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Abstract
The introduction of driving automation in road vehicles can potentially reduce
road traffic crashes and significantly improve road safety. Automation in road
vehicles also brings other benefits such as the possibility to provide independent
mobility for people who cannot and/or should not drive. Correctness of such
automated driving systems (ADSs) is crucial as incorrect behaviour may have
catastrophic consequences.

Automated vehicles operate in complex and dynamic environments, which
requires decision-making and control at different levels. The aim of such
decision-making is for the vehicle to be safe at all times. Verifying safety of
these systems is crucial for the commercial deployment of full autonomy in
vehicles. Testing for safety is expensive, impractical, and can never guarantee
the absence of errors. In contrast, formal methods, techniques that use rigorous
mathematical models to build hardware and software systems, can provide
mathematical proofs of the correctness of the systems.

The focus of this thesis is to address some of the challenges in the safety
verification of decision and control systems for automated driving. A central
question here is how to establish formal methods as an efficient approach to
develop a safe ADS. A key finding is the need for an integrated formal approach
to prove correctness of ADS. Several formal methods to model, specify, and
verify ADS are evaluated. Insights into how the evaluated methods differ in
various aspects and the challenges in the respective methods are discussed.
To help developers and safety experts design safe ADSs, the thesis presents
modelling guidelines and methods to identify and address subtle modelling
errors that might inadvertently result in proving a faulty design to be safe. To
address challenges in the manual modelling process, a systematic approach
to automatically obtain formal models from ADS software is presented and
validated by a proof of concept. Finally, a structured approach on how to use
the different formal artifacts to provide evidence for the safety argument of an
ADS is shown.

Keywords: Automated driving, safety argument, formal methods, formal
verification, supervisory control theory, model checking, theorem proving,
automata learning.
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“Science can amuse and fascinate us all, but it is
engineering that changes the world.”

Isaac Asimov1

CHAPTER 1

Introduction

The World Health Organization reports [1] that approximately 1.35 million
people die each year due to road traffic accidents, thereby making traffic
injuries a leading cause of human death globally. In addition, road traffic
accidents are also a significant source of economic losses costing 3% of the
gross domestic product in most countries [2] and amounting to $242 billion
in the United States in 2010 [3]. The critical reason for more than 90% of
road traffic accidents is attributed to some level of human error [4], [5]. The
introduction of driving automation in road vehicles can potentially reduce such
accidents and significantly improve road safety [4]. Automating the driving
task also brings other benefits, such as reducing drivers’ stress, and providing
independent mobility for people who cannot and/or should not drive [3], [6].

The Society of Automotive Engineers (SAE) categorizes driving automation
into six discrete and mutually exclusive levels based on roles of the human
driver and the driving automation system in relation to each other [7]. The
amount of human supervision required is a critical part of this taxonomy and
the levels extend from Level 0 (no automation) to Level 5 (full automation),

1Asimov, I. & Shulman, J. A. (Eds.). (1988). Isaac Asimov’s book of science and nature
quotations. Weidenfeld & Nicolson.
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Chapter 1 Introduction

as shown in Table 1.1. Levels 0 to 2 are driver support systems while Levels 3
to 5 are Automated Driving Systems (ADSs) [7].

Table 1.1: SAE levels of driving automation [8].
SAE
Level 0

SAE
Level 1

SAE
Level 2

SAE
Level 3

SAE
Level 4

SAE
Level 5

driver support features automated driving features
human driver responsible for driving
whenever features are engaged

human driver is not driving when
features are engaged

constant human supervision is
needed to maintain safety

human
driver
must drive
on request

automated driving fea-
tures will not require
the human driver to
take over

limited to
providing
warnings
and mo-
mentary
assistance

provide
steer-
ing OR
brake/ac-
celeration
support

provide
steering
AND
brake/ac-
celeration
support

these features can drive
under limited operating
conditions and will not
operate until all require-
ments are met

this fea-
ture can
drive un-
der all
condi-
tions.

automatic
emergency
braking,
lane de-
parture
warning

lane cen-
tering OR
adaptive
cruise
control

lane cen-
tering
AND
adaptive
cruise
control

traffic jam
chauffeur

local
driver-
less taxi
(pedals,
steering
wheel may
or may
not be
installed)

same as
Level 4
but fea-
ture can
drive ev-
erywhere
in all con-
ditions

Since the introduction of driver support systems for consumer purchase
in the 1990s [9], [10], Level 1 and Level 2 systems have become increasingly
available as a standard option and this is expected to grow even further [11],
[12]. However, Level 3 systems were made available for purchase only in
2022 [13], [14]. Currently, no vehicle with Level 4 or Level 5 automation is
available for consumer purchase though recent advances have been made with
Level 4 in the form of ride hailing services [15]. Higher levels of automation
increase the complexity of the systems and several technical, business, and
regulatory challenges arise [16]. A significant technical challenge is the safety
verification and validation of ADSs [17]–[21].

4



1.1 Industrial Challenges

1.1 Industrial Challenges
In general, a driving task can be divided into three levels [22]: strategic (e.g.
route planning over long time horizon), tactical (e.g. maneuvering over a few
seconds), and operational (e.g. speed control on milliseconds level). SAE
J3016 [7] describes an ADS as the hardware and software that are collectively
capable of performing the entire Dynamic Driving Task (DDT) on a sustained
basis within an Operational Design Domain (ODD). The DDT includes all
the real-time operational and tactical functions required to operate a vehicle
and excludes the strategic functions. ODD describes the operating conditions
under which the ADS is designed to function. An ADS is realized with
the help of several electronic and/or electrical (E/E) subsystems that can be
connected in many possible architectural designs. This thesis considers an ADS
architecture with three subsystems as shown in Figure 1.1. This architecture
follows the sense-plan-act paradigm [23] in artificial intelligence and robotics.
Note that the Decision & Control in Figure 1.1 corresponds to the plan in
sense-plan-act.

sense Decision &
Control act

odd

ADS

Figure 1.1: A simplified architecture for an ADS.

The sense subsystem makes use of sensors such as cameras, radars, gyros,
etc., to perceive the environment, here represented by the odd, and fuses all
the information from the different sensors to provide a mathematical model of
the traffic situation, such as the vehicle state, road geometry, distance to other
vehicles, etc. The Decision & Control subsystem uses the fused information
to decide when and how to act. Typical sub-tasks here are threat assessment,
decision-making, path planning, etc. The decisions are then communicated to
the act subsystem in the form of, e.g., acceleration and steering commands.
Finally, these decisions are executed by using, e.g. brake and/or steering

5



Chapter 1 Introduction

actuators to control the vehicle. Each of these subsystems further includes
several functional modules that interact together to solve the respective tasks.

The decision-making in an ADS is distinctly challenging because the system
must interact with and predict the intentions of other traffic participants in
complex and uncertain environments. Furthermore, the sensor limitations and
the actuator capabilities have to be considered in the decision-making. The
complexity involved due to the interactions with the environment and between
the different subsystems is manually intractable. This may lead to subtle but
potentially dangerous bugs arising due to unforeseen edge cases, errors in design
and/or implementation. Therefore, it is imperative that all safety-critical parts
of an ADS are veritably reliable and safe. This is a challenge for the design as
well as the verification and validation of ADSs.

Although human error is a major cause of many traffic accidents, the actual
failure rate is remarkably low. For instance, in the United States, the fatality
rate is 1.34 deaths per 100 million miles driven [17], [24]. This low rate presents
a challenge as the failure rate of ADSs has to be at least better than human
driving in order to increase overall traffic safety. Such a requirement presents
difficulties in the design and verification of these systems as it is crucial to
provide sufficient evidence to show that the safety goals are fulfilled. While
human supervision is necessary to maintain safety in Level 0–2 driver support
features, there needs to be a convincing safety argument for ADS. Ensuring
safety of ADS is a multi-disciplinary challenge, and several approaches have
been researched and attempted to address this challenge [20], [21].

The shortcomings in current industrial practice are further highlighted by the
impact of defective software deployed in production vehicles. Many potentially
dangerous software defects have been reported in the past that could result
in catastrophes not due to driver error [25]. These defects have resulted in
hundreds of thousands of vehicle recalls as they pose an unreasonable safety risk.
More than 15 million vehicles were affected by software related safety recalls in
the United States in 2019 [26]. In addition, fatalities and accidents involving
driving automation systems in Tesla [27]–[29], Uber [30], [31], and Google [32],
[33] have warranted stricter safety arguments for successful deployment of
automated vehicles at scale.

Formal methods are techniques that use rigorous mathematical models to
build hardware and software systems, and can provide a mathematical proof
of the correctness of the system. The strength of formal methods lies in the

6



1.2 Research Questions

use of unambiguous formal logic and the possibility to provide irrefutable
evidence for the safety argument. Formal methods consist of various diverse
techniques and a particularly useful approach that aids in providing evidence
to demonstrate the safety of ADS is formal verification.

Given a formal model of a system and a formal specification of the intended
behaviour of the system, formal verification is the act of proving or disproving
the correctness of the system with respect to its specification. Formal verifica-
tion has been shown to be beneficial in verifying safety-critical systems such
as avionics [34]–[36], railway systems [37], [38], nuclear plants [39]. Despite
successful applications in automotive systems [40]–[44], formal verification is
not a well established approach in the industry. The focus of this thesis is
to explore the barriers that hinder the industrial adoption of formal verifica-
tion and investigate how formal verification can be used for application in the
automotive industry, specifically in the development of safe ADS.

1.2 Research Questions

This thesis mainly concerns the problem of how to establish formal methods
as an efficient approach to develop safe ADS. It is hypothesised that formal
methods and in particular formal verification can be used in the industrial
development processes to produce formal proofs of correctness of Decision
& Control systems and thereby provide rigorous evidence for the safety
argument of ADS. Impelled by the limited industrial adoption of formal
methods despite potential benefits, the obstacles that impede widespread
adoption are investigated. To this end, this thesis considers the following
research questions:

RQ 1 What factors affect the application of formal verification to ADS and
what are the current challenges in existing methods?

