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Non-pluripolar energy and the complex
Monge–Ampère operator

By Mats Andersson at Gothenburg, David Witt Nyström at Gothenburg and
Elizabeth Wulcan at Gothenburg

Abstract. Given a domain � � Cn we introduce a class of plurisubharmonic (psh)
functions G .�/ and Monge–Ampère operators u 7! Œdd cu�p, p � n, on G .�/ that extend the
Bedford–Taylor–Demailly Monge–Ampère operators. Here Œdd cu�p is a closed positive cur-
rent of bidegree .p; p/ that dominates the non-pluripolar Monge–Ampère current hdd cuip. We
prove that Œdd cu�p is the limit of Monge–Ampère currents of certain natural regularizations
of u.

On a compact Kähler manifold .X; !/ we introduce a notion of non-pluripolar energy
and a corresponding finite energy class G .X; !/ � PSH.X; !/ that is a global version of the
class G .�/. From the local construction we get global Monge–Ampère currents Œdd c' C !�p

for ' 2 G .X; !/ that only depend on the current dd c' C !. The limits of Monge–Ampère
currents of certain natural regularizations of ' can be expressed in terms of Œdd c' C !�j

for j � p. We get a mass formula involving the currents Œdd c' C !�p that describes the
loss of mass of the non-pluripolar Monge–Ampère measure hdd c' C !in. The class G .X; !/

includes !-psh functions with analytic singularities and the class E.X; !/ of !-psh functions
of finite energy and certain other convex energy classes, although it is not convex itself.

1. Introduction

Let � be a domain in Cn, and let u 2 PSH.�/, i.e. let u be a plurisubharmonic (psh)
function on �. If u is C 2, then dd cu is a positive form, and the associated Monge–Ampère
measure is defined as the top wedge power of this form with itself. This positive measure plays
a fundamental role in pluripotential theory akin to the role played by the Laplacian in ordinary
potential theory. If u is not C 2, then dd cu is no longer a form but a current. As is well known
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the wedge product of currents is typically not well-defined, which raises the question whether
it is still possible to define a Monge–Ampère measure for more general psh functions.

Bedford and Taylor [6, 7] solved this problem when u is (locally) bounded. Their idea
was to define the Monge–Ampère measure .dd cu/n recursively. Assume that T is a closed
positive current of bidegree .j; j /. Then T has measure coefficients and since u is bounded,
uT is a well-defined current and thus so is dd c.uT /. Bedford and Taylor proved that this
current is closed and positive. They could then recursively define closed positive currents

.dd cu/p WD dd c.u.dd cu/p�1/:

The Monge–Ampère operators
u 7! .dd cu/p

have some essential continuity properties. Bedford and Taylor proved that if u` is any sequence
of psh functions decreasing to u, then .dd cu`/p converges weakly to .dd cu/p.

We are interested in the situation when u is not locally bounded. Demailly [16, 17]
showed that it is possible to extend the Bedford–Taylor Monge–Ampère operators to psh
functions that are bounded outside “small” sets. Moreover, Błocki [10] and Cegrell [14] char-
acterized the largest class D.�/ of psh functions on which there is a Monge–Ampère opera-
tor u 7! .dd cu/n that is continuous under decreasing sequences. For instance, functions in
PSH.�/ that are bounded outside a compact set in� are in D.�/, see, e.g., [10]. On the other
hand psh functions with analytic singularities, i.e., locally of the form u D c log jf j2 C b,
where c > 0, f is a tuple of holomorphic functions, and b is locally bounded, are not in D.�/

unless their unbounded locus is discrete, see [11] or Proposition 4.2.
To handle more singular psh functions Bedford and Taylor [8] introduced the notion of

non-pluripolar Monge–Ampère currents. The idea is to capture the Monge–Ampère currents of
the “bounded part” of u 2 PSH.�/. Note that for any `, max.u;�`/ is psh and locally bounded,
and thus .dd c max.u;�`//p is well-defined for any p. For each p � n,

(1.1) hdd cuip WD lim
`!1

1¹u>�`º
�
dd c max.u;�`/

�p
is a form with measure coefficients. The existence of the limit follows from the fact that the
Monge–Ampère operators on bounded psh functions are local in the plurifine topology, i.e.,
if u D v on a plurifine open set, then .dd cu/p D .dd cv/p on that set. One serious issue is
that the measure coefficients of hdd cuip might be not locally finite, as an example due to
Kiselman, [20], shows. If they are locally finite, however, by [12], hdd cuip is a closed positive
.p; p/-current. For instance, this is the case when u has analytic singularities. We refer to the
currents hdd cuip as non-pluripolar Monge–Ampère currents.

As the name suggests, the non-pluripolar Monge–Ampère currents do not charge pluripo-
lar sets. Thus, since hdd cuip cannot capture the behavior on the singular set of u, they do not
coincide with Demailly’s extensions of .dd cu/p in general. In particular, it follows that the
non-pluripolar Monge–Ampère operators u 7! hdd cuip are far from being continuous under
decreasing sequences in general. For instance, if u D log jf j2, where f is a holomorphic func-
tion, then hdd cui D 0, whereas for any sequence u` decreasing to u, dd cu` converges weakly
to dd cu, which by the Poincaré–Lelong formula is the current of integration Œf D 0� along the
divisor of f .

The purpose of this paper is to introduce a new class of psh functions together with an
extension of the Demailly–Bedford–Taylor Monge–Ampère operators that capture the singular
behavior.
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Definition 1.1. Let � be a domain in Cn. We say u 2 PSH.�/ has locally finite non-
pluripolar energy, u 2 G .�/ if, for each j � n � 1, hdd cuij is locally finite and u is locally
integrable with respect to hdd cuij .

If u 2 G .�/ and j � n � 1, then uhdd cuij is a well-defined current and thus by mim-
icking the original construction by Bedford and Taylor we can define generalized Monge–
Ampère currents.

Definition 1.2. Given u 2 G .�/, for p D 1; : : : ; n we define

(1.2) Œdd cu�p D dd c.uhdd cuip�1/

and

Sp.u/ D Œdd
cu�p � hdd cuip:

By using the locality of the non-pluripolar Monge–Ampère operators and the integra-
bility, it follows that Œdd cu�p and Sp.u/ are closed positive currents. In particular, Œdd cu�p

dominates hdd cuip.
Definitions 1.1 and 1.2 are inspired by the construction of Monge–Ampère currents

in [1,5]. From [5, Proposition 4.1] it follows that psh functions with analytic singularities have
locally finite non-pluripolar energy. Thus there are functions in G .�/ that are not in D.�/.
If u 2 PSH.�/ has analytic singularities, then the currents Œdd cu�p coincide with the Monge–
Ampère currents .dd cu/p introduced in [1, 5]. In this case Sp.u/ D 1Z Œdd cu�p, where Z is
the unbounded locus of u. In [3, 4] these Monge–Ampère currents are used to understand non-
proper intersection theory in terms of currents. In particular, the Lelong numbers of the currents
Œdd c log jf j2�p are certain local intersection numbers, so-called Segre numbers, associated
with the ideal generated by f .

In Section 4 we provide other examples of functions in G .�/ and also psh functions that
are not in G .�/. For instance, Example 4.3 shows that there are psh functions u � v such that
u 2 G .�/ but v … G .�/.

Given u 2 G .�/, note that max.u;�`/ is a natural sequence of locally bounded psh
functions decreasing to u, cf. (1.1). Our first main theorem states that our new Monge–Ampère
currents Œdd cu�p are the limits of the Monge–Ampère currents of this regularization.

Theorem 1.3. Assume that u 2 G .�/. Then�
dd c max.u;�`/

�p
! Œdd cu�p; `!1:

More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let u` D �` ı u. Then

.dd cu`/
p
! Œdd cu�p; `!1:

Note that u` D max.u;�`/ corresponds to �`.t/ D max.t;�`/. Also note that Theo-
rem 1.3 implies that Œdd cu�p coincides with the Bedford–Taylor–Demailly Monge–Ampère
current when this is defined.
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Example 1.4. Let u D log jf j2, where f is a tuple of holomorphic functions and let
�� D log.et C �/. Then �� ı u D log.jf j2 C �/ and Theorem 1.3 asserts that

lim
�!0

�
dd c log.jf j2 C �/

�p
D Œdd cu�p:

This was proved in [1, Proposition 4.4].

The Monge–Ampère currents of the natural regularizations max.u;�`/ do not always
converge, see Example 5.9, and thus not all psh functions are in G .�/.

Since there are functions in G .�/ that are not in D.�/, we cannot expect continuity for
all decreasing sequences. Our next result is a twisted version of Theorem 1.3 that illustrates
that failure of continuity. Let v be a locally bounded psh function on �. Then max.u; v � `/ is
another natural sequence of locally bounded psh functions decreasing to u. Moreover, if �` is
as in Theorem 1.3, then also �` ı .u � v/C v is a sequence of locally bounded psh functions
decreasing to u.

Theorem 1.5. Assume that u 2 G .�/ and that v is a smooth psh function on �. Then

�
dd c max.u; v � `/

�p
! Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j ; `!1:

More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let u` D �` ı .u � v/C v. Then

.dd cu`/
p
! Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j ; `!1:

Note that the lower degree Monge–Ampère currents Œdd cu�j come into play. Also note
that Theorem 1.3 follows from Theorem 1.5 by setting v D 0.

When u has analytic singularities, Theorem 1.3 first appeared in [2, Theorem 1.1], and
Theorem 1.5 appeared in [11, Theorem 1], although formulated slightly differently, cf. Re-
mark 5.7 below. In those papers, using a Hironaka desingularization, the results are reduced
to the case with divisorial singularities. Such a reduction is not available in the general case,
and in this paper we instead rely on properties from [12] of the non-pluripolar Monge–Ampère
operator. In particular, we get new proofs of the results in [2] and [11].

Let us now turn to the global setting. Assume that .X; !/ is a compact Kähler manifold
of dimension n. Recall that a function ' is said to be !-psh, ' 2 PSH.X; !/, if whenever h
is a local potential for !, i.e., dd ch D !, ' C h is psh. Then dd c' C ! is a closed positive
current in Œ!�, and by the dd c-lemma any closed positive current in Œ!� can be written as
dd c' C ! for some !-psh ', and this ' is unique up to adding of constants. Thus studying
!-psh functions is the same as studying closed positive currents in Œ!�.

If ' 2 PSH.X; !/ is bounded, then there are well-defined Monge–Ampère currents
.dd c' C !/p, locally defined as .dd c.' C h//p, where h is a local potential for !. It turns
out, [12, Proposition 1.6], that for an unbounded ' the non-pluripolar Monge–Ampère currents
hdd c' C !ip are always well-defined. Moreover, [12, Proposition 1.20] showed thatZ

X

hdd c' C !ip ^ !n�p �

Z
X

!n:
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When ' is bounded we have equality

(1.3)
Z
X

.dd c' C !/p ^ !n�p D

Z
X

!n

but in general the inequality can be strict.
Our definitions of G .X/ and Monge–Ampère currents naturally lend themselves to the

global setting.

Definition 1.6. Let .X; !/ be a compact Kähler manifold of dimension n. We say that
' 2 PSH.X; !/ has finite non-pluripolar energy, ' 2 G .X; !/, if, for each j � n � 1, ' is
integrable with respect to hdd c' C !ij .

Definition 1.7. Given ' 2 G .X; !/, we define

Œdd c' C !�p D Œdd c.' C h/�p;

where h is a local potential for !, and

S!p .'/ D Œdd
c' C !�p � hdd c' C !ip:

Since two local potentials differ by a pluriharmonic function, it follows that Œdd c' C !�p

and S!p .'/ are well-defined global positive closed currents on X . Note that whether an !-psh
function ' is in G .X; !/ only depends on the current dd c' C ! and not on the choice of !
as a Kähler representative in the class Œ!�. Also the currents Œdd c' C !�p and S!p .'/ only
depend on the current dd c' C !.

From Theorem 1.5 we get global regularization results. Given ' 2 PSH.X; !/, note that
max.';�`/ is a natural sequence of bounded !-psh functions decreasing to '.

Theorem 1.8. Assume that ' 2 G .X; !/. Then�
dd c max.';�`/C !

�p
! Œdd c' C !�p C

p�1X
jD1

S!j .'/ ^ !
p�j ; `!1:

More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let '` D �` ı '. Then

.dd c'` C !/
p
! Œdd c' C !�p C

p�1X
jD1

S!j .'/ ^ !
p�j ; `!1:

If � is another Kähler form in Œ!�, then � D ! C dd cg for some smooth function g.
There is an associated regularization of ', namely '` WD max.' � g;�`/C g, which cor-
responds to the max-regularization of the current dd c' C ! with respect to the alternative
decomposition dd c.' � g/C �.

Theorem 1.9. Assume that ' 2 G .X; !/, that � is a Kähler form in Œ!�, and that g and
'` are as above. Then

(1.4) .dd c'` C !/
p
! Œdd c' C !�p C

p�1X
jD1

S!j .'/ ^ �
p�j ; `!1:
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More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let '` D �` ı .' � g/C g. Then (1.4) holds.

Note that Theorem 1.8 follows immediately from Theorem 1.9 by setting g D 0. As in the
local case, for ' with analytic singularities Theorems 1.8 and 1.9 follow from [11, Theorem 1],
cf. Remark 6.9.

From (1.3) and Theorem 1.8 we get the following mass formula.

Theorem 1.10. Assume that ' 2 G .X; !/. Then for each p � n,Z
X

hdd c' C !ip ^ !n�p C

pX
jD1

Z
X

S!j .'/ ^ !
n�j
D

Z
X

!n:

In fact, Theorem 1.10 is a cohomological consequence of the definition of Œdd c' C !�p;
in Section 6.1 we provide a direct proof that does not rely on Theorem 1.8. For ' with analytic
singularities this theorem appeared in [2, Theorem 1.2 and Proposition 5.2]. Note that, for
j � p, the current S!j .'/ captures the mass that “escapes” from hdd c' C !ip at codimen-
sion j .

