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Abstract: In this paper, we extend the optimization analysis found in the current literature for
single-degree-of-freedom vibrational energy harvesters. We numerically derive and analyze the
optimization conditions based on unified expressions for piezoelectric and electromagnetic energy
harvesters. Our contribution lies in the detailed analysis and comparison of both resonant and
anti-resonant states while fully including the effect of intrinsic resistance. We include both the case of
excitation by inertial load and prescribed displacement, as the latter has not been elaborated on in
the previous literature and provides new insights. We perform a general analysis but also consider
typical values of applied piezoelectric and electromagnetic energy harvesters. Our results improve
upon previous similar comparative studies by providing new and useful insights regarding optimal
load, load power and power input to output efficiency. Our analysis shows an exponential increase
in the critical mechanical quality factor due to the resistive loss coefficient. We find that the ratio
of mechanical quality factor to resistive loss coefficient, at resonance, increases drastically close to
the theoretical maximum for load power. Under the same optimization conditions, an equivalent
conclusion can be drawn regarding efficiency. We find that the efficiency at anti-resonance behaves
differently and is equal to or larger than the efficiency at resonance. We also show that the optimal
load coefficient at resonance has a significant dependence on the mechanical quality factor only
when the resistive loss coefficient is large. Our comparison of excitation types supports the previous
literature, in a simple and intuitive way, regarding optimal load by impedance matching and power
output efficiency. Our modeling and exploration of new parameter spaces provide an improved tool
to aid the development of new harvester prototypes.

Keywords: vibration energy harvesting; unified modeling; piezoelectric; electromagnetic;
anti-resonance; prescribed displacement

1. Introduction

Vibrational energy harvesters (VEHs) based on piezoelectric [1–3] or inductive [4–6]
transduction have been frequently modeled in the previous literature, typically as lumped
second-order mass–spring–damper systems. Power output at resonance and anti-resonance,
power optimal load and efficiency are typically included in these analyses. The efficiency is
typically defined as the ratio of input mechanical energy to output electrical energy, which
is equivalent to the ratio of input power to output power [1]. Resonance and anti-resonance
refer to the case of coupled oscillators being either in phase (resonance) or out of phase
(anti-resonance). Resonance occurs when the electrical damping is at its smallest, i.e., short-
circuit conditions for a piezoelectric energy harvester (PEH) and open-circuit conditions for
an electromagnetic energy harvester (EMEH). This corresponds to the natural frequency
of the mechanical structure. Anti-resonance occurs when the electrical damping is at its
largest, i.e., open-circuit conditions for the PEH and short circuit for the EMEH.
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Essential parameters in these models are mechanical quality factor, ratio of excitation
frequency to natural frequency, intrinsic impedance and resistance, load resistance and the
electromechanical coupling coefficient. The latter is defined by the ratio of electrostatic
(PEH) or electromagnetic (EMEH) energy to mechanical energy. There is a critical value of
the effective electromechanical coupling coefficient, which is determined by the mechanical
quality factor, at which the output power reaches a theoretical maximum, and an anti-
resonant peak starts to emerge, as derived by Liao et al. [3].

The lumped mechanics of a PEH or EMEH can be modeled in a unified way, assuming
they are both systems with linear stiffness and damping. This has been exploited by [7–9]
to derive a general model applicable for both systems.

Arroyo et al. [8] performs a thorough derivation of a general expression for generated
power, normalized by the theoretical power limit. The analysis focuses on the generated
power for varying load, mechanical quality factor and effective electromechanical coupling.
Optimal load coefficients are described, but the optimal frequency, normalized by the
natural frequency, is simply taken to be 1, thus not addressing the case of anti-resonance.
In their paper, they note that the effective electromechanical coupling and resistive loss
coefficient are both large for a typical EMEH and small for a typical PEH. From their survey,
they also find a few existing PEHs achieving power performances close to the theoretical
limit, while the typical EMEH has room for improvement.

Wang et al. has modeled the power output for VEHs in several papers and included
the harmonic case [7], cases with different types of loads, reactive and passive [10,11], and
a derivation method which allows both harmonic and stochastic input to be used [12,13].
In [7], Wang et al. performs a similar analysis to that conducted by Arroyo et al. [8]
(although theirs includes the aspect of harvesting efficiency) but assumes an effective
coupling coefficient under the critical value, and thus the anti-resonant point is lost in the
analysis. Contrary to [8], Wang et al. neglects the intrinsic resistance for the PEH/EMEH
(i.e., coil and dielectric resistance), which is common practice for PEHs but is not generally
applicable for an EMEH and results in incorrect optimal load resistance [6,14].