RQ 2 How can the challenges be addressed, and can the solutions be scaled?

RQ 3 How can formal methods be used to provide evidence in the safety
argument of ADS?

7
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1.3 Research Methods
The work of this thesis has been carried out as part of an industrial PhD
project at Zenseact. As is evident from the research questions, the research is
motivated by the need from the industry and therefore the problem statements,
research methods, and the results are tightly connected to the industrial
research and development of ADS. For the same reason, much of the research
carried out, combines aspects of both practical utility and the quest for basic
understanding as illustrated through the Pasteur’s quadrant model [45] in
Figure 1.2.

“Pasteur’s quadrant”
Needs-based basic researchPure basic research

Pure applied research

This thesis

Q
u
es
t 
fo
r 
ba
si
c 
u
n
d
er
st
a
n
d
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g

Practical utility

Figure 1.2: This thesis in relation to Pasteur’s quadrant model of scientific research.

The choice of a research method depends on various factors such as the
nature of the research questions and the kind of knowledge being pursued [46].
RQ 1 has exploratory characteristics while RQ 2 and RQ 3 have problem-
solving characteristics. Several research methods are suitable to answer them
and have accordingly been applied. The following paragraphs provide a brief
summary.

Method 1: It is essential to obtain a good overview of the current state of
knowledge in an area before research is carried out to advance the knowledge in
that area. Critical analysis of literature is “an appraisal of relevant published
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material based on careful analytical evaluation” [47]. This research method is
employed in all the papers included in this thesis.

Method 2: Case study is an examination of a system in detail that is ex-
ploratory in nature [48]. As suggested by the name, a case study focuses on
one or a number of cases for an in-depth study. Case studies are suitable
to answer questions that are exploratory as well as questions that require
problem-solving [46]. This method is primarily used in Paper A and Paper B.

Method 3: Proof of concept is a kind of research that aims to answer a
question with an idea that may have wide applicability to a class of phenom-
ena [49]. This method is particularly efficient to demonstrate the usefulness of
a concept/solution and is employed in Paper B and Paper C.

Method 4: Mathematical modelling and mathematical proofs as a research
method provides mathematical models to explore and make logical arguments
in the form of proofs that a certain proposition is true [47]. Unsurprisingly,
this method is used in all papers included in this thesis and is the predominant
method in Paper D.

1.4 Scientific Contributions
The nature of the research questions not only affects the choice of the re-
search method, but also the knowledge that is generated as the outcome of
the research. Due to the exploratory nature of RQ 1, this work has led to
descriptive knowledge in the form of evaluation of characteristics of the re-
searched phenomenon, identification of further research gaps, etc. Whereas, the
problem-solving nature of RQ 2 and RQ 3 has led to prescriptive knowledge
in the form of guidelines, conceptual solutions, etc. The scientific contributions
are documented in the included papers and Table 1.2 maps how the included
papers relate to the research questions. The main contributions of this thesis
are:

• It evaluates several logical formalisms and methods to model, specify,
and verify ADS. In doing so, it identifies various challenges in applying
formal verification to argue safety of ADS (Paper A and Paper C).
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• It identifies the need for an integrated approach to argue safety of ADS. To
help developers and safety engineers in that regard, it provides modelling
guidelines and insights into how the evaluated methods differ with respect
to the formalism, verification objective, and their applicability based on
the different levels of abstraction. (Paper A, Paper C and Paper D).

• It presents methods to identify and address subtle modelling errors that
might inadvertently result in proving a faulty design to be safe. This
helps to avoid a fallacious safety argument of the ADS, which could
potentially be catastrophic in practice (Paper D).

• It presents a systematic approach to automatically obtain formal models
from ADS software to overcome the obstacle of manual effort needed
to apply formal verification. The approach is validated by a proof of
concept in which two algorithms are comparatively evaluated through
an industrial case study (Paper B).

• It presents a structured approach and demonstrates how to use the
different formal artifacts in the development and in the safety argument
of an ADS (Paper C and Paper E).

Table 1.2: Relation between the research questions and the included papers.
✓denotes that the corresponding RQ is addressed.

RQ Paper A Paper B Paper C Paper D Paper E
RQ 1 ✓ ✓
RQ 2 ✓ ✓
RQ 3 ✓ ✓

1.5 Thesis Structure
The thesis is divided into two parts. Part I gives an introduction to automated
driving, the challenges in providing evidence for the safety of an ADS, the
necessary fundamentals, and a summary of scientific contributions from the
included papers. Part II contains the papers. Part I consists of the following
chapters:

10



1.5 Thesis Structure

Chapter 1 – Introduction
This current chapter provides a brief introduction to automated driving,
the research questions and the contributions of this thesis.

Chapter 2 – Safety Evidence
The second chapter puts into perspective how formal methods compare
to the other current industrial approaches to provide credible safety
argument for automated driving.

Chapter 3 – Formal Methods
The third chapter presents the necessary preliminaries and the funda-
mental concepts of different formal methods discussed in this thesis.

Chapter 4 – Safety Proofs for Automated Driving
This chapter presents insights obtained from the included papers towards
provable correctness for Decision & Control systems and connects
them in the context of this thesis.

Chapter 5 – Summary of Included Papers
This chapter provides a brief summary of the included papers and their
contributions.

Chapter 6 – Concluding Remarks and Future Work
The final chapter concludes the first part of the thesis and presents ideas
for future research.
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“There is nothing more deceptive than an obvious fact.”
Sir Arthur Conan Doyle2

CHAPTER 2

Safety Evidence

The problem of providing sufficient evidence to demonstrate safety of a system
is important in several safety-critical industries. The terms safety and safety
case have been defined in many (but not too different) ways in various industry-
specific safety standards [50]–[52]. This thesis adopts the following definition
for those terms.

Safety is the absence of an unreasonable risk of harm. A safety case
is a structured argument supported by evidence that provides a com-
pelling, comprehensible, and valid case that a system is safe in a given
operational environment.

The terms safety case and safety argument are sometimes used interchange-
ably in this thesis due to their almost identical meaning. While several
approaches [17], [20], [21] have been researched and adopted to provide suffi-
cient evidence for safety of ADSs, they do have their own limitations. In that
context, this chapter presents a brief overview of how formal methods compare
to some of the other industrial approaches.

2The Boscombe Valley Mystery - A Sherlock Holmes Short Story
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Chapter 2 Safety Evidence

2.1 Conformance to Safety Standards
A familiar strategy for safety argumentation is to show evidence for conformance
to industry-specific safety standards. For instance, many safety standards
exist in the transportation industry to aid in the development of safety-critical
software. The DO-178C standard [53] is used by various certification authorities
in the aerospace industry to certify software for aerospace systems. Similarly,
the railway industry uses the EN50128 (IEC 622279) [54] as one of the safety
standards. For the automotive industry, the ISO 26262 functional safety
standard [52] is the primary standard to address the safety of electrical and/or
electronic (E/E) systems within road vehicles.

ISO 26262
ISO 26262 describes a functional safety framework for the development of safe
E/E systems. Functional safety, as defined by the standard is the absence
of unreasonable risks that could be caused by the malfunctioning behaviour
of the E/E systems. The standard provides a reference for the automotive
safety lifecycle and takes a risk-based approach to mitigate and/or avoid
risks. ISO 26262 gives appropriate guidelines to achieve functional safety
throughout the development process, which includes activities like requirement
specification, design, implementation, verification and validation.

The initiating task of the safety lifecycle is the item definition. The objective
of the item definition phase is to develop a description of the system, or
combination of systems, for which functional safety needs to be achieved and
subsequently the item’s functionality, boundaries, interfaces, environmental
conditions, assumptions, etc. are determined. The item definition phase is
then followed by a hazard analysis and risk assessment phase where potential
hazardous events of the item are identified and classified based on three factors:

• the severity of the potential harm caused by the hazardous event,

• the probability of exposure of the hazardous event, and

• the controllability, which estimates the ability to avoid the specific harm.

Together, the three parameters determine the Automotive Safety Integrity
Level (ASIL) [52]. Four possible levels: ASIL A, ASIL B, ASIL C, and ASIL D
are defined to categorize the hazardous events. ASIL A is the lowest safety
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integrity level and ASIL D is the highest. These levels are then used to obtain
the safety goals that form the top-level safety requirements for the system.
These safety goals are the key to achieving functional safety and the standard
recommends best practices for the design, implementation, and verification of
the item such that the safety goals are met.

In subsequent phases of the safety lifecycle, safety goals are broken down
to obtain detailed low-level safety requirements. These detailed requirements,
derived as a result of the requirement refinement process, correspond to different
phases in the design. For instance, the safety goals lead to implementation-
independent functional safety requirements, which in turn are refined to obtain
implementation specific technical safety requirements. Since the ASIL allotted
to a safety goal is inherited throughout the process, sufficient verification
evidence for all the requirements is needed to comply with the safety goal.

Evidently, a higher ASIL demands more rigorous development processes
compared to a lower ASIL. This fact is also reflected in the recommended
best practices for the development of high ASIL components in the standard.
For instance, while the use of semi-formal and formal methods (in addition to
other methods) are recommended for higher ASIL components, the standard
has no recommendation for or against their usage for lower ASIL components.

Several arguments [18], [20], [55] have been presented to show that ISO 26262
presents unique challenges and is sometimes even inadequate to completely
demonstrate safety of ADSs. Specifying unambiguous safety requirements
at each phase of the development process, and providing evidence that such
requirements at each level in conjunction implies the overall safety goal, are
significant challenges. Another specific concern is the impact of the inherent
assumptions that are made in the standard. As an example, in the ASIL
analysis, especially the controllability parameter assumes a human driver to
react and mitigate/avoid risks. While such an assumption might be relevant in
driver support features, it is fatal for ADSs. Yet another arguable point is the
assumption of the V model [52], [56] in the reference safety lifecycle. The rele-
vance of ASIL analysis and the recommended best practices in a development
approach other than the V model is debatable. Such challenges have initiated
the development of new standards [57], [58] specific to autonomous systems.
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Other Relevant Standards
The recently published UL 4600 [57] standard addresses the safety processes
for the evaluation of automated vehicles and other products without human
supervision. The standard intends to provide additional elements to address
the needs for safety of full autonomy and is therefore expected to work with
other existing standards. UL 4600 takes a claim-based safety case approach
that includes structured set of goals, arguments, and evidence to support the
fact that an item is safe for deployment. While UL 4600 provides guidance
and recommended best practices to improve the consistency of the safety case,
it does not mandate any specific development process (e.g., the V model).
Most importantly, UL 4600 highly recommends the use of formal methods as
a verification and validation approach to provide sufficient evidence of safety.

