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Fast Charging Control of Lithium-Ion Batteries: Effects of Input,
Model, and Parameter Uncertainties

Yao Cai, Changfu Zou, Yang Li, and Torsten Wik

Abstract— The foundation of advanced battery management
is computationally efficient control-oriented models that can
capture the key battery characteristics. The selection of an
appropriate battery model is usually focused on model order,
whereas the effects of input and parameter uncertainties are of-
ten overlooked. This work aims to pinpoint the minimum model
complexity for health-conscious fast charging control of lithium-
ion batteries in relation to sensor biases and parameter errors.
Starting from a high-fidelity physics-based model that describes
both the normal intercalation reaction and the dominant side
reactions, Padé approximation and the finite volume method
are employed for model simplification, with the number of
control volumes as a tuning parameter. For given requirements
on modeling accuracy, extensive model-based simulations are
conducted to find the simplest models, based on which the
effects of current sensor biases and parameter errors are
systematically studied. The results show that relatively low-
order models can be well qualified for the control of voltage,
state of charge, and temperature. On the other hand, high-
order models are necessary for health management, particularly
during fast charging, and the choice of the safety margin
should also take the current sensor biases into consideration.
Furthermore, when the parameters have a certain extent of
uncertainties, increasing the model order will not provide
improvement in model accuracy.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries are one of the most com-
monly used energy storage devices thanks to their high
energy density, low self-discharge rate, and ever-declining
costs [1], [2]. In order to ensure safe use and prolong the life-
time of Li-ion batteries, proper models are vital for various
battery management functionalities. The most investigated
battery models are the equivalent circuit models, which use
circuit elements to mimic the voltage-current characteristics
of the battery cells. These models have relatively simple
mathematical structures and low computation requirements
[3]. However, such a model is empirical and lacks the capa-
bility to simulate or predict the battery’s internal behaviors,
albeit the information is critical for healthy and safe battery
management [4].

In contrast, in an electrochemical model, a set of partial
differential equations are used to describe the charging and
discharging processes inside the cells. One of the most
popular electrochemical models of Li-ion batteries is the
pseudo-two-dimensional (P2D) model [5]. One dimension is
along the particle radius as the porous electrodes are assumed
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to be composed of many spherical particles. The other
dimension is along the cell thickness. Since the width and the
length of a cell are much larger than its thickness, this model
describes the dynamic behavior only along the thickness [6].
To solve the P2D model for the purposes of real-time control
and management, discretization can be used, both in the
time and space domains. In general, increasing the spatial
discretization volumes can increase the accuracy of the
model, but it also leads to increased computational burden. In
this work, we consider fixed numbers of discretized volumes
in the radial direction, as well as in the separator domain,
while the numbers of the positive and negative electrode
domains are varied, depending on the use.

Since the full-order P2D model is too computationally
demanding for online use in a battery management system
(BMS), many attempts to model simplification have been
made. Some research focuses on reducing the number of
particles. By assuming that each entire electrode depth can
be represented by one particle, and the governing equations
can be significantly simplified, leading to the single particle
model (SPM) with the least computational requirement.
However, the SPM has many preconditions. Most notably,
it leads to large errors at high current rates and/or with thick
electrodes [6] [7].

When increasing the particle number from one in the SPM
to only two or three, the output errors can be greatly reduced
while the increased computational demand is still fairly mod-
est. External constraints on current and terminal voltages are
widely used for designing charging strategies today. There
are a number of studies exhibiting the potential benefits of
using additional cell internal constraints for healthier and
faster charging [8]–[10]. For example, the charging could
be significantly accelerated with reduced the risk of lithium
plating by keeping the overpotential above a safety threshold.
The reason for the threshold is to have a safety margin to
cope with model prediction errors. To maximize the benefits,
the errors should therefore be as small as possible. However,
there is no point to further reduce the discretization errors if
the effects from other sources, such as measurement errors
and parameter uncertainties, are significant.

This study aims to find the effects of different model
configurations on the performance of the P2D model under
different battery operating conditions. In addition to the
discretization errors, two external factors that can cause
model inaccuracy are also taken into consideration, including
the current sensor and the parameter uncertainties. The cells
are cycled with the hybrid pulse power characterization
(HPPC) test [11] or constant charging test. Aiming at es-



tablishing low order models, first, we investigate output
errors when the number of particles varies from 1 to 10,
and the maximum difference (with signs) during the whole
time/period is calculated, to compare with the 1% error
requirement for the offline model. When it comes to the
inputs, the analysis focuses on their effects on the major
causes of battery degradation: Lithium plating and growth
of the solid-electrolyte interphase (SEI) layer. To study how
the parameter uncertainties affects the system, a parameter
analysis is done with respect to all six outputs, including
measured target variables and control target ones. With all
these results, the effects of inputs, model and parameter
uncertainties on fast charging control of Li-ion batteries are
jointly evaluated.

