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Inverse design of anisotropic 
spinodoid materials with prescribed 
diffusivity
Magnus Röding1,2*, Victor Wåhlstrand Skärström3 & Niklas Lorén1,4

The three-dimensional microstructure of functional materials determines its effective properties, 
like the mass transport properties of a porous material. Hence, it is desirable to be able to tune the 
properties by tuning the microstructure accordingly. In this work, we study a class of spinodoid i.e. 
spinodal decomposition-like structures with tunable anisotropy, based on Gaussian random fields. 
These are realistic yet computationally efficient models for bicontinuous porous materials. We use a 
convolutional neural network for predicting effective diffusivity in all three directions. We demonstrate 
that by incorporating the predictions of the neural network in an approximate Bayesian computation 
framework for inverse problems, we can in a computationally efficient manner design microstructures 
with prescribed diffusivity in all three directions.

Traditionally, the search for novel materials with useful properties has relied to a large extent on experimental 
screening. An exhaustive search of the space of candidate material structures is then far out of  reach1. In pro-
portion to the rapid increases in available computational resources, a gradual move towards virtual (in silico) 
screening of materials and their properties has occurred, effectively circumventing this problem and accelerat-
ing materials discovery. A likely development from here is an increasing integration and cross-fertilization of 
not only experimental materials science and traditional numeric computation, but also statistics and machine 
learning, the mix sometimes being referred to as materials informatics2.

For porous materials, the microstructure, i.e. the geometry of the pore space, controls the mass transport 
 properties3. Hence, quantifying such relationships is the first step towards design of materials with desirable 
properties. Numerous stochastic models of realistic porous microstructures found in e.g. solar  cells4, organic 
 semiconductors5, carbon  electrodes6, platelet-filled  composites7, lithium ion  batteries8, mesoporous  silica9, fiber 
 materials10,11, and pharmaceutical coatings for controlled  release12 have been developed. By computing mass 
transport properties like effective diffusivity and/or fluid permeability together with microstructural (geometric) 
descriptors, microstructure-property relationships have been established using analytical models or machine 
learning-based regression. Frequently used microstructural descriptors are porosity and specific surface area, 
 tortuosity12,  constrictivity13, and two-point correlation  functions14. To name a few large-scale studies, Linden 
et al.15 predicted permeability of 536 granular materials using loglinear regression; Stenzel et al.16 predicted 
effective conductivity (mathematically analogous to effective diffusivity) of 8,119 porous network structures 
using conventional regression, random forests, and artificial neural networks (ANNs); Röding et al.17 predicted 
permeability of 30,000 granular as well as Gaussian random field- and spinodal decomposition-based bicon-
tinuous structures, using conventional regression and ANNs; Prifling et al.18 predicted effective diffusivity and 
permeability of 90,000 structures with widely varying morphologies using analytical formulae, ANNs, and con-
volutional neural networks (CNNs). Of particular interest for this work, CNNs have been used multiple times 
to predict both effective diffusivity and  permeability19–22.

Predicting effective properties of a microstructure is a ’forward’ problem with a unique solution (disregard-
ing inaccuracy or randomness of the computation of the properties). The inverse problem, to find or design 
a microstructure with prescribed effective properties, i.e. inverse design, is more difficult and does in general 
not have a unique solution. There are in principle two classes of approaches for solving the inverse problem: (i) 
optimization techniques, where a solution is iteratively improved until a convergence criterion is met (sometimes 
combined with machine learning-based prediction of effective properties to speed up the optimization), and (ii) 
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generative approaches, where machine learning methods are trained to directly generate a microstructure using 
the target properties as input. Some examples of the first kind are graph-based optimization of microstructures 
for photovoltaic  applications23, optimization of the degree of anisotropy to achieve desired directional mechani-
cal  properties24, microstructure design of magnetoelastic alloys to optimize elastic, plastic and magnetostrictive 
 properties25, optimization of anisotropic elasticity for topology  optimization26, and optimization of microstruc-
tures for crystal  plasticity27. Sometimes, stochastic optimization algorithms are used, such as differential evolution 
or genetic  algorithms28; other times, Bayesian  statistics27. As for the second kind, they involve e.g. generative 
adversarial networks, generative invariance networks, and variational autoencoders i.e. neural network archi-
tectures that can learn to generate microstructures with appearance similar to a training set of microstructures. 
Such approaches have been used to very quickly generate candidate structures with properties approximating the 
target, with respect to e.g. photovoltaic and mechanical  properties29–33. It is worth noting, as has been pointed 
out numerous times, that machine learning models cannot be assumed to extrapolate well outside of the training 
data domain; it can only be expected to perform well inside its domain of  applicability34 that depends both on 
the training data and the architecture of the model itself. This fact imposes a limitation on the applicability of all 
inverse design approaches utilizing machine learning.

