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We carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study
of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2−xSrxCuO4,
La1.6−xNd0.4SrxCuO4, and La1.8−xEu0.2SrxCuO4 display slightly different pseudogap critical points in the tem-
perature versus doping phase diagram. We studied the pseudogap evolution into the superconducting state for
doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and
in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside
the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy
scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest
that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for antinodal
spectral weight.

DOI: 10.1103/PhysRevResearch.4.043015

I. INTRODUCTION

Strange metal behavior [1] and pseudogap physics [2]
remain the most challenging problems of the cuprate super-
conductors. One key characteristic of strange metals is that
resistivity scales uninterrupted with thermal excitation energy
down to the lowest measurable temperature. In the cuprates,
this is observed at a critical doping p∗ [3,4]. Above p∗, stan-
dard Fermi liquid properties are restored [5], whereas below
it, a mysterious pseudogap phenomenon emerges. The pseu-
dogap manifests in multiple experiments. In spectroscopic
measurements, the pseudogap is associated with a partial gap-
ing of spectral weight near the Fermi level [6]. Numerous
studies attempted to address the nature of the pseudogap [2].
These experiments are typically carried out in the normal
state, aiming to connect the pseudogap to either supercon-
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ducting fluctuations [7], a symmetry breaking order parameter
[8–10], or a cross-over phenomenon [11]. There is much
less experimental work addressing the pseudogap inside the
superconducting state [12]. In the very underdoped regime,
photoemission studies point to a competition between the
pseudogap phenomenon and superconductivity — with the
latter being partially suppressed by the former [13]. It has,
however, been difficult to tune or influence the pseudogap,
which appears rather insensitive to disorder or magnetic field
[14,15]. Theoretical and experimental work suggests that the
pseudogap critical point p∗ is confined by the van Hove sin-
gularity crossing of the Fermi level [16,17].

Tuning the van Hove singularity by hydrostatic pressure
is one way to manipulate the pseudogap phenomenon [18].
Another route is to identify interactions with other phases.
The pseudogap has been shown to suppress the supercon-
ducting order parameter [13]. Much less is known about the
reciprocal relation, namely, how superconductivity influences
the pseudogap phenomenon. An unsolved problem relates
to the interplay between the pseudogap and superconductiv-
ity in the regime close to p∗. This issue has been difficult
to address since it challenges both temperature and energy
resolution limitations of most synchrotron angle-resolved
photoemission spectroscopy (ARPES) [19] beamlines.
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FIG. 1. Photoemission intensities recorded on LSCO p = 0.145 in the superconducting state. (a) Fermi surface map, recorded with hν =
160 eV photons at T = 7 K, and integrated ±16 meV around the Fermi level. The Brillouin zone boundary is indicated by the dashed grey lines
and high symmetry points are labeled �, X, and M. Solid black lines indicate nodal and antinodal directions. (b,c) ARPES spectra recorded at
T = 6 K along the antinodal (M → X ) and nodal (� → X) directions using hν = 55 eV photons. (d) Nodal (beige circles) and antinodal (green
triangles) symmetrized energy distribution curves (EDCs) at the Fermi momentum, after background subtraction as described in Ref. [20].

Here, we study the pseudogap in the limit p → p∗, where
T ∗ approaches Tc. We chose to examine La-based cuprates
in which the pseudogap energy scale is much larger than the
superconducting gap amplitude [19,21]. Investigating these
compounds, where �∗ � �sc, enabled us to track both, the
“pure” pseudogap as well as its interplay with superconduc-
tivity. Using state-of-the-art low-temperature and high-energy
resolution ARPES beamlines, we explored the evolution of the
pseudogap inside the superconducting state of La2−xSrxCuO4

(LSCO) x = p = 0.145, La1.8−xEu0.2SrxCuO4 (Eu-LSCO)
p = 0.21, and La1.6−xNd0.4SrxCuO4 (Nd-LSCO) p = 0.20.
We find that the pseudogap amplitude is partially suppressed
inside the superconducting state, suggesting a competing in-
teraction. As a defining property of the pseudogap phase, we
observe an antinodal spectral weight suppression for T < T ∗.
Below T ∗, we identify a third temperature scale T † > Tc,
below which antinodal weight partially recovers. Eventually,
complete recovery is found for T → 0. This spectral weight
recovery is discussed in the context of a triphase competi-
tion between superconductivity, charge order, and pseudogap
physics.

