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Where have all the forests gone?  
Quantifying pantropical deforestation drivers 

FLORENCE PENDRILL 
Department of Space, Earth and Environment 
Chalmers University of Technology  

Abstract 

Deforestation across the tropics continues to be a major source of greenhouse gas emissions and 
the largest threat to biodiversity on land. With strengthened commitments to reduce 
deforestation from countries and companies alike, it is crucial that renewed investments for 
reducing deforestation be guided by a sound understanding of what drives deforestation. This 
thesis gives a comprehensive picture of the amount of deforestation and concomitant carbon 
emissions driven by the expansion of agricultural commodities across the tropics and its link to 
international trade. The included papers show that pasture and a handful of crops drive a large 
share of the deforestation resulting in the expansion of productive agriculture. The main demand 
for these commodities is domestic consumption; even so, imports of food commodities 
associated with deforestation can still constitute a large part of the consumer countries’ carbon 
emissions due to consumption (e.g., in the EU). This thesis contributes empirical evidence 
relating to forest transition theories by showing that many countries with increasing forest cover 
tend to import products associated with deforestation elsewhere, thereby offsetting around one-
third of their forest gains. The thesis also introduces a conceptual distinction between two 
categories of agriculture-driven deforestation, based on whether it results in productive 
agricultural land or not. Though almost all deforestation is agriculture-driven, one-third to one-
half of agriculture-driven deforestation occurs without the expansion of productive agricultural 
land. Instead, it may be due to several potential mechanisms, such as land speculation, tenure 
issues, or fires. Put together, these results indicate that it is crucial that policies to curb 
deforestation go beyond focusing only on trade in specific commodities, to help foster concerted 
action on rural development, territorial governance, and land-use planning. This thesis also 
highlights key evidence gaps on the links between deforestation and agriculture: (i) the 
attribution of deforestation to specific commodities currently often relies on coarse or outdated 
data, (ii) there is a need for improved data on deforestation trends, and (iii) our understanding of 
deforestation drivers is systematically poorer for dry forests and Africa. 

 

 

Keywords: Deforestation, Agriculture, Carbon emissions, International trade, Telecoupling, 
Carbon footprints, Land use change, Forest transitions, Land system science, Consumption-
based accounting
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1. Introduction 

Every year in the tropics, forests amounting to an area larger than the size of the Netherlands 
(~5–10 million hectares) are cut down or burned (Hansen et al., 2013; Curtis et al., 2018; FAO, 
2020b). This contributes to climate change: deforestation not only accounts for up to around a 
tenth of anthropogenic carbon emissions (Baccini et al., 2017; IPCC, 2019) but also changes 
temperature, evaporation and rainfall patterns, so that when forests disappear, it affects the 
climate locally as well as globally (Ellison et al., 2017; Maeda et al., 2021). Deforestation also 
impacts the livelihoods of people depending on the forest (Sunderlin et al., 2005; Chhatre & 
Agrawal, 2009) and threatens the habitats of a multitude of species, making land-use change the 
leading driver of biodiversity loss on land (Newbold et al., 2015; Barlow et al., 2016; Tilman et al., 
2017; IPBES, 2019). 
 
These impacts, combined with the stubbornly high deforestation rates across much of the 
tropics, have sparked unprecedented attention and multiple national and international efforts, 
both in the public and private sectors, urgently seeking to reduce pressures on forests. At the 
United Nations Framework Convention on Climate Change (UNFCCC) climate conference of 
parties (COP26) in late 2021, governments across much of the world pledged renewed efforts to 
reduce deforestation in The Glasgow Leaders’ Declaration on Forests and Land Use. 
Deforestation is also set to be a key point of discussion at the upcoming negotiations at the UN 
Biodiversity Conference (COP15, Part 2) in December 2022. Previously, the UNFCCC has 
developed REDD+ (Reducing Emissions from Deforestation and forest Degradation) as a 
mechanism to support climate change mitigation, providing results-based financial incentives to 
developing countries for leaving forests standing. And, also at the climate COP26, the EU along 
with several other high-income countries made a Global Forest Finance Pledge to 
“provide US$12 billion for forest-related climate finance” in the next few years. In the private 
sector, multiple companies and financial institutions are committing to look over their supply 
chains and investment portfolios in order to rid them of products and assets contributing to 
deforestation (Gardner et al., 2018; Lambin et al., 2018; ACTIAM et al., 2021; Consumer Goods 
Forum, 2021; Luciano et al., 2021). 
 
With agriculture being the dominant direct driver of tropical deforestation (Hosonuma et al., 
2012; Curtis et al., 2018; FAO, 2022; Pendrill et al., 2022a), many of these emerging policies focus 
on eliminating deforestation associated with agricultural commodities, such as palm oil, 
soybeans, beef and cocoa (Ellis & Weatherer, 2022). Additionally, international supply chains 
supplying these commodities to consumers across the world have gained increasing interest as 
governments and consumers across the world are increasingly concerned about the impacts of 
their consumption abroad. For example, there is currently legislation proposed within the EU, 
the UK, and the US that aim to limit the deforestation due to imported agricultural and forestry 
commodities (European Commission, 2021; Schatz, 2021; UK Public General Acts, 2021). 
 
However, past ambitious commitments to halt deforestation have fallen short of their goals: The 
New York Declaration on Forests, endorsed by many governments and companies alike, aimed 
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to halve deforestation by 2020 and halt it by 2030, and, even more ambitiously, the United 
Nations’ Sustainable Development Goals (SDGs) aimed to halt deforestation already by 2020; a 
goal that has clearly not been met. In face of the urgency of this challenge, it is crucial that 
efforts to reduce deforestation are designed in an effective way. This requires a solid evidence 
base on the relative importance of different drivers. 
 
However, though it has been well-established that agriculture is the primary direct cause of 
deforestation across the tropics, agriculture-driven deforestation can take many forms. And there 
has been a limited understanding of the relative role of different agricultural land uses or 
commodities as well as the role of domestic demand vis-à-vis international trade patterns. My 
PhD research has aimed to reduce these knowledge gaps. 

