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MeltPondNet: A Swin Transformer U-Net for
Detection of Melt Ponds on Arctic Sea Ice

Ivan Sudakow , Vijayan K. Asari , Senior Member, IEEE, Ruixu Liu, Member, IEEE,
and Denis Demchev , Member, IEEE

Abstract—High-resolution aerial photographs of Arctic region
are a great source for different sea ice feature recognition, which are
crucial to validate, tune, and improve climate models. Melt ponds
on the surface of melting Arctic sea ice are of particular interest as
they are sensitive and valuable indicators and are proxy to the pro-
cesses in the Arctic climate system. Manual analysis of this remote
sensing data is extremely difficult and time-consuming due to the
complex shapes and unpredictable boundaries of the melt ponds,
and that leads to the necessity for automatizing the processes. In
this study, we propose a robust and efficient automatic method
for melt pond region segmentation and boundary extraction from
high-resolution aerial photographs. The proposed algorithm is
based on a swin transformer U-Net in which we introduce novel
cross-channel attention mechanisms into the decoder design. The
framework operates with optical data and allows for classifying
imagery into four classes, i.e., sea ice/snow, open water, melt pond,
and submerged ice. We use aerial photographs collected during the
Healy–Oden Trans Arctic Expedition over Arctic sea ice in the sum-
mer season of 2005 as test data. The experimental results show that
the proposed method is suitable for precise automatic extraction of
melt pond geometry, and it can also be extended for other optical
data sources that involve melt ponds. The approach has a promising
potential to be used to analyze melt ponds’ corresponding changes
between years.

Index Terms—Arctic, complex system, deep learning, melt
ponds, remote sensing, sea ice, swin transformer.

I. INTRODUCTION

COVERING 7%–10% of the the planet’s surface, sea ice is
a critical component of the Earth climate system and plays

an important role in moderating global climate. In particular, sea
ice moderates heat and gas exchange between the polar oceans
and the atmosphere, reflects incoming solar radiation back into
space, and serves as a home to marine life [1]. Temperature
gradients between the Arctic and the lower latitudes also have
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a significant effect on atmospheric circulation patterns. Sea
ice loss in the Arctic can be tied to the rapid warming trends
observed recently in the Arctic, primarily due to the ice-albedo
feedback [2].

In order to define the ice-albedo feedback, we must first define
melt ponds. Melt ponds form atop Arctic sea ice during the
spring/summer melt season from the melting snow layer on
top built up over the winter months. Freshwater runoff from
this snow melt begins to percolate through the porous micro
structure of the ice, reducing the salinity of the brine in the
pore space, causing it to freeze and block further drainage [3].
As the ice continues to warm, it becomes increasingly per-
meable eventually allowing the ponds to drain into the ocean
below.

The ice-albedo feedback is the notion that as the ice begins
to melt, ponds form atop the surface, lowering the albedo of
the surface encouraging more melt, the melt further lowers the
albedo and so on. This is an important effect to capture in any
sea ice model being used for climatology and to date is not
well-parameterized in climate scale sea ice models [4].

Not only do melt ponds have a significant effect on the
energy budget of the Arctic, they also have an effect on the
satellite-derived sea ice observations, in particular sea ice con-
centration (SIC) from passive microwave radiometry [5] for
which the resolution is as low as 14–25 km, too low to resolve
melt ponds. The high contrast in the microwave emissivity
of sea ice is used to derive ice water fractions using tuned
linear mixing models, which are taken as inputs representing
satellite radiances at a variety of frequencies and polarizations.
A major challenge in locating the melt ponds is that they have
the same microwave signature as open water. In this way, they
obscure the ice beneath them making it appear, as though there
is less ice than those actually existing there. To combat this,
the data derived “tie points” are used depending on the sea-
son. However, in cases where melt ponds are not present or
in sufficient abundance, this can result in artificially inflated
values of SIC. Errors can be as much as 30% [5]. The passive
microwave record goes back almost 30 years and still can
produce a daily snapshot of the ice cover giving a high-resolution
long time record of the ice pack. Improving concentration re-
trievals during summer months is crucial for climate statistics,
model evaluation, and for data assimilation with state-of-the-art
models.