Tai et al. [15] derive separate dimensionless expressions for the average load power
generated from a PEH and EMEH. Optimization here is primarily performed and analyzed
relative to the electrical damping ratio and normalized excitation frequency. The case
of nonnegligible intrinsic resistance is only considered for the EMEH and treated only
numerically for two discrete values of the ratio of load resistance to intrinsic resistance.
Their analysis deviates from the common approach in that they mainly consider the case of
constant base displacement amplitude. The critical effective electromechanical coupling
coefficient, as defined in [3], is only treated for the case of a PEH and only discussed
regarding the optimal load resistance.

In [16], Liao et al. derive a general expression for the PEH power output using
the equivalent circuit method, in which the entire system is expressed and solved in the
electrical domain. The same theoretical power limit as mentioned previously is derived here
and applies regardless of the interface circuit. A significant contribution of their analysis
is an increased understanding of the critical electromechanical coupling coefficient and
how it is affected by various interface circuits. The intrinsic resistance, and thus resistive
loss coefficient, is not included in the analysis, and the characteristics of the resonant and
anti-resonant solutions are not discussed.

Wang et al. and others [1,7,17] arrive at the same expression for PEH efficiency.
Kunz [18] notes that previous models of PEH efficiency are lacking in a common approach
to calculation. According to Kunz, the theoretical efficiency over-estimates the real scenario
as the damping from air viscosity is not considered. Although the analysis by Wang et al. [7]
includes efficiency, in the context of both PEHs and EMEHs, it does so under the assumption
of the negligible effect from intrinsic resistance.

In this paper, we use the lumped second-order mass–spring–damper system for the
mechanical domain, and the lumped element system for the electrical domain, to derive
a common dimensionless expression for generated power and efficiency, valid for both
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PEHs and EMEHs. In order to capture all the essential VEH characteristics, our model
consists of a mechanical quality factor, an effective electromechanical coupling coefficient,
an excitation frequency normalized by the natural frequency and two dimensionless coeffi-
cients accounting for intrinsic resistance and load resistance, defined as the resistive loss
coefficient and load coefficient. Using the same set of parameters, we derive expressions
for output power and efficiency based on system excitation from both inertial load and
prescribed displacement. The comparison between these two types of excitations has not
been performed in the previous literature.

To show the effect of all input parameters, in a relevant and clear way, we perform a
numerical investigation in the domain of the mechanical quality factor and resistive loss
coefficient, under the condition of optimal excitation frequency and load resistance. The
effective electromechanical coupling coefficient is also varied to examine its dependence.
As there are local power optima at both resonance and anti-resonance, we characterize
the model at both points. Based on typical systems parameters, we compare the EMEH
and PEH in the above defined space. Such an investigation, examining and comparing
system characteristics at both resonance and anti-resonance while also considering the
effect from the resistive loss coefficient in a detailed way, has not been performed in the
previous literature, and results in new useful insights.

2. Method

To find a common expression for PEH and EMEH power output, we use the second-
order mass–spring–damper system and describe the proof mass movement of both PEHs
and EMEHs, using Equation (1). Proof mass displacement is expressed as x(t), m is the
effective mass, CM is the total mechanical damping factor, KM is the mechanical spring
constant, y(t) is the base displacement, and f is the damping force resulting from extracting
electrical energy from the system. The corresponding free-body diagram is shown in
Figure 1 (right).

m
..
x + CM

.
x + KMx + f = m

..
y (1)
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Figure 1. Representation of PEH (left) and EMEH (middle), with a corresponding free-body diagram
(right). CE and CM are the electrical and mechanical damping coefficients. KM is the mechanical
spring coefficient. m is the effective mass of the system. x(t) is the proof mass or tip displacement,
and y(t) is the base displacement.

The electrical damping force, f , for the PEH and EMEH is given by Equation (2).

PEH : f = θv
EMEH : f = θi

(2)

Here, v and i are the instantaneously generated voltage and current for the respective
VEH. θ is a system-specific coupling factor and is a function of harvester dimensions and
material properties, such as the piezoelectric coefficient or the magnetic remanence. The
coupling factor relates displacement to current or voltage by:

PEH : θ
.
x = i

EMEH : θ
.
x = v

(3)
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Next, we use the lumped element model in the electrical domain to express the
generated power as a function of f . In Figure 2, we model the EMEH as a voltage source,
v, in series with an ideal inductor, L, and winding resistance, Rw. The PEH is modeled
as a current source, i, in parallel with an ideal capacitance, CP, and an electric resistance,
RP, due to the resistivity of the PEH. We use Kirchhoff’s first and second law to find the
relationship between current and voltage in each case.