From the local case it follows that !-psh functions with analytic singularities are in
G .X; !/, and in Section 11 we provide other examples. However, in the global setting we know
more about the structure of the class G .X; !/. In particular, it contains the Błocki–Cegrell class.
Note that being in the Błocki–Cegrell class is a local statement, cf. Proposition 10.1 below. We
say that ' 2 PSH.X; !/ is in D.X; !/ if whenever g is a local dd c-potential of ! in an open
set U � X , then ' C g 2 D.U/.

Theorem 1.11. Let .X; !/ be a compact Kähler manifold of dimension n. Then

D.X; !/ � G .X; !/:

Next, as the name suggests, the class G .X; !/ of !-psh functions with finite non-pluri-
polar energy can be understood as a finite energy class. Recall that the Monge–Ampère energy
of ' 2 PSH.X; !/, introduced in [19], inspired by earlier work [13] in the local setting, is
defined as

(1.5) E.'/ D
1

nC 1

nX
jD0

Z
X

'.dd c' C !/j ^ !n�j

if ' is bounded and by

(1.6) E.'/ D inf¹E. / W  � ';  2 PSH.X; !/ \ L1.X/º

in general. The corresponding finite energy class

(1.7) E.X; !/ WD ¹' 2 PSH.X; !/ W E.'/ > �1º

is convex. Recall that, if '; 2 PSH.X; !/, then ' is said to be less singular than  , ' �  ,
if ' �  CO.1/. If ' �  and  � ', we say that ' and  have the same singularity type
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and write ' �  . The class E.X; !/ is closed under finite perturbations in the sense that if
' 2 E.X; !/ and  � ', then  2 E.X; !/. Moreover, E.X; !/ is contained in the full mass
class

(1.8) F .X; !/ WD

²
' 2 PSH.X; !/ W

Z
X

hdd c' C !in D

Z
X

!n
³
:

We introduce an alternative energy for ' 2 PSH.X; !/.

Definition 1.12. Let .X; !/ be a compact Kähler manifold of dimension n. For a func-
tion ' 2 PSH.X; !/ we define the non-pluripolar energy

Enp.'/ D
1

n

n�1X
jD0

Z
X

'hdd c' C !ij ^ !n�j :

Note that

G .X; !/ D ¹' 2 PSH.X; !/ W Enp.'/ > �1º;

so that G .X; !/ can be thought of as an finite energy class, cf. (1.7).

Theorem 1.13. Let .X; !/ be a compact Kähler manifold. Then:

(1) if ' 2 G .X; !/ and  � ', then  2 G .X; !/,

(2) E.X; !/ � G .X; !/.

Although G .X; !/ contains the convex subclass E.X; !/ it is not convex itself. However,
it contains certain other convex energy classes.

Definition 1.14. Let  2 G .X; !/. For ' 2 PSH.X; !/ such that ' �  , we define the
energy relative to  

E .'/ D inf¹Enp.'0/ W '0 � '; '0 �  º:

We define the corresponding finite relative energy classes

E .X; !/ D ¹' �  ; E .'/ > �1º

and the relative full mass classes

F  .X; !/ D

´
' 2 PSH.X; !/ W ' �  ;

n�1X
jD0

Z
X

hdd c' C !ij ^ !n�j

D

n�1X
jD0

Z
X

hdd c C !ij ^ !n�j

µ
:

Note that if 2 PSH.X; !/\L1.X/, then E .X; !/� E.X; !/. The classes E .X; !/

have the following properties, similar to E.X; !/. Following [12], we say that ' 2 PSH.X; !/
has small unbounded locus (sul) if there exists a complete pluripolar closed subset A � X such
that ' is locally bounded outside A, cf. Section 2.2 below.
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Theorem 1.15. Let .X; !/ be a compact Kähler manifold. Then:

(1) if ' 2 E .X; !/ and '0 � ', then '0 2 E .X; !/,

(2) if  has sul, then E .X; !/ is convex,

(3) E .X; !/ D G .X; !/ \ F  .X; !/.

The paper is organized as follows. In Section 2 we provide some background on the
classical and the non-pluripolar Monge–Ampère operators in the local setting. In Section 3
we introduce the class G .�/, and more generally classes Gk.�/ of psh functions of locally
finite non-pluripolar energy of order k, and our Monge–Ampère operators, and in Section 4
we provide various examples of functions in G .�/. In Section 5 we prove the regularity result
Theorem 1.5. In fact, we prove a slightly more general version formulated in terms of Gk.�/.

In Section 6 we extend our definitions and regularity results to the global setting. In
Section 7 we recall the classical Monge–Ampère energy and in Sections 8 and 9 we study
the non-pluripolar energy and the relative energy, respectively; in particular, we prove Theo-
rems 1.13 and 1.15. As in the local case we introduce more generally non-pluripolar and
relative energies of order k and corresponding finite energy classes Gk.X; !/ and E

 

k
.X; !/,

and we prove versions of our results formulated in terms of these. In Section 10 we discuss the
Błocki–Cegrell class and prove Theorem 1.11. Finally, in Section 11 we give various examples
of functions with finite non-pluripolar energy.

Acknowledgement. We would like to thank the referees for valuable comments and
suggestions that have improved the presentation.

2. The complex Monge–Ampère product

Throughout this paper X is a domain in Cn or more generally a complex manifold of
dimension n. All measures are assumed to be Borel measures. We let d c D 1

4�i
.à � Nà/, so that

dd c log jz1j2 D Œz1 D 0�.
In this section we recall some basic facts about the (non-pluripolar) Monge–Ampère

products. We refer to, e.g., [18, Chapter III] for the classical Bedford–Taylor–Demailly theory,
see also [7, 8, 12].

First, the plurifine topology is the coarsest topology such that all psh functions on all
open subsets of X are continuous. A basis for this topology is given by all sets of the form
V \ ¹u > 0º, where V is open and u is psh in V .

Let T be a closed positive current and let u be a locally bounded psh function onX . Then
uT is a well-defined current and

dd cu ^ T WD dd c.uT /

is again a closed positive current. In particular, if u1; : : : ; up are locally bounded psh functions,
then the product dd cup ^ � � � ^ dd cu1 ^ T is defined inductively as

(2.1) dd cup ^ � � � ^ dd
cu1 ^ T WD dd

c.updd
cup�1 ^ � � � ^ dd

cu1 ^ T /:

It turns out that this product is commutative in the factors dd cuj and multilinear in the factors
dd cuj and it does not charge pluripolar sets. Moreover, dd cup ^ � � � ^ dd cu1 is local in the



Andersson, Witt Nyström and Wulcan, Non-pluripolar energy 153

plurifine topology, i.e., if O is a plurifine open set and uj D vj pointwise on O , then

1Odd cup ^ � � � ^ dd cu1 D 1Odd cvp ^ � � � ^ dd cv1:

The products (2.1) satisfy the following continuity property.

Lemma 2.1. Assume that u1; : : : ; up are locally bounded psh functions and u`1; : : : ; u
`
p

are decreasing sequences of psh functions converging to u1; : : : ; up, respectively, and that T
is a closed positive current. Then

dd cu`p ^ � � � ^ dd
cu`1 ^ T ! dd cup ^ � � � ^ dd

cu1 ^ T

weakly when `!1.

We will use the following result.

Lemma 2.2. Assume that for j D 1; : : : ; p, ujs , s 2 R (or some interval in R), is a fam-
ily of locally bounded psh functions on X such that ujs ! u

j
t locally uniformly on X when

s ! t . Then

dd cupsp ^ � � � ^ dd
cu1s1 ! dd cu

p
tp
^ � � � ^ dd cu1t1

weakly when .s1; : : : ; sp/! .t1; : : : ; tp/ in Rp.

Proof. Note that

dd cupsp ^ � � � ^ dd
cu1s1 � dd

cu
p
tp
^ � � � ^ dd cu1t1(2.2)

D

pX
jD1

�
dd cupsp ^ � � � ^ dd

cujsj ^ dd
cu
j�1
tj�1
^ � � � ^ dd cu1t1

� dd cupsp ^ � � � ^ dd
cujC1sjC1

^ dd cu
j
tj
^ � � � ^ dd cu1t1

�
:

Let � be a test form. Since (2.1) is commutative in the factors dd cuj , we can write the action
of the j th term on the right-hand side of (2.2) on � as

(2.3)
Z
X

.ujsj � u
j
tj
/dd cupsp ^ � � � ^ dd

cujC1sjC1
^ dd cu

j�1
tj�1
^ � � � ^ dd cu1t1 ^ dd

c�:

Let U � X be a relatively compact neighborhood of the support of �. Then there is a neighbor-
hood V � R of t such that for j D 1; : : : ; p, s 2 V , jujs � v

j
s j < � in U. Since ujs are locally

bounded, there is anM such that kujs kL1.U/ �M . We may also assume that
R
X jdd

c�j �M .
Now by the Chern–Levine–Nirenberg inequalities there is constant C such that the absolute
value of (2.3) is bounded by

C sup
U

jujsj � u
j
tj
jkupspkL1.U/ � � � ku

jC1
sjC1
k
L1.U/

ku
j�1
tj�1
k
L1.U/

� � � ku1t1kL1.U/

Z
X

jdd c�j

� C�.M C �/p�jM j
! 0:

Since this holds for any �, (2.2) converges weakly to 0 when .s1; : : : ; sp/! .t1; : : : ; tp/.
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2.1. The non-pluripolar Monge–Ampère product. Let u1; : : : ; up be not necessarily
locally bounded psh functions on X and let

(2.4) O` D

p\
jD1

¹uj > �`º:

Then O` is a plurifine open set. Following [12, Definition 1.1], we say that the non-pluripolar
Monge–Ampère product hdd cup ^ � � � ^ dd cu1i is well-defined if for each compact subset
K � X we have

sup
`

Z
K\O`

!n�p ^

p^
jD1

dd c max.uj ;�`/ <1;

where ! is a smooth strictly positive .1; 1/-form on X . This definition is clearly independent
of !.

Since the Monge–Ampère product for bounded functions is local in the plurifine topol-
ogy, it follows that

1O`
p^
jD1

dd c max.uj ;�`/ D 1O`
p^
jD1

dd c max.uj ;�`0/; `0 > `:

It follows that there is a well-defined positive .p; p/-current

(2.5) hdd cup ^ � � � ^ dd
cu1i WD lim

`
1O`

p^
jD1

dd c max.uj ;�`/I

by [12, Theorem 1.8] it is closed.
Note that (2.5) is commutative in the factors dd cuj since (2.1) is. By [12, Proposi-

tion 1.4] it is multilinear in the following sense: if v is another psh function, then

(2.6)

*
dd c.upCv/^

p�1^
jD1

dd cuj

+
D

*
dd cup^

p�1^
jD1

dd cuj

+
C

*
dd cv^

p�1^
jD1

dd cuj

+
in the sense that the left-hand side is well-defined if and only if both terms on the right-hand
side are, and equality holds in this case. Moreover, (2.5) only depends on the currents dd cuj ,
i.e., it is not affected by adding pluriharmonic functions to the uj . Also, the operator

.u1; : : : ; up/ 7! hdd
cup ^ � � � ^ dd

cu1i

is local in the plurifine topology whenever it is well-defined.

Lemma 2.3. Assume that u is a psh function on X such that hdd cuip is well-defined,
and that u� is a sequence of psh functions on X decreasing to u, such that hdd cu�ip is well-
defined for each �. Moreover, assume that ! is a smooth positive .1; 1/-form and that � is
a non-negative test function on X . Then

(2.7) lim inf
�!1

Z
X

hdd cu�i
p
^ �!n�p �

Z
X

hdd cuip ^ �!n�p:

Proof. Fix ` and let O` D ¹u > �`º. Then

max.u�;�`/& max.u;�`/
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and by [8, Corollary 3.3],

(2.8) lim inf
�!1

Z
O`

�
dd c max.u�;�`/

�p
^ �!n�p �

Z
O`

�
dd c max.u;�`/

�p
^ �!n�p:

Since u� > u, it follows that u� D max.u�;�`/ and u D max.u;�`/ in O`. Thus, since the
non-pluripolar Monge–Ampère operator is local in the plurifine topology, (2.8) implies that

(2.9) lim inf
�!1

Z
O`

hdd cu�i
p
^ �!n�p �

Z
O`

hdd cuip ^ �!n�p:

Now, (2.9) holds for all ` and since hdd cuip does not charge pluripolar sets, in particular, not
V D ¹u D �1º, we get (2.7).

2.2. Psh functions with small unbounded locus. Following [12], we say that a psh
function u on X has small unbounded locus (sul) if there exists a complete pluripolar closed
subset A � X such that u is locally bounded outside A.

Remark 2.4. Let O D
S
`O`, where O` is defined by (2.4). Note that if u1; : : : ; up

have sul and A is a closed complete pluripolar set such that u1; : : : ; up are locally bounded
outside A, then X nO � A.

Remark 2.5. Assume that u1; : : : ; up have sul, and that A is a closed complete pluripo-
lar closed set such that each uj is locally bounded outside A. Then hdd cup ^ � � � ^ dd cu1i is
well-defined if and only if the Bedford–Taylor product dd cup ^ � � � ^ dd cu1, which is defined
on X n A, has locally finite mass near each point of A. Then hdd cup ^ � � � ^ dd cu1i is just
the trivial extension of dd cup ^ � � � ^ dd cu1, cf. [12, p. 204].

3. Local Monge–Ampère currents – The classes Gk.X/

We slightly extend the definition of G .X/ from the introduction, cf. Definition 1.1.