In this work, we are concerned with inverse design of porous (two-phase), anisotropic, random microstruc-
tures with different prescribed diffusivity in all directions. Designing anisotropic mass transport properties is 
of interest for numerous applications, e.g. in hygiene and wound care products for transporting liquid away 
from the skin. This type of inverse problem rarely has a unique solution. However, by limiting the investiga-
tion to a sufficiently constrained microstructural space, with a sufficiently low-dimensional parameterization, 
we can at least approach a unique solution. We consider a particular class of Gaussian random fields of which 
the level sets i.e. thresholded, binary structures are realistic models for phase-separated structures produced by 
spinodal decomposition-like processes. Such structures are useful as models for e.g.  microemulsions35, nano-
porous alloys for catalysis and energy  storage36,37, lithium-ion battery  anodes38, and porous polymer films for 
controlled  release12. Borrowing terminology from Kumar et al.32 and Zheng et al.26, we refer to these as spinodoid, 
i.e. spinodal decomposition-like, microstructures. This spinodoid class has a tuneable degree of anisotropy and 
hence the diffusivity can to some degree be tailored in all three directions. Further, their generation is much less 
computationally demanding than simulating actual spinodal decomposition, facilitating faster exploration of the 
microstructural space. We generate a large number of microstructures and train a CNN to predict effective dif-
fusivity in all three directions. We investigate a Bayesian formulation of the inverse problem, where the solution 
is expressed as a posterior distribution over the parameter space of the microstructure model. We demonstrate 
that by incorporating the predictions of the CNN in an approximate Bayesian computation (ABC) framework, 
we can inversely design microstructures with prescribed, and different, diffusivity in all three directions. To our 
knowledge, this is the first attempt at inverse design of anisotropic microstructures with prescribed diffusivity 
or other types of mass transport properties, and can be considered a proof-of-concept that is applicable to other 
morphologies as well.

Results
Inverse design approach. The core concept in our inverse design approach is to utilize efficient micro-
structure generation and property prediction in a Bayesian framework for inverse problems to design aniso-
tropic microstructures with prescribed diffusivity. To illustrate all the steps, we provide a schematic overview in 
Fig. 1. The steps of the approach are as follows: (1) we generate a large number of virtual microstructures from 
our model, varying parameters like porosity and degree of anisotropy; (2) the effective diffusivity is simulated 
in all three directions, using lattice Boltzmann methods; (3) the dataset is used to train a CNN to accurately and 
rapidly predict effective diffusivity (in a single direction); (4) the CNN prediction model is used as part of an 
approximate Bayesian computation (ABC) framework for estimating the microstructural parameters that yield 
the prescribed effective diffusivity; (5) the optimized structure is validated using the numerical method.

Effective diffusivity is hence computed ’offline’ i.e. before the optimization commences. It could also be com-
puted ’online’, utilizing the numerical computation directly in the ABC framework in step 4, thereby removing 
the need for steps 1–3. However, this would result in the optimization being much too slow to be practically 
feasible, and this is precisely the reason why to introduce machine learning in the inverse design.

We elaborate on the different steps in the approach in the subsections below.

Microstructure model. Phase separation of homogenous materials into two-phase materials by means of 
a diffusive process was described in the seminal paper by Cahn and  Hilliard39. Solutions of the Cahn–Hilliard 
equation, expressed as the local concentration of one of the phases, �(x, t) , describes the gradual separation and 
coarsening of the microstructure. For a fixed time t > 0 , the solution �(x) can be described by a superposition 
of cosine waves or a Gaussian random field (GRF),
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models for bicontinuous two-phase microstructures, which can be obtained as a level set i.e. by thresholding: By 
encoding the microstructure as zeros (pore) and ones (solid) and letting

I(x) describes a random porous microstructure with porosity ǫ = P(�(x) < T) . The physical counterpart 
to this thresholding would be the removal of one phase by e.g. leaching or dealloying.