PEH : i = CP
.
v + v

RL
+ v

RP

EMEH : v = L di
dt + (Rw + RL)i

(4)
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Figure 2. Lumped element model of electrical domain. Left: EMEH. L, Rw and RL are the coil
inductance, coil resistance and load resistance. v is the generated voltage, and i is the resulting
current. Right: PEH. CP, RP and RL are the capacitance, resistance due to PEH resistivity and load
resistance. i is the generated current, and v is the resulting voltage.

We can use Equation (4) together with Equations (2) and (3) to express proof mass
displacement velocity as a function of the electrical damping, resulting in Equation (5).

PEH :
.
x = 1

θ2

(
CP

.
f + f

RL
+ f

RP

)
EMEH :

.
x = 1

θ2

(
L

.
f + (Rw + RL) f

) (5)

To find a general governing equation, we perform the variable substitutions A = 1/RT
and B = CP for the PEH and A = RT and B = L for the EMEH. RT is the total output
resistance and is given by Equation (6):

PEH : RT = RPRL
(RP+RL)

EMEH : RT = Rw + RL
(6)

Applying the above-defined variables to Equation (5) yields a common expression for
the proof mass velocity, as given by Equation (7).

.
x =

1
θ2

(
A f + B

.
f
)

(7)

The total average power, generated over the resistive components, can be derived
from the RMS voltage or current as:

PEH : PT = A
(
|v|/
√

2
)2

EMEH : PT = A
(
|i|/
√

2
)2 (8)

Using Equations (2) and (8), we can arrive at a general expression for the average power:

PT =
A
∣∣∣ f̂ ∣∣∣2

2θ2 (9)
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As our model assumes a purely resistive load, the average load power (Equation (10))
is found by applying a resistive division term to Equation (9).

PEH : P = PT
RP

RP+RL

EMEH : P = PT
RL

RW+RL

(10)

As in the previous literature [7,8], we normalize the power output by a reference
power

((
ω2y0

)2m2
)

/CM, where ω is angular excitation frequency and y0 is the base
displacement amplitude and use a set of dimensionless parameters according to Table 1. For
a more concise power expression, we further parameterize with dimensionless parameters
according to Table 2. The same variable substitution as described earlier, regarding A and B,
is used in Tables 1 and 2 where applicable.

Table 1. Dimensionless parameters.

Parameter Expression Name

Q mωN/CM Mechanical quality factor
(
ωN =

√
KM/m

)
ζ 1/(2Q) Mechanical damping ratio

η θ2/KMB Effective electromechanical coupling coefficient

γ ω/ωN Normalized angular excitation frequency

ξC
PEH : 1/RLωN B

EMEH : RL/ωN B Load coefficient

ξE
PEH : 1/RPωN B

EMEH : RW /ωN B Resistive loss coefficient

Table 2. Dimensionless parameters used to simplify the power expression.

Parameter Expression

α θ2/CM A

β 1/(ξC + ξE)

ε Q
(
γ2 − 1

)
/γ

Using Equations (1), (7), (9) and (10) and the dimensionless parameters described in
Tables 1 and 2, we can derive a unified expression for dimensionless average load power
under inertial load, PIL (see derivation in Supplementary Materials).

PIL
CM

(ω2y0)
2m2

= PIL =
αβξC

2
(
(1 + α)2 + (βγ)2 − 2εαβγ + ε2

(
1 + (βγ)2

)) (11)

Equations (7), (9) and (10) can be used to derive the equivalent expression under
prescribed displacement since x(t) = y(t). As the effect of electric damping on proof mass
displacement is negated in this case, the load power under prescribed displacement (PPD)
can be derived in a more direct way by taking the square of the RMS voltage (for a PEH) or
current (for an EMEH) acting on the load, multiplied or divided by the load resistance (see
derivation in Supplementary Materials). We can express this in a unified manner using the
same set of dimensionless parameters as before. For comparability with the case of inertial
load, we can also extract the same reference power as mentioned previously, which results
in Equation (12).

PPD = 2ζ2 αβξC

γ2
(

1 + (βγ)2
) (12)
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The efficiency is defined as the average generated power by average input power [1].
For the case of inertial load, we use the input power as derived by Yang et al. (see
Equation (13))

PIn = F× .
y = m

( ..
x +

..
y
) .
y (13)

Given the derivations in [1], this results in the average input power given by Equation (14).

PILIn =
1
2

m
∣∣ ..x∣∣∣∣ .

y
∣∣× sin(∅x) (14)

where ∅x is the phase difference between x and y. In the case of prescribed displacement,
there is no phase difference and x = y. We use Equation (1) together with Equation (13) to
define the input power under prescribed displacement, resulting in Equation (15).

PPDIn = F× .
y =

(
m

..
x + CM

.
x + KMx + f

) .
x (15)

In both cases, this leads to an efficiency according to Equation (16) (see derivation in
Supplementary Materials).