II. METHODS

Single crystals of LSCO (p = 0.145, Tc = 37 K [22,23]
and p = 0.12, Tc = 27 K [24]), Nd-LSCO (p = 0.20, Tc =
20 K) [21], and Eu-LSCO (p = 0.21, Tc = 15 K) were syn-
thesized by the traveling floating zone method. The critical
pseudogap dopings are p∗ ≈ 0.19 [4] for LSCO and p∗ ≈
0.23 [25,26] for Nd-LSCO and Eu-LSCO. ARPES experi-
ments were carried out at beamline I05 [27] of the Diamond
Light Source and the Surface and Interface Spectroscopy
(SIS) beamline of Swiss Light Source. Single crystals were
mechanically cleaved in situ in an ultrahigh vacuum using top
posts. Measurements were performed using 55 eV or 160 eV
linear-horizontally polarized light at I05 and circularly polar-
ized light at SIS. Dependent on photon energy and instrument,

the energy resolution (Gaussian standard deviation) spans the
range of 5 to 15 meV.

III. RESULTS

We studied three different La-based compounds (LSCO,
Nd-LSCO, and Eu-LSCO). Consistent with existing ARPES
literature, the data quality obtained from LSCO and Nd-LSCO
crystals [21,29] is comparatively better than that recorded
on Eu-LSCO [30]. In Figs. 1(a) to 1(c), we display a Fermi
surface map, nodal, and antinodal spectra recorded on LSCO
p = 0.145. Symmetrized [31] nodal and antinodal energy dis-
tribution curves (EDCs) at kF are shown in Fig. 1(d). These
results are directly comparable to a previous study of this
compound [22]. The improved data quality stems from higher
energy resolution and smaller beam spot. These advances
result in a higher signal-to-background ratio that we exploit to
study the pseudogap phenomenon. Antinodal spectra recorded
on Nd-LSCO p = 0.20 are depicted in Fig. 2 for temperatures
as indicated. The pseudogap spectra Tc < T < T ∗ were dis-
cussed in a previous publication [21]. Here, we also enter the
superconducting state. From the raw energy distribution maps
of Nd-LSCO shown in Figs. 2(a) and 2(b), it is directly visible
that the spectral gap at 22 K, just above Tc, is larger than that
inside the superconducting state. This is further confirmed
by analyzing the EDCs at the underlying Fermi momentum
kF — see Figs. 2(c) and 2(d). The symmetrized antinodal
EDCs display an effectively smaller gap inside the supercon-
ducting state than what is observed for T ≈ Tc. The results
on Eu-LSCO p = 0.21 reveal the increase of the antinodal
spectral weight inside the superconducting state while no such
gain is detectable at the nodal point — see Fig. 2(e). Both
observations suggest a weakening of the pseudogap.

The Nd-LSCO and Eu-LSCO compounds (space group
138 [33]) are special because they have additional chemical
disorder due to the substitution of neodymium and europium.
This substitution stabilizes the so-called low-temperature
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FIG. 2. Temperature dependence of nodal and antinodal spectra in Nd-LSCO (p = 0.20) and Eu-LSCO (p = 0.21) at hν = 55 eV.
(a,b) Energy distribution maps along the antinodal direction (see inset), recorded on Nd-LSCO [21] for temperatures as indicated. (c,d)
Corresponding energy distribution curves (EDCs) and symmetrized EDCs at the underlying Fermi momentum. (e) Temperature-dependent
nodal and antinodal spectra recorded on Eu-LSCO. Pseudogap temperatures for Nd-LSCO p = 0.20 and Eu-LSCO p = 0.21 are T ∗ ≈ 80 K
and T ∗ ≈ 75 K [21,28]. The EDCs in (c)–(e) are normalized to the respective high-energy tail.

tetragonal phase. We, therefore, additionally investigated the
LSCO p = 0.145 compound that has less chemical disorder
and a different crystal structure (space group 64 [34–36]). The
larger Tc of this compound allowed to probe deep into the
superconducting state. Background-subtracted [20] antinodal
EDCs are shown in Fig. 3(a) as a function of temperature.
The pseudogap opens at T ∗ ≈ 162.5 K. As in all other hole-
doped cuprates, the pseudogap manifests itself by a loss of
spectral weight near the Fermi level. Upon cooling, the weight
loss gradually increases. In Fig. 3(b), the antinodal spectrum
at T = 45 K, just above the superconducting transition, is
shown. We find a pronounced re-emergence of antinodal spec-
tral weight inside the superconducting state, as exemplarily
shown by the spectrum taken at T = 7 K [see Fig. 3(b)]. This
is in strong contrast to the nodal spectra, which are essentially
temperature independent [Fig. 3(c)].

Complementary to our observation of spectral weight
loss, we find a peculiar temperature dependence of the
pseudogap. The vertical dashed lines in Fig. 3(b) in-
dicate the peak positions in the symmetrized antinodal
EDCs. Defining the gap amplitude by half the distance

between the peaks yields a reduction of the gap amplitude for
T � Tc.