Instead of the Cahn–Hilliard expression, we use a method based on the Fast Fourier Transform (FFT) for 
generation of  GRFs41. Briefly, generating a GRF in a cubic, discrete domain � with resolution N3 grid points 
( � = {0, 1, . . . ,N − 1}3 , say) is done in the following fashion. First, independent, normal distributed noise is 
generated in the spatial domain and transformed to the Fourier domain. Second, it is multiplied by the square 
root of the spectral density of the covariance function. Third, the result is inverse-transformed to the spatial 
domain, yielding a GRF with the specified covariance function. We use the spectral density

which is a modified version of a spectral density used  before41,42. It incorporates variable degrees of anisotropy 
through the parameters ax , ay , and az that directly control the length scale in their respective directions. Ani-
sotropic spinodoid microstructures can be interpreted as the result of introducing anisotropic diffusion and/
or anisotropic interface mobility into the phase separation  dynamics32. As stated above, the spectral density of 
the covariance function can be understood as a 3D probability distribution of wave vectors; the distribution 
of wave vector magnitudes and hence length scales can be interpreted as heterogeneity in the phase separa-
tion dynamics. The benefit of using this FFT-based approach is that the generated GRFs conform to periodic 
boundary conditions of the domain � , whereas Cahn-Hilliard type GRFs generated in a bounded domain are 
not periodic. For more details, see Methods. The final step to produce a porous microstructure from a GRF is 
thresholding to obtain a porosity ǫ as described above. Hence, the parameter vector describing the microstructure 

(2)I(x) =

{

1, �(x) ≥ T
0, �(x) < T

,
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Figure 1.  The different steps of the inverse design approach. The individual steps are explained and illustrated 
in the corresponding subsections.
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is θ = (ax , ay , az , ǫ) . However, the microstructure also depends on the random seed ω (that controls the white 
noise in GRF generation), and a structure is only uniquely defined by specifying (θ ,ω) . In Fig. 2, examples of 
microstructures generated using this approach are shown, with varying porosity and degrees and directions of 
anisotropy.

Dataset generation. For developing a machine learning-based prediction of diffusivity, a large number of 
GRF-based microstructures are generated on a grid of size N3 with N = 192 , represented as a 3D binary voxel 
array. The parameters are randomly sampled in suitable ranges such that the pores are sufficiently large (ensuring 
that reliable diffusivities are obtained from the simulations), that the inlet and outlet (i.e. the opposing edges of 
the structure) of the pore phase is connected in all three directions (ensuring that diffusive transport is possible), 
and that the same holds for the solid phase (ensuring that the microstructure is physically plausible). To this end, 
it is ascertained that all length scale parameters are in a suitable range, that their ratios are not ’too extreme’, and 
that the porosity is not too low.

Specifically, the parameters of the model are randomized in the following fashion: Let β be the ratio of the 
largest and the smallest a value and let α be the ratio of the middle to the smallest a value. Sample β from U[1, 3] 
(uniform distribution in [1, 3]), and sample α from U[1,β] . Rescale the resulting vector (1,α,β) such that its 
mean value is U[0.05, 0.2] , and assign a random permutation of these values to ax , ay , and az . The first step yields 
suitable ratios of length scales (degrees of anisotropy) and the second step yields a suitable distribution of average 
length scales. Then, sample the porosity ǫ from U[0.3, 0.85] . A GRF is then generated using these parameters for a 
particular random seed. Before a candidate structure is accepted into the dataset, it is verified that the connectiv-
ity conditions are met. However, the parameter sampling procedure ensures a low rejection rate.

The parameters ranges further impose a limitation on how anisotropic the structures can be, as elaborated 
upon in the end of this section. Also, the distributions of some parameters in the final dataset are slightly skewed 
compared to the distribution they are originally sampled from due to rejection. In total, 8192 microstructures 
are generated for the training dataset, and 2048 microstructures are generated for each of the validation and 
test datasets. The code is implemented in Matlab (Mathworks, Natick, MA, US). Microstructure generation on 
an AMD Epyc 7542 CPU (2.9 GHz; single thread) takes on average 2.6 s with an additional 1.2 s for the checks.

For all structures and all three directions, diffusion simulations are performed using the lattice Boltzmann 
 method43,44. The simulations are so-called forced diffusion simulations where the concentrations at the inlet and 
outlet are fixed with cinlet > coutlet , driving diffusive transport from inlet to outlet. The diffusive flux J =

(

Jx , Jy , Jz
)

 
(the net amount of transport per unit area and unit time in all directions), can be expressed

where D is the ’free’ diffusion coefficient and ∇c is the concentration gradient. The concentration evolution is 
governed by the diffusion equation (Fick’s second law),

subject to zero-flux boundary conditions at the solid-liquid interface and the fixed inlet and outlet concentra-
tions. The effective diffusion coefficient can be computed at steady state as

where i = x, y, z and 〈Ji〉 is the average flux over the simulation domain. We are interested in the ratio of Deff ,i 
and D,

