846 183.758 200.640 203.630 198.361 200.169 199.922

Median 193.330 210.110 202.950 205.820 196.990 199.110 198.920

Std. Deviation 85.467 82.086 65.819 51.810 53.748 51.295 51.872

Table 4 Statistics of the number
of peaks that match for 1 day
and 1 week of Gridchain
simulation with 7 networks

Network Matches
14 15 35 65 79 89 92

1 day Mean 8.335 8.443 7.338 7.353 7.249 7.154 7.116

Median 8.130 8.400 7.570 7.530 7.340 6.980 7.155

Std. Deviation 1.641 1.587 2.117 2.209 2.205 2.248 2.252

1 week Mean 357.474 357.593 343.410 337.472 333.465 332.039 330.056

Median 344.660 333.580 328.490 329.290 324.060 316.680 316.950

Std. Deviation 71.309 73.452 69.878 64.685 64.760 62.912 61.400

Table 5 Statistics of the longest
sequence of common peaks for
1 day and 1 week of Gridchain
simulation with 7 networks

Network Longest Common Subsequence (LCS)
14 15 35 65 79 89 92

1 day Mean 4.782 4.885 4.412 4.677 4.551 4.605 4.593

Median 5.270 5.220 4.400 4.600 4.480 4.500 4.555

Std. Deviation 1.418 1.311 1.477 1.637 1.637 1.713 1.693

1 week Mean 62.675 58.587 42.592 34.682 33.758 31.264 30.489

Median 28.235 21.440 19.820 18.840 18.470 18.290 17.970

Std. Deviation 89.898 87.894 63.106 48.660 45.746 42.961 42.042

of longest common sequences in the 1-day simulation, we
can see the improvement when we simulated Gridchain for
1 week. Using the mean, the network composed of 14 smart
meters got a LCS of 62.675 peaks, whereas, for the network
composed of 92 smart meters, the longest sequence is 30.489
peaks. The consequence is that the information the attacker
has access to, i.e., kWhreported differs much more than the
original one.

5.4 Summary

Given our experimental methodology, we can see the num-
bers achieved by Gridchain after 1 week of simulation (the
fourth row of Tables 2 to 5). It detected 526.714 peaks
on mean (after running 100 simulations), whereas only
441.088 were reported. Gridchain changed the position of
181.846 peaks, directly affecting both the LCS (62.675 peaks
on mean) and the perfect matches of the peaks (357.474
on mean). In particular, we can see how, in general, the
smart meters achieve significant levels of privacy by alter-
ing the position of the peaks in the reported consumption

(kWhreported). Thus, if an attacker has access to the reported
consumption kWhreported it would be hard for her to recon-
struct the real consumption from it.

6 Discussion

This section offers discussion and points to future work.

The attacker model
Let us return to the attacks our model considers and sum-

marize how they have been dealt with in Gridchain.

i) selfishness;
ii) trust;
iii) non-repudiation; and
iv) passive attacks to extract sensitive information and pro-

filing consumers through the electricity consumption by
running NILM algorithms.
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The smart meters can have been tampered with and
become active attackers. One goal would be to just trade
its own consumption but never accept any trades with con-
sumption from others (with the perceived cost). This would
break the boundary condition listed earlier that the sum of
both types of consumption should be equal at the end of
the current billing window:

∑
kWhreal =

∑
kWhreported.

This would result in some other smart meters having to pay
for more electricity than actually used (easily detected). The
owners can, in this case, invoke the conflict resolution proto-
col and ask the electricity provider to become involved. All
the transactions are stored in the blockchain and cannot be
tampered with. Thus, the electricity provider can trace back
the transactions during a window to determine who owes
electricity (money) to whom, and any misbehaving node can
be punished (terminated as customers).

A smart meter can also report less consumption than used,
meaning the overall reported consumption over the cluster
would be less than the actual consumption. Also, this con-
dition would be easily detected, and the electricity provider
can then take actions based on the recorded transactions in
the blockchain.