Definition 3.1. Let X be a complex manifold of dimension n. For 1 � k � n � 1, we
say that a psh function u on X has locally finite non-pluripolar energy of order k, u 2 Gk.X/,
if, for each j � k, hdd cuij is locally finite and u is locally integrable with respect to hdd cuij .

Note that if ! is a smooth strictly positive .1; 1/-form, then u 2 Gk.X/ if and only if the
measure

(3.1)
kX

jD0

hdd cuij ^ !n�j

is locally finite and u is locally integrable with respect to this measure. Clearly

G1.X/ � G2.X/ � � � � � Gn�1.X/ D G .X/;

where G .X/ is as in Definition 1.1.
If u 2 Gk.X/, then the Monge–Ampère currents

Œdd cu�p D dd c.uhdd cuip�1/ and Sp.u/ D Œdd
cu�p � hdd cuip

from Definition 1.2 are well-defined .p; p/-currents for p D 1; : : : ; k C 1.
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Proposition 3.2. The currents Œdd cu�p and Sp.u/ are closed and positive.

Proof. Clearly Œdd cu�p is closed and, since hdd cuip is closed, so is Sp.u/.
Note that if u` is a sequence of smooth psh functions decreasing to u, then

Œdd cu�p D lim
`!1

dd c.u`hdd
cuip�1/:

Since hdd cuip�1 is closed and positive, the currents on the right-hand side are positive and
thus so is the limit. To see that also Sp.u/ is positive, let u` D max.u;�`/ andO` D ¹u > �`º.
Since u` ! u, we have

Œdd cu�p D lim
`!1

dd c.u`hdd
cuip�1/(3.2)

D lim
`!1

1XnO`dd
c.u`hdd

cuip�1/C lim
`!1

1O`dd
c.u`hdd

cuip�1/:

Since the non-pluripolar Monge–Ampère operator is local in the plurifine topology, it follows
that 1O`dd

c.u`hdd
cuip�1/ D 1O`dd

cu` ^ hdd
cuip�1 D 1O`hdd

cu`i
p, and hence the last

limit in (3.2) is equal to hdd cuip. Hence the first limit must exist as well and it is certainly
positive.

Proposition 3.3. The currents Œdd cu�p and Sp.u/ only depend on dd cu, i.e., they are
not affected by adding a pluriharmonic function to u.

Proof. Since hdd cuip only depends on dd cu, cf. Section 2.1, it is enough to prove the
proposition for Œdd cu�p. Assume that u0 D uC h, where h is pluriharmonic. Then by (2.6),

Œdd cu0�p D dd c
�
.uC h/hdd cuip�1

�
D dd c.uhdd cuip�1/C dd c.hhdd cuip�1/ D Œdd cu�p;

where the last equality follows since dd ch D 0 and hdd cuip�1 is closed.

Remark 3.4. Assume that u 2 G .X/ has sul and is locally bounded outside the closed
complete pluripolar setA � X . Note that Œdd cu�p coincides with the standard Monge–Ampère
current .dd cu/p outside A. It follows from Remark 2.5 that

1XnAŒdd cu�p D hdd cuip and Sp.u/ D 1AŒdd cu�p:

4. Examples

Let us consider some examples of functions with locally finite non-pluripolar energy.

Example 4.1. Assume that u 2 PSH.X/ has analytic singularities, i.e., that u is locally
of the form

(4.1) u D c log jf j2 C b;

where c > 0, f D .f1; : : : ; fm/ is a tuple of holomorphic functions,

jf j2 D jf1j
2
C � � � C jfmj

2;
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and b is locally bounded. Then u is locally bounded outside the varietyZ � X , locally defined
as ¹f D 0º; in particular, u has sul.

As mentioned in the introduction, it follows from [5, Proposition 4.1] that u 2 G .X/.
Moreover, the currents Œdd cu�p coincide with the Monge–Ampère currents .dd cu/p defined
inductively in [5] as .dd cu/p D dd c.u1XnZ.dd cu/p�1/.

For the reader’s convenience let us sketch an argument. Assume that (4.1) holds in the
open set U � X and, for simplicity, that c D 1. By Hironaka’s theorem there is a smooth
modification � W U0 ! U such that ��f D f 0f 0, where f 0 is a holomorphic section of a
line bundle L! U0 and f 0 is a non-vanishing tuple of holomorphic sections of L�1. Now

��u D log jf 0j2 C b0;

where b0 D log jf 0j2 C ��b is locally bounded and psh in any local frame for L. It follows
that, for any p, .dd cb0/p is a well-defined closed positive current on U0 and one can check
that

��.dd
cb0/p D hdd cuip:

Therefore, to see that u 2 G .U/ it is enough to verify that log jf 0j2.dd cb0/p has locally
bounded mass and this follows from a standard Chern–Levine–Nirenberg-type estimate, see,
e.g., [18, Chapter III, Proposition 3.11]. By the Poincaré–Lelong formula,

Sp.u/ D ��
�
dd c.log jf 0j2.dd cb0/p

�
D ��

�
Œdivf 0� ^ .dd cb0/p

�
;

where Œdivf 0� is the current of integration along the divisor of f 0.

Proposition 4.2. Let � be a domain in Cn. Assume that u 2 PSH.�/ has analytic
singularities and that the unbounded locus of u is not discrete. Then u is not in D.�/.

This result was first noted in [11]. Here we provide a different argument.

Proof. Let � D codimZ. We claim that the current

S�.u/ D 1Z Œdd cu�� D 1Z.dd cu/� ;

where .dd cu/� is the classical Bedford–Taylor–Demailly Monge–Ampère current, is non-
zero. Taking this for granted, since � < n and all Sj .u/ are positive currents, it follows from
Theorem 1.15 that we can find a decreasing sequence u` converging to u such that .dd cu`/n

does not converge to Œdd cu�n. We conclude that u is not in D.U/, cf. the introduction.
To prove the claim, let us assume that (4.1) holds in the open set U � �. Now the Lelong

numbers of S�.u/ and 1Z.dd c log jf j2/� coincide at each point in U, see, e.g., [5, (1.9)]. For
dimension reasons, both currents must be Lelong currents, and thus

S�.u/ D 1Z.dd c log jf j2/� :

By the classical King formula, see, e.g., [18, Chapter III, (8.18)], 1Z.dd c log jf j2/� is the
Lelong current of an effective cycle whose support is precisely the union of the irreducible
components of Z of pure codimension �. In particular, S�.u/ is non-zero.

Next, let us consider some examples of functions in G .X/ that do not have analytic
singularities.
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Example 4.3. Let f be a tuple of holomorphic functions in a domain � � Cn such
that jf j2 < 1 and let

u D �.� log jf j2/�

for some � 2 .0; 1/. Then u is psh in � and it is locally bounded outside Z D ¹f D 0º; in
particular, u has sul. We claim that for each k, u 2 Gk.�/ if and only if � < 1

2
. Moreover,

although v WD log jf j2 2 G .�/, cf. Example 4.1, uC v is not in Gk.�/ for any �.
To prove the claim, first note that

dd cu D
i

2�
�.1 � �/.� log jf j2/��2

àjf j2 ^ Nàjf j2

jf j4
C �.� log jf j2/��1dd c log jf j2:

Next, note that if � W X ! � is a smooth modification, then uhdd cuij has locally finite
mass if and only if ��.uhdd cuij / D ��u1Xn��1Z.dd c��u/j has locally finite mass. By
Hironaka’s theorem there is such a modification so that ��f D f 0f 0, where f 0 is a holo-
morphic section of a line bundle L and f 0 is a non-vanishing tuple of holomorphic sections
of L�1. Given a local frame, we may assume that f 0 and f 0 is a function and a tuple of
functions, respectively. Let

� D
Nàjf 0j2

jf 0j2
:

Then

��
�
àjf j2 ^ Nàjf j2

jf j4

�
D
df 0 ^ df 0

jf 0j2
C
df 0

f 0
^ �C

df 0

f 0
^ �C N� ^ �

and, by the Poincaré–Lelong formula,

��.dd c log jf j2/ D ŒD�C !f ;

where D is the divisor defined by f 0 and !f WD dd c log jf 0j2 is smooth. It follows that

(4.2) ��u1Xn��1Zdd
c��u D C.� log jf 0j2 � /2��2

df 0 ^ df 0

jf 0j2
C ˇ;

where C is a constant,  D jf 0j2, and ˇ has locally finite mass. Moreover, for each j > 1,
��u1Xn��1Z.dd c��u/j is a sum of terms that are integrable or of the form a smooth form
times

(4.3) .� log jf 0j2 � /a
df 0 ^ df 0

jf 0j2
;

where a � 2� � 2. By Hironaka’s theorem we may assume that f 0 is a monomial, and then an
elementary computation yields that (4.3) has locally finite mass if and only if a < �1. Hence
(4.2), and thus uhdd cui, have locally finite mass if and only if � < 1

2
. Moreover, if � < 1

2
,

then uhdd cuij has locally finite mass for j > 1. We conclude that u 2 G .�/ if and only if
u 2 G1.�/, which in turn holds if and only if � < 1

2
.

Finally, note that a necessary condition for uC v to be in Gk.�/ for any k is that
vhdd cui has locally finite mass. Now the pullback of vhdd cui contains a term of the form

C.� log jf 0j2 � /2��2
df 0 ^ df 0

jf 0j2
;

where C is a constant. Since this does not have locally finite mass for any � 2 .0; 1/, it follows
that uC v … Gk.�/ for any such �.
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Note in view of Example 4.3 that, in contrast to the case of D.�/, cf. [10, Theorem 1.2],
it is not true that v 2 Gk.�/ and v � u imply that u 2 Gk.�/.

Remark 4.4. Let u and v be as in Example 4.3. It is not hard to check that uC v
has asymptotically analytic singularities in the sense of Rashkovskii, [22, Definition 3.4].
Indeed, this follows after noting that for each ı > 0, there is a constant Cı > 0 such that
.1C ı/v � Cı � uC v � v. We saw above that uC v … Gk.�/ for any k. Hence we conclude
that psh functions with asymptotically analytic singularities are not in Gk.�/ in general.

Note that u in Example 4.3 has sul; it is even locally bounded outside the analytic variety
¹f D 0º. Next, we will describe a way of constructing functions in G .X/ that do not have sul.
We will use the following lemma that follows as in Example 4.1, see also [21, Proposition 3.2].

Lemma 4.5. Assume that u; v are psh functions with analytic singularities on X . Then,
for any smooth positive .1; 1/-form !, test function � � 0, and i � j � n � 1,Z

X

uhdd cuii ^ hdd cvij�i ^ �!n�j > �1:

Example 4.6. Let U be a neighborhood of the unit ball B � Cn and let vi , i D 1; 2; : : : ,
be negative psh functions with analytic singularities in U. Let u` D

P`
iD1 bivi , where bi > 0,

and let

u D lim
`!1

u` D

1X
iD1

bivi :

We claim that we can choose bi so that the restriction of u to B is in G .B/. Let � be a smooth
non-negative function with compact support in U such that � � 1 in B, and let ! be a smooth
strictly positive .1; 1/-form. It is enough to prove that, given C > 0, we can choose bi so that

(4.4)
Z

U

u`hdd
cu`i

j
^ �!n�j > �C; ` � 1; j � n � 1:

Since vi < 0, we have u` & u and it follows from Lemma 2.3 thatZ
U

uhdd cuij ^ �!n�j > �C; j � n � 1;

and thus u 2 G .U/.
It remains to prove (4.4). Since (2.5) is multilinear, it follows thatZ

U

u`hdd
cu`i

j
^ �!n�j D

Z
U

.u`�1 C b`v`/
˝
dd c.u`�1 C b`v`/

˛j
^ �!n�j

D

Z
U

u`�1hdd
cu`�1i

j
^ �!n�j C

jC1X
rD1

br`Tr ;

where each Tr is a sum of terms of the formZ
X

�hdd cu`�1i
�
^ hdd cv`i

j��
^ �!n�j ;
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where � D u`�1 or � D v`; in particular, they are independent of the choice of b`. By Lem-
ma 4.5 each such integral is > �1. Thus by choosing b` small enough we can make the
difference between

R
X u`hdd

cu`i
j ^ �!n�j and

R
U u`�1hdd

cu`�1i
j ^ �!n�j arbitrarily

small. In particular, for any C > 0 we can inductively choose bi so that (4.4) holds.

Let us look at some explicit examples.

Example 4.7. Given a D .a1; : : : ; ak/ 2 .Cn
x/
k , let

ja � xj2 D ja1 � xj
2
C � � � C jak � xj

2;

and let va D log ja � xj2. Then va is psh with analytic singularities and the unbounded locus
of va equals Pa WD

Tk
iD1¹ai � x D 0º. Note that for generic choices of a, Pa is a plane of

codimension k. Next, choose ai 2 .Cn
x/
k , i D 1; 2; : : : , so that

S
i Pai is dense in Cn, let

vi D vai , and let u D
P
bivi be constructed as in Example 4.6. Then the restriction of u to B

is in G .B/, but u is not locally bounded anywhere; in particular, u does not have sul.

Example 4.8. As in Example 4.6, let U be a neighborhood of the unit ball B � Cn
x .

Given a D .a1; : : : ; an/ 2 U, let

va D log jx � aj2 D log.jx1 � a1j2 C � � � C jxn � anj2/:

Then va is psh in U with analytic singularities and the unbounded locus of va equals a. Next,
let ai , i D 1; 2; : : : , be a dense subset of B, let vi D vai , and let u D

P
bivi be constructed

as in Example 4.6. Then the restriction of u to B is in G .B/, but u is not locally bounded
anywhere; in particular, u does not have sul. In fact, u 2 D.U/, see, e.g., [10, Theorem 2].

4.1. Direct products. On a direct productX D X1�X2 we can produce new examples
of functions in Gk.X/ by combining functions in Gk.X1/ and Gk.X2/.