The ISO/PAS 21448 [58] standard addresses the safety of systems that rely
on sensing the environment, which is essential for an ADS. The ISO/PAS 21448
standard concerns the safety of the intended functionality (SOTIF) and is
complementary to the functional safety aspect of ISO 26262. SOTIF provides
guidelines to achieve absence of unreasonable risks due to potential hazards
caused by unintended behaviour in a system that is free from faults addressed
in ISO 26262. Limitations that arise due to the inability of a function to have
correct situational awareness and performance issues due to sensor variations
are typical examples of risks dealt with in this standard.

Though these standards exist, conformance to any particular standard alone
is not a guarantee of a fully safe autonomous vehicle. However, conformance
to such standards provides the necessary rigorous evidence to support the
safety argument. Formal methods, by definition requires rigorous mathematical
proofs and therefore meets the objective of such safety standards, wherever
applied.

2.2 Testing, Simulation, and Miles Driven
At present, the most widely used industrial approach to assure automotive
software safety is testing. Requirements based testing is an important aspect
of the V model development framework in the reference safety lifecycle of
ISO 26262. Testing can be done at various levels, such as software unit testing,
model-based testing, complete vehicle on-road testing, and scenario-based
virtual simulations. However, there are several challenges associated with a
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testing based approach to prove safety [18]. The most prominent challenge is
that testing can only find errors, but can never guarantee their absence.

Testing safety by driving under real world conditions is expensive and
impractical. An important question here is how many test miles need to
be driven to demonstrate safety? Studies have shown [17] that it would be
necessary to drive hundreds of thousands of miles, and sometimes even billions
of miles to statistically demonstrate the reliability of ADSs in terms of fatalities
and injuries compared to human driving. In addition to being expensive and
potentially dangerous to public safety, such an approach does not scale well.

One way to reduce the cost and scale of vehicle-level testing is to run the
tests virtually by simulating a wide range of scenarios representing real world
conditions. While this approach overcomes some of the disadvantages of field
testing, it brings a different set of unique challenges. For instance, the reliability
of the simulation framework, selection of statistically significant simulations,
and the need for massive amounts of data to accurately represent real world
environment are some of the challenges that have to be addressed [20], [21].

2.3 Formal Methods
Formal methods, especially formal verification can provide mathematical proofs
of correctness and complement other methods to provide sufficient evidence
for the safety argument. Though formal methods, in contrast to testing can
guarantee the absence of errors, they do not remove the need for testing. In
comparison to non-exhaustive methods like testing and simulation, which
require dynamic analysis (e.g. executing code, running software in a vehicle),
formal verification techniques are typically static in nature. This makes them
best suited to detect subtle errors in the early stages of development and
potentially avoid catastrophic consequences associated with vehicle recalls [25],
[26]. Formal verification can indeed provide sufficient rigour in the safety
argument as required by different safety standards. Despite the advantages,
the industrial adoption of formal verification in the automotive industry for
ADS development is below par. In order to ease the industrial adoption,
associated challenges need to be explored and possible solutions investigated.
In the subsequent chapters, this thesis throws some light on these aspects.
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“Modelling in science remains, partly at least, an art.
Some principles do exist, however, to guide the modeller.
A first, is that all models are wrong.”

P. McCullagh and J.A. Nelder3

CHAPTER 3

Formal Methods

Formal methods are a category of mathematically rigorous techniques and
tools that can be used to specify, design, and verify hardware and software
systems. Admittedly, the term formal methods is quite broad and a variety
of tools and techniques are available. Currently, an online resource [60] lists
more than 100 different formal notations, methods, and tools for describing
and reasoning about computer-based systems.

Formal methods can be classified in many ways depending on the level of
formality, modelling formalism, ease of use, etc. Almeida et al. [61] argue
that the characteristic aspect of formal methods is the ability to guarantee
the behaviour of a given system with some rigorous approach. Therefore, the
specification, which is a description of the desired behaviour, is at the core of
formal methods. In this context, the different groups of formal methods can be
classified into four types as shown in Table 3.1. The main focus of this thesis
is on the safety verification of ADS, and therefore the scope is limited to the
“Specify and Prove”, i.e., the formal verification category of formal methods.

3McCullagh, P., & Nelder, J. A. (1983). Generalized linear models. Routledge. A similar
expression “All models are wrong, but some are useful” is attributed to George Box [59]
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Table 3.1: Classification of formal methods [61]
Classification Approach Example
Specify and
Analyse

specification is formally defined and anal-
ysed using animation, execution, etc.

ASM, Z, VDM

Specify and
Prove

specifications and models are formally
defined to prove properties about them
(formal verification)

model checking,
SPARK, KeY,
KeYmaera X

Specify and
Derive

given a formal specification, obtain
an implementation whose behaviour
matches the specification (correct-by-
construction)

supervisory
control theory,
program refine-
ment

Specify and
Transform

transform a specification to either approx-
imate or enrich it

abstract interpre-
tation

Given a formal model of a system and a formal specification of its
desired behaviour, formal verification is the act of proving or disproving
the correctness of the system with respect to the specification.

At the mention of formal verification, a natural question is: how to specify,
model, and prove properties of systems? Of course, there are multiple ways
to specify and prove depending on the modelling formalism and the proof
technique used. Typically, the choice of verification method depends on the
nature of the system. For instance, to verify distributed asynchronous systems,
model checking using SPIN [62] can be used; and to verify Java programs, the
deductive verification tool KeY [63] can be used.

In the case of an ADS, such a straightforward choice of the verification
method is no longer possible due to the complexity involved. An ADS must
interact with and adapt its behaviour to the surrounding environment in a
feedback loop. The Decision & Control subsystem of an ADS as shown
in Fig. 1.1 must consider the uncertainty of the environment in the decision-
making, which increases the complexity. Furthermore, the interactions between
the different subsystems and the interaction between the different functions
within a subsystem also affect the complexity involved. Such factors highlight
the need to identify appropriate verification methods and their suitability to
provide sufficient evidence for the safety argument of ADS.

A variety of formal verification techniques have previously been used to
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Table 3.2: Formal verification methods investigated, see Paper A and Paper C.

Method Tool
Control theoretic Supremica
Model checking TLA+

Deductive verification SPARK, KeYmaera X

reason about autonomous systems [64], [65]. This thesis focuses on three general
methods as shown in Table 3.2. The choice of these methods is primarily
motivated by the following important factors:

• characteristic of the Decision & Control subsystem in an ADS,
• established proof of concept for verification of safety-critical systems,
• capability to handle industrial sized systems.

The rest of this chapter introduces the different methods investigated in
this thesis to specify and prove properties of ADS. Section 3.1 presents the
formalism of the methods to specify the requirements. This is followed in
Section 3.2 by brief explanations of the features available in the respective
methods to model the behaviours of an ADS. Finally, Section 3.3 discusses the
verification approach used in the different methods. This structure is aimed to
help making a qualitative comparison of the different aspects of these methods
in Chapter 4 based on the included papers.

3.1 Formal Specification
In the context of this thesis, the term formal specification refers to a formal
representation of the ADS requirements to be verified. Three types of formal
specifications are considered: state machine based, logic based, and contract
based.

State Machines
Often, tactical decision-making in an ADS can be viewed as an event-driven
process. For instance, a decision to emergency brake can be triggered on
the event of an obstacle unexpectedly appearing in front. This view leads
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to the class of Discrete Event Systems (DES) [66], which are discrete-state,
event-driven systems that occupy at each time instance a single state out of
many possible ones, and transits to another state on the occurrence of an
event. Thus, a characteristic feature of DES is the notion of instantaneous and
discrete events that may be associated with specific phenomena in an ADS,
such as detecting an object or switching on the turn indicator.

A typical way to reason about DES is to analyse its logical behaviour, that is,
analysing whether a sequence of events satisfies a specification (e.g. reaching a
desired state). A straightforward way to specify such behaviours is through
the language of the DES. Formally, the finite nonempty set of events is called
an alphabet, denoted by Σ. A string is a finite sequence of events chosen from
Σ. The set of all strings over Σ is denoted by Σ∗. A language L ⊆ Σ∗ is a set
of strings over Σ.

Though languages are suitable to specify logical behaviours of DES, they
are not convenient to describe and analyse a system. In this regard, state
machines [66] provide an alternative way to represent languages and specify
DES behaviours. The central idea behind formally specifying DES behaviours
as state machines is the possibility to systematically analyse them for the
acceptance of a specified property.

Typically, the specification is expressed as a state machine with marked
states [66], [67] that express the desired behaviour. The intention is that at
least one of these marked states should always be reachable.

In Paper A and Paper B, two kinds of state machines are used: Finite State
Machine (FSM) [66] and Extended State Machine (EFSM) [67]. An EFSM
extends an FSM with bounded discrete variables, guards (logical expressions)
over the variables, and actions that assign values to the variables on the
transitions. The current state of an EFSM is given by its current location
together with the current values of the variables. In either case the marked
states specify desired behaviours and can be checked for reachability.

Remark: In the context of this thesis, the terms finite state machine and
extended finite state machine are synonymous to finite automata and extended
finite automata, respectively.