(4)J = −D∇c,

(5)
∂c

∂t
= D�c,

(6)Deff ,i = −
�Ji�(N − 1)

cinlet − coutlet
,

Figure 2.  Examples of generated microstructures, with the parameters (a) θ = (0.1, 0.1, 0.1, 0.3) (isotropic), (b) 
θ = (0.15, 0.25, 0.15, 0.5) (longest length scale left–right), and (c) θ = (0.15, 0.05, 0.15, 0.7) (shortest length scale 
left–right).
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This dimensionless quantity ηi ∈ (0, 1) is called diffusivity (or effective diffusivity, or obstruction factor), and 
depends only on the geometry of the pore space, not on e.g. viscosity of the medium. The vector η = (ηx , ηy , ηz) 
denotes the diffusivity in all three directions.

For these simulations, the solid-liquid interface has to be a triangulated surface in STL format. The com-
putations are performed in a cluster environment using other CPUs, but for comparison we report the mean 
execution time for the same CPU as above: STL file generation takes on average 40 s (single thread). Simulating 
diffusion in one direction (64 threads) takes on average 240 s. Converting this latter result to three directions, it 
takes on average 720 s, and if executed on a single thread (neglecting parallelization overhead, just multiplying 
the time by 64), it would take on average 12.7 h. The STL generation and diffusion simulation are performed 
using proprietary software developed in C++43,44. The execution time for the simulations is almost independent 
of the parameters, whereas the execution time for STL generation is approximately linearly proportional to the 
specific surface area which in turn is inversely proportional to the length scale(s).

It is of particular interest what the joint distribution of diffusivity in the three directions is i.e. what combina-
tions of (one-dimensional) diffusivity are represented in the dataset. The size and resolution of the simulation 
domain limits the length scale both downward and upward. Also, assuming a fully-connected pore space, the 
porosity and specific surface area will be the same for transport in all three directions, and because they have sub-
stantial influence on transport, the diffusivity in different directions will be correlated. Of course, the differences 
increase with increasing anisotropy, but the degree of anisotropy can in practice not be too extreme because then 
the requirement of a connected pore space would be violated with high probability. In Fig. 3, the distribution of 
diffusivity is illustrated. Indeed, the diffusivity in different directions is strongly positively correlated ( r ≈ 0.88).

Prediction of diffusivity. We implement a convolutional neural network (CNN) for prediction of diffu-
sivity in a single direction. In a conventional artificial neural network (ANN), the building blocks are fully-
connected layers that each comprise a number of nodes. Weighted sums of the outputs from the nodes in one 
layer form the inputs to the next layer, and a so-called activation function f is applied to introduce non-linearity. 

(7)ηi =
Deff ,i

D
.

Figure 3.  The distribution of diffusivity, showing (a) a histogram of the distribution of ηx and (b) a scatter plot 
of the joint distribution of ηx and ηy . Because the length scale parameters in all directions are distributed equally, 
the distributions look the same for any two directions. Note that the x axis is the same for (a) and (b).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17413  | https://doi.org/10.1038/s41598-022-21451-6

www.nature.com/scientificreports/

In contrast, in a CNN, convolutional layers are the main building blocks. A typical CNN architecture consists of 
both convolutional layers, pooling layers, and fully-connected layers. In a convolutional layer, the input is con-
volved with several convolution kernels and an activation function f is applied to produce outputs known as fea-
ture maps. In a pooling layer, feature maps are downsampled by computing e.g. the mean or maximum on small 
patches of the feature maps from the preceding layer. After the convolutional and pooling layers, fully-connected 
layers are used to compute the final (scalar) output. During training of a CNN, the parameters (convolution 
kernel elements and weights of the sums in the fully-connected layers) are optimized with respect to minimizing 
deviations from the target output measured by some loss  function45,46.

It is worth mentioning that the alternative approach to using a CNN would be to extract microstructural 
descriptors such as porosity, specific surface area, tortuosity, and correlation functions, and use them as input 
for basically any machine learning method e.g. a conventional ANN. However, considering the computational 
demand of extracting such descriptors, this approach would in practice be much slower than using a CNN (even 
with a very small ANN). We investigated ANNs in this project using such descriptors, obtaining almost the same 
predictive performance as for the CNN but with much longer execution times (not shown).