II. EXTERNAL EFFECTS ON DIFFERENT PARTICLES
MODEL

A. Battery Model

A schematic of a typical Li-ion battery cell is shown
in Fig. 1. In the P2D model, there are three domains,
including the cathode, separator, and anode, denoted by the
symbol +, sep, and −, respectively. During the charging
and discharging process of the battery, lithium ions travel
through the separator between the cathode and the anode
back and forth, causing the concentration (c) of lithium
ions, the current density (i), the potential (Φ) and other
physical quantities to change. The corresponding dynamic
behaviors can be described by a series of partial differential-
algebraic equations (PDAEs) [5], where the superscript
j ∈ {+, sep,−}, ± ∈ {+,−}.

In electrolyte of the two electrodes and the separator:
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Fig. 1. 1D schematic of a Li-ion battery cell with N particles in each
electrode. From left to right, the three compartments represent the anode,
separator, and cathode, respectively.

In the two electrodes:
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where the physical meanings of the symbols are given at the
end of this work, and the boundary and initial conditions
are omitted here for the sake of brevity. A standard way of
simulating the P2D model is to use the finite volume method.
In the P2D model, either along the thickness direction or the
radial direction, for each discretized volume, the gradients
of the variables at both the center point and at the edges are
needed, so the method of lines can be applied [12]. Here, we
consider the number of discretized volumes in the positive
and the negative electrode are the same and denoted by N ,
and the corresponding model is denoted as an N -particle
model.

B. Current Sensor Bias

Note that in the P2D model, the applied current density is
the model input, specified in the boundary conditions. Mea-
surement errors are inevitable in current sensors, not the least
in vehicle applications where costs are kept at a minimum.
Nowadays, the measurement errors after calibration are 2%
and 0.5% for the shunt-based and Hall-based current sensors
used in electric vehicles, respectively [13]. Here, we compare
the errors caused by the sensor bias with the output errors
caused by the reduction of the particle numbers. To comply
with these error specifications, we investigate four levels of
bias, i.e., −2%, −0.5%, 0.5%, and 2%.

C. Parameter Uncertainties

Since the electrochemical model of the Li-ion battery is
derived from the chemical phenomena inside the cell during
the charging and discharging processes, it has a large set of
parameters that describe the characteristics of a cell. Some of
the parameters can be accurately measured and considered
to have no error, such as the current collector parameters.
The parameters related to the battery degradation and some
thermal behaviors will not be discussed in this work. To
study how the uncertainties in the remaining, unmeasured



parameters can affect the model outputs, the sensitivity
matrix will first be calculated and the parameters will be next
ranked according to how sensitive the selected outputs are
to each of the parameters [14]. Consider a general nonlinear
relationship between the input and the output,

y = fθ (u) , (12)

where y ∈ Rny is the vector consisting of selected outputs,
normalized with corresponding maximum values under no
parameter perturbations. u ∈ R is the input to the model and
θ ∈ Rnθ represents the vector of parameters. The sensitivity
derivative matrix S ∈ Rny×nθ of the model outputs to the
parameter vector is defined as

S ≡∂fθ
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If the level of parameter uncertainty is unknown, we may
assume an equal bias to all the parameters, which means
that all the elements in S share the same denominator. In
(13), Si represents the sensitivity of all the outputs to the
ith parameter. One can obtain a measure of the total effect
of the different parameters by using the Euclidean norm.
First, we calculate the values of ‖Si‖, ∀i, rank the results in
descending order, and then form a diagonal matrix D using
the ranked sequence, i.e.,

D =


‖S1‖ 0 · · · 0

0 ‖S2‖ · · · 0
...

...
. . .

...
0 0 · · · ‖Snθ‖

 . (14)

Having the ranking matrix D, a linear dependence matrix
C can be calculated by solving the decomposition equation
STS = DTCD [15], expressed by

C =
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· · · 1


.