Temporal Logic of Actions
The Temporal Logic of Actions (TLA) [68] is a variant of temporal logic [69].
TLA, as a logical formalism provides the expressive power to reason about
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systems using assertions on states and pairs of states (actions). The reasoning
mechanism in TLA is built around TLA formulas. A TLA formula is true or
false on a behaviour. A behaviour in TLA is an infinite sequence of states.
A state in TLA is an assignment of values to variables. A state predicate is
a boolean valued expression on states. A step is a pair of states. Steps of a
behaviour denote successive pairs of states.

Actions are predicates that relate two consecutive states and are used to
capture how the system is allowed to evolve. An action, A, is a boolean valued
expression on steps and represents a relation between old states and new states.
A step is an A-step if it satisfies A. An action is valid, ⊨ A, iff every step is
an A-step. In TLA, atomic operations are represented by actions.

The elementary building blocks of a TLA formula include state predicates,
actions, logical operators (such as ∧,¬, etc.), the temporal operator □ (always)
and the existential quantifier ∃. A summary of some formulas of TLA and
their meaning is given in Table 3.3

Table 3.3: Formulas of TLA [68], [70]. P is a state predicate, ⟨vars⟩ is a tuple of
variables, A is an action

Formula Meaning
P true of a behaviour iff P is true in the first state of the behaviour
□P true of a behaviour iff P is true in every state of the behaviour
□[A]⟨vars⟩ true of a behaviour iff every step is an A-step or leaves values of

vars unchanged

One way to specify properties in TLA is to use invariants of the form □P .
Invariants are state predicates that should be valid in all reachable states of
the model.

Differential Dynamic Logic
Differential dynamic logic (dL) [71], [72] is a specification and verification
language for hybrid systems, which are mathematical models of systems that
combine discrete dynamics with continuous dynamics.

The formulas of dL include formulas of first-order logic of real arithmetic
and the modal operators [α] and ⟨α⟩ for any hybrid program α (see Section 3.2
for hybrid programs). The dL formula [α]ϕ expresses that all non-aborting
executions of α reach a state in which the dL formula ϕ is true. The dL formula

23



Chapter 3 Formal Methods

⟨α⟩ϕ means that there exists some non-aborting execution leading to a state
where ϕ is true. ⟨α⟩ϕ is the dual to [α]ϕ, defined as ⟨α⟩ϕ ≡ ¬[α]¬ϕ.

To specify the correctness of an ADS (modelled as a hybrid program α) with
respect to a requirement described by guarantee, a dL formula of the form

(init) → [α] (guarantee) (3.1)

can be used. If the formula is valid, then it expresses that for every state in
which the formula init is true, all (non-aborting) executions of α only lead to
states where formula guarantee is true.

Program Contracts
The types of specifications discussed in the previous sections are used to
describe properties that can be verified on an abstract model of a system. This
thesis also investigates formalisms that can be used to specify properties at the
source code level. In this context, this section describes how specifications can
be written in the programming language SPARK [73]. SPARK is a subset of
Ada [74], an imperative programming language targeted for the development
of large scale safety critical software.

The intended behaviour of a SPARK program can be specified using a
contract attached to a subprogram (e.g. a function). A subprogram contract
may be made of various parts including pre- and post-conditions. A precondition
specifies constraints on the caller that must be satisfied upon entry of the
subprogram and a postcondition specifies the conditions that must be adhered
to by the subprogram upon exit. In addition, properties in SPARK can also
be specified using loop invariants and data dependencies. The specifications in
SPARK are expressed in the form of program annotations written inline with
the source code as shown in Listing 3.1 using an example of a contract with
pre- and post-conditions on the subprogram foo.

Listing 3.1: An example of a contract in SPARK.
1 procedure foo
2 (mode : in out Integer )
3 with
4 Pre => 2 < mode and mode < 5,
5 Post => mode = 0;
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Here, the precondition requires the mode parameter to have a value largerthan
2 and less than 5, and the postcondition ensures that the value is set to 0 on
return.

Remark: The dL specification in (3.1) can be considered as a contract on
a hybrid program where init corresponds to the precondition and guarantee
corresponds to the postcondition.

3.2 Formal Models
In the context of this thesis, the term formal model is a description of the
possible behaviours of the ADS. This section briefly discusses the various
formalisms used in the included papers to model an ADS. Each specification
formalism is associated with its respective modelling formalism and hence the
modelling formalisms are introduced in the same order as their corresponding
specification formalism in the previous section.

State Machines
FSMs and EFSMs described in Section 3.1 are not only suitable to formally
specify properties of a DES, but also to model controllers designed to control
a DES. A controller may interact with several different components, such as
other subsystems that are part of the DES, or the environment that the DES
is to react on. Such interactions between state machines are typically modelled
by synchronous composition [66], [67].

For two FSMs F1 and F2, the synchronous composition denoted as F1 ∥
F2 models the interaction through shared events. The shared events occur
simultaneously in the interacting FSMs when possible, while non-shared events
occur independently. In the case of EFSMs, in addition to the synchronous
composition, interaction can also be modelled through shared variables [67].
Thus, a complex ADS can efficiently be modelled as a set of interacting state
machines in a modular way to reason about their overall behaviour.

TLA+

TLA+ [70], [75] is a specification and modelling language for concurrent and
reactive systems. TLA+ is based on formal set theory, first order logic, and
TLA. TLA+ models describe the possible behaviours of a system and are
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typically referred to as specifications. However, here this terminology is slightly
abused to be consistent with the rest of this chapter. Thus, a TLA+ model is a
description of the behaviours of a system and a TLA+ specification is a desired
property of the system. TLA+ describes a system as a set of behaviours with
an initial condition and a next state relation. The initial condition describes
the possible initial states and the next state relation describes the possible
steps. A TLA+ model, here denoted by Spec is a temporal formula of the form

Spec ≜ Init ∧ □ [Next]⟨vars⟩ ∧ Temporal, (3.2)

where Init is a state predicate corresponding to the initial condition, Next is an
action corresponding to the next state relation, vars is a tuple of all variables
in the model, and Temporal is a temporal formula usually specifying liveness
conditions. Formula Spec can be seen as a predicate on behaviours. Spec is
true for a behaviour σ, iff Init is true in the first state of σ and every step in
σ is either a step that satisfies Next or is a stuttering step. A stuttering step is
one in which none of the variables are changed.

Remark: Typically, TLA+ models are referred to as specifications, which
is why (3.2) is denoted Spec. Some aspects of modelling and specification
are blended in formalisms like TLA+ and state machines. Moreover, TLA+

models of the form (3.2) describe a set of behaviours with a condition on the
initial state and a next-state relation on pairs of successive states. Thus, such
TLA+ models closely resemble state machine based models.

Hybrid Program
The logic dL uses hybrid programs (HP) [71], [72] to model hybrid systems.
Each HP α is semantically interpreted as a reachability relation JαK ⊆ S × S,
where S is the set of all states. If V is the set of all variables, a state ω ∈ S is
defined as a mapping from V to R, i.e., ω : V → R.

Discrete changes are modelled using discrete assignment x := e, which assigns
the value of term e to variable x, and nondeterministic assignment x := ∗,
which assigns an arbitrary real number to x. HPs model continuous changes
as x′ = f(x) &Q, which describes the continuous evolution of x along the
differential equation system x′ = f(x) for an arbitrary duration (including zero)
within the evolution domain constraint described by the first-order formula
Q. HPs use test action ?P to model decision conditions. The test action ?P
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of a first-order formula P has no effect in a state where P is true, i.e., the
next state is the same as the current state. If, however, P is false when ?P
is executed, then the current execution of the HP aborts, meaning that no
transition is possible and the entire current execution is removed from the set
of possible behaviours of the HP.

HPs also include sequential composition (;), nondeterministic choice (∪),
and nondeterministic repetition (∗) to model hybrid systems. The sequential
composition α; β expresses that HP β starts executing after HP α has finished.
The nondeterministic choice operation expresses that the HP α ∪ β can nonde-
terministically choose to follow either α or β. The nondeterministic repetition
α∗ expresses that α repeats n times for any n ∈ N0.

The nondeterministic modelling features in a HP are particularly useful to
describe an ADS and a discussion on this is presented in Section 4.2. To model
and specify the ADS system in Figure 1.1, the hybrid program α in (3.1) can
be refined as a nondeterministic repetition of three sequentially composed HPs,
each describing the respective subsystems as:

init → [( env; ctrl; plant )∗] (guarantee) (3.3)

where env corresponds to the environment as perceived by sense, ctrl corre-
sponds to the Decision & Control, and plant corresponds to the continuous
evolution of the physical system as a result of the execution of the actuation
commands by act.

SPARK Program
A SPARK program [73], [76], [77] is made up of one or more program units.
Subprograms and packages are two examples of SPARK program units. A
subprogram execution is invoked by a call and subprograms express a sequence
of actions. Procedures and functions are the two types of subprograms in
SPARK. Procedure calls are standalone statements, whereas function calls
occur in an expression and return a value. Packages group together entities
like data types, subprograms, etc. A program unit consists of two structures,
a specification and a body. The specification contains the variables, types and
the subprogram declarations with their annotations. The body of a program
unit contains the details of the implementation, i.e., the source code.

In addition to user defined program contracts as described in Section 3.1,
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SPARK has a set of core annotations as predefined rules that can be checked
without user defined contracts such as checking for divisions by zero, or out
of bounds array indexing. The contracts are used by the analysis tools to
generate verification conditions, which are mathematical expressions relating
a number of hypotheses (obtained from preconditons) and conclusions (from
postconditions). Providing a correctness proof of the program then boils down
to showing that the conclusions always follow from the hypotheses. Detailed
information on the the analysis tools is available in [73], [76].

3.3 Formal Verification
As shown in Table 3.2, three different formal verification methods and their
associated tools are investigated in Paper A and Paper C. Though each method
has its own theoretical foundation, the three methods can be classified into two
categories based on the fundamental strategy used to verify the correctness
of the system. The first two methods investigated, namely Supervisory Con-
trol Theory and model checking, belong to the enumeration category, while
deductive verification belongs to the deduction category. The basic idea in the
enumeration category is to provide a proof of correctness by enumeration, that
is, enumerate the finitely-many possible behaviours of the system and check
each of them. In the deduction category, however, the basic idea is to provide
a proof by mathematical deduction. In this case, deductive reasoning is used
to derive conclusions from a set of assumptions. In the following sections, each
of the three methods are briefly examined.