Proposition 4.9. Assume that for i D 1; 2, ui 2 Gk.Xi /, where Xi is a complex mani-
fold. Let X D X1 �X2 and let �i W X ! Xi , i D 1; 2, be the natural projections. Then

u WD ��1u
1
C ��2u

2
2 Gk.X/:

Proof. First note that u 2 PSH.X/. For i D 1; 2, let !i be a smooth strictly positive
.1; 1/-form on Xi , so that

! WD ��1!1 C �
�
2!2

is a smooth strictly positive .1; 1/-form on X . To prove that u 2 Gk.X/ it suffices to prove
that, for any function � of the form � D ��1�1 � �

�
2�2, where �i is a non-negative test function

in Xi , and for 0 � j � k,

�1 <

Z
X

uhdd cuij ^ �!n�j D lim
`!1

Z
O`

uhdd cuij ^ �!n�j ;

where O` D ¹u > �`º � X . Note that for � large enough, O` \ supp� � O1
�
�O2

�
, where

O i
�
D ¹ui > ��º � Xi . In particular,

u D ��1u
1
� C �

�
2u

2
�
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in O` \ supp�, where ui
�
D max.ui ;��/. Thus, since the non-pluripolar Monge–Ampère

operator is local in the plurifine topology,Z
O`

uhdd cuij ^ �!n�j D

Z
O`

.��1u
1
� C �

�
2u

2
�/
�
dd c.��1u

1
� C �

�
2u

2
�/
�j(4.5)

^ ��1�1�
�
2�2.�

�
1!1 C �

�
2!2/

n�j :

Since (2.1) is multilinear, (4.5) is a finite sum of terms of the formZ
O`

��1u
1.dd c��1u

1
�/
j1 ^ ��1�1.�

�
1!1/

n1�j1(4.6)

^ .dd c��2u
2
�/
j2 ^ ��2�2.�

�
2!2/

n2�j2

�

Z
O1
�

u1.dd cu1�/
j1 ^ �1!

n1�j1
1

Z
O2
�

.dd cu2�/
j2 ^ �2!

n2�j2
2

or of the form where the first factor ��1u
1 is replaced by ��2u

2. Since ui 2 Gk.Xi /, each factor
on the right-hand side of (4.6) is bounded uniformly in �.

Example 4.10. Let B � Cn be the unit ball. Choose u1 2 D.B/ \ G .B/ that does not
have analytic singularities, e.g., let u1 be as in Example 4.8. Moreover, let u2 be a psh function
in B with analytic singularities that is not in D.B/. Then by Proposition 4.1,

u D ��1u
1
C ��2u

2
2 G .B � B/:

Now u neither has analytic singularities nor is in D.B � B/.

5. Regularization

We will prove Theorem 1.5. In fact, we will prove the following slightly more general
result.

Theorem 5.1. Assume that u 2 Gk.X/ and that v is a smooth psh function on X . Then,
for p � k C 1,

(5.1)
�
dd c max.u; v � `/

�p
! Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j ; `!1:

More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let u` D �` ı .u�v/Cv. Then, for p � kC1,

(5.2) .dd cu`/
p
! Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j ; `!1:

To illustrate the idea of the proof, let us start with a special case.

Proof of (5.1) when v D 0. Let u` D max.u;�`/. It is enough to prove that

(5.3) .dd cu`/
p
D dd cu` ^ hdd

cuip�1

since the right-hand side converges to Œdd cu�p.
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To prove (5.3), let � be a test form on X and consider

(5.4)
Z
X

u`
�
.dd cu`/

p�1
� hdd cuip�1

�
^ dd c�:

Since u` D u in O` WD ¹u > �`º and the non-pluripolar Monge–Ampère operator is local in
the plurifine topology, we get that u`.dd cu`/p�1 D u`hdd cuip�1 inO`. Using that u` D �`
in X nO`, we see that (5.4) equals

�`

Z
X

�
.dd cu`/

p�1
� hdd cuip�1

�
^ dd c�;

which vanishes by Stokes’ theorem. Thus (5.3) follows.

The proof of (5.1) for general v follows in the same way after replacing (5.3) by Lem-
ma 5.4 below (with `1 D � � � D p̀ D `). The general case follows by writing � as a superposi-
tion of functions max.t;�s/. For this we need some auxiliary results. Let us first consider an
elementary lemma.

Lemma 5.2. Assume that � is non-decreasing, convex, and bounded on .�1; 0� and
that �.0/ D 0 and �0.0/ D 1. Let g.s/ D �00.�s/. Then g.s/ ds is a probability measure on
the interval Œ0;1/. Moreover,

�.t/ D

Z 1
sD0

max.t;�s/g.s/ ds:

Here �0 should be interpreted as the left derivative of �, which is always well-defined
since � is convex.

Proof. Note that g is a (positive) measure since � is convex.
First assume that � is smooth. Notice that �0.�s/! 0 when s !1 since � is bounded.

Therefore Z 1
0

g.s/ ds D

Z 1
0

�00.�s/ ds D ��0.�s/
ˇ̌̌1
0
D �0.0/ D 1

and thus g is a probability measure. Moreover,Z 1
0

max.t;�s/�00.�s/ ds D �max.t;�s/�0.�s/
ˇ̌̌1
0
C

Z 1
0

d

ds
max.t;�s/ � �0.�s/ ds

D �

Z �t
0

�0.�s/ ds D �.t/:

If � is not smooth, the above arguments goes through verbatim if we understand �0 as the
left derivative of �, g.s/ ds as the corresponding Lebesque–Stieltjes measure, and the integrals
as Lebesque–Stieltjes integrals.

Assume that T .s/, s 2 Rp
�0; is a continuous family of currents of order zero on X and

G.s/ ds is a measure on Rp
�0. Then

R
Rp
�0
T .s/G.s/ ds is a well-defined current of order zero

on X , defined by Z
X

Z
Rp
�0

T .s/G.s/ ds ^ � D

Z
Rp
�0

Z
X

T .s/ ^ �G.s/ ds;

if � is a (continuous) test form on X .
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Lemma 5.3. Assume that T .t/, t � 0, is a continuous family of positive currents that
converges weakly to a current T1 on X when t tends to1. Moreover, assume that

G`.s/ D G`.s1; : : : ; sp/

is a sequence of probability measures on Rp
�0 such that for all R > 0,

(5.5) lim
`!1

Z
sp>R

� � �

Z
s1>R

G`.s/ ds D 1;

where ds D ds1 � � � dsp. Finally, assume that � W Rp
�0 ! R is a continuous function such that

�.s/ � minj sj . Then Z
Rp
�0

T
�
�.s/

�
G`.s/ ds ! T1

weakly when `!1.

Proof. Let � be a test form on X . We need to prove that

(5.6)
Z
X

Z
Rp
�0

T
�
�.s/

�
G`.s/ ds ^ � D

Z
Rp
�0

Z
X

T
�
�.s/

�
^ �G`.s/ ds !

Z
X

T1 ^ �

when `!1.
Take � > 0. Then there is an R > 0 such that for t > R,ˇ̌̌̌ Z

X

�
T .t/ � T1

�
^ �

ˇ̌̌̌
< �:

Let AR D ¹sj > R W j D 1; : : : ; pº. Then we have �.s/ > R on AR and, since G` are proba-
bility measures, it follows that

(5.7)
ˇ̌̌̌ Z
AR

Z
X

�
T
�
�.s/

�
� T1

�
^ �G`.s/ ds

ˇ̌̌̌
< � for all `.

Since T .t/ is continuous and convergent, there is an M 2 R such that j
R
X T .t/ ^ �j < M for

all t . Now, by (5.5),

(5.8)
ˇ̌̌̌ Z

Rp
�0nAR

Z
X

�
T
�
�.s/

�
� T1

�
^ �G`.s/ ds

ˇ̌̌̌
< 2M

Z
Rp
�0nAR

G`.s/! 0

when `!1. Since � is arbitrary, (5.6) follows from (5.7) and (5.8).

Lemma 5.4. Assume that u 2 Gk.X/ and v is a smooth psh function on X . For ` � 0,
let u` D max.u; v � `/. Then for any p � k C 1 and any `1; : : : ; p̀ such that `1 � � � � � p̀,

dd cu`p ^ � � � ^ dd
cu`1(5.9)

D dd cu`p ^ hdd
cuip�1

C

p�1X
jD1

�
dd cu

j̀
� hdd cui

�
^ hdd cuij�1 ^ .dd cv/p�j :
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Proof. We claim that for j D 1; : : : ; p � 1,

dd cu
j̀C1
^ � � � ^ dd cu`1 ^ .dd

cv/p�j�1(5.10)

D dd cu
j̀
^ � � � ^ dd cu`1 ^ .dd

cv/p�j

C dd cu
j̀C1
^ hdd cuij ^ .dd cv/p�j�1 � hdd cuij ^ .dd cv/p�j :

Taking (5.10) for granted, by recursively applying it to j D p � 1; : : : ; 1, we obtain (5.9).
To prove (5.10), let � be a test form on X and considerZ

X

u
j̀C1

�
dd cu

j̀
^ � � � ^ dd cu`1 ^ .dd

cv/p�j�1(5.11)

� hdd cuij ^ .dd cv/p�j�1
�
^ dd c�:

Since u
j̀
D � � � D u`1 D u in O D ¹u > v � j̀C1º, which is open in the plurifine topology,

and since the non-pluripolar Monge–Ampère operator is local in the plurifine topology, we get

dd cu
j̀
^ � � � ^ dd cu`1 ^ .dd

cv/p�j�1 D hdd cuij ^ .dd cv/p�j�1

there. Using that u
j̀C1
D v � j̀C1 in X nO , we see that (5.11) equalsZ
X

.v � j̀C1/
�
dd cu

j̀
^ � � � ^ dd cu`1 ^ .dd

cv/p�j�1(5.12)

� hdd cuij ^ .dd cv/p�j�1
�
^ dd c�:

Now (5.10) follows from (5.11) and (5.12) by Stokes’ theorem, since hdd cuij is closed.

Proof of Theorem 5.1. Since (5.2) is a local statement, we may assume that u � v is
bounded from above. In fact, we may assume that u � v < 0. Otherwise, if u � v < c, let
Lu D u � c and L�`.t/ D �`.t C c/ � c. Then Lu � v < 0 and L�` is a sequence of functions as in
the assumption of the theorem. Moreover,

Œdd c Lu�k D Œdd cu�k and L�` ı . Lu � v/ D �` ı .u � v/ � cI

in particular, dd c. L�` ı . Lu � v// D dd c.�` ı .u � v//. Thus it suffices to prove (5.2) for Lu
and L�`.

Throughout this proof, let u` D max.u; v � `/ and zu` D �` ı .u � v/C v. Let us first
assume that �`.0/ D 0 and �0

`
.0/ D 1 so that �` (restricted to .�1; 0�) is as in Lemma 5.2.

Let g`.t/ D �00`.�t /. Note that u` D max.u � v;�`/C v and thus by Lemma 5.2Z 1
sD0

usg`.s/ ds D

Z 1
sD0

max.u � v;�s/g`.s/ ds C
Z 1
sD0

vg`.s/ ds

D �` ı .u � v/C v D zu`:

It follows from Lemma 2.2 that dd cusp ^ � � � ^ dd
cus1 is continuous in s. Thus

(5.13) .dd czu`/
p
D

Z 1
spD0

� � �

Z 1
s1D0

dd cusp ^ � � � ^ dd
cus1g`.s1/ � � �g`.sp/ ds:

Let �j W R
p
�0 ! R be the function that maps s D .s1; : : : ; sp/ to the j th largest si ; in par-

ticular, �p.s/ D mini si . Since dd cusp ^ � � � ^ dd
cus1 is commutative in the factors dd cusi ,
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it follows from Lemma 5.4 that

dd cusp ^ � � � ^ dd
cus1 D

pX
jD1

dd cu�j .s/ ^ hdd
cuij�1 ^ .dd cv/p�j

�

p�1X
jD1

hdd cuij ^ .dd cv/p�j :

For j D 1; : : : ; p, let

Tj .t/ D dd
cut ^ hdd

cuij�1 ^ .dd cv/p�j :

By Lemma 2.1, Tj .t/ is continuous in t . Moreover, since u 2 Gp.X/, it converges weakly to
Œdd cu�j ^ .dd cv/p�j . By Lemma 5.2,G`.s/ WD g`.s1/ � � �g`.sp/ ds is a probability measure.
Since �`.t/! t when `!1, given R > 0, �0

`
.�R/! 1 and thus

R 0
�R g`.s/ ds ! 0. It fol-

lows that G`.s/ satisfies (5.5). Since �j is continuous and �j .s/ � mini si , Lemma 5.3 yields
that

lim
`!1

Z
Rp
�0

dd cu�j .s/ ^ hdd
cuij�1 ^ .dd cv/p�jG`.s/ ds D Œdd

cu�j ^ .dd cv/p�j :

Hence, since G` is a probability measure, the limit of (5.13) when `!1 equals

pX
jD1

Œdd cu�j ^ .dd cv/p�j �

p�1X
jD1

hdd cuij ^ .dd cv/p�j

D Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j :

Finally, let us consider a sequence �` where we drop the extra assumptions on �`.0/ and
�0
`
.0/. Since �`.t/ are convex functions converging to t , �0

`
.0/! 1; in particular, �0

`
.0/ ¤ 0

for large enough `. Let y�` D .�` � �`.0//=�0`.0/. Then y�` is a sequence of non-decreasing
convex functions bounded from below such that y�`.t/! t , when `!1, and y�`.0/ D 0 and
y�0
`
.0/ D 1. By the above arguments

.dd cyu`/
k
! Œdd cu�k C

k�1X
jD1

Sj .u/ ^ .dd
cv/k�j

for k � p, where yu` D y�` ı .u � v/C v. Note that

dd czu` D �
0
`.0/dd

c
yu` C .1 � �

0
`.0//dd

cv:

Since �0
`
.0/! 1, it follows that

lim
`!1

.dd czu`/
p
D lim
`!1

.dd cyu`/
p
D Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j :

Remark 5.5. Note that the proof above only uses that �`.t/! t , when `!1. There-
fore we could, in fact, drop the assumption that �` is a decreasing sequence in Theorem 5.1 (as
well as in the theorems in the introduction).
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Remark 5.6. It follows from the proof above that we can choose different sequences
�` in Theorem 5.1 (and the theorems in the introduction) and get the following generalization:
For � D 1; : : : ; p, let ��

`
W R! R be a sequence of non-decreasing convex functions, bounded

from below, that decreases to t as `!1, and let u�
`
D ��

`
ı .u � v/C v. Then

dd cu
p

`
^ � � � ^ dd cu1` ! Œdd cu�p C

p�1X
jD1

Sj .u/ ^ .dd
cv/p�j ; `!1:

Indeed, the proof goes through verbatim if we let

g�` .t/ D .�
�
` /
00.�t / and G`.s/ D g

1
` .s1/ � � �g

p

`
.sp/ ds:

Remark 5.7. Let us relate Theorem 5.1 to [11, Theorem 1]. Note that

u` D �` ı .u � v/C v DW '` C v;

where '` is a sequence converging to the quasiplurisubharmonic (qpsh) function ' WD u � v.
Theorem 1 in [11] asserts that if ' has analytic singularities, then

(5.14) .dd c'`/
p
! Œdd c'�p;

where Œdd c'�n is an extension of (1.2) to qpsh functions, see, e.g., [11, 21] for details. Using
(5.14), we see that

.dd cu`/
p
D .dd c'` C dd

cv/p ! .Œdd c'�C dd cv/p:

It follows from the definition of Œdd c'�p, cf. (1.2) that, in fact, .Œdd c'�C dd cv/p equals the
right-hand side of (5.2) (e.g., by arguments as in [21]). Thus if u has analytic singularities,
Theorem 5.1 follows from (5.14).

Example 5.8. Let u D log jz1j2 C jz2j2 in the unit ball B in C2. Then u has analytic
singularities and thus u 2 G .B/. By the Poincaré–Lelong formula

Œdd cu� D Œz1 D 0�C dd
c
jz2j

2

and one easily checks that

Œdd cu�2 D Œz1 D 0� ^ dd
c
jz2j

2
¤ 0:

Since S1.u/ D Œz1 D 0� ¤ 0, we know from Theorem 5.1 that there are sequences of bounded
psh functions u` decreasing to u such that the limits of the Monge–Ampère currents .dd cu`/2

converge to different measures. In fact, it follows that we can find u` so that the mass of
the measures are arbitrarily large: Let v` D `jz2j2 and let u`;� D max.u; v` � �/. By Theo-
rem 5.1,

(5.15) lim
�!1

.dd cu`;�/
2
D Œdd cu�2 C `Œz1 D 0� ^ dd

c
jz2j

2:

If we choose �1 � �2 � �3 � � � � , then u` WD u`;�` is a sequence of bounded psh functions
decreasing to u and in view of (5.15) .dd cu`/2 do not have locally uniformly bounded mass.

In fact, the function u is a maximal psh function and therefore in this case it is possible
to find a sequence of smooth psh functions u` decreasing to u such that .dd cu`/2 converges
weakly to 0, see [2, Example 3.4].
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The following example shows that one needs some condition on a psh function u for the
Monge–Ampère currents of the natural regularization u` D max.u;�`/ to converge. In partic-
ular, u below is an example of a psh function that does not have locally finite non-pluripolar
energy.

Example 5.9. Consider the plurisubharmonic function

u.z; w/ D
�

sup
k�1

²�
1C

1

k

�
log jzj2 � ak C .1 � .�1/

k/jwj2
³

in the bidisc D � D for some choice of ak > 0, k D 1; 2; : : : ; here � denotes the usc regu-
larization. It is not hard to see that if we choose 0� a0 � a1 � a2 � � � � , then there is an
increasing sequence `k 2 N such that

u.z; w/ D

�
1C

1

2k

�
log jzj2 � a2k

on the set ¹ju.z; w/C `2kj < 1º, whereas

u.z; w/ D

�
1C

1

2k C 1

�
log jzj2 � a2kC1 C 2jwj

2

on the set ¹ju.z; w/C `2kC1j < 1º. Note that�
dd c max

��
1C

1

k

�
log jzj2 � ak;�`/

�2
D 0

while�
dd c max

��
1C

1

k

�
log jzj2 � ak C 2jwj

2;�`/

�2
! 2

�
1C

1

k

�
Œz D 0� ^ dd cjwj2

as `!1. It follows that

lim
k!1

�
dd c max.u;�`2k/

�2
D hdd cui2;

whereas
lim
k!1

�
dd c max.u;�`2kC1/

�2
D hdd cui2 C 2Œz D 0� ^ dd cjwj2:

6. Global Monge–Ampère products

Let .X; !/ be a compact Kähler manifold. To define global analogues of the classes
Gk.�/, let us first recall some results on the non-pluripolar Monge–Ampère operator.

Assume that for j D 1; : : : ; n, !j is a Kähler form on X and 'j is !j -psh. Since (2.5)
only depends on the currents dd cuj ,

(6.1) hdd c'p C !pi ^ � � � ^ hdd
c'1 C !1i;

locally defined as hdd c.'p C hp/i ^ � � � ^ hdd c.'1 C h1/i;where hj are local dd c-potentials
of the !j , is a global closed positive current on X , see Section 2.1.

Assume that '1; : : : ; 'n 2 PSH.X; !/. Then, by Stokes’ theorem,

(6.2)
Z
X

.dd c'n C !/ ^ � � � ^ .dd
c'1 C !/ D

Z
X

!n;
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cf. (1.3). For the non-pluripolar products we have the following monotonicity property. Recall
that a function ' on X is quasiplurisubharmonic (qpsh) if it is locally the sum of a psh function
and a smooth function.

Proposition 6.1. Assume that '1; : : : ; 'n and  1; : : : ;  n are !-psh functions such that
'j �  j . ThenZ

X

hdd c'n C !i ^ � � � ^ hdd
c'1 C !i �

Z
X

hdd c n C !i ^ � � � ^ hdd
c 1 C !i:

As a consequence, the integral of (6.1) only depends on the singularity types of the 'j .
For !-psh functions with sul Proposition 6.1 was proved in [12, Theorem 1.16], in the case
when 'j D ' and  j D  in [25, Theorem 1.2], and in the general case in [15, Theorem 1.1].
Also, see [23, Theorem 1.1] for an even stronger monotonicity result.

We will use the following integration by parts result.

Proposition 6.2 ([12, Theorem 1.14]). Let A � X be a closed complete pluripolar set,
and let T be a closed positive .n � 1; n � 1/-current on X . Let 'i and  i , i D 1; 2, be qpsh
functions on X that are locally bounded on X n A. If u WD '1 � '2 and v WD  1 �  2 are
globally bounded on X , then

(6.3)
Z
XnA

udd cv ^ T D

Z
XnA

vdd cu ^ T D �

Z
XnA

dv ^ d cu ^ T:

Remark 6.3. In particular, the integrals in (6.3) are well-defined, cf. [12, Lemma 1.15
and the discussion after Theorem 1.14]. Note that if v D u, then (6.3) is non-positive.

Remark 6.4. Note that Proposition 6.2 recently has been generalized to the case when
'i and  i do not necessarily have sul, see [26, Theorem 1.1] and [24, Theorem 2.6].

6.1. The classes Gk.X; !/. The classes Gk.X/ in Definition 3.1, are naturally car-
ried over to the global setting. Recall from the introduction that on .X; !/, the non-pluripolar
Monge–Ampère currents hdd c' C !ij are always finite.

Definition 6.5. Let .X; !/ be a compact Kähler manifold of dimension n. For k with
1 � k � n � 1, we say that a function ' 2 PSH.X; !/ has finite non-pluripolar energy of order
k, ' 2 Gk.X; !/, if, for each 1 � j � k, ' is integrable with respect to hdd c' C !ij .

Note that ' 2 PSH.X; !/ is in Gk.X; !/ if and only if ' is integrable with respect to

kX
jD0

hdd c' C !ij ^ !n�j ;

cf. (3.1). Clearly

G1.X; !/ � G2.X; !/ � � � � � Gn�1.X; !/ D G .X; !/;

where G .X; !/ is as in Definition 1.6.
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If ' 2 Gk.X; !/, for p D 1; : : : ; k C 1, we can define currents

Œdd c' C !�p D Œdd c.' C h/�p;

where h is a local potential for !, and

S!p .'/ D Œdd
c' C !�p � hdd c' C !ip

as in Definition 1.7. By Propositions 3.2 and 3.3, they are well-defined global closed positive
currents onX that only depend on the current dd c' C ! and not on the choice of ! as a Kähler
representative in the class Œ!�.

Remark 6.6. Assume that ' has sul and that A is a closed complete pluripolar set
such that ' is locally bounded in X n A. Then 1XnAŒdd c' C !�p D hdd c' C !ip so that
S!p .'/ D 1AŒdd c' C !�p.

From the definitions above and the basic properties of the Monge–Ampère currents we
get an immediate proof of the mass formula (Theorem 1.10). In fact, we prove the following
slightly more general version.

Theorem 6.7. Assume that ' 2 Gk.X; !/. Then for p � k C 1,

(6.4)
Z
X

hdd c' C !ip ^ !n�p C

pX
jD1

Z
X

S!j .'/ ^ !
n�j
D

Z
X

!n:

Proof. First, note in view of Proposition 3.3 that, for 1 � j � k,

(6.5) dd c
�
'hdd c' C !ij�1

�
WD Œdd c' C !�j � hdd c' C !ij�1 ^ !

is a well-defined exact current on X . We claim that for 1 � j � k we have

(6.6)
Z
X

hdd c'C!ij ^!n�j �

Z
X

hdd c'C!ij�1^!n�jC1 D �

Z
X

S!j .'/^!
n�j :

In fact, Z
X

hdd c' C !ij ^ !n�j C

Z
X

S!j .'/ ^ !
n�j

D

Z
X

Œdd c' C !�j ^ !n�j

D

Z
X

dd c.'hdd c' C !ij�1/ ^ !n�j C

Z
X

hdd c' C !ij�1 ^ !n�jC1

D

Z
X

hdd c' C !ij�1 ^ !n�jC1;

where we have used (6.5) for the second equality and the last equality follows from Stokes’
theorem. Thus (6.6) holds, and summing from 1 to k we get (6.4).

Theorem 6.7 also follows immediately from (6.2) and the following slightly generalized
version of Theorem 1.9.
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Theorem 6.8. Assume that ' 2 Gk.X; !/ and that � is a Kähler form in Œ!� so that
� D ! C dd cg, where g is a smooth function on X . Let '` D max.' � g;�`/C g. Then, for
1 � p � k C 1,

(6.7) .dd c'` C !/
p
! Œdd c' C !�p C

p�1X
jD1

S!j .'/ ^ �
p�j ; `!1:

More generally, let �` W R! R be a sequence of non-decreasing convex functions, bounded
from below, that decreases to t as `!1, and let '` D �` ı .' � g/C g. Then (6.7) holds
for 1 � p � k C 1.

Proof. It is enough to prove the statement locally. We may therefore write ' D u � h,
where u is psh and h is a smooth dd c-potential for !. Let

u` D �` ı .u � h � g/C hC g:

Now Theorem 5.1 asserts that

(6.8) .dd cu`/
p
! Œdd cu�p C

p�1X
jD1

Sj .u/ ^
�
dd c.hC g/

�p�j
:

Note that u` D '` C h. Thus the left-hand side of (6.8) equals .dd c'` C !/p and the right-
hand side equals Œdd c' C !�p C

Pp�1
jD1 S

!
j .'/ ^ �

p�j .

Remark 6.9. If ' has analytic singularities, then Theorem 6.8 follows from [11, Theo-
rem 1] as in Remark 5.7.

7. The Monge–Ampère energy

We want to describe Gk.X; !/ as finite energy classes. To do this, let us start by recalling
the classical setting. If ' 2 PSH.X; !/ \ L1.X/, then its Monge–Ampère energy is defined
as (1.5). More generally, for 0 � k � n and ' 2 PSH.X; !/ \ L1.X/ one can define the
Monge–Ampère energy of order k as

Ek.'/ WD
1

k C 1

kX
jD0

Z
X

'.dd c' C !/j ^ !n�j :

These functionals can be extended to the entire class PSH.X; !/ by letting

Ek.'/ WD inf
®
Ek. / W  � ';  2 PSH.X; !/ \ L1.X/

¯
;

cf. (1.6). We let
Ek.X; !/ WD ¹' 2 PSH.X; !/ W Ek.'/ > �1º

be the corresponding finite energy classes. Moreover, we consider the full mass classes

Fk.X; !/ WD

²
' 2 PSH.X; !/ W

Z
X

hdd c' C !ik ^ !n�k D

Z
X

!n
³
:

Note that
E.X; !/ D En.X; !/ � � � � � E1.X; !/;
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where E.X; !/ is the standard finite energy class (1.7) corresponding to the energy functional
E D En. Similarly, F .X; !/ D Fn.X; !/ is the standard full mass class (1.8).

Proposition 7.1. We have Fn.X; !/ � � � � � F1.X; !/:

Proof. Assume that ' 2 Fk.X; !/. Then

0 D

Z
X

hdd c' C !ik ^ !n�k �

Z
X

!n

D

�Z
X

hdd c' C !ik ^ !n�k �

Z
X

hdd c' C !ik�1 ^ !n�kC1
�

C

�Z
X

hdd c' C !ik�1 ^ !n�kC1 �

Z
X

!n
�
:

By Proposition 6.1 both terms on the right-hand side are � 0 and thus they must both vanish.
In particular, Z

X

hdd c' C !ik�1 ^ !n�kC1 D

Z
X

!n

and thus ' 2 Fk�1.X; !/.