There is a long history of melt ponds defections on the images
that include but not limited to the TerraSAR-X dual-polarization

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2614-8794
https://orcid.org/0000-0002-3751-5492
https://orcid.org/0000-0001-6907-1729
mailto:ivan.sudakow@open.ac.uk
mailto:vasari1@udayton.edu
mailto:lrxjason@gmail.com
mailto:denis.demchev@chalmers.se
https://zenodo.org/record/6602409


SUDAKOW et al.: MeltPondNet: A SWIN TRANSFORMER U-Net FOR DETECTION OF MELT PONDS ON ARCTIC SEA ICE 8777

data and airborne SAR images [6], [7], MODIS images [8],
[9], the SHEBA and Healy–Oden Trans Arctic Expedition (HO-
TRAX) aerial photographs [10], seasonal sea ice monitoring and
modeling site (SIMMS) field experiment photographs [11], and
ENVISAT WSM images with HH-polarization [12].

The comprehensive analysis of the literature (see Appendices
A and B) shows that the researchers prefer classical methods
of image processing, ignoring machine learning approaches. It
could be driven by different reasons, however the main one is that
a method is chosen based on the “physics” of a solved problem.
However, we need to use more universal methods of image
analysis that would not rely on the set of certain physical pa-
rameters, but on the general principles of the developing system
(geometry, complexity, physics, etc.). The main goal of this study
is to develop a machine learning method for robust melt ponds
detection that is based on general strategies of deep learning.
CNN-based segmentation methods, such as the FCN [13],
provide superior performance for natural image segmentation.
The state-of-the-art models for image segmentation are variants
of the encoder–decoder architecture, such as U-Net [14]. U-
Net++[15] is essentially a deeply supervised encoder–decoder
network where the encoder and decoder subnetworks are con-
nected through a series of nested, dense, and skip pathways. With
these hierarchical feature maps, the swin transformer model can
conveniently leverage advanced techniques for dense prediction,
such as feature pyramid networks FPN or U-Net. The trans-
former [16] is a network architecture originally developed for
natural language processing (NLP). Also, inspired by the success
of self-attention layers and transformer architectures in the NLP
field, some works employ self-attention layers to replace some
or all of the spatial convolution layers in the popular ResNet [17].
The visual transformer (ViT) [18] directly applies a transformer
architecture on nonoverlapping medium-sized image patches
for image classification. Swin transformer [19] modifies the ViT
architecture to achieve the best speed–accuracy tradeoff among
these methods on image classification. We also consider swin
transformer as our main backbone and integrate it into the U-Net
architecture with cross-channel attention, named as melt pond
network (MeltPondNet), for melt pond detection on Arctic sea
ice.

II. DATA

In this study, we use aerial photographs of Arctic sea ice
obtained during the HOTRAX captured from a helicopter be-
tween 5 August and 30 September, 2005 [20]. The flights have
been typically flown at relatively low altitudes of 150–700 m
to avoid the influence of low clouds with a digital camera
Nikon D70 onboard. One thousand thirteen individual scenes
over Arctic sea ice have been selected for the analysis, which
contain highly detailed imagery of individual ice floes, melt
ponds, and submerged ice and open water areas. The average
photo resolution was 3042 × 2048 pixels. Depending on the
altitude, the pixel resolution ranges from 5 to 25 cm per pixel.
By visual expert analysis of the photographs, we defined zones
with four classes of surface: 1) sea ice/snow; 2) melt ponds;

Fig. 1. Architecture of the CSSA method.

3) submerged ice; and 4) open water. These classes have been
used for labeling in the training stage and as a set of model
classes.

III. METHODOLOGY

A. Dataset Annotation

Many studies have focused on speeding up the image dataset
annotation for semantic segmentation tasks. For example, one
of the crowdsourcing methods is crowdsourcing annotations
for visual object detection [21]. The three steps involved in
this algorithm are: 1) drawing; 2) quality verification; and 3)
coverage verification. In the drawing step, a worker draws one
bounding box around one instance of the given image; in the
quality verification step, a second worker verifies whether a
bounding box is correctly drawn; and in the coverage verification
step, a third worker verifies whether all object instances have
bounding boxes.