(15)
Each element 〈Si,Sj〉

‖Si‖‖Sj‖ of C is by definition between −1
and 1 according to the Cauchy-Schwartz inequality, and it is
a measure of linear dependence between the two parameters
θi and θj . The larger the absolute value of 〈Si,Sj〉

‖Si‖‖Sj‖ is,
the stronger the linear dependence the two parameters have.
With the matrices D and C, we have measures of both the
parameter sensitivity and the linear dependence between any
two parameters. If the uncertainties can be acquired from the

manufacturer or the experience, a new sensitivity deviation
matrix can be calculated by scaling the constant parameter
bias S matrix, i.e.,

Su = SU, (16)

where

U =


θ1u 0 · · · 0
0 θ2u · · · 0
...

...
. . .

...
0 0 · · · θθnu

 ,
and θiu is the specified uncertainty of the ith parameter.
Replacing S by Su in (14) and (15), the corresponding
updated matrices Du and Cu can be derived. By multiplying
with the uncertainty matrix, ‖Si‖ is exactly the norm of the
changes of the ith output because of the uncertainties of the
parameters. The norm of the output changes caused by the
current sensor bias or the reduced number of particles can
also be calculated in a similar way.

D. Output Errors

In this work, with a given input sequence, the accuracy of
N -particle model is evaluated by the normalized maximum
error δ compared to the benchmark, defined by

δ[%] = sign(yN−ybenchmark)

∣∣∣∣max

(
yN − ybenchmark
ybenchmark

)∣∣∣∣∗100%

III. RESULTS AND DISCUSSION

In this section, the method described above is applied
under the input current profile of HPPC test and constant
charging. The particle number N under investigation changes
from 1 to 10. The results from a 100-particle model are used
as the benchmark.

A. HPPC

First, the HPPC test is conducted. The results for the 6
chosen outputs are shown in Table I. When the number of
particles of each electrode is three, the maximum deviations
in voltage, temperature, SOH, and SOC are all within 1%,
which satisfies the requirements of the offline model. Since
the SEI layer growth and the lithium plating can harm the
cell’s health, they need particular focus. It can be seen that,
for N = 3, the maximum lithium plating deviation is as high
as −5.4186% and in order to achieve the target of 1% error,
nine particles are needed for each electrode. Furthermore, the
maximum SEI layer thickness deviation decreases to below
1% only when the number of particles increases to seven.

1) Current sensor noise: Since the lithium plating only
occurs when the lithium plating overpotential is negative, it
is dangerous to overestimate the overpotential. So instead of
analyzing the unsigned maximum deviation, as (II-D), the
maximum positive errors are studied.

Fig. 2a shows the lithium plating errors under different
scenarios compared with the benchmark. The blue, red, and
yellow bars represent the output errors of the SPM to the
10-particle model with −2%, 2%, and zero input current
biases, respectively. It can be seen that When the number
of particles increases, the yellow and the blue bars have a



TABLE I
MODEL ERRORS WITH DIFFERENT PARTICLE NUMBERS UNDER HPPC

PROFILE

Particle No. V [%] T [%] Lip[%] SEI[%] SOH[%] SOC[%]
1 -2.5382 -1.7102 -15.1908 3.8708 -1.3927 0.0346
2 -1.6459 0.7997 -9.1381 2.9998 -0.6916 0.0089
3 -0.9502 0.3472 -5.4186 2.1473 -0.4561 0.0089
4 -0.7143 0.1900 -3.3982 1.6558 -0.3385 0.0134
5 -0.5733 0.1208 -2.2745 1.3405 -0.2679 0.0140
6 -0.4779 0.0825 -1.7463 1.1205 -0.2209 0.0112
7 -0.4083 0.0597 -1.4141 0.9601 -0.1873 0.0210
8 -0.3556 0.0454 -1.1627 0.8381 -0.1621 0.0119
9 -0.3140 0.0357 -0.9731 0.7404 -0.1426 0.0136
10 -0.2801 0.0288 -0.8248 0.6629 -0.1269 0.0198

decreasing trend. However, The results cannot be used as
the reference to select a safe margin because they do not
represent the worst case.

After studying the impacts of the 2% current bias, the
same process is applied to the model with the more accurate
current sensor, which can reach 0.5% accuracy after cali-
bration. The results of lithium plating errors are presented
in Fig. 2b. In this case, all the three bars’ heights decrease
monotonically as the number of particles increases from 1
to 10. Similarly to Fig. 2a, we see that when the number of
particles is larger than one the red bars are always higher
than the others. Hence, when selecting the safety margin,
one should always use the red bars as the reference.