We design a CNN that produces a diffusivity prediction as output given a microstructure as input. To reduce 
the computational workload and accelerate training, the microstructures are downsampled by a factor of 2 and 
stored as 963 arrays with values in {0, . . . , 8} (the values representing the number of solid voxels in all non-over-
lapping windows of size 2× 2× 2 in the original structures). Preprocessing the microstructures in this manner 
is equivalent to applying an average pooling filter with a 2× 2× 2 window as the first layer in the CNN, apart 
from a linear scaling. The CNN comprises three convolutional blocks, each with two convolutional layers and 
one average pooling layer. For the convolutional layers, 3× 3× 3 kernels and 32, 48, and 64 filters per layer are 
used in the different blocks. For the average pooling layers, 2× 2× 2 windows are used. After the convolutional 
part, 4 fully-connected layers with 256, 192, 128, and 64 nodes are used to compute the final output. The network 
has approximately 8.8M weights. After all convolutional and fully-connected layers, the exponential linear unit 
(Elu)  activation47,

is used for α = 1 (the only value for which the Elu activation is once-differentiable). The convolutional blocks 
can be thought of as feature extractors that extract microstructural descriptors at different scales, which are then 
used as input to the fully-connected part. The inputs are rescaled to [−1/2, 1/2] , because normalization of inputs 
tend to provide faster convergence in  training48. The outputs are logit-transformed so that the network in fact is 
trained to predict y = log(η/(1− η)) . The network architecture is illustrated in Figure 4.

The networks are implemented in  Tensorflow49 and optimized with respect to mean squared error (MSE) 
loss in the logit scale. The CNN is trained to predict diffusivity in only one direction. To account for all three 
directions, each microstructure is included three times in the datasets, with permuted axes. Therefore, the dataset 
sizes used for CNN training and testing are three times larger than the corresponding number of microstruc-
tures i.e. 24,576 for the training dataset and and 6144 each for the validation and test datasets. The reason for 
predicting a single diffusivity instead of all three at once is that it enables more data augmentation. Training is 
run for 3500 epochs on a single NVIDIA A100 GPU, and the execution time is approximately 14 days (340 s per 
epoch). It is worth noting that whereas training of CNNs used for classification tasks would typically converge 
in approximately 10–100 iterations, training of CNNs used for regression tasks frequently require a much larger 
number of epochs to converge. The model yielding the minimal validation loss over all epochs is selected. For 
more details on the training procedure and the data augmentation scheme, see Methods. In Table 1, the best 
results are shown. In Fig. 5, the true and predicted values are compared for the test set.

(8)f (x) =

{

x, x > 0
α(ex − 1), x ≤ 0

,

Figure 4.  Illustration of the CNN architecture. Arrays of size 963 are used as input. First, three convolutional 
blocks having convolutional layers with 32, 48, and 64 filters and average pooling layers are used to extract 
microstructural features at different scales. Then, four fully-connected layers with 256, 192, 128, and 64 nodes 
are used to produce the logit-transformed diffusivity prediction as output. Elu activation is applied after all 
convolutional and fully-connected layers.
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Optimization and inverse design. The final step is to design microstructures with prescribed diffusivity, 
and efficiently explore the space of candidate microstructures. As mentioned in the Introduction, the predic-
tion model will only perform well inside its domain of  applicability34. The small test data losses indicate that the 
domain of applicability at least approximately covers the space of microstructures defined by the dataset genera-
tion procedure. Therefore, using the CNN prediction model as part of an inverse design scheme should be ’safe’ 
within this space. However, even within the domain of applicability, the error relative to the ’ground truth’ i.e. 
the lattice Boltzmann method can be expected to be around 1 % and possibly more, emphasizing the importance 
of validating the results.

Bayesian formulation. We use a Bayesian formulation of the inverse problem. Whereas the diffusivity vector 
η = (ηx , ηy , ηz) is entirely determined by the microstructure, i.e. I(x) , we reiterate that the generated micro-
structures are functions of not only the parameter vector θ = (ax , ay , az , ǫ) but also of the random seed ω . 
Therefore, the relationship between θ and η is stochastic. In Bayesian terms, we can express this as

where P(η|θ) is the likelihood, i.e. the probability of observing η as the output given that θ is the input, and π(θ) 
is the prior distribution, reflecting prior knowledge of θ . The posterior distribution f (θ |η) is the full solution 
to the inverse problem of finding parameters θ that yield the property η . The posterior distribution can be sum-
marized e.g. by computing the posterior mean (the average of θ ) which we denote θ̃.