1.1. Aim and research questions 

The overarching aim of this thesis is to identify and quantify the causes of deforestation across 
the tropics. More specifically, the papers in this thesis aim to evaluate: 

1. How much tropical deforestation is driven by agriculture?  
2. In what ways does agriculture drive deforestation in tropical countries? In particular, to 

what extent does the expansion of different crops, pastures and tree plantations 
contribute to deforestation and related CO2 emissions? 

3. What is the relative role of domestic and international demand in driving deforestation? 
 
In answering these questions, the aim is also to assess our current understanding of these 
questions and identify limitations in the existing knowledge base. 

The precise geographic and temporal scope varies between the papers in this thesis; however, 
they all focus on 21st-century deforestation in tropical and subtropical areas. These areas are 
where most agricultural expansion into native vegetation occurs (Curtis et al., 2018) and where 
the impacts on biodiversity and carbon stocks are expected to be the greatest (Myers et al., 2000; 
Saatchi et al., 2011; Avitabile et al., 2016). 

1.2. Thesis structure 

This thesis is structured into six chapters, framed around the three research questions listed 
above. Before we can delve into assessing the drivers of deforestation, we need to know where 
and how much deforestation is happening. Following Chapter 1 (this Introduction), Chapter 2, 
therefore, opens with a brief introduction to remote sensing and discusses the question of how 
much deforestation there is across the tropics. Chapter 3 addresses research questions 1 and 2, 
focusing on the ways in which agriculture drives deforestation and concomitant CO2 emissions. 
Chapter 4 explores research question 3 on the role of international trade and domestic demand. 
Chapters 2–4 all follow the same basic structure, starting with a Background, followed by a brief 
summary of the Approach taken in appended papers to address the question at hand, and 
finishing with an overview of the Main findings from the appended papers. Some of the 
background sections are in part based on Paper IV and on my licentiate thesis (from which some 
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parts are also excerpted). Chapter 5 presents some of the key limitations and knowledge gaps 
that currently hamper our understanding of the links between agriculture and deforestation. 
Finally, Chapter 6 concludes this thesis by discussing the main contributions of my research to 
science and to policies for curbing deforestation. 

  



4 
 

 



5 
 

2. How much deforestation is there across the tropics? 

2.1. Background 

2.1.1. A brief introduction to satellite remote sensing 

The papers in this thesis all rely on datasets based on satellite remote sensing to some extent. 
The possibilities of satellite remote-sensing data are continuously improving through new 
sensors and satellites, enhanced processing capabilities, and increased availability and openness 
of data (Finer et al., 2018; Masolele et al., 2021). These developments have led to a flurry of new 
datasets on, for example, land cover, biomass, and, to some extent, land-cover changes and the 
extent of specific crops. 
 
Remote sensing typically makes use of electromagnetic radiation, actively or passively. Just 
looking at something with our own eyes can be considered a simple form of remote sensing. 
More typically, the term refers to the use of a sensor that, as in the case of satellite remote 
sensing, detects the intensity of radiation within a narrow range of wavelengths emanating from 
the Earth (or, indeed, another celestial body) (Campbell & Wynne, 2011). These intensity values 
are gathered in a collection of pixels, which can be used to create images of the area, such as a 
true colour composite combining data collected in visible wavelengths. This remote sensing 
permits surveying larger (or remote) areas of the Earth than would otherwise be feasible. 
However, the advantages of satellite remote sensing do not stop there: using and combining 
different wavelengths – and not necessarily only within the visible part of the spectrum – can 
enhance the detection of certain features even better than traditional imagery (Campbell & 
Wynne, 2011). For example, near-infrared wavelengths are useful for distinguishing the 
chlorophyll of vegetation (Tucker, 1979). 
 
When it comes to remote sensing, several types of resolution are relevant: spatial (i.e., the pixel 
size), temporal (how frequently the satellite passes over and collects data) and spectral (the 
number and width of the wavelength bands sampled) (Campbell & Wynne, 2011). Typically, 
trade-offs exist between these properties (or with costs): a better spatial and spectral resolution 
generally comes at the cost of poorer temporal resolution (or by using more expensive sensors or 
multiple satellites). 
 
A common further step in using remote sensing data is to convert the intensity values into data 
that tell us something further about the area we are interested in, such as the type of land cover, 
the land surface temperature, the elevation, or the above-ground biomass. For continuous 
variables (such as carbon stocks or the percentage of tree cover), an algorithm could be used to 
“translate” the intensity values into values of the variable of interest (e.g., based on training data 
points where the value of the variable is known). For data with categories, like land cover maps, 
this is done by classifying the data, i.e., identifying and then labelling groups of pixels that are 
similar in a way relevant to the purpose at hand, such as distinguishing pixels with forests from 
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those with bare ground (Campbell & Wynne, 2011). Somewhat simplified, this entails using an 
algorithm to label pixels with similar spectral properties (e.g., high-intensity values in one 
wavelength range, low intensity in another). In the resulting classified map (dataset), each pixel is 
typically assigned to a single class, although sometimes several classes and percentages are 
assigned (Campbell & Wynne, 2011). The classification requires that the classes one wants to 
separate are sufficiently distinct in the set of wavelengths used. This can sometimes be 
challenging, e.g., in some regions, pasture and cropland have resembling spectral properties, thus 
making them difficult to differentiate (Müller et al., 2015; Oliveira et al., 2020). 
 
Another important step is to assess the accuracy of the resulting classification (Olofsson et al., 
2014). A set of validation (or reference or ”ground truth”) data, for example from field visits, 
higher resolution data or crowdsourcing, provides independent classifications for a number of 
locations (pixels) (Olofsson et al., 2014; Wulder et al., 2018). For each pixel, the classification in 
the validation set is compared with that of the main map/dataset. The comparison results are 
compiled in an error/confusion matrix (Table 1 gives an illustrative example), quantifying how 
many pixels in each class were correctly classified or not. [In doing this, one assumes the 
validation set to be entirely “true”, which is generally a simplification (Foody, 2002; Olofsson et 

al., 2013).] 
 