Our cascaded annotation framework uses an incremental
learning approach on a small batch of manually labeled im-
ages [22]. Then, it trains a segmentation model with the labeled
data to propose segmentation areas on a batch of unlabeled
images. Finally, it requests the annotator to correct possible
incorrect polygons or label proposals. Thus, the involvement
of human annotators is only in the correction stage [23].

Fig. 1 shows the conceptual diagram of our proposed method
for cascaded semisupervised semantic segmentation annotation
(CSSA). The segmentation encoder and decoder are trained
on the dataset with unsupervised learning by reconstructing
the input image [24]. Then, we changed the last layer of the
decoder part to fine-tune the different classes in the dataset.
The segmentation model is trained on a small set of manually
annotated images. First, a trained model (i.e., model A) predicts
pseudo labels on all unlabeled data. Next, model B is trained
to annotate the unlabeled data by combining the labeled and
pseudo-labeled data. After the first round of train-infer correc-
tion, the segmentation encoder and decoder parts are trained on
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the recently labeled batch. This process continues in a loop until
all unlabeled batches are labeled.

The functional framework of the CSSA method uses unsu-
pervised learning to obtain a feature encoder. Then, the CSSA
model uses an incremental learning approach on a small batch
of manually labeled images [25]. After that, we train a segmen-
tation model with the labeled data to propose bounding boxes on
a batch of unlabeled images and request the annotator to correct
possible incorrect polygons or label proposals. In this process,
the involvement of human annotators is only in the correction
stage. Hence, our method decreases the tedious task of manual
annotations. Algorithm 1, shown as follows, summarizes all the
relevant steps of the proposed iterative training method.

The first step in the CSSA procedure is unsupervised training
of the whole dataset to obtain a suitable encoder. The second
step is fully annotate (manually) an initial batch of images
from the unlabeled dataset. This stage is manual and requires
human involvement to draw polygons and provide class labels
on images. In this stage, we use a basic segmentation anno-
tation tool (i.e., Labelme) with no extra speedup procedures
to create mask labels. The third step is to train segmentation
model A (supervised training) with the fully annotated data (i.e.,
L). Although any segmentation network can be used for this
purpose, we focus on a recent deep learning-based semantic
segmentation model of U-net [14], [26]. The fourth step is
to train human-annotated initially labeled data and pseudo-
labeled data together and relabel the pseudo-labeled data again.
Now, the system outputs the human-annotated labeled data.
Finally, the semisupervised model suggests labeled data (after
predicting the unlabeled data by the network B). Before the
cascaded network starts outputting the fully annotated data, the

Fig. 2. Melt ponds data visualization.

human annotator needs to correct the mask polygons suggested
by model B and the annotated data shown in Fig. 2.

Given an image x ∈ H ×W × 3 with a spatial resolution
of H ×W and 3 channels (RGB). The network is to predict
the corresponding pixel-wise target map with size H × W. The
normal deep neural network is to directly train a U-Net, which
first encodes images into high-level feature representations, and
then decoded back to the full spatial resolution. Unlike existing
approaches, our method introduces self-attention mechanisms
into the encoder design [27] via the usage of transformers [19].
We will first introduce how to directly apply a transformer
for encoding feature representations from decomposed image
patches [28], [29]. The elaborated framework of the overall
architecture is shown in Fig. 3.