Approximate Bayesian computation. The relationship between θ and η can only be observed indirectly by simu-
lation and prediction; in other words, the likelihood is not analytically tractable. Approximate Bayesian compu-
tation (ABC) is designed for obtaining samples from an approximate posterior distribution in this setting. The 
starting point of ABC is the fact that samples can be drawn from the (exact) posterior in the following fashion: 
if a random θ is sampled from the prior, a microstructure is generated for that θ with the predicted diffusivity η′ 
(we drop the ’hat’ notation for predicted values in this context), and if η′ = η , then θ is accepted and otherwise 
rejected as a sample from the posterior. Because P

(

η′ = η|θ
)

 is virtually zero, we can accept θ as a sample from 
an approximate posterior if ρ

(

η, η′
)

≤ τ for some discrepancy ρ and tolerance τ to obtain a higher, manageable 
acceptance  rate50–52. Several more computationally efficient methods than straightforward rejection sampling 

(9)f (θ |η) ∝ P(η|θ)π(θ),

Table 1.  Error measures for the prediction of diffusivity, where MSE and MAPE (in %) is given for the 
training, validation and test sets. Note that MSE is evaluated on the logit scale and MAPE on the linear scale.

Training Validation Test

MSE 3.5766 · 10−4 4.7425 · 10−4 5.0987 · 10−4

MAPE 0.8689 0.9615 0.9986

Figure 5.  True diffusivity η vs predicted diffusivity η̂ for the test set, including all three directions.
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have been proposed such as Markov chain Monte  Carlo53, partial rejection  control54, sequential Monte  Carlo55, 
and finally population Monte  Carlo56 which we use herein.

Population Monte Carlo ABC is based on an analogous method for standard Bayesian  inference57. By using 
a decreasing sequence of tolerances, τ1 , τ2 , ..., τT , a population of P individuals, θ1, . . . , θP , is adapted to approxi-
mate a sample from the true posterior increasingly well. The method is adapted to our case from Beaumont 
et al.56 (see Methods).

Case study. We consider inverse design for two cases with target diffusivities η1 = (0.40, 0.50, 0.60) and 
η2 = (0.25, 0.375, 0.50) . We use a flat prior over the parameter space defined in Dataset generation, i.e. sam-
pling from the prior is equivalent to the sampling performed to generate the dataset for training the CNN. The 
discrepancy ρ is

i.e. analogous to the MAPE loss used for CNN performance assessment (see Methods). The population size 
used is P = 512 . Further, we use a sequence of 9 log-equidistant tolerances, log10 τ1 = 2 , log10 τ2 = 1.75 , ..., 
log10 τ9 = 0 ; hence, after the last iteration, the mean absolute error over all directions can be up to 1 %. Note 
that not only the approximate sampling of the ABC method but also the prediction error of the CNN is incor-
porated into the approximate posterior. The algorithm is implemented in Matlab (Mathworks, Natick, MA, US) 
with the trained CNN imported from Tensorflow and running a parallel implementation utilizing 128 threads. 
For the first case, the execution time is 6.2 h with the microstructure generation and CNN prediction code run 
∼ 130,000 times. For the second case, the execution time is 69 h with the microstructure generation and CNN 
prediction code run ∼ 1,500,000 times. The number of trials increases approximately exponentially as a function 
of iteration number in both cases, due to the decreasing tolerance sequence.

The (approximate) posterior distributions for the two cases are shown in Figs. 6 and 7.
The posterior means are θ̃1 = (0.092, 0.135, 0.245, 0.666) and θ̃2 = (0.098, 0.151, 0.284, 0.572) . For these val-

ues, we generate 250 microstructures and acquire the diffusivity using both the numerical method and the CNN 
prediction. The results are shown in Figs. 8 and 9.

For the first case, the mean obtained diffusivity is (0.401, 0.499, 0.599) (CNN prediction) and 
(0.400, 0.498, 0.598) (numerical method). For the second case, the mean obtained diffusivity is (0.264, 0.374, 0.490) 
(CNN prediction) and (0.264, 0.372, 0.489) (numerical method). It is clear that the results are somewhat better 
for case 1 than for case 2. This is not a surprise, considering that posterior sampling is more than 10 times more 
computationally demanding for the latter case, which indicates that η1 is more representative of the set of dif-
fusivities spanned by the microstructural parameter ranges, whereas η2 is more of an edge case.