When it comes to the SEI layer growth, it is of interest
to study the SEI layer thickness increment in the long term.
Fig. 3a shows the SEI layer thickness increment after 10
HPPC charging-discharging test in the current sensor without
bias, or with bias of −2%, −0.5%, 0.5% and 2%. Included
are also simulations for the number of particles ranging from
1 to 10 together with the benchmark. That is, there are 5×
11 = 55 curves in the figure. However, as can be seen in
the zoom, all the lines are very close to each other. The 55
lines have only a range of around 5×10−10 m, which is less
than 1% of the total SEI layer thickness increment. This may
seem contradictory to the large percentage listed in Table I,
where we can see large errors at the very beginning of the
cycle while the SEI layer increment is close to zero. This
means that the denominator used in the calculation is very
small. Fig. 3b shows all the 55 scenarios’ errors in percentage
and, clearly, that all the lines go below 1% after a few hours.
For SEI layer prediction, the impacts of the model order and
the current sensor bias are not significant after the very first
beginning.

2) Parameter sensitivity analysis: There are around one
hundred predefined parameters in the P2D model. Four
groups of parameters were selected for the parameter sen-
sitivity analysis, i.e.,

1) Geometric parameters: R+
p , L+, ε+e , ε+s , R−p , L−, ε−e ,

ε−s , Lsep, εsepe , A
2) Transport parameters: D+

s , σ+, D−s , σ−, De, t+

3) Kinetic parameters: k+eff , k−eff , Brugg
4) Concentration parameters: c+s,max, c−s,max, c0e
First, we assume all parameters have ±1% error and

calculate the corresponding norms in the ranking matrix. The
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Fig. 2. (a) Absolute errors of lithium plating potential under (a) constant
current charging and (b) HPPC profile.

12 highest ranked parameters are listed in Table II. All the
remaining parameters have ‖Si‖ less than 0.01.

The results in Table II show that the parameter that has the
most significant effects on the outputs is electrode surface
area A, followed by solid maximum ionic concentration
c−s,max in the negative electrode, active material volume
fraction ε−s of the negative electrode, the thickness of the
negative electrode L−, and the electrolyte volume fraction
ε−e of the negative electrode, and the active material volume
fraction ε+s of the positive electrode. The corresponding C
matrix for the six most influential parameters is:

C =



A c−s,max ε−s L− ε−e ε+
s

A 1.00 0.96 0.96 0.95 0.80 0.25
c−s,max 0.96 1.00 1.00 1.00 0.80 −0.03
ε−s 0.96 1.00 1.00 1.00 0.80 −0.03
L− 0.95 1.00 1.00 1.00 0.77 −0.04
ε−e 0.80 0.80 0.80 0.77 1.00 −0.05
ε+
s 0.25 −0.03 −0.03 −0.04 −0.05 1.00


(17)

Furthermore, it can be noticed that A, c−s,max, ε−s , and ε−e
are highly correlated to each other.



TABLE II
12 PARAMETERS WITH THE HIGHEST SENSITIVITY WHEN UNCERTAINTY IS AND IS NOT CONSIDERED

Without Uncertainty With Uncertainty

Symbol Physical Meaning Unit HPPC
‖Si‖

Constant
Charg-
ing
‖Si‖

Approx.
Uncertain-
ties[%]

HPPC
‖Si‖

Constant
Charg-
ing
‖Si‖

A Electrode plate area m2 2.6899 3.1315 ±1.5 0.0403 0.0470
c−s,max Negative electrode solid maximum concentration mol/m3 2.4266 2.9088 ±5 0.1213 0.1454
ε−s Negative electrode active material volume fraction m 2.3830 2.8920 ±5 0.1191 0.1446
L− Negative electrode thickness m 2.2032 2.7172 ±1.5 0.0330 0.0408
ε−e Electrolyte volume fraction in the negative electrode - 0.9723 1.1396 ±5 0.0486 0.0570
ε+
s Positive active material volume fraction - 0.7103 0.7631 ±5 0.0355 0.0382
c+
s,max Positive electrode solid maximum concentration m3 0.7102 0.7631 ±4 0.0284 0.0305
L+ Positive electrode thickness m 0.7047 0.7664 ±1.5 0.0106 0.0115
Brugg Bruggman coefficient - 0.6957 0.9880 ±20 0.1391 0.1976
ε+
e Electrolyte volume fraction in the positive electrode - 0.1787 0.5325 ±5 0.0089 0.0266
R−

p Negative particle radius m 0.1388 0.0977 ±20 0.0278 0.0195
t0a Transference number of lithium cation - 0.1074 0.1571 ±10 0.0107 0.0157