Remark 7.2. Note that ' 2 Gk�1.X; !/ is in Fk.X; !/ if and only if S!j .'/ vanishes
for j D 1; : : : ; k.

The finite energy classes Ek.X; !/ have the following fundamental properties.

Theorem 7.3. Let .X; !/ be a compact Kähler manifold. Then:

(1) if ' 2 Ek.X; !/ and  � ' then  2 Ek.X; !/,

(2) Ek.X; !/ is convex,

(3) Ek.X; !/ � Fk.X; !/.

The last part is a consequence of the second part of Theorem 8.3 below, but it also follows
from [12, Proposition 2.11] (for k D n). The first two parts follow from the following result.

Proposition 7.4. The functional Ek is non-decreasing and concave on PSH.X; !/.

It is not hard to see that one can reduce the proof of Proposition 7.4 to prove that
Ek is non-decreasing and concave on PSH.X; !/ \ L1.X/. This, in turn, is an immediate
consequence of the following result.

Proposition 7.5. If ' and ' C u are !-psh and bounded, then

(7.1)
d

dt

ˇ̌̌
tD0C

Ek.' C tu/ D

Z
X

u.dd c' C !/k ^ !n�k

and

(7.2)
d2

dt2

ˇ̌̌
tD0C

Ek.' C tu/ D �k

Z
X

du ^ d cu ^ .dd c' C !/k�1 ^ !n�k :
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For k D n this was proved in [9, Propositions 4.1 and 4.4] and the general case can be
proved by the same arguments.

8. The non-pluripolar energy

Let us now introduce an alternative way of extending the energies Ek.'/ to the entire
class PSH.X; !/.

Definition 8.1. Let .X; !/ be a compact Kähler manifold of dimension n. For k with
1 � k � n � 1 we define the non-pluripolar energy of order k of ' 2 PSH.X; !/ as

E
np

k
.'/ D

1

k C 1

kX
jD0

Z
X

'hdd c' C !ij ^ !n�j :

Note that the non-pluripolar energy Enp.'/, as defined in Definition 1.12, is equal
toEnpn�1.'/. Note that if ' 2 PSH.X; !/ \ L1.X/, thenEnp

k
.'/ D Ek.'/. Moreover, in view

of Definition 6.5,
Gk.X; !/ D ¹' 2 PSH.X; !/ W Enp

k
.'/ > �1º:

Remark 8.2. Since 0 �
R
X hdd

c' C !ij ^ !n�j �
R
X !

n, if C � 0,

E
np

k
.'/ � E

np

k
.' C C/ � E

np

k
.'/C C

Z
X

!n:

The functional Enp
k

is neither monotone nor concave on PSH.X; !/ in general, see
Examples 11.4 and 11.5 below. In particular, Gk.X; !/ is not convex in general. However,
we have the following partial generalization of Theorem 7.3.

Theorem 8.3. Let .X; !/ be a compact Kähler manifold.

(1) Assume that '; 2 PSH.X; !/. If ' 2 Gk.X; !/ and  � ', then  2 Gk.X; !/.

(2) We have
Ek.X; !/ D Gk.X; !/ \ Fk.X; !/:

Moreover, if ' 2 Fk.X; !/, then Enp
k
.'/ D Ek.'/.

In particular, Gk.X; !/ contains the convex subclass Ek.X; !/. Note that Theorem 1.13
follows from Theorem 8.3.

The proof relies on the following description of the non-pluripolar energy as a limit of
energies of bounded !-psh functions and Monge–Ampère masses.

Proposition 8.4. If ' 2 PSH.X; !/, then

(8.1) Ek
�
max.';�`/

�
C

`

k C 1

kX
jD0

Z
X

�
!j � hdd c' C !ij

�
^ !n�j & E

np

k
.'/:
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Proof. Let '` D max.';�`/. We claim thatZ
X

'`.dd
c'` C !/

j
^ !n�j C `

Z
X

�
!j � hdd c' C !ij

�
^ !n�j(8.2)

D

Z
X

'`hdd
c' C !ij ^ !n�j :

Taking this for granted and noting that the right side decreases to
R
X 'hdd

c' C !ij ^ !n�j ,
the proposition follows by summing over j .

It remains to prove the claim. First, since '` D ' in O WD ¹' > �`º, which is open in
the plurifine topology, since '` D �` in X nO , and since the non-pluripolar Monge–Ampère
operator is local in the plurifine topology,

(8.3) '`
�
.dd c'` C !/

j
� hdd c' C !ij

�
D �`

�
.dd c'` C !/

j
� hdd c' C !ij

�
:

Next, since '` is bounded, cf. (6.2),

(8.4)
Z
X

.dd c'` C !/
j
^ !n�j D

Z
X

!n:

Combining (8.3) and (8.4), we get (8.2).

We have the following partial generalization of Proposition 7.4. Although Enp
k

is not
monotone on PSH.X; !/, it is monotone on functions of the same singularity type.

Proposition 8.5. Assume that '; 2 PSH.X; !/. If ' �  and  � ', then

E
np

k
. / � E

np

k
.'/:

Proof. Since Ek is non-decreasing, see Proposition 7.4,

Ek
�
max. ;�`/

�
� Ek

�
max.';�`/

�
:

Moreover, since ' �  , by Proposition 6.1,Z
X

hdd c C !ij ^ !n�j D

Z
X

hdd c' C !ij ^ !n�j :

Now, the proposition follows from Proposition 8.4.

Proof of Theorem 8.3. Part (1) follows from Proposition 8.5 in view of Remark 8.2.
It remains to prove part (2). Since Ek.'/ D lim`!1Ek.'`/ and

T WD

kX
jD0

Z
X

.!j � hdd c' C !ij / ^ !n�j � 0;

it follows from (8.1) that
Ek.'/ � E

np

k
.'/;

and thus Ek.X; !/ � Gk.X; !/. Moreover, ifEk.'/ > �1, then T D 0, since clearlyEnp.'/
is bounded from above. It follows that Ek.X; !/ � Fk.X; !/. If ' 2 Fk.X; !/, then T D 0 by
Proposition 7.1, and thus Ek.'/ D E

np

k
.'/. Hence Ek.X; !/ D Gk.X; !/ \ Fk.X; !/.
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8.1. Concavity of E
np

k
. We have the following generalization of (the second part of)

Proposition 7.4.

Proposition 8.6. Assume that ' 2 Gk.X; !/ has sul. Then Enp
k

is concave on the set of
 2 PSH.X; !/ such that  � '.

This is a consequence of the following generalization of (7.2).

Proposition 8.7. Assume that '; 2 Gk.X; !/ have sul and  � '. Let A be a closed
complete pluripolar set such that ' and thus  are locally bounded outside A. Moreover, let
u D  � '. Then

d2

dt2

ˇ̌̌
tD0C

E
np

k
.' C tu/(8.5)

D �k

Z
XnA

du ^ d cu ^ hdd c' C !ik�1 ^ !n�k

�
1

k C 1

kX
jD2

j.j � 1/ lim
`!1

Z
Xn.O`[A/

du ^ duc ^ .dd c'` C !/

^ hdd c' C !ij�2 ^ !n�j ;

where O` D ¹' > �`º \ ¹ > �`º and '` D max.';�`/.

The right-hand side of (8.5) is non-positive, cf. Remark 6.3. If ' C tu is !-psh also for
t > �� for some � > 0 so that

g.t/ WD E
np

k
.' C tu/ D E

np

k
..1 � t /' C t /

is defined in a neighborhood of t D 0, then it follows from the proof below that (8.5) is indeed
the two-sided second derivative of g.t/ at t D 0. It follows that g.t/ is concave on the interval
.0; 1/ (or more generally where it is defined). Thus Proposition 8.6 follows.

For the proof of Proposition 8.7 we need the following lemma, cf. Lemma 4.5.

Lemma 8.8. Assume that '; 2 Gk.X; !/ and  � '. Then, for any i � j � k,Z
X

'hdd c' C !ii ^ hdd c C !ij�i ^ !n�j > �1:

Proof. We may assume that '; � 0. Since ' �  , it follows from Theorem 8.3 (1)
that ' C  2 Gk.X; 2!/. Thus

(8.6)
Z
X

.' C  /
˝
dd c.' C  /C 2!

˛j
^ .2!/n�j > �1

for j � k. Since the non-pluripolar Monge–Ampère product is multilinear, (8.6) is a sum of
terms

(8.7)
Z
X

�hdd c' C !ii ^ hdd c C !ij�i ^ !n�j ;

where � is ' or  . Since they are all non-positive, the lemma follows.
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Proof of Proposition 8.7. Since the non-pluripolar Monge–Ampère product is multilin-
ear, it follows that

E
np

k
.' C tu/ D

1

k C 1

kX
jD0

Z
X

.' C tu/
˝
dd c.' C tu/C !

˛j
^ !n�j

is a polynomial in t with coefficients that are sums of terms of the form (8.7), where � is ' or .
Since each such integral is finite by Lemma 8.8, we may differentiate Enp

k
.' C tu/ formally.

Thus

.k C 1/
d2

dt2

ˇ̌̌̌
tD0C

E
np

k
.' C tu/(8.8)

D

kX
jD1

2j

Z
X

udd cu ^
˝
dd c' C !

˛j�1
^ !n�j

C

kX
jD2

.j � 1/j

Z
X

'.dd cu/2 ^
˝
dd c' C !

˛j�2
^ !n�j ;

where
dd cu D hdd c C !i � hdd c' C !i:

Since currents of the form .dd cu/` ^ hdd c' C !ii do not charge A, we may replace X by
X n A in (8.8).

Let T D hdd c' C !ij�2 ^ !n�j . Since '` WD max.';�`/ decreases to ', the integral
in the j th term in the second sum in (8.8) equals

(8.9)
Z
XnA

'.dd cu/2 ^ T D lim
`!1

Z
XnA

'`.dd
cu/2 ^ T:

Since dd cu ^ T is the difference of two closed positive currents, we can apply Proposition 6.2
to this. It follows that the right-hand side of (8.9) equals

(8.10) lim
`!1

Z
XnA

udd cu ^ .dd c'` C !/ ^ T �

Z
XnA

udd cu ^ ! ^ T:

The first term in (8.10) equals

lim
`!1

Z
O`nA

udd cu ^ .dd c'` C !/ ^ T C lim
`!1

Z
Xn.O`[A/

udd cu ^ .dd c'` C !/ ^ T:

In view of (2.5) we conclude thatZ
XnA

'.dd cu/2 ^
˝
dd c' C !

˛j�2
^ !n�j

D

Z
XnA

udd cu ^
˝
dd c' C !

˛j�1
^ !n�j

�

Z
XnA

udd cu ^
˝
dd c' C !

˛j�2
^ !n�jC1

C lim
`!1

Z
Xn.O`[A/

udd cu ^ .dd c'` C !/ ^ hdd
c' C !ij�2 ^ !n�j :
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Plugging this into (8.8) and, as above, replacing integrals over X by integrals over X n A, we
get

d2

dt2

ˇ̌̌̌
tD0C

E
np

k
.' C tu/

D k

Z
XnA

udd cu ^
˝
dd c' C !

˛k�1
^ !n�k

C
1

k C 1

kX
jD0

.j � 1/j lim
`!1

Z
Xn.O`[A/

udd cu ^ .dd c'` C !/

^ hdd c' C !ij�2 ^ !n�j :

By Proposition 6.2,

k

Z
XnA

udd cu ^ hdd c' C !ik�1 ^ !n�k

D �k

Z
XnA

du ^ d cu ^ hdd c' C !ik�1 ^ !n�k;

which is precisely the first term on the right-hand side of (8.5).
Next, we claim that

lim
`!1

Z
Xn.O`[A/

udd cu ^ .dd c'` C !/ ^ hdd
c' C !ij�2 ^ !n�j(8.11)

D � lim
`!1

Z
Xn.O`[A/

du^duc ^ .dd c'`C!/^hdd
c'C!ij�2 ^ !n�j :

Taking this for granted, the last sum in (8.10) equals the sum in (8.5), and thus the proposition
follows.

It remains to prove (8.11). To do this, let T D hdd c' C !ij�2 ^ !n�j , and writeZ
Xn.O`[A/

udd cu ^ .dd c'` C !/ ^ T(8.12)

D

Z
XnA

udd cu ^ .dd c'` C !/ ^ T �

Z
O`nA

udd cu ^ .dd c'` C !/ ^ T:

By Proposition 6.2,

(8.13)
Z
XnA

udd cu ^ .dd c'` C !/ ^ T D �

Z
XnA

du ^ d cu ^ .dd c'` C !/ ^ T:

Next, in view of (2.5),

(8.14) � lim
`!1

Z
O`nA

udd cu^.dd c'`C!/^T D �

Z
XnA

udd cu^hdd c'C!i^T:

By Proposition 6.2, using that the non-pluripolar Monge–Ampère operator is local in the
plurifine topology, this equalsZ

XnA

du ^ d cu ^ hdd c' C !i ^ T(8.15)

D

Z
O`nA

du ^ d cu ^ .dd c'` C !/ ^ T

C

Z
Xn.O`[A/

du ^ d cu ^ hdd c' C !i ^ T:
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Since u is bounded, (8.14) is finite and thus the second term in (8.15) tends to 0 when `!1.
We conclude that

� lim
`!1

Z
O`nA

udd cu ^ .dd c'` C !/ ^ T(8.16)

D lim
`!1

Z
O`nA

du ^ d cu ^ .dd c'` C !/ ^ T:

Now combining (8.12), (8.13), and (8.16), we get (8.11).