The key to the system is thus the non-repudiation offered
by the blockchain and the trust that any misbehaving node
can be discovered (conflict resolution discussed in Sect. 4.1).
This also implies that it is unlikely that any conflict resolution
needs to be invoked as it would be resolved, and the attacker
would be found and punished.

Our attacker model also considers the privacy risks of the
consumption patterns and that an honest-but-curious aggre-
gator can use these patterns to infer sensitive information
from customers using NILM. As shown Sect. 5, we showed
experimentally that with Gridchain it becomes more difficult
to runNILMsuccessfully. Assuming that nomore info is pro-
vided to the aggregators, they will never be sure whether the
combination of the peaks they generate is or is not the correct
one. Also, note that other smart meters cannot run the NILM
algorithms, as they only see the respective transactions and
not any of the full consumption patterns.

Negative consumption In Gridchain, the reported consump-
tion kWhreported is equal to the kWhreal when the billing is
computed (e.g., Figures 5a,5b and 5g). However, during the
trading period, there might be some negative consumption
values reflected in some cases in the kWhreported data. This
is, of course, not possible since there is no negative electric-
ity. The explanation is that Gridchain tries to resolve all the
ongoing transactions with optimization, and the negative val-
ues in consumption do not correspond to the kWhreal nor the
kWhreported but to the agreements that smart meters carry out
among each other. This is not a problem from a privacy point
of view since the goal is to modify the electricity consump-

tion to hide the real peaks so that NILM algorithms cannot
extract useful information.
Billing In Gridchain, we modeled the billing task as a peri-
odic function that, when executed, all the smart meters send
the reported consumption to the aggregator. Then, it summa-
rizes all the data and forwards it to the electricity provider
to compute the billing. Note that the aggregator is not aware
of the transactions nor the real consumption of the smart
meters as it is not part of the blockchain network. Assum-
ing the aggregator to be honest-but-curious, i.e., it does not
alter the data it receives, any information it might extract will
be useless. Despite

∑
kWhreal=

∑
kWhreported, the curve and,

more importantly, the peaks are not the same.
The most common model for billing the electricity com-

panies’ energy consumption is usually calculated monthly.
Therefore, our system considers the monthly billing sce-
nario; however, we are not limited to it. Our system is flexible
enough to configure the billing algorithm as fine-grained as
desired, being evenpossible to resume the consumption daily.
With this, we deal with scenarios where users move from one
house to another, being able to resume their debts and not
leaving them for the next tenant (in case it exists) [53].

The importance of β InGridchain there is one crucial param-
eter, the threshold β. This threshold determines whether a
smart meter acts as a publisher or consumer or does not par-
ticipate in the trading algorithm.

In our experiments, we used different time frames and
combinations of previous consumption patterns, i.e., we
testedwithmean,median, andmode.Weare, of course, aware
that the best value for β is by computing the mean of all the
meters, i.e., this will produce the same flat curve in all the
reported consumption. This is, however, only possible either
by using a trusted party that computes such value (like the
aggregator) or by using more elaborated cryptographic tech-
niques like homomorphic encryption, where all the meters
can agree on a value without revealing their consumption to
others [51]. For our proof of concept, we decided to keep it
as simple and the most lightweight as possible.
Limitations and future work

The blockchain we used for our proof of concept was not
encrypted. For a real deployment of our proposed solution,
such sensitive information should be protected and allow
authorized parties to access a set of data when required.
Attribute Based Encryption (ABE) is a public encryption
scheme that has been proved to have great performance in
other IoT systems with high-constrained devices [71]. The
idea behind it is that smart meters encrypt the data of the
transactions using the public attributes of the smart meters
involved in the sharing agreement plus the public attributes
of other parties like electricity providers, the grid suppliers,
and the courts. Only those parties with the corresponding
public attributes can decrypt the data and access the transac-
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tion stored in the blockchain. As a consequence, the attacker
model we use can be expanded, and even if passive attack-
ers have access to the messages shared in the blockchain
network, they will get nothing but confirmation that the algo-
rithm is working and the electricity is being shared among
the participants. In addition, ABE allows consumers to add
other services apart from billing, and authorize other parties
to have access to the electricity consumption to, for instance,
implement a health care monitoring system for older people.