Γ =
P

PIn
=

αβξC

1 + (βγ)2 + α
(16)

In summary, we derive (i) the dimensionless average power generated over the load
resistance, Equation (11), based on a lumped second-order mass–spring–damper system
with inertial load, Equation (1), and the lumped element model, Equation (4), for both the
PEH and EMEH; (ii) the dimensionless average power assuming a prescribed proof mass
displacement, Equation (12), and (iii) an expression for efficiency, Equation (16), relating
load power to mechanical input power, valid for both the PEH and EMEH under both
inertial load and prescribed displacement. Next, we analyze these general expressions
to determine the common and dual characteristics of piezoelectric and electromagnetic
energy harvesters.

3. Results
3.1. Power Optimization of System under Inertial Load

The local optima for dimensionless power, in the domain of γ and ξC, can be deter-
mined from the zeros of the corresponding partial derivatives of the power expression.
One approach to finding the analytical solution to the local power optima is to first find the
relation between γ and optimal load coefficient from the zeros of ∂P/∂ξC (assuming ωN
and B are constants):

ξC =

√
γ2 + ξ2

E +
Qη(2ξE + Qη − 2εγ)

(ε2 + 1)
(17)

By applying Equation (17) in Equation (11), we find the expression for dimensionless
power under the condition of optimal load, given by Equation (18).

PIL_OptLoad =
Qη/4√

γ2
(
έ2 + 1

)
(ε2 + 1) + ξE(ε2 + 1)(2Qη + ξE(ε2 + 1)) + ξE(ε2 + 1) + Qη

(18)

For a more concise expression, an additional parameter, έ, is used in Equation (18).
This additional parameter is defined by Equation (19).

έ = Q
γ2 − (η + 1)

γ
(19)

The zeros of the derivative with respect to γ, ∂PIL_OptLoad/∂γ, then give the local opti-
mum γ. However, without assuming negligible ξE, we find the analytical root derivation
to be prohibitively complex, even for an analytical software tool. We therefore perform a
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numerical investigation to determine the model characteristics under optimal excitation
frequency and load resistance. We find the locally optimal values of γ and ξC by finding
the intersections of solutions to ∂PIL/∂ξC = 0 and ∂PIL/∂γ = 0.

To compare our results with the previous literature, we can set ξE = 0 in Equation (18)
and solve for ∂PIL_OptLoad/∂γ = 0, in which case we arrive at the same solutions as
Liao et al. [3], under the restrictions of positive and real solutions. Under the same
condition of ξE = 0, we also find a critical value of the effective electromechanical
coupling, ηcrit = 4ζ(1 + ζ), above which the number of real and positive solutions to
∂PIL_OptLoad/∂γ = 0 increases from one to three, where one solution is a local minimum.
For η ≤ ηcrit there is only a single maximum.

In our continued investigation, we will use an equivalent critical value, expressed as a
quality factor, given by Equation (20).

Qcrit =
(

1 +
√

1 + η
)

/η (20)

Qcrit is used in the same way as ηcrit; i.e., for Q ≤ Qcrit, there is only one real maximum,
and for Q > Qcrit, there are two real maxima. For the case of Q � Qcrit and ξE = 0,
the two possible local power maxima, with respect to γ, tend toward the open-circuit
(β→ ∞, γ→

√
1 + η ) and closed-circuit (β→ ∞, γ→ 1) resonance frequencies, also

called resonance and anti-resonance. In our investigation, we dub the solution tending
toward resonance as γopt_R, and for the solution tending toward anti-resonance, we use
γopt_AR. Correspondingly we use ξC_opt_R and ξC_opt_AR.

The results from our numerical investigation show that for ξE > 0, there still exists
a critical value of Q (or equivalently, η), above which we find three viable local optima,
although it is significantly modified by the inclusion of ξE. As we do not have the exact
analytical expression for the new boundary, we perform our analysis by varying Q in
factors of Qcrit. For this reason, we introduce the parameter k, defined by Equation (21).

k = Q/Qcrit (21)

Figure 3 shows kcrit as a function of ξE at η = {0.1, 0.5, 1, 5}, where kcrit is the
minimum value of k required for the existence of an anti-resonant solution. We see that
increasing η reduces kcrit for a given value of ξE.
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Applying Q = Qcrit results in a single maximum at γ = (1 + η)
1
4 =
√

1 + 2ζ. Apply-
ing Q = Qcrit and γ =

√
1 + 2ζ results in PIL_OptLoad = 1/8, i.e., the theoretical maximum

load power. Liao et al. [3] show that the dimensionless power at the local optima reach a
maximum of 1/8 for Q ≥ Qcrit and ξE = 0.
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3.1.1. Resonant Solution