The data in the confusion matrix are commonly summarised to estimate the overall accuracy (i.e., 
number of correct pixels divided by the total number of pixels), and often also producer’s- and 
user’s accuracies for each class (Story & Congalton, 1986; Foody, 2002). The producer’s accuracy 
expresses what share of the pixels was correctly classified; in the example given in Table 1, the 
validation data had 100 forest pixels, of which the classified map correctly identified only 75, so 
the producer’s accuracy for forest would be 75%. The user’s accuracy expresses the share of 
pixels that are what the map classification says they are (Story & Congalton, 1986); in the Table 1 
example, only half of the pixels the map classifies as forest were indeed forests (75 of 150), 
giving a user’s accuracy of 50%. (These concepts are related to errors of omission and 
commission, respectively). The different types of accuracies can vary quite a lot between each 
other and between classes (as illustrated in Table 1), so the reliability of the map can depend to a 
significant degree on which classes are of interest for the purpose at hand.  
 

Table 1. An illustrative example of a simple error matrix. 
    Validation set   

    Forest Not forest Total User's 

Classified 
map 

Forest 75 75 150 50% 
Not forest 25 225 250 90% 

Total 100 300 400  
  Producer's  75% 75%  Overall: 75% 

 
Overall accuracies of existing global- and continental-scale land cover and forests datasets, such 
as the Global Forest Change data (Hansen et al., 2013) and GlobeLand30-2010 data (Chen et al., 
2015) used in some of the papers of this thesis, commonly lie around 80–90%. However, the 
accuracy can vary significantly between classes and between places, for example, due to the fact 
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that different types of vegetation or land covers (and their changes) are not equally easy to 
distinguish with remote sensing (Pérez-Hoyos et al., 2017; Rufin et al., 2022)., and that because 
places vary in the availability of reliable satellite observations (e.g., depending on differences in 
cloud cover) (Vancutsem et al., 2021). 

2.1.2. What is deforestation? 

Alongside the technical challenges in assessing deforestation (and its drivers), more fundamental 
challenges are the conceptual ones. Before setting out to determine the causes of deforestation, a 
key point is to decide what to consider as deforestation in the first place. This, in turn, depends 
in part on what we consider a forest. And there is no single way to unequivocally distinguish 
between forest and non-forest, nor between deforestation and forest degradation, because 
different definitions serve different purposes (Chazdon et al., 2016). 
 
In land system science, it is common to distinguish between land cover and land use. While land 
cover is a biophysical description of the properties of the land (e.g., What type of vegetation is 
there? Are there any buildings and roads?), land use describes how or for what purpose(s), the 
land is used by people (Gregorio & Jansen, 2005; Lund, 2006). This distinction between land 
cover and land use is fundamental when discussing forests and deforestation. 
 
What is a forest? 
So, what is a forest? Not surprisingly, it depends on who you ask: there are several hundred 
official definitions (Lund, 2006). Some definitions rely on the intended use (the land use), 
whereas others rely solely on biophysical properties (the land cover), such as the degree of 
canopy cover, tree height and patch size. As hinted at above, this manifoldness of forest 
definitions results from them serving different purposes (Chazdon et al., 2016). There are also no 
clearly defined natural thresholds for canopy cover threshold and patch size (Sexton et al., 2016). 
Different definitions can yield wildly varying pictures on the extent of forests and serve different 
purposes; for example, a land-cover based approach will probably give a better insight into the 
current carbon content of the biomass than a land-use based one (Chazdon et al., 2016; Sexton et 

al., 2016; Fernández-Montes de Oca et al., 2021).  
 
A couple of commonly used forest definitions are: 
 

● the FAO Forest Resources Assessment, which uses: “land spanning more than 0.5 
hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or 
trees able to reach these thresholds in situ. It does not include land that is predominantly 
under agricultural or urban land use” (Keenan et al., 2015; FAO, 2016) and 

● the UNFCCC, whose definition allows countries to use minimum canopy cover 
thresholds ranging from 10 to 30% (UNFCCC Conference of the Parties (COP), 2002). 

 
It is also worth noting that, under some land-use based definitions, a piece of land considered a 
forest might not have any actual tree cover (e.g., it might be a recently cleared rotation forest 
which is intended to regrow). Vice versa, a piece of land considered a forest using a land-cover 
based definition might not be considered a forest according to some land-use definitions; for 
example, despite fulfilling the biophysical criteria, an oil palm plantation is not considered forest 
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by the UN Food and Agriculture Organisation (FAO) Forest Resources Assessment (FRA) 
(FAO, 2016). 
 
What is deforestation? 
Given that there is no clear consensus on what a forest is, there is also no clear consensus on 
what constitutes deforestation. The question, therefore, again goes back to the intended purpose, 
and there is no uniquely correct definition (Chazdon et al., 2016). For defining deforestation, 
there are several things to consider. As discussed above, one question is whether to assess 
deforestation as a change in land cover or a change in land use. These two perspectives are 
sometimes terminologically distinguished as tree cover (or forest) loss for a land-cover change 
and deforestation for a land-use change. 
 
The conceptual challenges of defining forest loss further include, at least if the definition relies 
primarily on land cover, selecting appropriate minimum thresholds on canopy cover (Sexton et 

al., 2016) and patch size to delineate forests prior to loss (Chazdon et al., 2016; Griffiths et al., 
2018). Minimum canopy-cover thresholds used to define forests prior to loss typically lie within 
the range of 10%–30% (Paper IV) in line with what is allowed in UNFCCC’s REDD+ process 
(UNFCCC Conference of the Parties (COP), 2002). Minimum forest patch size typically varies 
more between different assessments: e.g., if we look at the recent pantropical assessments of 
agriculture-driven deforestation, minimum patch size ranges from a single Landsat pixel (30 m 
by 30 m – around 0.1 ha) in Curtis et al. (2018); Goldman et al. (2020) and all papers included in 
this thesis, and up to >5 ha (in De Sy et al., 2019). The differences in canopy cover thresholds 
likely have an overall minor impact on the results: in the GFC tree-cover loss data, the difference 
is small between a >10% and a >30% canopy-cover threshold: the global average GFC tree-
cover loss is estimated at 22.2 Mha per year with a >10% threshold compared with 20.6 Mha per 
year with a >30% threshold (2001–2020) (Hansen et al., 2013). However, the differences in patch 
size can have a larger impact on measures of deforested area extent (Griffiths et al., 2018; 
Nomura et al., 2019). 
 