Supervisory Control Theory
The Supervisory Control Theory (SCT) [78] provides a framework for modelling,
synthesis, and verification of reactive control functions for DES. Given a DES
model of a system to control, the plant G, and a specification K of the desired
controlled behaviour, SCT provides means to synthesise a supervisor that,
interacting with the plant in a closed-loop system, dynamically restricts the
event generation of the plant such that the specification is satisfied.

Though the original SCT focused on synthesising supervisors that by con-
struction fulfill the desired properties, a dual problem of interest here is
to, given a model of a plant and a specification, verify whether the spec-

28



3.3 Formal Verification
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Figure 3.1: Illustration of nonblocking verification. The marked states are indicated
by double circles. Though all three states in G ∥ K are reachable, the
grey state ⟨k, x⟩ is not coreachable and hence a blocking state.

ification is fulfilled or not. Paper A exploits one aspect of this duality,
namely the nonblocking verification problem. Given a set of state machines
SM = {G1, . . . , Gn,K1, . . . ,Km} where the components Gi (i = 1, . . . , n) rep-
resent the plant, and Kj (j = 1, . . . ,m) represent the specification, nonblocking
verification aims to determine whether the synchronous composition over all
the components can from any reachable state always reach some marked state.

The straightforward way to perform nonblocking verification is to show that
a state machine has no blocking state, which is a state from where no marked
state is reachable. Blocking states are determined by comparing the reachable
states and the coreachable states, i.e., states from where a marked state can
be reached. Any reachable but not coreachable state is a blocking state as
illustrated in Figure 3.1. Several algorithms [79], [80] have been developed
to tackle the state-space explosion problem and perform efficient verification.
The software tool Supremica [81] implements such verification and synthesis
algorithms, as well as other techniques for modelling and analysis of DES.

Model Checking
Model checking [82] is an automated verification method for finite-state models.
Given a finite-state model of a system and a formal property expressed using
temporal logic as the specification formalism, the model checking problem
systematically checks whether the property is satisfied in the model. If a
state that violates the property is encountered, the model checking algorithm
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provides a counterexample as an evidence for the violation.
The TLC model checker [70], [83] is explicitly designed to check TLA+

models of the form (3.2). The input to TLC is the TLA+ model and a
description of the properties to be checked. A typical way to specify properties
of TLA+ models is through the use of invariants of the form □P . Invariants
are state predicates that should be true in all reachable states.

To check an invariant, TLC explores all reachable states, which are explicitly
represented, and evaluates the invariant in each reachable state. If a state is
found that does not satisfy the invariant, TLC generates a minimal-length
trace [83] that leads to the violated state from the initial state. The TLA+

language accompanied by an IDE consisting of TLC and other useful tools can
be downloaded from [75].

Deductive Verification
Nonblocking verification and model checking employ exhaustive state space
exploration to verify the correctness of a system. In contrast, deductive
verification [84] uses a deductive mechanism of reasoning based on axioms
and inference rules to produce a proof of correctness of the system. Often,
deductive approaches are supported by theorem provers with varying levels
of automation for the development of the proofs. In this thesis, deductive
verification is used to prove correctness of both hybrid programs and SPARK
programs and the overall approach can be summarised using Figure 3.2.

program &
specification

verification
goals proof

Figure 3.2: Simplified deductive verification workflow

KeYmaera X [85] is an interactive theorem prover that can do deductive
verification on hybrid systems. The input to KeYmaera X is a single dL formula
such as (3.3) with a description of the hybrid system in the form of a HP and
the specification to be verified. KeYmaera X successively decomposes such a dL
formula into several verification goals according to the sound proof calculus [71],
[72] of dL to prove the formula. The proof calculus of dL uses sequents to
structure the proofs. A sequent is of the form Γ ⊢ ∆ where antecedent Γ and
succedent ∆ are dL formulas. A sequent Γ ⊢ ∆ is semantically equivalent to
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the dL formula
∧
ϕ∈Γ ϕ →

∨
ψ∈∆ ψ. So, to prove a sequent Γ ⊢ ∆, all of Γ is

assumed to be true and from these one of ∆ is shown to be true.
To prove a dL formula of the form (3.3), KeYmaera X first converts it into a

sequent (goal) of the form

⊢ init → [( env; ctrl; plant )∗] (guarantee)

and then successively decomposes it into several smaller logical formulas (sub-
goals) based on the proof rules of sequent calculus. To prove properties of
loops as in (3.3), the loop invariant proof rule [72] can be used. HP statements
in the dL formula are symbolically executed to describe their effect based on
the respective proof rules in such a decomposition. A proof of the desired goal
is finished when all the sub-goals are proven to be valid.

SPARK refers to both a programming language and an associated set of tools
to perform formal verification on that language. Therefore, from the deductive
verification workflow in Figure 3.2, program and specification correspond to
the SPARK source code. The formal verification toolset in SPARK can analyse
the source code on two different levels, flow analysis and proofs.

Flow analysis capabilities ensure the program correctness with respect to
data flow and information flow. Errors arising due to uninitialized variables,
data dependencies between inputs and outputs of subprograms, well-formedness
of programs, etc., are checked by this level of analysis. The second level of
analysis is to perform automated proofs to check for runtime errors and confor-
mance of the program with respect to user-defined specifications. As described
in Section 3.1, user-defined specifications in SPARK are provided in the form
of program annotations such as pre- and post-conditions. The program annota-
tions specified are used to generate verification conditions, which can then be
discharged using the proof tools to show program correctness. The verification
conditions are generated in the form of a list of hypotheses H1, H2, . . . ,Hn

and conclusions C1, C2, . . . , Cm. The goal is to infer the conclusions from the
hypotheses, i.e., to prove (H1 ∧H2 ∧ · · · ∧Hn) → (C1 ∧ C2 ∧ · · · ∧ Cm).
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“What a mathematical proof actually does is show that
certain conclusions. . . follow from certain premises. . .
The validity of these premises is an entirely independent
matter which can safely be left to philosophers.”

Timothy Gowers4

CHAPTER 4

Safety Proofs for Automated Driving

The aim of this work is to investigate how formal methods can be used to
formally verify Decision & Control subsystems and how formal proofs can
be used as evidence in the safety argument of an ADS. The Decision & Con-
trol can be functionally decomposed based on many different architectural
designs [86]–[88]; generally three kinds of functions:

• System management functions (henceforth referred as state manager)
that are responsible for monitoring the health and status of the system
like the ODD conditions, the different driving modes of the ADS feature,
etc., and for making decisions like activation and deactivation of the
ADS feature, appropriate response to a fault, etc.;

• Nominal planning and control functions (henceforth referred as nominal
controller) that are responsible for performing the DDT during nominal
driving conditions; and

• Safe planning and control functions (henceforth referred as safety con-
troller) that are required to guarantee safety in critical driving situations
(e.g. when a collision must be avoided).

4Gowers, T. (2002). Mathematics: A very short introduction. OUP Oxford.
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Depending on the architectural design, there might be one or many state
managers, the nominal and safety functions may be performed by the same
functional element or by separate elements. Regardless of the structure, the
functions included in the Decision & Control have certain characteristics.
They make decisions at both the tactical and the operational level and the
decisions are based on information from the sense subsystem (see Figure 1.1)
that perceives the environment; they have to account for uncertainties in the
prediction and assessment of the traffic situation; and they include a reactive
feedback control mechanism to perform the DDT and guarantee safety. The
following sections describe the insights obtained from the included papers
with respect to the research questions. Paper A and Paper B deal with the
state manager part, Paper C and Paper D deal with the nominal and safety
controller part, and Paper E deals with the Decision & Control subsystem
as a whole.

4.1 Specifying in the Large and in the Small
As mentioned in Chapter 3, formal specifications are at the heart of the
formal verification process. A formal specification describes a requirement,
and particularly in this context, a safety requirement.

A safety requirement (SR) is a requirement defined in order to avoid or
reduce risk.

Paper A studies the Lateral State Manager (LSM ), a system management
component responsible for managing modes during an automated lane change.
The correctness of LSM is verified with respect to SR 1 (Req.1 from Paper A):

SR 1. If changing lane, the lane change shall always be to the same side as
indicated.

In Paper C, a safety controller design is proved to guarantee SR 2 (FSR 1
from Paper C):

SR 2. Decision & Control shall at all times output a safe acceleration request
to avoid collision with any object in front.

Safety requirements of an ADS typically describe (un)desired behaviour over
time. A key insight obtained from the case studies in Paper A, Paper B, and
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Paper C, is that unique challenges are associated with how a given ADS safety
requirement can be formally specified in the different approaches. In Paper A,
the safety requirement SR 1 was modelled as an EFSM, encoding the unsafe
state as a blocking state. Verifying SR 1 is then done by checking whether
the blocking state can be reached or not. The possibility to use guards and
variables in an EFSM provided an efficient way to express SR 1 with just 2
locations, as shown in Figure 3 of Paper A.

In Paper B, on the other hand, where an FSM model of LSM was automati-
cally learnt, it was not as easy to express the same specification. To efficiently
learn the FSM, several reductions, such as merging variables in the original
code to reduce the alphabet, had to be made. This improved the efficiency of
the learning. However, expressing SR 1 turned out to be difficult, since it was
no longer obvious how to model the unsafe state as a blocking behaviour in
relation to the learned FSM.