Remark 8.9. By arguments as in the above proof we also get a formula for the first
derivative of E.' C tu/ in the situation of Proposition 8.7, cf. (7.1):

d

dt
E
np

k
.' C tu/ D

Z
X

uhdd c.' C tu/C !ik ^ !n�k(8.17)

C
1

1C k

kX
jD0

j lim
`!1

Z
XnO`

u
�
dd c.'` C tu`/C !

�
^
˝
dd c.' C tu/C !

˛j�1
^ !n�j :

In particular, (8.17) is non-negative if u is; thus we get an alternative proof of Proposition 8.5
in this case.

9. Relative energy

We slightly extend the notion of relative energy from the introduction.

Definition 9.1. Let  2 Gk.X; !/. For ' 2 PSH.X; !/ such that ' �  and for k with
1 � k � n � 1, we define the energy relative to  of order k as

E
 

k
.'/ D inf¹Enp

k
.'0/ W '0 � '; '0 �  º:

We define the corresponding finite relative energy classes

E
 

k
.X; !/ D ¹' �  W E

 

k
.'/ > �1º

and the relative full mass classes

F
 

k
.X; !/ D

´
' 2 PSH.X; !/ W ' �  ;

kX
jD0

Z
X

hdd c' C !ij ^ !n�j

D

kX
jD0

Z
X

hdd c C !ij ^ !n�j

µ
:

Note that if  D 0, or more generally  2 PSH.X; !/ \ L1.X/, then

E
 

k
D Ek; E

 

k
.X; !/ D Ek.X; !/; F

 

k
.X; !/ D Fk.X; !/;
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cf. Proposition 7.1. Also, note that E D E n�1,

E .X; !/ D E
 
n�1.X; !/ � � � � � E

 
1 .X; !/

and
F  .X; !/ D F

 
n�1.X; !/ � � � � � F

 
1 .X; !/;

where E , E .X; !/ and F  .X; !/ are as in Definition 1.14.
We have the following generalization of Theorems 7.3 and 8.3.

Theorem 9.2. Let .X; !/ be a compact Kähler manifold. Then:

(1) if ' 2 E
 

k
.X; !/ and '0 � ', then '0 2 E

 

k
.X; !/,

(2) if  has sul, then E
 

k
.X; !/ is convex,

(3) we have
E
 

k
.X; !/ D Gk.X; !/ \ F

 

k
.X; !/;

and moreover if ' 2 F
 

k
.X; !/, then E 

k
.'/ D E

np

k
.'/.

Note that Theorem 1.15 corresponds to k D n � 1. For the proof we will use the follow-
ing observation.

Lemma 9.3. We have

E
 

k
.'/ D lim

`!1
E
np

k

�
max.';  � `/

�
:

Proof. First, note that '` WD max.';  �`/ �  and '` decreases to '. Thus, by Propo-
sition 8.5, lim`!1E

np

k
.'`/ � E

 

k
.'/. Next, assume that �j �  is a sequence decreasing

to '. Since �j �  we can take j̀ !1 such that �j �  � j̀ and thus �j � '
j̀

. Now
limj!1E

np

k
.�j / � limj!1E

np

k
.'

j̀
/ D lim`!1E

np

k
.'`/ by Proposition 8.5.

We get the following partial generalization of Proposition 7.4.

Proposition 9.4. Take  2 Gk.X; !/. Then E 
k

is non-decreasing. If  has sul, then
E
 

k
is concave.

Proof. As above, let '` D max.';  � `/. Assume that '; '0 �  are such that ' � '0.
Then '` � '0` �  and '` � '0` and thus, by Proposition 8.5, Enp

k
.'`/ � E

np

k
.'0
`
/. Taking

limits over `, in view of Lemma 9.3, we get E 
k
.'/ � E

 

k
.'0/.

Assume that  has sul. It remains to prove that then E 
k

is concave. Take '; '0 �  ,
t 2 .0; 1/, and a sequence �j �  decreasing to .1 � t /' C t'0. Note that we can choose
j̀ !1 such that for each j , �j � .1 � t /'

j̀
C t'0

j̀
. Now

E
np

k
.�j / � E

np

k

�
.1 � t /'

j̀
C t'0

j̀

�
� .1 � t /E

np

k
.'

j̀
/C tE

np

k
.'0

j̀
/:

The first inequality follows since Enp
k

is non-decreasing on !-psh functions of the same sin-
gularity type, Proposition 8.5. The second inequality follows since Enp

k
is concave on !-psh

functions with sul of the same singularity type, Proposition 8.6. Indeed, note that

'` � '
0
` � .1 � t /'` C t'

0
` �  :
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Now, taking limits over j , and inf over all sequences �j , we get

E
 

k
..1 � t /' C t'0/ � .1 � t /E

 

k
.'/C tE

 

k
.'0/:

Thus E 
k

is concave.

Proof of Theorem 9.2. Note, in view of Remark 8.2 and Lemma 9.3, that

E
 

k
.'/ � E

 

k
.' C C/ � E

 

k
.'/C C

Z
X

!n

if C � 0. Hence part (1) follows from (the first part of) Proposition 9.4. Moreover, part (2)
follows immediately from (the second part of) Proposition 9.4.

It remains to prove part (3). We start by proving

(9.1) Gk.X; !/ \ F
 

k
.X; !/ � E

 

k
.X; !/:

Let

T .'/ D
1

k C 1

kX
jD0

Z
X

�
!j � hdd c' C !ij

�
^ !n�j :

Moreover, let '` D max.';  � `/. Note that '` � '. Since '` �  , it follows from Proposi-
tion 6.1 that

(9.2) T .'`/ D T . /:

Now
E
 

k
.'/ D lim

`!1
E
np

k
.'`/

D lim
`!1

lim
�!1

�
Ek
�
max.'`;��/

�
C �T .'`/

�
� lim
�!1

�
Ek
�
max.';��/

�
C �T . /

�
D E

np

k
.'/C lim

�!1
�
�
T . / � T .'/

�
I

here we have used Lemma 9.3 for the first equality, Proposition 8.4 for the second and last
equality, and the monotonicity of Ek for the inequality. Note that T .'/ D T . / if and only if
' 2 F

 

k
.X; !/. Hence (9.1) follows. Also if ' 2 F

 

k
.X; !/, then

E
 

k
.'/ D E

np

k
.'/:

To prove the reverse inclusion, consider

kX
jD0

Z
X

'`hdd
c'`i

j
^ !n�j D

kX
jD0

Z
O`

'`hdd
c'ij ^ !n�j(9.3)

C

kX
jD0

Z
XnO`

 hdd c'`i
j
^ !n�j

� `

kX
jD0

Z
XnO`

hdd c'`i
j
^ !n�j I
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here the equality follows since (2.5) is local in the plurifine topology. By Lemma 9.3, the
left-hand side converges to .k C 1/E 

k
.'/. Assume that ' 2 E

 

k
.X; !/ so that E 

k
.'/ > �1.

Note that the three terms on the right-hand side are bounded from above. Thus each of them
is > �1. In particular,

kX
jD0

Z
O`

'`hdd
c'ij ^ !n�j ! .k C 1/E

np

k
.'/ > �1;

which means that ' 2 Gk.X; !/. Moreover, the finiteness of the third term on the right-hand
side of (9.3) implies that

0 D lim
`!1

kX
jD0

Z
XnO`

hdd c'`i
j
^ !n�j

D lim
`!1

kX
jD0

Z
X

hdd c'`i
j
^ !n�j � lim

`!1

kX
jD0

Z
O`

hdd c'`i
j
^ !n�j

D

kX
jD0

Z
X

hdd c ij ^ !n�j �

kX
jD0

Z
X

hdd c'ij ^ !n�j ;

i.e., ' 2 F
 

k
.X; !/. Here we have used (9.2) for the last equality.

It is quite possible that the more general integration by parts results [26, Theorem 1.1]
and [24, Theorem 2.6], cf. Remark 6.4, can be used remove the sul assumption from Theo-
rem 9.2 (2). In fact, Vu has already proved the convexity of certain related finite relative energy
classes [24, Theorem 1.1].

10. Relations to the Błocki–Cegrell class

In [10] the domain of the Monge–Ampère operator was characterized in several equiv-
alent ways. In order to prove Theorem 1.11 we will use the following characterization from
[10, Theorem 1.1].

Proposition 10.1. Let� be an open subset of Cn. Then u 2 PSH.�/ is in D.�/ if and
only if for each open U � � and any sequence of smooth u� 2 PSH.U/ decreasing to u in U,
the sequences

ju�j
n�j�2du� ^ d

cu� ^ .dd
cu�/

j
^ !n�j�1; j D 0; 1; : : : ; n � 2;

where ! is a smooth strictly positive .1; 1/-form, are locally weakly bounded in U.

We will also use the following lemma.

Lemma 10.2. Assume that ¹Uiº is a finite open covering of X and that, for each i ,
gi is a local dd c-potential of ! in Ui . Moreover, assume that �i is partition of unity subor-
dinate ¹Uiº. Then there is a C > 0, such that, if ' 2 PSH.X; !/ is smooth and ' < 0, then,
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for 1 � j � n � 1,Z
X

�'.dd c' C !/j ^ !n�j(10.1)

� 2
X
i

Z
X

�id.' C gi / ^ d
c.' C gi / ^ .dd

c' C !/j�1 ^ !n�j

C

Z
X

�'.dd c' C !/j�1 ^ !n�jC1 C C:

Proof. We will use the following statement. Assume that A;B; a; b are real smooth
functions. Then

ABda ^ d cb C ABdb ^ d ca D 2AB.da ^ d cb/.1;1/(10.2)

� A2da ^ d caC B2db ^ d cb

as forms, where .1; 1/ denotes the component of bidegree .1; 1/. This is an immediate conse-
quence of the inequality i˛ ^ Ň C iˇ ^ N̨ � i˛ ^ N̨ C iˇ ^ Ň for .1; 0/-forms ˛; ˇ, applied to
˛ D Aàa and ˇ D Bàb.

Take 1 � j � n � 1, let T D .dd c' C !/j�1 ^ !n�j , and let

I D
X
i

Z
X

�id.' C gi / ^ d
c.' C gi / ^ T:

Then, by Stokes’ theorem, the left-hand side of (10.1) equals

(10.3)
Z
X

�'.dd c' C !/ ^ T D

Z
X

d' ^ d c' ^ T C

Z
X

�' ^ !T:

Moreover, Z
X

d'^d c'^T D
X
i

Z
X

�id'^d
c'^T(10.4)

D I �
X
i

Z
X

�id'^d
cgi ^T �

X
i

Z
X

�idgi ^d
c'^T

�

X
i

Z
X

�idgi ^d
cgi ^T

� I C
1

2

X
i

Z
X

�id'^d
c'^T C

X
i

Z
X

�idgi ^d
cgi ^T

D I C
1

2

Z
X

d'^d c'^T C
X
i

Z
X

�idgi ^d
cgi ^T:

Here, the inequality follows by (10.2) applied to A D � 1p
2

, B D
p
2, a D ', and b D gi .

Note that there is a D > 0, such that for all i , dgi ^ d cgi ^ T � D! ^ T as forms. Thus,
from (10.4) we conclude that

(10.5)
1

2

Z
X

d' ^ d c' ^ T � I CD

Z
X

! ^ T D I CD

Z
X

!n:

Combining (10.3) and (10.5), we get (10.1) (with C D 2D
R
X !

n).
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Proof of Theorem 1.11. Assume that ' 2 D.X; !/. Clearly, we may assume that ' < 0.
Let '` D max.';�`/. Moreover, choose a sequence �� ! 0, � 2 N. By [17, Theorem 1.1],
for each `, there is a sequence '`;� of smooth negative .1C ��/!-psh functions decreasing
to '`. We may assume that '`;� > '; otherwise replace '`;� by '`;� C ı`;�, where ı`;� ! 0.
Since X is compact, we may inductively choose �` � ` so that '`;�` < '�;�`�1 for all � < `,
and

(10.6)
Z
X

�'`.dd
c'` C !/

j
^ !n�j <

Z
X

�'`;�`.dd
c'`;�` C !/

j
^ !n�j C

1

`
:

Set  ` D '`;�` . Then  ` is a sequence of smooth negative .1C ��`/-psh functions decreas-
ing to '. Assume that ¹Uiº, gi , and �i are as in Lemma 10.2. Then ' C gi 2 D.Ui / and
 ` C .1C ��`/gi is a sequence of smooth psh functions decreasing to ' C gi . It follows by
Proposition 10.1 that there is a K > 0, such that, for each ` and j D 0; : : : ; n � 2,X

i

Z
X

�id
�
 ` C .1C ��`/gi

�
^ d c

�
 ` C .1C ��`/gi

�
^
�
dd c ` C .1C ��`/!

�j
^
�
.1C ��`/!

�n�j�1
� K:

By Lemma 10.2, inductively applied to j D 1; : : : ; n � 1, we get that there is an M > 0 such
that, for 1 � j � n � 1, Z

X

� `.dd
c ` C !/

j
^ !n�j �M:

By (10.6), Z
O`

�'`.dd
c'` C !/

j
^ !n�j �M C

1

`
:

Thus, in view of (2.5), as desired,Z
X

�'hdd c' C !ij ^ !n�j �M:

11. Examples of functions with finite non-pluripolar energy

Let us present some examples of functions with finite non-pluripolar energy. As in the
local situation !-psh functions with analytic singularities are in Gk.X; !/.

Example 11.1. Assume that ' 2 PSH.X; !/ has analytic singularities, i.e., locally ' is
of the form ' D c log jf j2Cb, where c > 0, f is a tuple of holomorphic functions, and b is
bounded. Then ' 2 G .X; !/ by Example 4.1. Note that ' 2 F .X; !/ if and only if ' is locally
bounded, cf. Remark 7.2.