Defining forest loss also requires deciding how much loss of canopy cover (and reduced patch 
size) counts as forest loss rather than as forest degradation (Sasaki & Putz, 2009; Fernández-
Montes de Oca et al., 2021). For example, let’s say we have chosen a minimum threshold of 30% 
canopy cover to consider something a forest. Should we then consider a reduction in canopy 
cover to be forest loss if (a) canopy cover is reduced by a certain amount, even if the remaining 
canopy cover exceeds the threshold to count as forest (e.g., if canopy cover is reduced by 50 
percentage points, from e.g., 90% to 40%); (b) canopy cover falls below the chosen threshold (in 
this case 30%; i.e., a reduction from 31% to 29% would count as forest loss); (c) canopy cover 
falls below another specific threshold; or (d) only if the canopy cover is entirely removed? 
 
In many circumstances, it is appropriate to adapt the thresholds to different regions and types of 
forests, rather than using fixed thresholds for the whole world (e.g., Chazdon et al., 2016; 
Galiatsatos et al., 2020). The broader conceptual challenges in defining forests and their loss are 
discussed at length in Chazdon et al. (2016); Sexton et al. (2016); and Fernández-Montes de Oca et 

al. (2021). 
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Table 2. An overview of the main pantropical datasets on tree-cover loss and deforestation. 
Dataset or 
study 

Forest  Deforestation Resolution Underlying data 
and methods 

FAO Forest 
Resources 
Assessment 
(FAO, 
2020a) 

“Land spanning 
more than 0.5 
hectares with trees 
higher than 5 meters 
and a canopy cover 
of more than 10 
percent, or trees 
able to reach these 
thresholds in situ. It 
does not include 
land that is 
predominantly 
under agricultural or 
urban land use” 
(Keenan et al., 2015; 
FAO, 2016)  

Focuses on land-use 
change, where 
deforestation is 
considered to be a 
change of land use 
from forestry towards 
agriculture or other 
land uses, but not if 
tree cover is expected 
to regenerate or if the 
land is replanted so 
that the land remains 
under forestry use 
(FAO, 2020b). This 
means that the 
conversion of a 
natural forest to, e.g., 
a tree plantation, is 
not considered 
deforestation in the 
FRA.  

Country-
level 

5–10 year 
averages, 
from 1946 
to 2020. 

The FRA is 
compiled from 
country reports 
based on a variety 
of methods 
including forest 
inventories, 
remote sensing as 
well as desk 
studies (FAO, 
2020b; Nesha et 
al., 2021) 

Countries report 
forest resources 
extents and 
disturbances as 
part of a 
reporting process 
to the FAO 
Forest Resources 
Assessment.  

Global 
Forest 
Change 
(GFC) tree-
cover loss 
dataset 
(Hansen et 
al., 2013) 

Forests are defined 
based on their 
biophysical 
properties. A base 
map provides 
information on the 
percent tree cover in 
each pixel in the 
year 2000, for trees 
or other vegetation 
exceeding a height 
of 5 m (Hansen et 
al., 2013). The user 
then selects one of 
several choices of 
minimum canopy 
cover threshold to 
define “forests”, 
and may also 
choose to further 
limit the minimum 
patch size or apply 
additional 
constraints with the 

Focuses on land-
cover change, 
specifically tree cover 
loss, defined as: “a 
stand-replacement 
disturbance or the 
complete removal of 
tree cover canopy” 
(Hansen et al., 2013)  
 
Not all tree-cover 
loss constitutes 
deforestation. For 
example, tree-cover 
loss includes 
harvesting of tree 
crops, clearing within 
tree plantations as 
part of normal 
forestry practices, and 
losses from fire and 
logging patches 
(Hansen et al., 2013) 

30-by-30 m 
pixels 

Annual 
data from 
2001 to 
2021 

Satellite remote 
sensing (Landsat) 
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help of other 
geographical 
datasets. 

(Vancutsem 
et al., 2021)  

Tropical moist 
forests only.  

Defines undisturbed 
tropical moist forest 
“as a closed 
evergreen or semi-
evergreen forest 
without any 
disturbance 
observed over the 
full Landsat 
historical dataset” 
(Vancutsem et al., 
2021). 

 

“Deforested land […] 
is defined as a 
permanent 
conversion from 
moist forest cover to 
another land cover” 
(Vancutsem et al., 
2021). 

A key feature of this 
dataset is that it 
assesses the 
sequential dynamics 
of the changes. As 
such, it not only 
distinguishes loss of 
forest cover but also 
the extent to which 
short-term (<2.5 
years) forest 
degradation preceded 
deforestation and 
whether regrowth 
occurred.  

30-by-30 m 
pixels 

1990–2019 

Satellite remote 
sensing (Landsat) 

(Carter et al., 
2018)  

Uses the FAO 
forest definition. 

Estimates gross 
deforestation 
following the FAO 
definition by taking 
steps to harmonise 
the different input 
datasets towards this. 

Country 
level 

Five-year 
averages 
between 
1990 and 
2015 

Produced by 
making an 
uncertainty-
weighted average 
of four sources of 
deforestation 
data: the FAO 
FRA 2015; GFC 
tree-cover loss 
(Hansen et al., 
2013); Kim et al. 
(2015), and a 
2012 Remote 
Sensing Survey 
from FAO and 
JRC. 
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In Paper IV of this thesis, deforestation is defined as a persistent conversion of natural forest to 
any other land use, such as agriculture or human settlements, or to tree plantations. Natural forest 

is defined as a forest that “resembles – in terms of species composition, structure and ecological function – one 

that is or would be found in a given area in the absence of major human impact” (Accountability Framework, 
2020). Natural forests include primary and intact forests but also regenerated (second-growth) 
forests and partially-degraded forests, provided they fulfil the definition of natural forest 
(Accountability Framework, 2020). These definitions were chosen to align with the aims of many 
policies focused on the loss of natural forests and concomitant losses of biodiversity, carbon 
stocks and other ecosystem services, and build upon the Accountability Framework initiative’s 
definitions (Accountability Framework 2020). That said, when these definitions are 
operationalised to quantify deforestation rates in numbers, we are constrained by what is possible 
to describe with the data that are available. In Papers I–III, we were, in principle, interested in 
that type of deforestation as well, but we did not express it or assess it quite as explicitly: put 
roughly, Papers I–III quantify deforestation where tree cover loss (under some additional 
constraints) can be attributed to a subsequent agricultural land use (i.e., cropland, pasture; and, in 
Papers II–III, also to tree plantations) – this is detailed further in Section 2.1.3. 
 