In Table II, the expected parameter uncertainties for
different parameters are presented. Taking the parameter
uncertainty into consideration and using (17), the ranking
changes significantly, see Table II. The corresponding C
matrix for the six most influential parameters is:

Cu =



Brugg c−s,max ε−s ε−e A ε+
s

Brugg 1.00 −0.78 −0.78 −0.98 −0.75 0.11
c−s,max −0.78 1.00 1.00 0.80 0.96 −0.03
ε−s −0.78 1.00 1.00 0.80 0.96 −0.03
ε−e −0.98 0.80 0.80 1.00 0.80 −0.05
A −0.75 0.96 0.96 0.80 1.00 0.25
ε+
s 0.11 −0.03 −0.03 −0.05 0.25 1.00


(18)

Next, we calculate the norm of maximum output changes
due to the current sensor bias. From the previous result, we
select the worst case with 2% bias and select the three-
particle model, i.e., the same as the model used for the
sensitivity analysis. The result is 0.0258, which ranks 10
among all parameters tested. Then we calculate the norm
of the maximum output changes when the number of par-
ticles decreases from 10 to 3. The result 0.0183, which is
also ranked 10 among all parameters. This means that the
uncertainties of the parameters are worth more attention.

B. Constant Charging
Repeating all the steps as described above under the

constant charging at 1C, the output errors between models
with different particle numbers and the benchmark are listed
in Table III. A similar analysis can be applied here.

For the lithium plating overpotential, it can be seen in
Fig. 4a and Fig. 4b that the currents with −2% and −0.5%
bias cause the largest errors under this constant charging.
When it comes to the SEI layer thickness, Fig. 5a shows
that the difference caused by the current sensor bias is much
smaller than the SEI layer thickness increment. Though the
error in percentage is large, there is a trend of decreasing
error percentages with time (see Fig. 5b).

As for the sensitivity analysis, the results are listed in Table
II and the linear dependence matrices are:

TABLE III
MODEL ERRORS WITH DIFFERENT PARTICLE NUMBERS UNDER 1C

CONSTANT CHARGING

Particle No. V [%] T [%] Lip[%] SEI[%] SOH[%] SOC[%]
1 1.9943 -1.2238 79.4588 -35.1103 -0.4435 0,0148
2 0.9870 0.4241 11.2455 -20.2329 -0.2283 -0.0060
3 0.6513 0.1479 6.4393 -14.9988 -0.1496 -0.0024
4 0.4834 0.0785 4.1803 -11.8069 -0.1108 -0.0013
5 0.3827 0.0496 2.9290 -9.6855 -0.0877 -0.0008
6 0.3156 0.0341 2.1626 -8.1791 -0.0723 -0.0006
7 0.2676 0.0248 1.6595 -7.0558 -0.0613 -0.0004
8 0.2316 0.0187 1.3120 -6.1867 -0.0530 -0.0003
9 0.2037 0.0146 1.0621 -5.4945 -0.0466 -0.0003
10 0.1813 0.0119 0.8766 -4.9303 -0.0415 -0.0002
.

C =



A c−s,max ε−s L− ε−e Brugg

A 1.00 0.99 0.99 0.98 0.74 −0.70
c−s,max 0.99 1.00 1.00 1.00 0.70 −0.63
ε−s 0.99 1.00 1.00 1.00 0.70 −0.63
L− 0.98 1.00 1.00 1.00 0.64 −0.58
ε−e 0.74 0.70 0.70 0.64 1.00 −0.86
Brugg −0.70 −0.63 −0.63 −0.58 −0.86 1.00


(19)

Cu =



Brugg c−s,max ε−s ε−e A L−

Brugg 1.00 −0.63 −0.63 −0.86 −0.70 −0.58
cs,max −0.63 1.00 1.00 0.70 0.99 1.00
ε−s −0.63 1.00 1.00 0.70 0.99 1.00
ε−e −0.86 0.70 0.70 1.00 0.74 0.64
A −0.70 0.99 0.99 0.74 1.00 0.98
L− −0.58 1.00 1.00 0.64 0.98 1.00.