In the model checking approach using TLA+, SR 1 was expressed as an
invariant property of the model using TLA constructs as shown in Paper A
(A.2). Recall from Chapter 3 that invariants, which are safety properties in
TLA+, are linear-time properties and are expressed of the form

□P

where P is a state predicate. TLC checks an invariant by exploring all reachable
states. Expressing SR 1 as an invariant property in TLA+ is notably different
from expressing it as a (non)blocking property in SCT. The nonblocking
property can be translated into the branching-time temporal logic [82] formula:

AG EF marked

which expresses that across All computational paths Globally, there Exists
at least one path where Finally a marked state is reached. Admittedly, the
possibility to specify and verify SR 1 through the nonblocking property and
the invariant property does not provide enough evidence to suggest they are
suitable to specify all types of safety requirements for a state manager function
of Decision & Control. More empirical studies are needed in this regard.

With the deductive verification framework in SPARK, Paper A shows that
using pre- and post-conditions to express SR 1 is significantly difficult. A
primary reason for this is the presence of requirement gaps, i.e., gaps between
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the requirements at different levels of the development process. While SR 1
in its natural language form proved to be sufficient to work with model-
based approaches like SCT and model checking, it had to be further broken
down in the form of program annotations for meaningful analysis using the
deductive framework in SPARK. This was inefficient because SR 1 puts a
requirement on the LSM at the function design level, while the program
annotations have to be specified at the source-code implementation level. The
implementation independent SR 1 of the LSM had to be broken-down into
implementation specific requirements in order to be efficiently formalized and
verified using SPARK. However, it should not be overlooked that verification
of implementation specific safety-critical properties such as division-by-zero,
overflow, etc., is automatically done in SPARK with no additional effort.

The challenge with the presence of requirement gaps was also encountered
in Paper C. Similar to SR 1, SR 2 also puts a requirement on the Decision
& Control at the function design level. To prove that a safety controller
guarantees the fulfilment of SR 2, a safety constraint given by the critical
position-velocity pair ⟨xc, vc⟩ (see Paper C) was formulated. It was then
proved using KeYmaera X that the safety controller always guarantees a safe
acceleration request such that the automated vehicle does not have a velocity
higher than vc at or beyond xc. Though the correctness of the design with
respect to the safety constraint was formalized and proved in dL, the fact that
fulfilling the safety constraint ⟨xc, vc⟩ implies that a collision is indeed avoided,
as required by SR 2, was assumed and not proved in Paper C.

In Paper C, SR 2 was expressed as a dL formula of the form (3.1) where the
box modality

[α] (guarantee) (4.1)

is used to express that guarantee is true in all final states reached by all
executions of the hybrid program α. However, as discussed in Remark 4.3 of
Paper C, care must be taken to avoid situations where guarantee is true in the
final state but violated by some intermediate states in an execution of α. Such
situations can be avoided either by making use of the modelling features in a
hybrid program as done in Paper C, or by using differential temporal logic [89]
which extends dL with temporal operators.

A safety argument of an ADS depends on the verification of the safety
requirements at all levels, and also on the traceability of the lower level safety
requirements to the higher level safety goals. Bergenhem et al. [55] advocate the
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importance of having formal proofs at each step of the requirement refinement
process for the safety argument. Experience from Paper A and Paper C further
strengthens this argument. To help tackle this challenge, Section 6 of Paper C
shows how formal analysis, especially using dL, is used to systematically refine
SR 2 into subsequent low-level requirements depending on the assumptions
and invariant conditions required to guarantee safety. This introduces more
rigour in the requirement refinement process with the help of formal analysis,
and such a model-based approach can be used to achieve traceability in the
safety argument. In that vein, Paper E proposes a safety argument approach
that shows how the different artifacts obtained during a formal analysis can be
used to close the gap between the ADS system requirements and the individual
component requirements. An interesting future work would be to investigate
whether dL and SPARK can be used together to show traceability from the
design level to the implementation level.

4.2 Models – The Good, the Bad, and the Useful
The validity of a formal proof directly corresponds to the validity of the formal
model. So, what would make a formal model and thereby the proof invalid?
Insights from Paper A and Paper C reveal two main problems. First, manual
errors introduced during the modelling process could lead to invalid conclusions.
Second, modelling errors due to incorrect assumptions and abstractions in
the formal model could result in proving a faulty controller safe. In both
these cases, an ADS will be incorrectly verified to be safe, which could be
catastrophic in practice. Unsurprisingly, these concerns are not specific to
the case studies in Paper A and Paper C, but rather a general threat to
safety arguments based on formal approaches [20], [65]. To address the first
challenge, Paper B presents a systematic method to automatically learn formal
models (discussed in Section 4.3); and to address the second challenge, Paper D
considers two kinds of modeling errors and defines and proves conditions that
when fulfilled ensure that these modelling errors are not present.

In Paper A and Paper B, a formal model of the LSM was obtained from the
source code. Since the LSM is a state manager function, the hypothesis was
that state-based modelling formalisms like EFSM and TLA+ were naturally
suitable. While it was sufficient to model and analyse the decision logic in the
LSM , some shortcomings were identified in both Paper A and Paper B. For
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instance, it was observed that, to reason about certain decisions in the LSM ,
it was also necessary to sufficiently model the interactions of the LSM with
other components in the Decision & Control (Figure 1 in Paper A). These
interactions typically involve state variables that vary continuously with time,
and in Paper A such interactions were abstracted as discrete decision variables
that affect the state transitions (see Section 3 and Section 4 of Paper A). In
Paper B, significantly more abstractions were needed in order to efficiently
learn a model of the LSM .

Of course, different techniques [90], [91] have been investigated to deal with
continuous change in the formalisms investigated in Paper A. However, it
entails from the case studies in both Paper A and Paper B that adding finer
abstractions of those aspects would likely result in the formal analysis becoming
intractable due to the well known state-space explosion problem associated
with finite-state methods like SCT and model checking. On the other hand,
experience from Paper A suggests that such finite-state methods are useful in
the concept and the early design phases of the ISO 26262 safety lifecycle [52].

Based on insights from Paper A, Paper C evaluates a modelling formalism
that allows reasoning about both discrete changes as well as the continuous
dynamics of the system. While the risk of modelling errors due improper
abstractions were reduced in comparison to the methods in Paper A, modelling
errors due to improper assumptions surfaced as a crucial challenge.

Paper C uses hybrid programs to model Decision & Control as a hybrid
system. Hybrid programs include program statements to describe nonde-
terminism in many ways (see Section 3 of Paper C). The nondeterministic
statements are particularly helpful in two aspects: (i) they can describe un-
known behaviour of the environment and other components interacting with
the Decision & Control; and (ii) they can abstract away implementation
specific details and thus reduce the dependency of the proof on such details.
Test actions are often used together with non-deterministic assignment, like
an := ∗; ?

(
−aminn ≤ an ≤ amaxn

)
. This expresses that an is assigned an arbi-

trary value, which is then tested to be within the bounds −aminn and amaxn .
Such a model could, for instance, be used to describe the behaviour of a
nominal controller which outputs a nominal acceleration an within the bounds.
Thus, the behaviour of any nominal controller could be modelled independent
of the implementation, which provides the flexibility to analyse and reason
about Decision & Control even if learning-based algorithms are used in
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the nominal controller.
While it is undoubtedly a strength that hybrid programs can describe and

reason about the typically infinite set of behaviours, it is also a weakness. The
weakness stems from the fact that assumptions are used to limit the operational
domain and remove behaviours that are too hostile for any ADS to act in a
safe manner. As an example, consider an ADS designed to autonomously drive
a vehicle in urban highways. Of course, it is possible to model an environment
where obstacles are allowed to nondeterministically appear directly in front of
the vehicle while driving. Admittedly, such a model is neither useful nor realistic
to argue safety of the ADS. Therefore assumptions are necessary to restrict
the operational domain, but, if care is not exercised, they might inadvertently
result in a situation where the formal proof provides less assurance than what
is assumed.

Theorem 1 of Paper D formulates and proves conditions to identify and
avoid situations where the environment assumptions and the controller actions
interact in such a way that the environment behaves in a friendly way to adapt
to the actions of a controller that exploits that friendliness. An example of this
is a faulty ADS controller that never brakes, together with an environment that
reacts by always moving obstacles to accommodate the faulty actions. In the
same way, Theorem 2 of Paper D addresses modelling errors that arise when
the assumptions about the environment and/or other interacting components
remove all behaviours in which any action by the controller is needed. A
worst-case situation of this error is when the model is so over-constrained that
all possible behaviours are removed, thereby resulting in a vacuous proof for
the correctness of an unchallenged controller.

Such modelling errors also highlight the implicit trade-off between false
alarms and vacuous truth in these model-based methods. While abstracting
too many details increases the risk of false alarms, having a model with
restrictive constraints could potentially end up with a proof that is vacuously
true. In contrast, formal verification in SPARK is applied at the source-code
level. Hence, such modelling errors are not a concern. However, other kinds of
challenges are manifested as discussed in the next section.
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4.3 Verification – Effort vs. Gain

As described in Chapter 3, the different methods and tools evaluated are
grouped into two categories: enumeration and deduction. The verification
effort and the expertise required in the two categories are noticeably different.

In Paper A, an existing implementation of the LSM was manually translated
into an EFSM model (for SCT), and a TLA+ model. Though there was
considerable manual effort involved in the translation, it was not a major
obstacle in this case. Both Supremica and TLC provided a counterexample
to SR 1. It was then confirmed by reviews and simulation that the behaviour
described by the counterexample was due to a bug in the implementation.
Though the verification objective was met, it is foreseeable from the experience
of Paper A that manually translating the models from source code does not
scale well. This highlights the fact that these methods may not be best suited
for verification at the implementation level.

Apart from the effort needed to translate the models, another significant
challenge with the manual approach is the possibility to introduce modelling
errors in the process. To overcome the problem of potentially error-prone
manual modelling, Paper B presents one possible solution that automatically
learns the formal models directly from the implemented code. Two learning
algorithms were investigated in the case study: L∗, a language-based learning
algorithm [92] and the Modular Plant Learner (MPL), a state-based learning
algorithm [93]. While L∗ did not manage to learn a model (despite several
abstractions and experiments on two different tools), MPL did learn a model
of the LSM . Although the learnt model was not formally verified (see Section 6
in Paper B), results from the case study make strong arguments for the
applicability of automata learning as a method to address the challenges in
manual modelling. However, as discussed in Paper B, more empirical studies
are needed to further explore the limits of the learning approach.