Table 2 provides an overview of datasets that quantify some aspect of deforestation or tree cover 
loss for the past decade or two (and often further back). As discussed in Paper IV, none of these 
comprehensively assess deforestation in terms of the persistent conversion of natural forest to 
any other land use for all of the tropics and including both humid and dry forests. Several 
assessments of pantropical deforestation drivers, including all the papers in this thesis, rely and 
build on the Global Forest Change dataset – originally described in Hansen et al. (2013) – on tree 
cover loss. 

2.1.3. Moving from tree-cover loss data towards deforestation data 

Though not all tree cover loss constitutes deforestation, there are ways to process tree cover loss 
data, such as that from GFC, to align closer with what we consider deforestation.  
 
There are two main challenges in distinguishing deforestation from tree cover loss. First, we 
need to ensure that we capture only the loss of the forests that we are interested in; typically, we 
want to capture loss of some kind of “natural forest” (at least if our primary concern is the 
conservation of natural forests and ecosystems) and we don’t want to capture loss within already 
existing forestry systems or within stable shifting cultivation systems (which would instead reflect 
regular rotations within these systems rather than what we would consider deforestation under 
most definitions). A first step towards capturing losses within the type of forest of interest – 
based on biophysical properties – can be done with the GFC data, by limiting tree cover loss 
only to those with a certain minimum canopy cover and patch size. However, this would still 
leave us with a mix of natural forests and tree plantations. Unfortunately, there is currently no 
comprehensive pan-tropical map of natural forest; if we had such a map of all forests of interest, 
we could simply choose to select only tree cover loss within those areas. As a step towards this, 
however, there are maps of primary forest extents (Turubanova et al., 2018) for the tropics and 
intact forest landscapes (Potapov et al., 2017) for the world. Any loss within these regions is likely 
deforestation (at least under the definition used in this thesis). A similar map for the dry tropics, 
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such as the Cerrado, Chaco and Miombo, would help identify loss of valuable “natural” 
ecosystems. Additionally, for many countries, there are maps of tree plantation extent in the 
Spatial Database of Planted Trees (SDPT) (Harris, Goldman and Gibbes, 2019). As these tree 
plantation data best represent plantation extents 2013–2015, they are primarily useful for more 
recent tree cover loss – after the mid-2010s – as they can be used to identify tree cover loss that 
is likely not deforestation because it occurred within existing tree plantations. (For tree cover loss 
prior to the mid-2010s, these data cannot help us distinguish whether the tree cover loss was 
deforestation to establish a new plantation or whether the clearing was done as part of forest 
management within an already existing plantation). Recently (in April 2022), the SDPT has been 
complemented by a global map detailing the planting year of tree plantations (between 1982 and 
2020) (Du et al., 2022). This could probably be combined with the SDPT to help establish 
whether or not tree cover loss occurred within existing plantations. A further step toward 
improving the monitoring of deforestation is to map the forests or other ecosystems of interest – 
such as those with high carbon stock (HCS) or high conservation value (HCV) (Leijten et al., 
2020) – to support easier identification of changes. 
 
Second, we want to determine whether or not the loss of forest is persistent over time. Ideally, 
this could be established by monitoring or surveying the use of the land at multiple points in 
time over multiple years, and there is progress towards this; for example, the Vancutsem et al. 
(2021) data on moist tropical forest changes assess forest regrowth alongside forest removal. 
However, comprehensive pantropical maps of land use are typically not available with such 
dense temporal resolution. Assessments of deforestation drivers (including the papers in this 
thesis) thus rely on alternative ways to determine whether the forest loss is persistent. Often this 
is done in conjunction with determining the driver of the forest loss; for example, if a soy extent 
map shows soy in an area that was previously forest, one can assume that the forest loss 
occurred for soy – and also that the forest is unlikely to grow back, thus likely constituting 
deforestation. This is the approach taken by, e.g., Goldman et al. (2020) (in their “detailed 
approach method”). Using a similar logic, Paper I in this thesis relies on a map (Globeland30-
2010) showing the extent of cultivated land and grassland in a single year (approximately 2010, 
but differing from place to place); within these “agricultural” extents, any tree cover loss that 
occurred prior to the land cover data year is assumed to constitute deforestation.  
 
Table 3 provides an overview and comparison of how deforestation and deforestation drivers are 
assessed in each of the papers included in this thesis. While not spatially explicit, Papers II and 
III use a model that relies on the assumption that if agriculture is expanding within a country (or 
a subnational division) and there was tree cover loss in the preceding years, a certain amount of 
deforestation was due to expanding agriculture (thus, in somewhat of a circumventing way, 
determining the persistence of the forest loss). Other ways exist for establishing where the 
conversion is persistent; e.g., Curtis et al. (2018) use decision tree models trained on high-
resolution imagery from Google Earth to classify dominant drivers of tree-cover loss, some of 
which constitute persistent deforestation. 
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Table 3. A summary of how each of the papers in this thesis assesses deforestation and an 
overview of the data used to assess the drivers of deforestation. All of the papers use the Global 

Forest Change (GFC) data on percentage tree cover and tree cover loss data (Hansen et al., 
2013), where “forest” extent refers to tree cover (exceeding 5m height) in the year 2000 within 

30-by-30 metre pixels. The minimum canopy cover threshold to define forests (in the year 2000) 
prior to loss is specified for each paper in the table, as it varies somewhat between them.  