Transformers take image into nonoverlapping patches by a
patch partition module [18], [30]. Each patch is treated as a
“token” and its feature is set as a sequence of vector. The
self-attention mechanism in transformers projects each feature
X into corresponding query, key, and value vectors, using
learned linear transformations WQ,WK , and WV . Thus, the
projection of the whole sequence generates representations Q,
K, and V, which is formulated as

Attention(Q,K, V ) = SoftMax

(
QKT

√
d

+B

)
V (1)

where d is the query or key dimension and the values in B
are taken from a smaller sized bias matrix. The basic unit
of MeltPondNet is swin transformer block [19]. We use it to
substitute the traditional convolution layer in the U-Net module.
The number of swin transformer layers is always a multiple
of two where: 1) one is for window multihead self-attention
(W-MSA); and 2) the other is for shifted W-MSA (SW-MSA).
With the shifted window partitioning approach, consecutive
swin transformer blocks are computed as

ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (2)
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Fig. 3. MeltPondNet architecture that consists of an encoder, decoder, skip connections, and cross-channel attention to fuse the multiscale features.

where LN( ) denotes the layer normalization and MLP is a
multilayer perceptron that has two fully connected layers with
Gaussian error linear unit activation function.

MeltPondNet feeds the inputs into sequence embeddings for
the encoder, and the geospatial images split into nonoverlap-
ping patches with a patch size of 4× 4. Furthermore, a linear
embedding layer is applied to the projected feature dimension
into an arbitrary dimension (we used 96 in this study). The
patch-merging layer is the same as the original swin transformer
structure. The input patches are divided into four parts and
concatenated together by the patch-merging layer. With such
processing, the feature resolution will be downsampled by two
times. And, since the concatenate operation results in the feature
dimension increase by four times, a linear layer is applied to the
concatenated features to unify the feature dimension to the two
times of the original dimension. Corresponding to the encoder,
the symmetric decoder is built based on the swin transformer
block. To this end, in contrast to the patch-merging layer used
in the encoder, we use the patch-expanding layer in the decoder
to upsample the extracted deep features. The patch-expanding
layer reshapes the feature maps of adjacent dimensions into a
higher resolution feature map (two times the upsampling) and
reduces the feature dimension to half of the original dimen-
sion accordingly. The cross-channel attention module consists
of three parallel operations: 1) dilated convolution; 2) batch
normalization; and 3) Mish activation. It selects the important
channel using different kernel sizes implemented by dilation
convolution rates. We use depthwise separable convolutions to

replace the standard convolution to save parameters and speed up
the processing time. The dilated convolutions in the three parallel
branches have the same kernel size but different dilation rates.
Specifically, the kernel of each dilated convolution is 3× 3,
and the dilation rates d are 1, 2, and 3 for different branches.
Dilated convolutions support exponentially expanding receptive
fields without losing resolution or coverage. However, in the
convolution operation of dilated convolution, the elements of the
convolution kernel are spaced, and the size of the space depends
on the dilation rates, which is different from the elements of the
convolution kernel that are all adjacent in the standard convolu-
tion operation. The dilation rates 1, 2, and 3 dilation convolutions
are approximately equal to kernel sizes 3× 3, 5× 5, and 7× 7
standard convolution, respectively.

IV. RESULTS AND DISCUSSION

The deep learning architectures U-Net [14], U-Net++[15],
transformer U-Net [31], and the proposed MeltPondNet are
implemented based on Python 3.8 and Pytorch 1.9. For all
training cases, data augmentations, such as flips and rotations,
are used to increase data diversity. We train our model on 4
NVIDIA TITAN RTX GPU with 24 GB memory. The synaptic
weights pr-trained on ImageNet are used to initialize the model
parameters. During the training period, the batch size is 8 and the
popular SGD optimizer with momentum 0.9 and weight decay
1e-4 is used to optimize our model for error back propagation
learning.
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TABLE I
ABLATION STUDY ON THE DATASET

TABLE II
EVALUATION MATRIX FOR DIFFERENT CATEGORIES

Fig. 4. Comparison of segmentation performance in terms of DSC loss (1-
DSC/100) (the lower the better).

1) Model Performance Evaluation: We have two kinds of
label strategies: a) one is three classes; and b) the other is four
classes. The three classes are: a) snow; b) pond; and c) open
water, and the fourth class is submerged ice. In Table I, we
compare the performance of the U-Net, U-Net++, transformer
U-Net, and MeltPondNet. It can be seen that the MeltPondNet
shows the best overall performance for both label strategies, and
the details for each class are given in Table II. As quality metrics,
we use dice similarity coefficient (DSC) that combines the
advantages of precision and recall, and mIOU, that is, the mean
value of IoUs (a number from 0 to 1 that specifies the amount of
overlap between the predicted and ground truth bounding box),
corresponding to different classes which would match with the
actual degree of similarity. F1 score is the harmonic mean of the
precision and recall.