Figure 4 shows the values for γopt_R, as a function of k and ξE, at η = {5, 1, 0.1}. The
general behavior is that for k� 1, γopt_R ≈ 1, and the dependance on ξE becomes negligible
in the given range. For k � 1, γopt_R tends to be below unity, inversely proportional to
η, but approaches unity for ξE � 1. For k ≈ 1, we see the largest dependance between
γopt_R and ξE, primarily in the region of ξE � 1. For k = 1 and ξE = 0, we find that
γopt_R =

√
1 + 1/Qcrit, which is also derived in [3].
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Figure 4. Normalized angular excitation frequency at resonance, under the condition of power
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Figure 5 shows ξC_opt_R as a function of k and ξE. For ξE � 1, ξC_opt_R is a linear
function Q with a slope proportional to η and an offset which is a linear function of ξE. For
ξE � 1, the relation between Q and ξC_opt_R is nonlinear in the region close to k = 1. Figure 6
shows the optimal load coefficient as a function of k for η = {5, 0.1} and ξE = {0, 0.1}.
For k = 1, ξE = 0 and γopt_R =

√
1 + 1/Qcrit, we have ξC_opt_R = (Qcrit + 1)/Qcrit.
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Figure 7 shows the power at resonance with optimal load as a function k and ξE. As
determined in the previous literature, the maximum power over the load resistance is a
factor with 1/8 of the reference power, for ξE = 0. Any increase in ξE naturally leads to a
reduction in the maximum power, which can be generated over the load, for a given value
of Q. This effect is mitigated in systems with a large Q value.
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3.1.2. Anti-Resonance Solution

Figure 8 shows the values for γopt_AR, as a function of k and ξE, at η = {5, 1}.
For k � 1, the value of γopt_AR tends towards

√
1 + η. Contrary to the resonant case,

γopt_AR has a significant dependence of ξE even at large values of Q. As stated earlier,
there is no valid solution for γopt_AR at Q < kcritQcrit. For k = 1 and ξE = 0, we have
γopt_AR =

√
1 + 1/Qcrit, i.e., the resonance and anti-resonance peaks merge at k = 1, and

there is a single global optimum for γ.
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Figure 9 shows ξC_opt_AR as a function of k and ξE. Contrary to the resonant case,
ξC_opt_AR has an overall nonlinear relationship to both k and ξE and decreases with increas-
ing k. At k = 1 and ξE = 0, we have ξC_opt_AR = (Qcrit + 1)/Qcrit.
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Figure 9. Power-optimum normalized load resistance at anti-resonant excitation frequency.
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Figure 10 shows the power at anti-resonance with optimal load as a function k and ξE.
Again, the maximum power over the load resistance is a factor with 1/8 of the reference
power for ξE = 0. Compared to the resonant case, we can see that there is a larger decrease
in PIL at increasing ξE. Contrary to the resonant case, as k is increased, ξE has a larger
negative effect on the output power.
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3.2. Power Optimization of System under Prescribed Displacement

The system under prescribed displacement naturally lacks resonance (and by exten-
sion, anti-resonance). There is thus no optimal value of gamma. An optimal load coefficient
can be found from the zeros of ∂PPD/∂ξC (assuming ωN and B are constants):

ξC =
√

γ2 + ξ2
E (22)

Applying Equation (22) in Equation (12), we find:

PPD_OptLoad =
α

(2Qγ)2 (23)
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A comparative investigation with the case of inertial load can be made by setting
the excitation frequency as equal for both cases. For a fair comparison, we assume the
excitation frequency follows the power optimal value for the case of inertial load (see
Figure 4). The corresponding power under prescribed displacement, with a power optimal
load (Equation (23)), is shown in Figure 11. From Figure 4, we see that the value of γ
is small when k � 1, unless ξE � 1. As γ2 is in the denominator of Equation (23), the
value of PPD_OptLoad naturally escalates in the region k � 1, ξE < 1. This is a result
of using the reference power as normalization, which decreases with decreasing Q (or
equivalently k), while the (non-normalized) output power, PPD_OptLoad, is independent of
Q. A similar argument can be made for the case of anti-resonant frequencies. At resonance,
the dimensionless power under prescribed displacement is generally larger than that for the
case of inertial load. For anti-resonant frequencies, the dimensionless power under inertial
load can be larger than that for prescribed displacement if the resistive loss coefficient is
small and the mechanical quality factor is sufficiently large.
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Figure 11. Dimensionless power under prescribed displacement, assuming the excitation frequency
is equal to the power optimal case with inertial load. The load here is optimized for the case of
prescribed displacement, and η is set to 5. The same parameter definitions as in Tables 1 and 2 are
assumed when using Equation (23). Left: resonant frequencies. Right: anti-resonant frequencies.
The color scale is logarithmic and independent for each plot. Y axis represents the parameter k in
both plots.