Paper Deforestation  Driver assessment data 

Paper I GFC tree cover loss with a minimum 
canopy cover threshold of 30% prior 
to loss 

GlobeLand30 land cover data (based 
on Landsat satellite data) on the 
extent of Cultivated land and 
Grassland. 

Paper II & 
III 

GFC tree cover loss with a minimum 
canopy cover threshold of 25% prior 
to loss 

Tree plantation extents for seven 
countries: (Petersen et al., 2016) 

Primary forest extents in Indonesia 
for the year 2000: (Margono et al., 
2014) 

Deforestation is only attributed 
where our land balance model can 
attribute tree cover loss to expanding 
cropland, pasture, or tree plantations. 

Agricultural statistics: FAOSTAT and 
subnational statistics from Brazilian 
and Indonesian statistics agencies. 

Brazil pasture data: Extents of 
pastures at three points in time were 
taken from the agricultural census 
1995 and 2006 and from Parente et al. 
(2017) for 2015. Between these years 
pasture area was estimated based on 
the number of heads from the 
Brazilian Institute of Geography and 
Statistics. 

Data on gross loss of cropland and 
grassland from (Li et al., 2018) based 
on remotely sensed land cover data 
from ESA’s Climate Change Initiative 
(CCI). 

A dataset 
developed 
further from 
Papers II & 
III, posted 
on Zenodo, 
v.1.1. 
(Pendrill et 
al., 2022b) 

GFC tree cover loss with a minimum 
canopy cover threshold of 25% prior 
to loss 

Tree plantation extents for a subset 
of countries: Spatial Database of 
Planted Trees, Version 1.0 (Harris et 
al., 2019) 

Primary forest extents: (Turubanova 
et al., 2018) 

Deforestation is only attributed 
where our land balance model finds 
expanding cropland, pasture, or tree 
plantations 

Agricultural statistics: FAOSTAT and 
subnational statistics from Brazilian 
and Indonesian statistics agencies.  

Brazil pasture extents: Mapbiomas v. 
5.0. 

Data on gross loss of cropland and 
grassland from (Li et al., 2018) based 
on remotely sensed land cover data 
from ESA’s Climate Change Initiative 
(CCI). 
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Paper IV Varies between the studies reviewed, 
but the synthesized estimates are 
based on: 
 
GFC tree cover loss with a minimum 
canopy cover threshold of 25% prior 
to loss 

Tree plantation extents for a subset 
of countries: Spatial Database of 
Planted Trees, Version 1.0 (Harris et 
al., 2019) 

Primary forest extents: Pantropical, 
updated version of (Turubanova et 
al., 2018) 

Data on dominant drivers of tree 
cover loss from (Curtis et al., 2018) 

Data on deforestation resulting in 
agricultural production from (Pendrill 
et al., 2022b) 

Varies between the studies reviewed, 
but the synthesized estimates are 
based on: 

Data on dominant drivers of tree 
cover loss from (Curtis et al., 2018) 

Data on deforestation resulting in 
agricultural production from (Pendrill 
et al., 2022b) 

Data on deforestation attributed to 
commodities from (Pendrill et al., 
2022b) and (Goldman et al., 2020) 

 
When evaluating the trends in deforestation over time using the GFC tree cover loss data, there 
are two additional and interrelated challenges. First, the GFC tree-cover loss data have evolved 
to become more effective at detecting small and temporary forest disturbances post-2011 and 
especially post-2015 due to both improved methods and improved satellite data (Global Forest 
Watch, 2021; University of Maryland, 2021). Efforts are underway to reprocess the GFC tree-
cover loss data with a consistent methodology throughout the time series (Global Forest Watch, 
2021). However, such efforts will not be able to correct for inconsistencies in the Landsat 
satellite record, including the improved sensitivity of Landsat 8, launched in 2013, and the 
variable availability of cloud-free images over time, which means that the next version of the data 
will still not have full internal temporal consistency (Global Forest Watch, 2021). This is likely to 
be true for any satellite data products that cover a wide time span as sensors and coverage 
improve. The use of sample-based approaches in combination with satellite-based products such 
as the GFC data can help correct for inconsistencies and build confidence in reported trends 
(e.g., Song et al., 2021; Zalles et al., 2021; Potapov et al., 2022). 
 
Second, this effect is enhanced by an increasing importance of forest degradation of standing 
forests as a source of tree-cover loss in the last decade (Vancutsem et al., 2021), meaning that 
forest degradation contributes more to the total tree-cover loss data in recent years than it did in 
the period before 2011. That is, the GFC tree-cover loss data include a higher proportion of 
forest degradation and a lower proportion of deforestation in recent years compared to the 
period before 2011, both because the data have become more effective at detecting forest 
degradation and because there has been an actual increase in forest degradation. Particularly after 
2015, the GFC tree-cover loss appears to have increased considerably, likely related to the record 
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El Niño 2015–2016, which led to losses due to massive droughts and fires (Berenguer et al., 
2021; Vancutsem et al., 2021). Indeed, there is evidence showing that forest degradation, 
especially from fires, has increased in many parts of the tropics in recent years (especially around 
2015–2016) – driven by the combined effects of climate change, forest fragmentation and 
unsustainable timber extraction (Brando et al., 2019; Gao et al., 2020; Matricardi et al., 2020; 
Berenguer et al., 2021; van Wees et al., 2021; Vancutsem et al., 2021). This varying contribution of 
forest degradation in the data makes it more difficult to draw firm conclusions on whether 
deforestation is accelerating or decelerating in more recent years. 
 
When considering the impacts that forest changes have on, e.g., carbon stocks or biodiversity, it 
is also worthwhile remembering that deliberate deforestation is not the sole change that happens 
to forests. Smaller changes (for example, from a higher to a lower canopy cover not captured by 
a given definition of forest loss), as well as changes in management, can also have a large impact 
(see, e.g., Erb et al. (2017a)). On longer time scales, deforestation to date may, together with 
other contributions to climate change, lead to future forest loss (i.e., a positive feedback): its 
contribution to global and local climate change may bring about further forest loss or 
disturbance caused by changing temperature and precipitation patterns, and by more extreme 
events, e.g., droughts, flooding and fire (Lawrence & Vandecar, 2014; Nobre et al., 2016; Zemp et 

al., 2017; Silva Junior et al., 2020; Maeda et al., 2021). 