We can conclude from the obtained results that using the three
classes provide a more robust classification by all models. Prob-
ably, it is caused by difficulties for a model to detect submerged
ice because of its more complex and varying signature that
consequently led to ambiguities with other classes. The details
of the each class quantitative results are shown in Figs. 4 and 5

2) Robustness to Different Resolutions: Since our MeltPond-
Net has the fixed input image resolution, we preprocess the

Fig. 5. Comparison of segmentation performance in terms of mIOU (the
higher the better).

Fig. 6. MeltPondNet segmentation results for different resolutions.

input images by partitioning to many overlapping patches with
640× 640 pixels. Then, segmentation forward pass is applied
independently to each overlapping patch. Finally, the overlap-
ping prediction results are merged back into the original size
by weighted average. Based on the slicing patch method, the
input image can be of any size. In Fig. 6, an example of
a high-resolution image is shown, and that demonstrates the
benefits of the high-resolution in reducing confusion with the
mixed pixels. The result legend is shown at the right-hand side
of the predicted results.

3) Robustness to Different Background: As shown in Fig. 7,
we picked some different background results from our test
dataset. Our MeltPondNet can detect the snow, pond, and open
water classes very well, no matter how the environment is illu-
minated bright or dark. The submerged ice class is challenging
to identify because it usually has a similar color to open water
or the melt pond.

4) Robustness to Image Artifacts: Due to the melt pond
images are usually acquired from the inclement weather area,
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Fig. 7. MeltPondNet segmentation results on our test dataset. The left-hand side images are the aerial images (columns 1 and 3), and the right-hand side images
are the segmentation results (columns 2 and 4).

Fig. 8. MeltPondNet segmentation results with image artifacts. The left-hand
side images are the aerial images, and the right-hand side images are the
segmentation results.

Fig. 9. MeltPondNet segmentation results on high-resolution optical im-
agery [32]. The left-hand side images are the aerial images, and the right-hand
side images are the segmentation results.

the camera may not be working normally, as shown in Fig. 8.
Some white lines on the image are considered image artifacts
or sensor artifacts. Our MeltPondNet can properly handle those
artifacts without losing any accuracy.

5) Robust for Different Sensors: In Fig. 9, the top image
is acquired from the optical IceBridge DMS, and the bottom
image is acquired from Aerial sRGB [32]. Even though our
MeltPondNet is never trained on those data, it can still predict
an accurate segmentation result.

V. CONCLUSION

In this study, we proposed a segmentation algorithm based on
a swin transformer U-Net for accurately extracting the bound-
aries of melt ponds in the surface of Arctic sea ice that operates in
high spatial resolution aerial photographs. The model has been
trained and assessed using reference data obtained by expert
melt pond mapping from aerial photographs taken over sea ice
during the HOTRAX in the central Arctic. The mapping has
been performed based on albedo differences for four classes of
surface: 1) melt pond; 2) ice/snow; 3) submerged ice; and 4)
open water. These classes have been used for the model training
and application, and we observed the efficiency of separation of
melt ponds from other surfaces.

The developed method can be applied not only for melt ponds
detection, but their corresponding changes between years that
are beneficial for climate studies. The workflow can be adapted
for other types of optical data or potentially the data acquired
at frequencies in other bands that can extend the algorithm
application and provide new insights into processes between
ocean and atmosphere. The obtained results discussed in this
study are promising and future work could include a comprehen-
sive assessment of the algorithm accuracy in complex climatic
transformations. The MeltPondNet architecture would also of-
fer the potential for efficient image analysis of geometrically
sophisticated tundra lakes on permafrost [33].
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APPENDIX A
IMAGE ANALYSIS METHODS: MACHINE LEARNING

APPENDIX B
IMAGE ANALYSIS METHODS: IMAGE PROCESSING
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