IV. ANALYSIS

A. Spectral weight

A defining property of the pseudogap is the partial suppres-
sion of the antinodal spectral weight I (kAN , ω). We define the
integrated spectral weight as Wi = ∫

dω[I (ki, ω) + I (ki,−ω)]
with i = AN, N being antinodal or nodal. Our integration win-
dow of the symmetrized EDCs is set to −0.2 < ω < 0.2 eV
[37]. The nodal spectral weight WN is essentially tempera-
ture independent [see circles in Fig. 4(a) and Figs. 2(e) and
3(c)]. In contrast, antinodal spectral weights display a signif-
icant temperature dependence, as shown by the rectangles in
Figs. 4(a) and 4(b). When entering the pseudogap state, WAN is
suppressed and gradually diminishes upon cooling. However,
for Eu-LSCO, Nd-LSCO, and LSCO, a gradual recovery is
observed below a temperature scale T †. In LSCO p = 0.12
and 0.145, T † ∼ 2–3 Tc while in Eu-LSCO p = 0.21, T † is
closer to Tc. The spectral weight recovery continues inside
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FIG. 3. Nodal and antinodal spectra versus temperature in LSCO p = 0.145 (Tc = 37 K) at hν = 55 eV. (a) Symmetrized antinodal spectra
for temperatures as indicated. The pseudogap onset temperature of T ∗ ≈ 162.5 K, deduced from spectral weight analysis of the EDCs, is
consistent with that extracted from transport measurements [28]. (b, c) Comparison of symmetrized antinodal and nodal spectra for T � Tc

(blue) and T � Tc (red). Solid black lines are fits using a phenomenological self-energy function [32] — see text. Vertical dashed lines
indicate the peak position. The inset displays a zoom of the low-energy part of the symmetrized EDCs in (b). A background defined using the
methodology given in Ref. [20] was subtracted from all spectra.

the superconducting state. Eventually, as T → 0, WAN fully
recovers to the level of weight observed above T � T ∗.

B. Gap analysis

To extract the amplitude of the antinodal spectral gap,
we employ the spectral function A(kF , ω) = −π−1�′′/[(ω −
�′)2 + �′′2] convoluted with a Gaussian distribution to mimic
the experimental resolution [32]. �′ and �′′ are the real and
imaginary parts of the self-energy, respectively. Our problem
involves at least a superconducting gap and a pseudogap.
Since the nature of the pseudogap is not established, a micro-
scopic understanding of its self-energy is missing. Eliashberg
theory, in contrast, describes the self-energy effect associated
with superconductivity [38]. If the pseudogap was a precursor
to superconductivity, the Eliashberg framework would also
apply to the pseudogap state.

There are several experimental indications that the pseudo-
gap is not associated with superconducting fluctuations [6,39].
In Nd-LSCO, for example, there is strong evidence of vanish-
ing of the pseudogap at a quantum critical point inside the
superconducting dome [3]. In Nd-LSCO p = 0.20, we ob-
serve a spectral gap at the superconducting onset Tc = 20 K.
Mean-field theory yields 2� = αkBTc where α = 4.3 [40] for
weakly coupled d-wave superconductors. The gap amplitude
of 20 to 25 meV [Fig. 4(c)] implies α ∼ 20. Although the cou-
pling coefficient α can be larger in the strong coupling limit,
this appears unreasonably large. In contrast, assigning the
gap to the pseudogap onset temperature (2� = αkBT ∗) yields
a more reasonable α ≈ 5. We thus associate the observed
spectral gap with the pseudogap phenomenon and assume
that the superconducting gap is not directly detectable due
to the finite energy resolution. In LSCO, the differentiation
of the pseudogap and superconducting gap is less obvious.
Around optimal doping, the pseudogap energy scale is smaller

than that in Nd-LSCO. At the same time, the superconducting
gap is expected to be larger due to its larger Tc. Within the
experimental resolution, it was not possible to differentiate
these two gaps. The antinodal spectra of LSCO are fitted using
a single gap model. Using the phenomenological ansatz [32]
�′′ = −� = constant and �′ = �2/ω, the spectral weights of
LSCO and Nd-LSCO can be parametrized. With this function,
a single gap energy scale is extracted as a function of tem-
perature [see Fig. 4(c)]. In the pseudogap, the gap follows
roughly an order parameter like (1 − T/T ∗)0.5 dependence.
The temperature dependence is interrupted for T < Tc, where
the amplitudes of the gaps decrease with decreasing tempera-
ture. Thus, when the pseudogap is analyzed, either by spectral
weight or gap amplitude, suppression is observed below two
different temperature scales. The gap amplitude is partially
suppressed upon entering the superconducting state, whereas
spectral weight decreases below T ∗. Recovery is found below
a temperature scale T † much larger than Tc.