Upscaling. Whereas the inverse design procedure is executed on a rather small spatial scale, the intended out-
come of inverse design is likely to identify structures with desired properties on a larger scale. We demonstrate 
upscaling with structures generated on a grid of size N3 with N = 576 , i.e. a factor 3 larger in all directions. Start-
ing from the posterior mean parameter estimates θ̃1 and θ̃2 and assuming the same (albeit arbitrary) physical grid 
resolution as for the smaller structures, the length scale parameters ax , ay , and az are divided by 3. For each case, 
10 microstructures are generated, and the diffusivity is computed using the numerical method (note that in this 
case, the CNN prediction cannot be used because it is designed for a particular resolution). The obtained mean 
diffusivities are (0.393, 0.494, 0.595) and (0.258, 0.366, 0.484) . Representative structures are shown in Fig. 10. Not 
surprisingly, a similar bias in the diffusivities is seen here as for the smaller structures. However, larger structures 
will have less variations in terms of diffusivity (all diffusivities have standard deviations below 0.003).

Discussion
We present a concept for inverse design of spinodoid i.e. spinodal-like morphologies with tailored diffusivity in 
three directions. The microstructures are simulated as level sets of Gaussian random fields with variable anisot-
ropy. Because the generated microstructures are random, the inverse problem of finding parameters that produces 
a microstructure with prescribed properties does not have a unique solution. Therefore, we use a Bayesian frame-
work to express the solution to the inverse problem as a posterior distribution over the parameters. As part of this 
framework, we incorporate a CNN trained to predict diffusivity. CNN prediction is much less computationally 
demanding than numerical simulation, allowing for optimization of microstructures with respect to its diffusivity 
within reasonable time. Although it is abundantly clear from the obtained posterior distributions that there is no 
unique solution, we demonstrate on two cases that using the posterior mean of the microstructural parameters, 
this framework can be used to obtain parameters that yield structures with properties close to the prescribed 
values. It would be possible to validate the approach more carefully using experimental data e.g. by 3D printing 
of an optimized structure and performing pulsed-field gradient nuclear magnetic resonance measurements of 
anisotropic diffusion in the structure. However, this is beyond the scope of this work.

Although the framework is designed for relatively low resolution microstructures, we demonstrate that upscal-
ing works by generating larger structures that are shown to have diffusivities close to the prescribed values and 
with smaller variance, indicating that the problem of non-uniqueness is reduced by increasing structure size.

It is worth noting that there are at least two potential sources of bias in the results. First, virtually all statistical 
estimation procedures introduce a bias, and the Bayesian posterior mean estimation is no exception. Second, 
the approximate nature of the ABC procedure is known to introduce additional bias. In summary, the proposed 
method to find a solution to the inverse problem produces a biased choice among the possible solutions.
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The inverse design process could be further accelerated in several ways. For example, the convolutional neu-
ral network architecture could be modified to predict diffusivity in all directions jointly. Further, by training a 
generative network, such as a variational autoencoder or a generative adversarial network, to directly generate 
a candidate structure with prescribed properties, the iterative sampling and optimization procedure could be 
circumvented. Also, the fact that the variation in diffusivity is much smaller for larger microstructures indicate 
that more reliable solutions to the inverse problem can be found if the study is performed in higher resolution; 
this would however require very substantial computational resources, and 3D CNNs will likely not be feasible for 
much higher resolutions in the near future. One possible workaround is to use less computationally demanding 
2D CNNs, taking e.g. average porosity maps along one axis as input.

In principle, the inverse design problem could be solved by using e.g. a conventional ANN to establish a 
mapping from the diffusivity vector to the parameter vector. The CNN as well as the ABC framework would 
then not be needed. However, the relationship between the parameter vector and the resulting microstructure is 
inherently random, introducing uncertainty in the solution of the inverse problem. Therefore, machine learning 
is more straightforward to use for approximating the deterministic ’forward’ problem of predicting diffusivity 

Figure 6.  The (approximate) posterior distribution of θ for the target diffusivity η1 , showing the marginal 
posterior distributions of (a) ax , (b) ay , (c) az , and (d) ǫ.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17413  | https://doi.org/10.1038/s41598-022-21451-6

www.nature.com/scientificreports/

from the microstructure, combined with a statistical framework for quantifying uncertainty. This is precisely 
the motivation of our approach.

To our knowledge, this is the first attempt at inverse design of anisotropic microstructures with prescribed 
diffusivity or other types of mass transport properties. The approach can be considered a proof-of-concept that is 
applicable to other morphologies as well e.g. anisotropic fibers or anisotropic granular microstructures. Although 
beyond the scope of this work, the method is also applicable to other types of properties, such as more complex 
diffusion simulations involving finite-sized particles and adsorption. However, such simulations may not neces-
sarily be practically feasible due to the heavy computational demands. An interesting further challenge, indeed 
a considerable one, is to relate the parameters of anisotropic microstructures to raw material and processing 
parameters for manufacturing. This is an inverse problem by itself. Finally, to facilitate further development in 
this area, the data and the codes for microstructure generation, training of the convolutional neural network, 
and inverse design are available open access.