3.3. Efficiency Optimization

The derived expression for efficiency has no optimum with respect to γ and decreases
at increasing γ. With regard to k and the resistive loss coefficient, the behavior is similar
to that of the load power (compare Figure 12 with Figure 7), if γ and ξC follow the power-
optimized values. The maximum efficiency at resonance is in this case 50%, while Figure 13
shows a maximum efficiency slightly above 50% at anti-resonance.
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Figure 13. Power input to output efficiency under the condition of power optimal load and anti-
resonant excitation frequency. η = {5, 1}, from left to right. The color scale is linear and independent
for each plot. Y axis is identical for both plots but only specified in the left plot.

The optimum load with regard to efficiency is given by Equation (24). Applying
Equation (24) in Equation (16) results in Equation (25). We can see then that the expression
for efficiency allows for close to 100% efficiency if ξE is negligible and 2γ/Qη << 1. As an
example, the maximum efficiency at γ = 1 and η = 1 is approximately 86%, as seen in
Figure 14.

ξC_opt =
√

γ2 + ξ2
E + ξEQη (24)

ΓOptLoad =
Qη

2ξE + Qη + 2
√

ξ2
E + γ2 + ξEQη

(25)
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4. Discussion

The unified models, Equations (11) and (12), show the common ground of both types
of energy harvesters, PEHs and EMEHs. In the space of the dimensionless parameters γ, Q,
ξE, ξC and η, both systems are identical.

Our modeling results for inertially loaded VEH systems highlight differences in char-
acteristics when run at resonance compared to anti-resonance. A relevant comparison can
be made between these states and how the differences affect performance. This compari-
son is made especially relevant as the material characteristics, and the series vs. parallel
circuit nature for the respective systems, lead to significantly different ranges of ξE, η and
optimal ξC.

We highlight additional characteristics of VEHs by comparing our results from the
model with inertial load to those from the model assuming prescribed displacement.
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Based on applied EMEHs/PEHs from the literature, we use the typical values for Q,
ξE and η to identify which regions of the k-ξE space typically correspond to which VEH.
From this, we can use our modeling results to characterize and compare typical applied
EMEH/PEH systems.

4.1. Performance Comparison of Resonant and Anti-Resonant States

Both the resistive loss coefficient and the effective electromechanical coupling coeffi-
cient play a significant role in determining if VEH systems exhibit anti-resonance. As seen
in Figure 3, η and ξE define a critical value of Q, at which the power reaches a theoretical
limit and an anti-resonant peak starts to emerge. For systems with equivalent mechanical
properties, the difference in η and ξE can thus determine if they are on opposite sides of
this critical value of Q (or equivalently, kcrit).

Assuming we can design an arbitrary EMEH or PEH to operate either at the resonant
or the anti-resonant state, the two VEH systems will benefit differently from operating
under either condition. Using the results of Section 3, we can compare these states regarding
the key performance parameters: output voltage, power and efficiency.

In general, a large output voltage is beneficial due to the substantial voltage drop in
typical voltage rectification circuits. Due to the series nature of the EMEH circuit model,
a large output voltage is obtained when ξC is large and ξE is small, while for a PEH,
both should be small. From the results in Figures 5 and 6, we can see that a system run
at resonance can in general achieve large values of optimal ξC at high k values. On the
contrary, values of optimal ξC � 1 at resonance require large values of η and k � 1 (see
Figure 6). Only at anti-resonance (see Figure 9) can we achieve an optimal ξC � 1 at small
values of η. In both cases (PEH/EMEH), an increasingly beneficial value of optimal ξC,
with regard to output voltage, is achieved at increasing k.

In a similar sense, the power characteristics at anti-resonance (Figure 10) also favor
the PEH over the EMEH as the power rapidly declines at increasing ξE and k, while it is
close to its theoretical maximum for ξE � 1, regardless of k.

Assuming load and excitation frequency remain optimized by load power, both VEH
systems have a maximum efficiency of 50% at resonance (see Figure 12). At anti-resonance,
the efficiency is above 50% (if ξE > 0) and increases along the boundary of kcrit, in the
direction of larger k and ξE (see Figure 13). It may be beneficial to operate in this region if
the source power is small, as the load power cannot be larger than efficiency times source
power. If we instead assume an arbitrary γ and a load optimized by efficiency, a system
with a larger η will have a larger maximum efficiency, although for γ� 1, the difference
will be very small.

4.2. Comparison of Systems under Prescribed Displacement and Inertial Load

For the case of prescribed displacement and optimal load, the two systems (PEH/EMEH)
have equivalent load power, which differs only in the relation to intrinsic electrical impedance.
As the intrinsic impedance in an EMEH is in series with the load resistance, it should be
minimized to maximize load power, and vice versa for the PEH.