Gridchain defines a threshold β which indicates whether
a smart meter should consume or send electricity from/to
others. We modeled such a threshold by using a statisti-
cal average of previous consumption frames; however, we
strongly think advanced techniques based on machine learn-
ing will help predict such a parameter. Not only information
about previous consumption but learning from customer
habits, including more complex information from external
sources like the weather forecast or processing information
from sensors placed around the house, will increase the pri-
vacy of the customers and the whole network.

7 Related work

There are different ways a smart meter could be attacked,
and the consequences would depend on the attacker’s intent
where Ashgar et al. give a good summary of different
approaches with their advantages and disadvantages [6].
Costache et al. give an example of how the control of smart
meters can cause more significant disruptions on the grid
[16]. Tabrizi and Pattabiraman describe how to make smart
meters (and other IoT devices) more secure from attacks
[63]. Such work could make the fraudulent modifications of
meters to steal electricity, as happened in Puerto Rico [37],
more difficult. Our work complements such efforts by look-
ing at the information measured and communicated from the
smart meter from a privacy perspective, not its actual security
mechanisms.

The privacy risk of smart meters was early documented,
for example,Molina-Markhamet al. [49]. InNILM,onemea-
sures the aggregated load for a household to identify single
appliances and their usage. If the consumption ismeasured in
enough detail, it may even reveal the TV channel watched in
the household [27]. Lately, new techniques utilizing advances
in deep neural networks have also been applied toNILM[18].

This has led to several investigations of what type of infor-
mation is collected and how the privacy-implications can be
reduced. These are summarized in Table 6 and further dis-
cussed belowwith comparisons toGridchain.Asghar et al.[6]
and Gross et al.[28] in their systematic reviews, have taken a
broader look and considered more use cases than just billing,
which is the main focus here.

Tudor et al. [66] investigate privacy-enhancing techniques
such as data granularity, retention time, and pseudonyms
to understand better the trade-offs between the utility of
the data and its privacy (likelihood of identifying individ-
ual customers). They present a theoretical framework and
empirically investigate how changing the properties of the
available data would change an attacker’s success. Also, dif-
ferential privacy has been suggested to protect customers
[67],whereTudor et al. design and evaluate a prototype based
on a streaming framework to scale to very large data. By
adding noise, there is a risk that the usefulness of the data
collected will decrease. However, as demonstrated in [65],
this may not always be the case for some typical applications
such as Short-Term Load Forecasting (STLF). The accuracy
of a forecast based on differentially protected data may be
very similar to that of a forecast using the original data. How-
ever, one disadvantage with the above approaches is that for
billing, privacywill cost. Changing the granularity of the col-
lected data as in [66] or using differential privacy as in [67],
mean that a customer is not charged for her actual consump-
tion. It should be noted that limiting the consequences to
the utility of noise-adding techniques is an ongoing research
challenge (see, e.g., [35]). In this work, we focus on hav-
ing correct billing but still share data that may be useful for
grid operation while making NILM analysis more challeng-
ing. Our work complements the above investigations in that
such privacy-enhancing techniques can also be added to our
scenario.

Homomorphic encryption and secure multiparty compu-
tation protocols offer intriguing properties; from having been
used for other use cases, researchers have also suggested pro-
tocols for billing (notably [70]) but these methods tends to
have relatively high computing complexity and communi-
cation overhead as argued in [6] and [39]. In Gridchain a
blockchain is used, but recent research has shown that to
be very feasible even for less capable microcontrollers than
found in smart meters [56,57]. Others have also suggested
blockchains for other use cases in the smart grid [4,13,73].