V. DISCUSSION

It is interesting to compare our results on La-based cuprates
with previous ARPES studies in (Bi,Pb)2(Sr,La)2CuO6+δ

(Bi2201) [13] and Bi2Sr2CaCu2O8+δ (Bi2212) [41]. In all
systems, the onset of the pseudogap is heralded by the sup-
pression of WAN and the opening of an antinodal spectral
gap. This conclusion holds even if slightly different defini-
tions of the integrated spectral weight are employed. Upon
further cooling, WAN diminishes, and the pseudogap energy
scale increases. However, the three systems react differently
upon approaching the superconducting state. In Bi2212, the
recovery of WAN has a sharp onset at the superconducting
transition [41,42]. For LSCO and Eu-LSCO, the recovery of
WAN starts already below a temperature scale T † > Tc — as

043015-4



PSEUDOGAP SUPPRESSION BY COMPETITION WITH … PHYSICAL REVIEW RESEARCH 4, 043015 (2022)

FIG. 4. Antinodal competition between the pseudogap and superconductivity. (a,b) Integrated spectral weight as a function of temperature.
Antinodal weights of LSCO, Eu-LSCO, and Nd-LSCO are plotted with rectangles whereas open circles denote nodal weight. Solid lines are
guides to the eye. Vertical dashed lines indicate T = T ∗ and Tc/T ∗, respectively. Error bars provide an estimate of the systematic uncertainty.
(c) Antinodal spectral gap as a function of temperature for LSCO (this work) and Nd-LSCO [21]. The gap amplitude follows a linear
dependency for T � Tc and can be fitted by an order parameter like (1 − T/T ∗)0.5 behavior for T � Tc. The energy resolution defined by
the standard deviation of the Fermi step sets the error bars. (d) Phase diagram (temperature versus doping) indicating phase space of different
antinodal spectral weight behavior. Outside the pseudogap spectral weight is conserved. We show that there exists a temperature scale T † < T ∗

below which spectral weight is partially recovered.

schematically illustrated in Fig. 4(d). If the recovery is inter-
preted in terms of phase competition with superconductivity,
it must involve superconducting fluctuations in the normal
state. Although such superconducting fluctuations are known
to exist [7,28,39,43,44], it is not obvious that they would
impact the pseudogap stronger in La-based cuprates. An-
other possibility is that the charge ordering [45–48] competes
with the pseudogap. Charge order is expected to generate an
additional temperature and energy scale. The energy scale
was reported in the normal state of YBa2Cu3O7−x (YBCO)
and Bi2212 [49]. A triphase competition [50,51] between
the pseudogap, charge (stripe) order, and superconductivity
is likely expressed differently in La- and Bi-based cuprates,
explaining the different phenomenology in different cuprate
systems.

Inside the superconducting state, the systems also behave
differently. Both Bi2201 and Bi2212 display so-called coher-
ence peaks [52–54]. In Bi2212, the coherence peak associated
with superconductivity appears at an energy scale smaller than
the pseudogap [52]. For Bi2201, on the contrary, the two
energy scales are comparable [13]. Certainly, for Nd-LSCO
p = 0.20, as discussed above, we expect the superconducting
energy scale to be much smaller than the pseudogap. This
aligns with the fact that no superconducting coherence peak is
observed. It is difficult to distinguish the changes in spectral
weight associated with superconductivity and the pseudogap
state. Generally, superconductivity is expected to redistribute
spectral weight from below to above the cooper-pairing en-
ergy scale [13]. No net gain or loss of spectral weight is
expected from the emergence of superconductivity. The re-
covery of WAN suggests a competing interaction between
superconductivity and the pseudogap state [see Figs. 4(a) and
4(b)]. This interpretation is further reinforced by the obser-

vation of a diminishing pseudogap energy scale inside the
superconducting state.

VI. CONCLUSION

In summary, we carried out a high-resolution ARPES study
of the pseudogap inside the superconducting state. Three
La-based systems (Eu-LSCO, Nd-LSCO, and LSCO) were
investigated for doping concentrations just below the critical
doping p∗, above which the pseudogap phenomenon van-
ishes. We observe that the total antinodal spectral weight is
suppressed below the pseudogap temperature and begins to
recover already above the superconducting onset Tc. The pseu-
dogap energy scale grows with decreasing temperature until
Tc is reached and is partially suppressed inside the supercon-
ducting state. Our results are different from what was reported
in single- [13] and bi-layer [41,42] Bi-based cuprates. We
interpret this as a tri-interaction between superconductivity,
charge order, and pseudogap physics that is expressed differ-
ently across material systems.
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