Moreover, note that if '; 2 PSH.X; !/ have analytic singularities, then the function
.1 � t /' C t 2 PSH.X; !/ has analytic singularities. Thus the set of functions in Gk.X; !/

with analytic singularities is a convex subclass.

We will now consider some examples on the space Pn D Pnx with homogeneous coordi-
nates Œx� D Œx0; : : : ; xn� and equipped with the Fubini–Study form

(11.1) !FS D dd
c log jxj2 D log.jx0j2 C � � � C jxnj2/:



Andersson, Witt Nyström and Wulcan, Non-pluripolar energy 183

Example 11.2. Let f be a �-homogeneous polynomial on CnC1 that we consider as
a holomorphic section of O.�/! Pn. Now ' WD log.jf j2=jxj2/ D log jf j2FS, where j � jFS

denotes the Fubini–Study metric, is in PSH.Pn; �!FS/ and has analytic singularities. In partic-
ular, ' 2 G .Pn; �!FS/ by Example 11.1.

Next, let us consider examples of functions with finite non-pluripolar energy that do not
have analytic singularities. First, we present a global version of Example 4.3 that shows that
Gk.X; !/ is not convex in general. For this we need the following lemma.

Lemma 11.3. Assume that ' 2 PSH.X; !/, where .X; !/ is a compact Kähler mani-
fold. Moreover, assume that g W R! R is smooth, non-decreasing and convex, and g0.'/ � 1.
Then g.'/ 2 PSH.X; !/.

Proof. Note that

dd c
�
g.'/

�
C ! D g00.'/d' ^ d c' C g0.'/.dd c' C !/C

�
1 � g0.'/

�
!;

and that each term on the right-hand side is � 0 by the assumptions on ' and g.

Example 11.4. Let X be a projective manifold and let L! X be an ample line bundle
equipped with a positive metric h with corresponding Kähler form !. Let f D .f1; : : : ; fm/
be a holomorphic section of L˚m, take C > 0 such that jf j2

h
D jf1j

2
h
C � � � C jfmj

2
h
< C , and

let ' D log jf j2
h
� C . For � 2 .0; 1/, let g.t/ D �.�t /� and

 D g.'/ D �.� log jf j2h C C/
�:

Then we have  2 PSH.X; !/ by Lemma 11.3. As in Example 4.3 one sees that, for each k,
 2 Gk.X; !/ if and only if � < 1

2
, and that .1 � t /' C t 2 PSH.X; !/ n Gk.X; !/ for all

t 2 .0; 1/ and all � 2 .0; 1/.

The previous example also shows that Enp
k

is not monotone in general.

Example 11.5. Let us use the notation from Example 11.4. Note that g.t/ > t for
t � �1. It follows that > ', and thus '0 WD .1�t /'Ct > ' if t 2 .0; 1/. By Example 11.4,
E
np
1 .'0/ D �1, whereas Enp1 .'/ > �1. Thus Enp1 is not non-decreasing.

Next, let us consider some examples of functions with finite non-pluripolar energy that
do not have sul. The following is a global version of Example 4.6.

Example 11.6. Let .X; !/ be a compact Kähler manifold of dimension n. For each
i � 1, let  i be an !-psh function with analytic singularities and let bi >0. If B WD

P
bi <1,

then

' WD

1X
1

bi i 2 PSH.X;B!/:

Given C > 0, by the same arguments as in Example 4.6 we can choose bi inductively so thatZ
X

'hdd c' C B!ij ^ .B!/n�j � �C; j � n � 1;

and thus ' 2 G .X;B!/.
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The following global variant of Example 4.8 gives an example of a function with finite
non-pluripolar energy that neither has sul nor full mass.

Example 11.7. Let � D .�1; : : : ; �k/ be a holomorphic section of O.1/˚k ! Pnx , such
that the zero set is a codimension k-plane P� , and let  � D log.j� j2=jxj2/. Then the function
 � 2 PSH.Pn; !FS/ has analytic singularities and unbounded locus P� . Next, let �1; �2; : : :
be holomorphic sections of O.1/˚k that define codimension k-planes P�1 ; P�2 ; : : : , respec-
tively, such that

S
P� i is dense in Pn. Let  i D  � i , and let  D

P
bi i be constructed

as in Example 11.6. Then ' WD  =B 2 G .Pn; !FS/, where B D
P
i bi , but ' is not locally

bounded anywhere; in particular, ' does not have sul. Moreover, since  i … Fk.P
n; !FS/, cf.

Example 11.1, it follows that ' … Fk.P
n; !FS/ and thus ' … Ek.P

n; !FS/.

Next, let us consider a variant of Example 11.7 in P1x .

Example 11.8. Let  i Dmax.log jx1�aix0j2FS;�ci /, where .1; ai /2P1, ci 2 .0;1�.
Then  i 2 PSH.P1; !FS/ has analytic singularities and as in Example 11.6 we can choose bi
so that

' D

1X
iD1

bi i D

1X
iD1

bi max.log jx1 � aix0j2FS;�ci /

is in G .Pn; B!FS/, where B D
P
i bi . If ci D1, we are in the situation in Example 11.7.

Moreover, if the points .1; ai / are dense in P1 and bici !1, then ' is not locally
bounded anywhere; in particular, it does not have sul. By choosing bi and ci inductively it is
possible to arrange this so that in addition ' 2 G .Pn; B!FS/. One can check that if bi ! 0 fast
enough and b2i ci ! 0, then, in fact, ' 2 E.Pn; B!FS/.

11.1. Product spaces. Let .X1; !1/ and .X2; !2/ be compact Kähler manifolds. Let
X D X1 �X2 and ! D ��1! C �

�
2!2, where �i W X ! Xi are the natural projections. Then

it is readily verified that .X; !/ is a compact Kähler manifold. Moreover, if 'i 2 PSH.Xi ; !i /,
then ' WD ��1'

1 C ��2'
2 2 PSH.X; !/. We have the following global version of Proposi-

tion 4.9 that can be proved in the same way.

Proposition 11.9. Let .Xi ; !i /, .X; !/, 'i , and ' be as above. Assume 'i 2 Gk.Xi ; !i /,
i D 1; 2. Then ' 2 Gk.X; !/.

We can use Proposition 11.9 to find new non-trivial examples of !-psh functions with
finite non-pluripolar energy.

Example 11.10. Take '1 2 PSH.Pn; !FS/ that has analytic singularities and is not
locally bounded. Then '1 2 G .Pn; !FS/ but '1 … F .Pn; !FS/. Next, take '2 2 E.P1; !FS/

that does not have sul, e.g., as in Example 11.8. Then, by Proposition 11.9,

' D ��1'
1
C ��2'

2
2 Gk.P

n
� P1; ��1!FS C �

�
2!FS/;

but ' neither has sul nor full mass.

11.2. Convex combinations in projective space. Throughout this subsection we as-
sume that Pn D Pnx is equipped with the Fubini–Study form (11.1) that we denote by! or!Pn .
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We know from Example 11.4 that convex combinations of functions in Gk.P
n; !/ are not in

Gk.P
n; !/ in general. It turns out, however, that if 'i 2 Gk.P

ni ; !/ for i D 1; 2, then there are
natural associated functions z'i 2 Gk.P

N ; !/, where N D n1 C n2 C 1, such that any convex
combination of z'1 and z'2 is in Gk.P

N ; !/.
To make this more precise, let us first settle some notation. Recall that Pn is covered

by coordinate charts Ui D UPn
i D ¹xi ¤ 0º. In U0 D ¹x0 ¤ 0º D ¹Œ1; x1; : : : ; xn�º we have

local coordinates x0 D .x1; : : : ; xn/ and x0 WD dd c log.1C jx0j2/ is a local potential for !.
Note that the maps p1 W PNx;y Ü Pn1x ; Œx; y� 7! Œx� and p2 W PNx;y Ü Pn2x ; Œx; y� 7! Œy�

are well-defined outside the planes ¹x D 0º and ¹y D 0º, respectively. If we let � W Y ! PN

be the blowup of PN along these planes, then there are maps ypi W Y ! Pni , i D 1; 2, so that
the diagrams

Y

�
��

ypi

""

PN
pi
// Pni

commute. Moreover, if ' 2 PSH.Pni ; !/, then p�i ' WD �� yp
�
i ' is an upper semicontinuous

function on PN with possible singularities along ¹x D 0º or ¹y D 0º. If we understand p�i ' as
the upper semicontinuous regularization, we get a well-defined upper semicontinuous function
on PN .

Now, assume that ' 2 PSH.Pn1 ; !/. We want to show that there is a natural associated
z' 2 PSH.PN ; !/. Consider the functions �x D log jxj2 and �x;y D log jx; yj2 on CNC1.
Note that �x � �x;y is a 0-homogeneous function on CNC1; thus it defines a global function
on PN . Now, let

z' D p�1' C �x � �x;y :

We claim that z' 2 PSH.PN ; !/. To prove this we need to show that dd c z' C !PN � 0. In
fact, it suffices to do this outside ¹x D 0º, since ¹x D 0º has codimension at least 2 and dd c z'
is a normal .1; 1/-current and thus we may assume that p1 is holomorphic. Note that

dd c.�x � �/ D p
�
1!Pn1 � !PN :

Thus
dd c z' C !PN D p

�
1 .dd

c' C !Pn1 / � 0;

since ' is !Pn1 -psh.
Analogously, if ' 2 PSH.Pn2 ; !/, then z' WD p�2' C �y � �x;y , where �y D log jyj2,

is a well-defined function in Gk.P
N ; !/.

Proposition 11.11. Assume that 'i 2 Gk.P
ni ; !/; i D 1; 2. Then for 0 � t � 1,

.1 � t /z'1 C t z'2 2 Gk.P
n1Cn2C1; !/;

where z'i are defined as above.

Proof. Let ' D .1 � t /z'1 C t z'2 and, as above, letN D n1 C n2 C 1. We need to prove
that for 0 � j � k,

(11.2)
Z

U

'hdd c' C !ij ^ !N�j > �1;
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where U � PN is open. We may assume that U has compact support in one of the coordinate
charts UPN

i , say in UPN
0 with homogeneous coordinates Œ1; x0; �; �y0�.

Let us consider the integrand in (11.2) in these coordinates. First note that

�x D log.1C jx0j/ D x0 and �y D log
�
j�j2.1C jy0j/

�
D log j�j2 C y0 :

We write  for �x;y . Since 'i are 0-homogeneous, it follows that p�1'
1 and p�2'

2 only depend
on x0 and y0, respectively; we write p�1'

1 D '1.x0/ and p�2'
2 D '2.y0/.

We start with the factor hdd c' C !ij D hdd c.' C /ij . Now

' C  D .1 � t /z'1 C t z'2 C 

D .1 � t /
�
'1.x0/C x0

�
C t

�
'2.y0/C log j�j2 C y0

�
:

Note that dd c log j�j2 D Œ� D 0�; in particular, it has support where log j�j2 D �1. It follows
that

hdd c' C !ij D
˝
.1 � t /.dd c'1.x0/C !x/C t .dd

c'2.y0/C !y/
˛j
;

where !x D dd cx0 and !y D dd cy0 .
Next, let � D !x C !y C ��, where �� D id� ^ d N�. Then � is a smooth strictly positive

.1; 1/-form on PN . Thus we can replace !N�j in (11.2) by �N�j . Note that for degree reasons
(11.2) is a sum of terms of the form

(11.3)
Z

U

'
˝
.1�t /.dd c'1.x0/C!x/Ct .dd

c'2.y0/C!y/
˛j
.!xC!y/

n1Cn2�j ^��:

Finally, consider

' D .1 � t /z'1 C t z'2

D .1 � t /'1.x0/C t'2.y0/C t log j�j2 C .1 � t /x C ty � :

Since the last three terms are smooth, the contribution from these terms in (11.3) is finite. Next,
the contribution from log j�j2 is finite since log j�j2 is (locally) integrable. Finally, if we replace
' by '1.x0/ or '2.y0/, then we are in the situation in Section 11.1. Indeed, we can regard U

as a relatively compact subset of UPn1
0 �UPn2

0 �C� � Pn1 � Pn2 �C�. Then '1.x0/, !x ,
'2.y0/, and !y are just the pullbacks of '1, !Pn1 , '2, and !Pn2 , respectively, under the natural
projections U! UPni

0 . Thus by Proposition 11.9 this contribution is also finite. We conclude
that (11.2) holds and hence ' 2 Gk.P

N ; !/.

Example 11.12. Let 'i , i D 1; 2, be as in Example 11.10. Then

' WD .1 � t /z'1 C t z'2 2 Gk.P
nC1; !/

and ' neither has analytic singularities nor full mass.

Remark 11.13. Let us consider the complex Monge–Ampère equation

(11.4) hdd c' C !in D f!n

on the compact Kähler manifold .X; !/. By Yau’s solution to the famous Calabi conjecture,
(11.4) has a smooth solution if f is smooth. This result has been generalized by several authors
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in many different directions allowing less regular f . For instance, in [15, Theorem 1.4] it
was proved that under certain conditions on f there is a unique solution ' 2 PSH.X; !/ with
prescribed singularity type.

One could hope that it would be possible to use our Monge–Ampère currents to solve
a Monge–Ampère equation of the form

(11.5) Œdd c' C !�n D �;

where � is allowed to be a more general current. For instance, assume that � D �1 C �2,
where �1 D f!n and �2 has support on a subvariety Z � X , defined by a holomorphic sec-
tion s of a Hermitian vector bundle over X . Then it might be natural to look for a solution
' � log jsj2 to (11.5). Note that if ' solves (11.5), then, in particular, hdd c' C !in D �1.
Now, by [15, Theorem 1.4] this completely determines '. Thus one can only hope to solve
(11.5) for very special choices of �1 and �2.
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