Our work is inspired by the work of Kalogridis et al.
[32–34]. They introduce the notion of reconciled privacy
where a local battery is used to hide peaks of the consumer.
The method is proving, in theory, to be quite effective but
expensive in practice as each consumer needs to invest in a
large battery. Even though batteries or other storage facili-
ties may at some point have a large adoption among house
owners (electric vehicles), it is far from the case today, and,
likely, most apartment dwellers will not be able to use sim-
ilar schemes. Other privacy-schemes using a battery can be
found in [8,47,64,68].

In this paper, we designed a system where consumers,
together as a group, can hide their consumption pattern by
replacing the battery (used in the above approaches) with
borrowing / paying back apparent consumption among the
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Table 6 A summary of privacy-enhancing techniques for billing data

Type Examples Challenges

Data granularity [66] Course-grained granularity and randomly

Differential privacy [30,44,65,67] Added noise may interfere with accurate billing

Secure multiparty computation [59] Relatively high computing complexity and overhead

Homomorphic encryption [42,70]

Local energy storage facilities [7,8,32–34,47,55,64,68] Expensive and not widely available

group members. Each customer is billed only for her actual
consumption, there is no need for costly batteries, and NILM
is mademore difficult than without having the system.Worth
pointing out is that McLaughlin et al. [47] use a similar eval-
uation framework in that they also measured their success in
how they managed to hide events based on NILM analysis.

In most of the proposals analyzed in this paper, either
authors did not release the datasets they used for testing
their solutions, the methodology and algorithms they pro-
posed are unavailable, or a combination of both. Either way,
we could not compare our proposal to others. Motivated
by the difficulties we found in reproducing the experiments
of other proposals in this field, we not only used a public
database (https://data.london.gov.uk/dataset) and released
all the source code to facilitate future research on the field
(https://github.com/Pica4x6/GridChain.), but also detailed
how we preprocessed the dataset with missing values and
the implementation decisions we tool.

Summarizing Gridchain with other approaches listed in
Table 6, there are not any significant requirements for
changes to the infrastructure; e.g., there is no need for large
batteries in the household as previous literature requires.
However, any such addition to some group members would
benefit the group. Gridchain requires communication in the
publisher/subscriber method, but no more than would be
required for other relatedwork such as homomorphic encryp-
tion or multi-party computations. Comparatively speaking,
the latter twomethods also have computational challenges for
microcontrollers. Gridchain only uses a simple blockchain,
in this work, chosen to be permissioned and with a relatively
low computational burden suitable for a microcontroller.

Finally, after running Gridchain we confirmed what other
papers concluded when trying to hide the electricity con-
sumption from attackers: the number of smart meters in the
network affects the final privacy of the whole network [11].

8 Conclusions

In this paper, we investigated the privacy concerns regard-
ing detailed readings for billing purposes from smart meters
or similar devices. Others have previously suggested that a

local supply (battery) can be used to anonymize the usage
patterns so that less information about the household can be
gained from the energy traces [68]. This supply can either be
used directly to hide consumption patterns or as an external
source to disturb the signal from a differential-private way.
Even though some householdsmay have large-scale batteries
in the future as electric cars, today, there is no such deploy-
ment making these schemes exciting but challenging to use
in practice.

We presented Gridchain, a method where households
can opt-in to hide their consumption patterns. Households
form groups where they can trade real consumption among
themselves to achieve reported consumption that would be
resistant to NILM. Gridchain is built on a publish/subscribe
model and uses a permissioned blockchain to record any
trades, meaning that dishonest households can be discov-
ered and punished if they steal from other households in the
group or the electricity company in the end. Opting intoGrid-
chain would be as simple as changing the software of the
smart meter. Gridchain does not need large batteries in the
household as previous literature requires. However, any such
addition to some group members would benefit the group.
Last, we implemented and released a proof of concept of
Gridchain and used public datasets to allow reproducibility.
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