Under the assumption of γ = 1, we can extract an optimal load resistance from
Equation (22) as:

EMEH : RL_PD_opt =
√
(ωL)2 + (RW)2

PEH : RL_PD_opt = 1/
√
(ωCP)

2 +
(

1
RP

)2
(26)

which shows that power optimization is achieved by impedance matching in this case. We
compare this to the corresponding case of inertial load (see Equation (17)), which gives:

EMEH : RL_IL_opt =

√
(ωL)2 +

(
θ2

CM
+ RW

)2

PEH : RL_IL_opt = 1/
√
(ωCP)

2 +
(

θ2

CM
+ 1

RP

)2
(27)
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The above expression for optimal load resistance for an EMEH, under inertial load,
can also be found in [6,14], under the assumption of negligible effect from inductance
(β ≈ 0). The term θ2/CM in the optimal load for an EMEH, is in [14] defined as the
electrical analogue of the mechanical damping. The same term appears in the optimal load
expression for a PEH. In this case, the electrical analogue is equivalent to a resistance in
parallel with the impedance, and thus becomes CM/θ2 for a PEH. Although the electrical
analogues are inverted between the systems, the series vs. parallel nature means the ratio
θ2/CM should in both cases be minimized to achieve the highest possible power. This must
be weighed against the negative effects of reducing the coupling factor, θ, or increasing the
mechanical damping.

Intuitively, the difference in optimal load between the case of prescribed displacement
and inertial load lies only in the electrical analogue to mechanical damping, which is only
present in the case of inertial load. The comparison between the cases of inertial load and
prescribed displacement thus supports the argument made by [14] that simple impedance
matching does not provide the optimal load in the case of an energy harvester under
inertial load.

Our results also show that applying the same resonant frequencies for the case of
inertial load to the case of prescribed displacement generally leads to significantly larger
dimensionless power output. This indicates that it may be beneficial to create a forced
vibration of the proof mass if possible (e.g., by fixating to a surface that is static relative
the vibrating surface). For the corresponding anti-resonant frequencies, this only holds for
sufficiently small values of k and ξE.

4.3. Comparison of PEH/EMEH Assuming Typical Parameter Values

Systems in the regime, Q ≈ Qcrit, ξE � 1 and η � 1, are uncommon according to
the small survey performed in [8]. This survey shows the typical case for an EMEH to be
Q� Qcrit and ξE � 1, and for a PEH it is Q < Qcrit and ξE � 1. Even though Q� Qcrit
for an EMEH, it is still likely less than kcritQcrit, as kcrit increases exponentially with ξE (see
Figure 3). This leads to both systems typically having only one power optimum, γopt_R,
corresponding to the resonant state. The same source, [8], states that η is typically small
for a PEH (also mentioned in [1]) compared to an EMEH. Assuming η � 1 (which implies
Qcrit � 1) for the PEH, we can conclude that the typical case is that both systems have
γopt_R ≈ 1.

Using the typical values for Q and ξE for an EMEH and PEH, respectively, we can
state that power generated from an EMEH can be found in the upper right region of
Figure 7 (left), while for the PEH it is found in the lower left region of Figure 7 (right).
These numerical results indicate that, for a specific value of P, the dependance between k
and ξE has a constant linear slope in the logarithmic space, if k > 1, with varying offset
depending on the value of P. We find that, regardless of η, the linear slope in this region
is approximately 1. The dependance between the ratio k/ξE and value of P to be traced
thus follows a logarithmic slope. Figure 15 shows k/ξE as a function of P at η = {5, 1, 0.1}.
We can see that the sensitivity of k to ξE increases dramatically near the theoretical power
maximum. The quality factor and/or effective coupling coefficient required to achieve a
power output close to the theoretical maximum can thus become large for energy harvesters
with a large loss coefficient, such as for a typical EMEH.

In the region of k < 1 and ξE � 1, the sensitivity of k to ξE is small. The power is
in this region mainly a function of k and η. The goal for both types of energy harvesters
should be to achieve a load power as close to the theoretical maximum as possible, without
requiring a large quality factor, as the latter is equivalent to a small bandwidth. In both
cases, η should be as large as possible, while k should be close to its critical value (see
Figure 3). The loss factor, ξE, typically only relevant for an EMEH, should be minimized.