(20)

From this, we calculate that the rankings are the same
as for the HPPC cycles. From matrix C, it can also be seen
that the correlation relationship between different parameters
is very similar as well. Similar to the HPPC test but with
a current bias of −2%, which is the worst case in the
constant charging test, the norm of maximum output changes
due to the current sensor bias is 0.0258, which ranks 10
among all parameters tested. The norm of maximum output
changes when the number of particles decreases from 10 to



(a)

(b)

Fig. 3. Increment error of SEI layer thickness (a) SEI layer thickness
increment error in meter. (b) SEI layer thickness increment error in
percentage.

3 is 0.0106, which is ranked 11 among all parameters. This
also means the uncertainties of the parameters need more
attention.

IV. CONCLUSION

The concluding remarks of this work are summarized
as follows. Generally, the more particles the model uses,
the more accurate results can be achieved. Though, for
the terminal voltage, temperature, SOH, and SOC, already
two- or three-particle model can satisfy the offline model’s
requirement to limit the error to be less than 1%. From this
perspective, a large number of particles is not necessary.
However, for the control target variables we selected, the
lithium plating overpotential and the SEI layer thickness, a
low number of particles is not accurate enough. When it
comes to the input biases, for the lithium plating overpo-
tential it makes sense to compare the maximum error to the
benchmark. Adding the biases from the current sensor, it can
be concluded that the current sensor biases can influence the
choice of the safety margin a lot. That is, to be able to use
different size model, a proper safety margin is needed, which
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Fig. 4. Lithium plating error under constant charging considering the
current sensor bias of (a) ±2% and (b) ±0.5%.

takes not only the number of particles but also the current
sensor bias into consideration. For the SEI layer thickness,
model size and current sensor bias can be ignored because
their error range is too small compared with the growth of the
SEI layer. With the results of the parameter analysis, the most
sensitive parameters can be found with or without knowing
the parameter uncertainties, and so can the correlation be-
tween them as well. After comparing the sensitivity norm of
the output changes caused by the reduction of the number of
particles, as well as the current sensor bias, it can be found
the reduction of particles number does not affect the output
as much as the parameter uncertainties. This also holds for
the current sensor bias, though it is larger than that of the
reduction of number of particles. This means if considering
some of the measure target variables and some important
control target variables together, the parameter uncertainties
affect the outputs much more than a reduction of the number
of particles. If the parameter uncertainties of one battery
cannot be reduced to a lower standard compared with that
in the paper, then increasing the model order is not helpful
to reduce the output error. Knowing this information, further



(a)

(b)

Fig. 5. SEI layer thickness increment error in (a) SI unit and (b) percentage.

parameter identification work emphasized particularly on the
sensitive parameters is needed.
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LIST OF SYMBOLS

Φs: solid-phase potential [V]
Φe: electrolyte potential [V]
is: solid-phase current density [A ·m−2]
ie: electrolyte current density [A ·m−2]
i0: exchange current density [A ·m−2]
cs: solid-phase concentration [mol ·m−3]
cs,max: theoretical maximum solid-phase concentration [mol ·
m−3]
css: surface concentration of solid-particle [mol ·m−3]
ce: electrolyte concentration [ mol ·m−3]
c0e: average electrolyte concentration [ mol ·m−3]
jtot: total molar flux [mol ·m−2 · s−1]
jint: intercalation molar flux [mol ·m−2 · s−1]
ηint: activation overpotential for intercalation [V]
Uss: equilibrium potential of the electrode on the surface [V]
U : equilibrium potential of the electrode [V]
Ds, eff : effective solid-phase diffusion coefficient [m2 · s−1]
De, eff : effective electrolyte diffusion coefficient [m2 · s−1]
Rp: radius of the solid-phase particle [m]
as: specific surface area of electrode [εs/Rp)[m−1]
εs: volume fraction of the solid phase [-]
εe: porosity or volume fraction of the electrolyte [-]
σeff: effective solid-phase conductivity [S ·m−1]
κeff : effective electrolyte (ionic) conductivity [S ·m−1]
keff: effective reaction rate constant [A ·m2.5 ·mol−1.5]
L: thickness of a domain [m]
rf : SEI film resistance [Ω ·m2]
F : Faraday constant [s ·A ·mol−1]
T : cell temperature [K]
Tref : reference temperature [K]
Rg: universal gas constant [J ·K−1 ·mol−1]
t0a: transference number (= 1− t0c) [-]
fc/a: the mean molar activity coefficient in the electrolyte
[-] α: transport coefficients,