2.2. Approach 

All papers included in this thesis rely on data on forest loss, using the GFC tree cover loss data 
in combination with several other sources to quantify agriculture-driven deforestation, listed in 
Table 3 and discussed further in Chapter 3. 
 
Paper IV additionally and explicitly assesses pan-tropical deforestation (i.e., not just deforestation 
driven by agriculture) in two ways. First, it compares existing pantropical estimates of forest loss 
for the past 20 years or so (2000–2020) harmonised to a common set of 87 countries. These 
reviewed datasets differ in what they strive to measure, and none of them defines deforestation 
fully in the way sought in that paper. Second, in Paper IV, we, therefore, derive an updated likely 
range of the total extent of pantropical deforestation by combining multiple sources, including 
the GFC tree cover loss data, to align more closely with this definition. 

2.3. Main findings 

There are two key results from Paper IV: we (i) find that consistent pantropical data on 
deforestation trends is lacking and (ii) estimate that the total extent of tropical deforestation 
likely lies within the range of 6.5 to 9.5 Mha per year. 
 
The comparison of existing datasets reveals considerable differences between estimates, both in 
terms of rates and trends of deforestation over time (Figure 1). Some differences are expected 
due to methodological and conceptual differences (Table 2); at a general level the GFC tree-
cover loss (Hansen et al., 2013), the FRA deforestation (FAO, 2020a) and Vancutsem et al. (2021) 
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differ in the type of forest loss they assess and in their coverage of humid and dry forests, with 
none of them comprehensively describing the trends in deforestation sought here. 
 

 
 

Figure 1. Pan-tropical estimates of tree-cover loss and deforestation. Estimated extents and 
trends of (sub-)tropical tree-cover loss and deforestation (in millions of hectares per year) vary 
between studies. This reflects uncertainties as well as conceptual differences. The data on tree-
cover loss (TCL) are from global forest change (GFC) (Hansen et al. (2013)); on deforestation 

from the FAO FRA 2020 (FAO, 2020a), Carter et al. (2018); De Sy et al. (2019) and Vancutsem et 

al. (2021). The FRA deforestation and the Carter et al. (2018) deforestation data are averages over 
5–10-year time periods. Abbreviations used: “def” = deforestation, TMF = Tropical Moist 

Forest. The data have been aligned to the same set of 87 (sub-)tropical countries (minor 
exceptions listed in table S2 of Paper IV), except for the data from Vancutsem et al. (2021) data. 

The Vancutsem et al. (2021) data covers disturbances only within tropical moist forests and is 
presented just for the 33 countries within our set with at least 4 Mha of tropical moist forest 

cover. This figure is reused from supplementary Figure S2 in Paper IV.  
 
Some differences are more puzzling. Based on their definitions (Table 2), we would in general 
expect the GFC tree cover loss rates to exceed the FAO FRA deforestation rates: the FAO FRA 
uses a narrower definition of deforestation and also reports mainly net rather than gross 
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deforestation rates for many countries, whereas the GFC reports gross tree cover loss. However, 
in the data, this is not always what we see (Figure 1). From 2011 to 2015, GFC TCL rates 
averaged 10.6 Mha per year in the tropics while the FAO FRA 2020 estimated deforestation to 
be 10.7 Mha per year. The differences are even greater for the preceding years of the 2000s, with 
the FAO FRA deforestation rates greatly exceeding GFC tree cover loss, especially for Africa.  
 
Even more perplexing is that the two main datasets show opposing pantropical trends between 
2001 to 2010 and 2011 to 2020 with GFC tree cover loss increasing as the FRA deforestation 
declines. This is especially pronounced for Latin America (Figure 1). Part of the explanation for 
their diverging trends is likely that these approaches capture differently distinct trends in the 
relative proportions of different kinds of forest loss over time. As not all tree-cover loss 
constitutes deforestation (neither as assessed in this paper, nor as FAO FRA deforestation), an 
increase in the “non-deforestation” proportion of tree-cover loss may be part of the explanation, 
as this would lead to an increase in the rates of tree-cover loss without a concomitant increase in 
FRA deforestation rates. This can involve multiple dynamics including, in particular, the 
increased sensitivity of GFC tree-cover loss to forest degradation enhanced by a growing 
importance of forest degradation in many parts of the tropics.  
  



18 
 

 
 



19 
 

3. How much tropical deforestation is driven by 

agriculture? And in what ways does agriculture drive 

deforestation? 

3.1. Background 

3.1.1. What are the causes of deforestation? 

The question of what causes deforestation can be answered in many ways, as most land-use 
changes depend on complex interactions between human (or socio-technical) and natural (or 
ecological) dynamics at multiple levels (Geist & Lambin, 2002; Meyfroidt, 2016; Busch & 
Ferretti-Gallon, 2017). The dominating direct driver of tropical deforestation is agriculture 
(Gibbs et al., 2010; Hosonuma et al., 2012; Jayathilake et al., 2020; FAO, 2022; Pendrill et al., 
2022a). Quantifying the extent of deforestation driven by agriculture and some of the different 
ways through which agriculture drives deforestation is the core topic of this thesis. That said, as 
deforestation is driven by many interrelated processes, ascribing deforestation a single driver will 
only reflect part of the causal chains (Geist & Lambin, 2002; Meyfroidt, 2016; Busch & Ferretti-
Gallon, 2017). 

In the context of deforestation, it is common to distinguish between direct (or proximate) 
drivers and underlying (or indirect) causes of the land-use change (Geist & Lambin, 2002; 
Hersperger et al., 2010; Meyfroidt, 2015). At the most immediate level, an actor decides to change 
the use of land from one purpose to another. For example, a farmer converts a plot of forest 
into pasture for grazing cattle. In this case, we might say that the expansion of pasture caused the 
land-use change. This would be an example of direct land-use change (which might make us say 
that pasture expansion was a direct driver of land-use change). But this is of course only part of a 
much wider – and far more complex – story, which can span multiple domains. In our simple 
example, the reason that our farmer bought a new plot of land might not be an increased 
demand for cattle after all. It might instead be that the farmer needed to find new land for their 
grazing cattle because their previous grazing land was bought up by, e.g., an agribusiness wanting 
to meet increased demand for soy or bioenergy. This is sometimes called indirect land-use change, 
or iLUC, in contrast with direct land-use change (Lapola et al., 2010; Ostwald & Henders, 2014; 
Richards et al., 2014).  
 