In the case of SPARK, though, the LSM code in MATLAB was re-implemented
using Ada to make use of the SPARK formal verification framework. The Ada
implementation of the LSM was straightforward since the original MATLAB
implementation was available for reference. However, specifying SR 1 in the
form of program contracts required several iterations starting from a single
global contract at the package level to incrementally adding many specific
contracts at the subprogram level. Since SPARK could not prove some con-
tracts, it was difficult to make a concrete conclusion as the proof checks only
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report that the unprovable post-conditions might fail but little feedback on
why so. When a proof fails, SPARK may provide a counterexample with a path
which highlights the subprogram statements and the assignment of values to
variables that appear on that path (Section 7.2 in [94]). Since this was observed
with every incremental addition of contracts, detailed analysis and domain
knowledge were required to determine whether the failed proof attempts were
due to an error in the code or due to an error in the program annotations. This
further emphasises the need to address the gaps in formalizing requirements
at all levels of the development process.

The need for domain knowledge and expertise in the proof process was also
observed in the case of dL and KeYmaera X in Paper B. The effort in this case
was targeted towards finding the correct assumptions and the loop invariants
required to close the proof goals. This was also an incremental process, however,
KeYmaera X allows user interactions [85] during the intermediate steps of the
proof process. Analysing a particular proof branch in case of a failed proof
attempt was helpful in strengthening the initial loop invariant candidates as
well as for identifying the required assumptions in the model. In contrast,
though SPARK supports user interaction by the addition of manual proofs and
lemmas (Section 7.9 in [94]), the level of interaction is quite involved and may
require significant expertise to analyse the verification conditions as they are
expressed in an intermediate language different from the SPARK programming
language. On the other hand, the feedback from KeYmaera X in the form of a
counterexample was very much similar to SPARK. Wherever available, the
counterexample only provides variable assignments that cause the formula to
be invalid.

A fundamental trade-off exists between the level of automation and the
expressiveness of the underlying logical formalism. dL and KeYmaera X allow
modelling of and reasoning about infinite state systems over infinite sets of
behaviours that include both discrete and continuous dynamics. The price
to pay here is the user expertise and domain knowledge needed to prove
the requirements. Whereas, SCT and TLA+ provide full automation but
at the price of discrete and finite-state abstractions of the system. The
counterexamples provided by Supremica and TLC include information about
the variable assignments as well as the trace leading to the property violation.
This is considerably different from what KeYmaera X and SPARK provides as
counterexamples. Though manual inspection is needed in all cases, in the case
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of Supremica and TLC, the objective is to validate that the counterexample
is not due to false alarms, for which help can be obtained from other techniques
like testing and simulation. This distinction could be valuable when the type
of evidence and verification feedback desired during the development process
is important.

4.4 Towards an Integrated Approach
An important take-away message from this thesis is the need for an integrated
approach to aid the development of safe ADS. Papers A, B, C, and D give
insights into the advantages and limitations of the different approaches. It is
also clear that no method can on its own provide sufficient evidence for the
safety argument of an ADS.

From Paper A, Paper B, and Paper C, there is strong evidence to suggest that
SCT (Supremica), TLA+ (TLC), and dL (KeYmaera X) are best suited to
model, specify, and verify Decision & Control of an ADS in the conceptual
stages of the development process. Typical activities include feature design
specification, evaluation of different conceptual designs, requirement refinement,
hazard analysis (for related work, see Paper G and Paper I), design and
verification of the functional safety concept [52]. Paper A indicates that SCT
and TLA+ include modelling features suitable to reason about the system
management functions, and Paper C indicates that dL is preferable for the
nominal and safety controller functions of Decision & Control. These
three methods and their associated tools also seem to support an iterative
design process in which small design modifications do not add any significant
overhead in the effort to use the methods and tools.

On the other hand, the use of such methods in the early stages of the
development does not preclude the need for rigour in the implementation
stages. As seen in Paper A, the deductive framework in SPARK is best suited
to verify source code at the implementation level. Similarly, the automata
learning approach from Paper B could also be suitable to learn formal models
from the source code. Certainly, there are other ways, like strict coding
guidelines and standards, that can be combined with traditional software
testing to assess the quality of the implemented source code. In the end, the
question of whether evidence from such arguments meets the rigour provided
by a formal proof will be decisive. Such a distinction between the various
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approaches clearly highlights the importance of the verification objective as a
factor that affects the choice of the formal method. Though not investigated
in this thesis, an interesting approach is to combine several methods to design
a safe ADS, that is, to use SCT with SPARK for a state manger and dL with
SPARK for a safety controller for development end-to-end from design to
implementation.

Gleirscher et al. [95] report that a “striking finding” in their experience is
that, in various safety-critical standards, the normative parts for development
activities like requirements engineering (both specifying and avoiding errors),
and for hazard and risk analysis, is below par. This, despite observations
that specification errors is a significant cause of safety-critical incidents. Fur-
thermore, several studies [65], [95], [96] agree that choosing an appropriate
modelling and specification method for a particular system is difficult, and
there is a lack of guidelines to aid engineers and developers in that task.
Insights from this thesis help narrow the gap in both the above aspects.

Another factor that affects the industrial adoption of the investigated meth-
ods is their ease of integration with the existing software development processes.
With recent advances in continuous software development [97], [98], the need for
automated development tools that are seamlessly integrated into the software
development tool chain is increased. Such new developments in the processes
have raised concerns for the development of safety-critical systems [99], [100].
Any progress in developing tool support for continuous reasoning [101] for
these methods will likely increase the industrial adoption. In addition, the
compatibility of the formal tools with other conventional development tools is
equally important. SPARK provides features to combine formal verification
and testing (Section 8 in [94]). The automata learning approach in Paper B
has the possibility to be used in a learning based test environment [102]. In
the case of model-based tools, promising results are shown along the lines of
combining Supremica (SCT) with simulation-based analysis (Paper I) and
also through the use of runtime monitoring [103] based on KeYmaera X models.

4.5 Safe Automated Driving – The Big Picture
The previous sections discussed the insights obtained from formally verifying
parts of the Decision & Control subsystem in an ADS. However, RQ 3
still remains: how do the evaluated methods, or rather, formal methods in
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general aid in the overall safety argument of an ADS? In this regard, Paper E
presents one way to structure a safety argument for an ADS based on formal
methods. Recall from Chapter 2 that a safety case is a structured argument
supported by evidence to show that a system is safe in a given operational
environment.

The Goal Structuring Notation (GSN) is a standardized graphical argument
notation [104], [105], which can be used to structure a safety case. It explicitly
documents the individual elements of a safety argument and their relationships
to the gathered evidence. Figure 3 in Paper E shows the GSN structure of the
proposed safety argument approach using the different formal artifacts.

In a nutshell, Paper E proposes to split the safety argument using two
strategies that taken together demonstrate that an ADS fulfills a safety goal
(e.g. does not cause a collision). The first strategy argues that a formal model
of the ADS is correct with respect to the specification, i.e., the formalized safety
goal, using the formal proof of correctness as evidence. The formal model is
composed of the different subsystems of the ADS as shown in Figure 1.1. The
formal models are then used to obtain specifications for the realization of the
individual subsystems. The second strategy then argues from evidence that
the different subsystems are correct with respect to the specifications resulting
from the first strategy. Thus, through the evidence from these two strategies
together, the safety goal is shown to be fulfilled.

The artifacts produced from model-based approaches using SCT, TLA+, and
dL are well-suited to be a part of the first strategy. For example, Paper C proves
that a Decision & Control model fulfills SR 2. This proof is indeed the
evidence needed for the first strategy. The formal model includes a description
of the Decision & Control subsystem as well as the invariant conditions
and assumptions on the other subsystems of the ADS. These artifacts are then
used, as part of the second strategy, to obtain requirements on the individual
components. An example of the safety argument evidence in this strategy, is a
formal proof that a SPARK implementation of the safety controller is correct
with respect to the requirements resulting from the proven model.

As discussed in Paper E, the proposed approach is just one way of structuring
a safety argument using the different formal artifacts. A potential benefit,
however, is that this approach not only ensures that unambiguous requirements
are obtained on the different components, but also lessens the effort of verifying
the safety requirement of the ADS. This is primarily due to the separation of
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concerns in the proposed argument. A safety requirement that initially required
closed-loop verification of the whole ADS feature can now be shown to be
fulfilled by verifying the individual component requirements, since the evidence
that the individual component requirements imply the original requirement is
already available as a by-product from the proof of correctness of the formal
model from the first strategy. A critical aspect of the proposed strategy, not
considered in this thesis, is an argument to show the correctness of the formal
tools used to produce the evidence. Habli and Kelly [106] present a systematic
approach in that regard.
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“Whatever you say may fade away
Whatever you write might come back and bite”

David V. Thiel5

CHAPTER 5

Summary of Included Papers

This chapter provides a summary of the included papers.

5.1 Paper A
Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian
Verification of Decision Making Software in an Autonomous Vehicle: An
Industrial Case Study
Larsen K., Willemse T. (eds) Formal Methods for Industrial Critical
Systems. FMICS 2019. Lecture Notes in Computer Science, vol 11687,
pp. 143–159, Jul. 2019.
©Springer, Cham DOI: 10.1007/978-3-030-27008-7_9.

In Paper A, three different formal verification approaches, namely supervisory
control theory, model checking, and deductive verification are used to formally
verify an existing decision-making software in an autonomous vehicle. The
three approaches are evaluated to identify (i) the challenges in applying formal
verification to automated driving, and (ii) the factors that affect the choice of

5Thiel, D. V. (2014). Research methods for engineers. Cambridge University Press.
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the verification method. Paper A discusses how the verification objective differs
in the three approaches and presents the challenges in formally modelling and
specifying the decision-making software. Insights from Paper A show the need
for an integrated formal approach to prove correctness.