Methods
Gaussian random fields. The starting point of the method for generating GRFs is that a covariance func-
tion for a GRF, C(x, y) , can be expressed in terms of its spectral density γ (q),

Figure 7.  The (approximate) posterior distribution of θ for the target diffusivity η2 , showing the marginal 
posterior distributions of (a) ax , (b) ay , (c) az , and (d) ǫ.
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known as the Wiener–Khinchin  formula40. Starting with a Gaussian white noise process W i.e. W(x) is N (0, 1)
-distributed and independent for all x (W is a GRF with covariance δ(x − y) ), the GRF

has covariance C(x, y) . Note that because both γ and the Fourier transform of W are symmetric along all three 
axes, the imaginary part of the resulting GRF is guaranteed to be zero. A detailed account is provided in Lang 
and  Pothoff41, and it should be pointed out that because the FFT enforces a discrete representation of the spec-
tral density, it is actually an approximate method, which is a necessary sacrifice to obtain a periodic structure.

Convolutional neural network. The CNN is trained using stochastic gradient descent (SGD) with 
momentum 0.9 for  optimization58,59 and a batch size of 16, the maximum size possible considering the net-
work architecture and the available GPU memory. The learning rate LR is varied such that log10 LR is 
{−4,−3.75,−3.5,−3.25,−3,−2.75} for 25 epochs each, −2.5 for 1,600 epochs, −2.75 for 875 epochs, and finally 
−3 for 875 epochs, in total comprising 3,500 epochs.

We also utilize a data augmentation scheme. Note that the diffusivity is invariant to mirroring and rotation of 
the microstructures orthogonal to the direction of transport. Also, given the periodicity of the microstructures, 
the diffusivity is invariant to circular shifts. The reason for training the CNN to predict only a single diffusivity at 
once is to leverage this invariance. In the training dataset, we introduce random flipping and swapping of the axes 

(11)C(x, y) =

∫

e−2π iq·(x−y)γ (q)dq,

(12)�(x) =
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−1γ 1/2
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Figure 8.  Distribution of diffusivity obtained from microstructures simulated with parameter θ̃1 , showing 
values from the numerical method (horizontal axis/diagram) and the CNN prediction (vertical axis/diagram), 
for (a) ηx , (b) ηy , and (c) ηz.

Figure 9.  Distribution of diffusivity obtained from microstructures simulated with parameter θ̃2 , showing 
values from the numerical method (horizontal axis/diagram) and the CNN prediction (vertical axis/diagram), 
for (a) ηx , (b) ηy , and (c) ηz.
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as well as circular shifts. The data augmentation increases the (theoretical) size of the training dataset by a factor 
of 2× 2× 2× 962 = 73, 728 , acting as a powerful regularizer that improves the generalization of the  CNN60.

Because of the considerable dataset sizes, the data are memory-mapped instead of being loaded into CPU 
memory. The augmentation as well as the rescaling of the inputs and transformation of the outputs are performed 
batchwise after loading a batch into memory.

The weights are optimized with respect to mean squared error (MSE) loss,

where y is the target value (numerical simulated, logit-transformed diffusivity) and ŷ is the predicted value. Using 
that y = log(η/(1− η)) where η is the diffusivity, we can also write

The MSE is evaluated in the logit scale to attain a weighting of the samples that is more even and inde-
pendent of η . A predicted value ŷ is converted to a diffusivity prediction η̂ by the inverse logit transform, 
η̂ = 1/(1+ exp (ŷ)) . For final assessment of predictive performance, we use the more intuitive mean absolute 
percentage error (MAPE) loss,

The MSEs and MAPEs should be understood as averages over all microstructures in the dataset and over all 
three directions.

Approximate Bayesian computation. The ABC method from Beaumont et al56 is adapted to our case. 
A population of P individuals, θ1, . . . , θP , are first initialized by sampling from the prior without constraints on 
ρ . Then, the population is iteratively updated to approximate a sample from the posterior distribution by using 
a decreasing sequence of tolerances for ρ , τ1 , τ2 , ..., τT (the initialization can be thought of as time step zero, with 
τ0 = ∞ ). The iterative improvement is implemented according to Algorithm 1 below.
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Figure 10.  Representative structures generated using the optimized parameters, for the target diffusivities (a) 
η1 and (b) η2 . Small structures ( N = 192 ) in the scale the inverse design is performed is shown together with 
larger, upscaled structures ( N = 576).
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