The same arguments regarding load power can be applied to efficiency if load and
excitation frequency remain optimized by load power.
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4.4. Model Accuracy

Deriving an expression for the energy harvester power output, based on the lumped pa-
rameter model of Equation (1), and electric models of Equation (4), has been performed fre-
quently in the previous literature. We compared our derived expression to those in [1,7,8,14]
and found that, although different approaches are implemented and certain assumptions
made, the resulting power expressions are equivalent. Measurements by duToit et al. [2]
showed that the model significantly underpredicted measured PEH power output close
to resonance and anti-resonance but was in good agreement off-resonance. Applying the
model to the MEMS-scale EMEH in [4] results in a similar underprediction of the power
at resonance. However, by reducing the input acceleration, an accurate prediction can be
made even at resonance. This result is reasonable as the model is linear and will naturally
break down outside of the linear regime. Arroyo et al. finds a good match between pre-
dicted and measured EMEH data at resonance while using a beam similar to that used by
duToit et al., yet under a significantly larger base acceleration.

duToit et al. deduced the reason for their discrepancy to be the small-signal linear
piezoelectric constitutive model, which underpredicted the piezoelectric constant at large
strain. Triplett et al. [19] later confirmed that this nonlinear behavior is significant unless
the tip displacement is small. Similarly, for the assumed case of a magnet traveling along
the symmetry axis of a cylindrical coil, there are nonlinear effects in the electromechanical
coupling of the EMEH arising from the nonlinear expansion of the magnetic field (along the
symmetry axis) [4,5]. Thus, the requirement of small displacement is valid for an EMEH as
well. Likewise, if we measure the coupling coefficient at a specific displacement amplitude
and keep this parameter constant during measurements and calculations, the discrepancy
between model and measurement due to nonlinear electromechanical coupling should
be reduced.

For the model under inertial load, a constant base acceleration amplitude is assumed.
This has a significant effect on the model output characteristics. As base acceleration ampli-
tude equals ω2y0, where ω is angular excitation frequency and y0 is the base displacement
amplitude, this implies that either ω and y0 are constant, and γ varies only due to spring
stiffness and mass, or that y0 is inversely proportional to ω. The latter case breaks down as
γ approaches zero as this implies y0 → ∞ . The alternative is that ω remains constant and
the ratio of spring stiffness to mass approaches infinity, which is a feasible case.

5. Conclusions

This article sets out to provide an increased understanding of piezo- and magneto-
electric energy harvesting systems and their combination, and to develop a tool to aid the
development of harvester prototypes.
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We achieve this objective by deriving general expressions for PEH/EMEH power
output, using the full set of relevant dimensionless parameters, γ, Q, ξE, ξC and η. While the
model does not account in a direct way for nonlinear effects, it conveys an understanding
of the behavior throughout the parameter space. Once the region of interest has been
identified, one can apply refined nonlinear models. In this sense, the model helps in the
choice of a suitable transduction method for a specific application as well as for the design
of energy harvesters.

To shed new light on previously well-established VEH systems, we perform a detailed
analysis with regard to the resistive loss coefficient, which is lacking in the previous litera-
ture. We find that this parameter plays a significant role in differentiating inertially loaded
PEH/EMEH systems, especially in the context of resonant and anti-resonant operation.
We find that at resonance, both systems have similar potential power performance, with
the EMEH being favored due to a potentially larger load voltage. At anti-resonance, the
PEH is favored both in regard to power output and voltage. Our results show a larger
input to output power efficiency at anti-resonance compared to resonance. It can thus be
beneficial to run the VEH with a larger load resistance in cases where the source power is
small, assuming the source vibration spectrum is similar around the energy harvester’s
resonance and anti-resonance frequencies.

Considering typical parameter values for applied EMEH/PEH systems, we can con-
clude that they are generally designed to operate at resonance. Under these assumptions,
we can still draw some important conclusions. Compared with a PEH, an EMEH will be
practically limited in achieving a power output closer to the theoretical maximum, less
sensitive to resistive loss with regard to critical Q factor and have an optimal load highly
sensitive to the quality factor.

Our investigation of the model under prescribed displacement, which is also lacking in
the previous literature, shows that the expression for efficiency is equal to that of the model
under inertial load, which is a reasonable result assuming efficiency is a purely intrinsic
property (independent of external excitation). We also find that the expressions for optimal
load differ between the two types of excitations only by the term naturally arising from
electrical damping, supporting the argument that impedance matching is not the correct
approach to load optimization of inertially loaded systems. From a practical viewpoint, our
results indicate that under resonant excitation frequencies, a higher dimensionless power
can generally be achieved if the proof mass oscillations can be forced. At anti-resonant
frequencies, this is only holds for sufficiently small k and ξE.

Thanks to the detailed investigation of the resistive loss coefficient and the case
of prescribed displacement, our investigation essentially widens the range of potential
methods that may be used to find high-performance VEH designs and thus increases the
possibility of VEHs being useful in an increasing number of applications.
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