5.2 Paper B
Yuvaraj Selvaraj, Ashfaq Farooqui, Ghazaleh Panahandeh, Wolfgang
Ahrendt, Martin Fabian
Automatically Learning Formal Models from Autonomous Driving Soft-
ware
Electronics 2022; vol. 11, no. 4: 643.
©The Authors DOI: 10.3390/electronics11040643.

One of the challenges identified in Paper A is the manual effort required in
obtaining formal models. Manual construction of formal models is expensive,
error-prone, and intractable for large systems. As one possible solution to this
problem, Paper B applies active automata learning techniques to obtain formal
models of the decision-making software studied in Paper A. Results from Pa-
per B demonstrate the feasibility of such automated techniques for automotive
industrial use. Two learning algorithms are evaluated and practical challenges
in their application are presented. Furthermore, insights from Paper B show
that such techniques could potentially pave way for the widespread adoption
of formal methods to guarantee correctness of automated driving systems.

5.3 Paper C
Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian
Formal Development of Safe Automated Driving using Differential Dy-
namic Logic
IEEE Transactions on Intelligent Vehicles, 2022
©IEEE DOI: 10.1109/TIV.2022.3204574.

Paper C investigates the use of differential dynamic logic and the deductive
verification tool KeYmaera X in the development of an automated driving
feature. Specifically, this paper demonstrates how formal models and safety
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5.4 Paper D

proofs of different design variants of a Decision & Control module can be used
in the safety argument of an in-lane automated driving feature. In doing so,
the assumptions and invariant conditions necessary to guarantee safety are
identified, and this paper shows how such an analysis helps in the requirement
refinement and in the formulation of the operational design domain during
the development process. Furthermore, Paper C also illustrates how the
performance of the different models is formally analyzed exhaustively, in all
their possible behaviors.

5.4 Paper D
Yuvaraj Selvaraj, Jonas Krook, Wolfgang Ahrendt, Martin Fabian
On How to Not Prove Faulty Controllers Safe in Differential Dynamic
Logic
Riesco, A., Zhang, M. (eds) Formal Methods and Software Engineering.
ICFEM 2022. Lecture Notes in Computer Science, vol 13478, pp. 281–
297, Oct. 2022. ©Springer, Cham DOI: 10.1007/978-3-031-17244-1_17.

Though formal methods have shown their usefulness, care must be taken
as modelling errors might result in proving a faulty controller safe, which is
potentially catastrophic in practice. Paper D deals with two such modelling
errors in differential dynamic logic. The main contribution is to prove that,
when certain conditions hold, these two modeling errors cannot cause a faulty
controller to be proven safe. The problems are illustrated with a real world
example of a safety controller for automated driving, and it is shown that the
formulated conditions have the intended effect both for a faulty and a correct
controller. It is also shown how the formulated conditions aid in finding a loop
invariant candidate to prove properties of hybrid systems with feedback loops.
The results are proven using the interactive theorem prover KeYmaera X.

5.5 Paper E
Jonas Krook, Yuvaraj Selvaraj, Wolfgang Ahrendt, Martin Fabian
A Formal Methods Approach to Provide Evidence in Automated Driving
Safety Cases
Submitted to IEEE Transactions on Intelligent Vehicles, 2022.
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Paper E proposes a formal methods based approach to structure a safety
argument for an ADS feature. The main contribution is to show how formal
methods can aid in providing evidence to the safety argument. Furthermore, if
a proof is obtained, Paper E demonstrates how the proven formal models can
help to close the gap between the ADS system requirements and the broken-
down subsystem requirements. This structure of the safety argumentation can
be used to alleviate the need for reviews and tests to ensure that the break-
down is correct, thereby saving effort both in data collection and verification
time.
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“That’s all folks!”
Porky Pig6

CHAPTER 6

Concluding Remarks and Future Work

This thesis started with the hypothesis that formal methods, especially formal
verification, can be used to prove correctness of Decision & Control systems
and thereby provide rigorous evidence for the safety argument of ADS. The
results presented in the thesis strongly support that hypothesis. To achieve
the overall goal of establishing formal verification as an efficient tool in the
development of a safe ADS, three research questions are considered. Based
on the insights from the included papers and the discussion in Chapter 4, the
research questions are answered as follows.

RQ 1 What factors affect the application of formal verification to ADS
and what are the current challenges in existing methods?

To answer RQ 1, three aspects are identified. First, deciding the right level of
abstraction and the choice of the formal method for that level is a critical aspect
but also a vague one with no clear answer. The formal methods investigated
in this thesis are fundamentally targeted at certain types of systems. SCT
towards DES, TLA+ towards concurrent and reactive systems, dL towards

6Looney Tunes
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cyber-physical systems, and SPARK towards safety-critical software. The
Decision & Control system in an ADS includes all the above characteristics
and more. The right level of abstraction needed to describe the behaviour of
the Decision & Control system with each method have to be balanced with
the kind of modelling errors that might arise as an unintended consequence.

Second, the verification objective is a crucial aspect that affects the practical
applicability of the different methods and their associated tools. Similar to
how the different methods are intended to model specific kinds of systems, they
also have fundamental differences in how a proof of correctness is produced.
A notable difference between the methods in the verification process is where
human expertise and domain knowledge is required. The kind of evidence (if
successful) and the level of feedback (if failed) provided by the methods are
also closely connected to the verification objective. The question to consider
here is whether quick automated feedback is required or a comprehensive proof
of a wide variety (typically infinite set) of behaviours of the system. Also,
the interoperability of the tools with other conventional development methods
such as testing and simulation also affects the applicability of these methods.

Third, the need for sufficiently detailed requirements at all levels of the
development process is identified as an important factor but also a barrier for
practical verification. An insight from different case studies in this thesis is
that there might not be a straightforward way to formalize a high level safety
requirement (e.g. ADS does not cause a collision) in all the methods. The
introduction of more rigour in the requirement refinement process to correctly
break down the high level safety requirement into requirements that can be
formalized and verified in the method of choice is vital.

RQ 2 How can the challenges be addressed, and can the solutions be
scaled?

The second research question, RQ 2, concerns how to address the challenges
identified in RQ 1. As regards the challenge with the formal modelling
process, this thesis proposes solutions in two different directions. To address
the potentially error-prone manual modelling process, Paper B presents a
systematic method to automatically learn formal models directly from source
code. Issues with scalability are identified and possible future investigations
are also discussed. In the other direction, Paper D formulates and proves

52



two theorems that address two kinds of modelling errors introduced due to
improper assumptions in the models. This reduces the risk of fallible proofs in
the safety argument.

Based on the included papers, this thesis identifies the need for an integrated
approach to develop a safe ADS. The case studies of Paper A and Paper C
provide guidelines on how to model and verify certain parts of Decision &
Control using the different methods. Since some methods are well-suited
at a specific phase of the development process, the case studies can be used
to identify the right method and tool based on the level of abstraction and
the verification objective at that level. Though the possibility to combine
the different methods to develop a safe ADS is promising, much work is
needed in that direction to establish a suitable framework that supports such
development.

Paper C and Paper E discuss how formal methods can be used to break down
a high-level system safety requirement into low-level subsystem requirements
that can be formalized and verified. More empirical case studies are required
to understand the limitations of this approach. However, it should be noted
that the process of formalization of requirements can itself be beneficial.

RQ 3 How can formal methods be used to provide evidence in the
safety argument of ADS?

Paper E presents a safety argument approach that uses formal methods
to provide the necessary evidence. Of course, Paper E in isolation is not
enough to answer RQ 3. The suitability of a formal method and the type
of evidence generated is crucial for the argument, and Chapter 4 discusses
how the evaluated methods fit into such an approach. It is not surprising
that answering RQ 3 is tightly connected to RQ 1 and RQ 2 and perhaps
not surprising that the important factors that affect the formal verification of
an ADS also have associated challenges. The strength of each method comes
with a weakness. This, together with the heterogeneous and complex nature
of ADS makes it a strenuous problem to solve. Efforts have to be targeted
towards clearly defining the boundaries of the problem so that the strength of
each method can be maximised and the weakness minimised, and this thesis
provides valuable insights in that direction.
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6.1 Future Work
The goal of developing a safe ADS and demonstrating that it is safe is a huge
challenge and this thesis is just one step towards that goal. The scope for
possible future research is wide. The case studies in this thesis are broad in the
sense that different methods are evaluated on representative parts of Decision
& Control in ADS. It is definitely possible to advance research by aiming for
more studies that focus on deeper understanding. The research question in this
direction, for instance, would be to investigate whether a particular method
(e.g. SCT) is suitable to reason about all kinds of state manager functions in
an ADS. In the same vein, more studies can be made in regard to the work
in Paper D. A relevant research question is: what other modelling errors may
cause a formal proof to fall apart and how to address them?

The possibilities to integrate different methods evaluated in this thesis, with
each other and with other methods, to develop a safe ADS is a relatively less
explored area. Invariants play a crucial role in safety verification and this was
also observed in multiple methods studied in this thesis. Identifying invariants
of a system is a challenging problem researched (independently) within the
formal methods community as well as the control engineering community.
Investigating whether results from those communities can be integrated in the
context of ADS safety verification will be interesting.

In Paper B, a learning-based approach is studied to reduce the effort required
in the verification of ADS where finite-state methods are used. Similarly, it
is equally interesting to investigate whether learning-based approaches could
reduce the effort in the deductive methods. Chapter 4 briefly discusses how
the approach in Paper C can be used to guarantee safety even if learning-based
algorithms are used for nominal planning in Decision & Control. However,
this thesis does not investigate how formal methods can be used to reason
about specific learning algorithms used for decision-making in an ADS. Any
future work in this direction is definitely valuable since safety verification of
learning-based algorithms in general is an open problem.

The safety argument approach to answer RQ 3 is proposed based on the
experience from the papers included in the thesis. Though Paper E presents
arguments on how formal methods can provide compelling evidence, it is but an
argument. Investigating the limits of the argument through concrete examples
from the industry will likely remove some of the barriers for the industrial
adoption of formal methods.
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