The distinction between direct and indirect land-use change, though, is still not the whole story: 
while indirect land-use change may be one of the underlying causes behind the deforestation, 
there are likely further or other underlying (or indirect) causes. An underlying cause in this type 
of context is “a factor which causes the proximate causes of land cover […] change” (Meyfroidt, 2016, p. 7). 
For example, to continue with the story above, there are lots of unanswered questions: Did 
changes to the prices of land, or of beef and soy, affect the decisions of the farmer and the 
agribusiness? What influenced those changes in prices and profitability? Why is the farmer a 
farmer and not working with something else? Moreover, who wanted the soy and the beef in the 
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first place? Or maybe the point of the grazing land was not so much the beef, as it was to claim 
the rights to the land? In short, the direct land-use change did not happen in a vacuum but was 
probably influenced by several underlying causes arising from demographic, economic, cultural, 
political, institutional, and technological factors (Geist & Lambin, 2002; Hertel, 2018). The 
underlying causes may range from geographically local to global: for example – via international 
trade – the underlying demand for the commodities may arise far from the deforestation itself 
((Friis et al., 2016; Eakin et al., 2017; Tramberend et al., 2019); Papers II–IV). Geographically 
distal drivers and feedbacks between them are sometimes explored as telecouplings (Liu et al., 
2013; Bruckner et al., 2015; Friis et al., 2016). A structured telecoupling framework, proposed by 
Liu et al. (2013), includes identifying “sending”, “receiving” and “spillover” systems and, in 
general, the telecoupling approach is developed to help analyse coupled human and environment 
systems that are separated in space, especially as land use becomes more globalised (Liu et al., 
2013; Eakin et al., 2014; MacDonald et al., 2015; Friis et al., 2016; Friis & Nielsen, 2019), by 
paying “attention to the place-based, as well as the flow-based human-environment processes shaping land use in 

specific places” (Friis & Nielsen, 2019, p. 2).  
 
There might thus be multiple underlying – and interacting – causes of deforestation; and one way 
of conceptualising this is to view them as a causal chain consisting of a series of interlinked 
causal mechanisms (Lambin & Meyfroidt, 2011; Meyfroidt, 2015; Meyfroidt et al., 2018). 
Therefore, when the expansion of agriculture is the direct driver of deforestation, this is but one 
of the relevant parts of a complex causal chain (also, agricultural expansion is neither a necessary, 
nor sufficient, cause of deforestation) (Meyfroidt, 2016). So, when I say that my research shows 
that agricultural commodities or land uses cause deforestation, I mean this in the sense that “X 
[expansion of cropland for a commodity] is part of a possible combination of factors that 
suffices to cause Y [deforestation in country A]” (Meyfroidt, 2016, p. 503). The further up the 
causal chain, the more difficult it might be to establish the causality, especially as multiple causes 
may interact and there may be feedbacks between them (Efroymson et al., 2016; Meyfroidt, 2016; 
Friis & Nielsen, 2019). 
 
Hence, this thesis focuses primarily on the direct (or proximate) drivers of deforestation. Indirect 
(or underlying) causes are mainly explored in terms of (part of) the role of international trade 
underlying the demand for the products driving the deforestation (Papers II–IV). Paper IV also 
touches briefly on some ways in which agriculture indirectly drives deforestation, for example by 
contributing to land speculation that drives deforestation, or when fires used for agricultural land 
management or clearing escape into adjacent forests.  
 
This thesis thus deals with a piece of the puzzle of what drives deforestation, but not the whole 
picture. Assessing various types of underlying causes requires a different set of methods and 
tools (such as regression, panel studies, causal inference approaches, econometrics, land system 
modelling, interviews and case studies) (Rounsevell et al., 2012; Ferraro & Hanauer, 2014; 
Meyfroidt, 2016; Busch & Ferretti-Gallon, 2017; Game et al., 2018) than those used in this thesis.  
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3.1.2. Some reflections on the relationship between scale and causality 

Though the focus of this thesis lies on agriculture as a direct driver of deforestation, limitations in 
and choices about the spatial and temporal scale of the analysis affect which part of the causal chain the 
results will describe. For example, the land-balance model used to attribute deforestation to 
expanding pastures and crop cultivation in Papers II–III (and summarized in section 3.2.1. 
below), does not fully distinguish between direct and indirect land-use change: because of its 
spatial aggregation (i.e., primarily country-level), it cannot distinguish between commodities 
directly expanding on recently deforested land, and those “pushing” other land uses into forests. 
Some of the decisions about scale are made in response to imperfect data, but others cut to 
deeper conceptual questions about what we should consider to be the causes of deforestation. 
 
The spatial scale of the analysis is thus one aspect that can affect whether the results reflect direct 
or indirect land-use changes. In general, the finer the spatial scale, the more likely we are to 
capture the direct land use changes. For example, if we have a sequence of maps with both high 
spatial and temporal resolution, it can be possible to establish that the forest in a pixel was 
replaced by soy not too long after it was cleared (this is, for example, what Song et al. (2021) do), 
and then further infer that soy expansion was the direct driver of the deforestation. The coarser 
the resolution gets, the less certain we can be that we capture the direct land-use changes. With 
our land-balance model, for example, where we look at which agricultural land uses are 
expanding at the national (or subnational) level, the direct drivers of deforestation will be 
captured only to the extent to which the commodities expanding at the national (or subnational) 
level are the same as those that are expanding where deforestation is happening. This will differ 
between contexts. How much the spatial scale matters is thus an interaction between the analysis 
scale and how spatially heterogeneous the land-use dynamics are (within the spatial units studied; 
e.g., within a grid cell, a province, or a country). The more spatially heterogeneous the land-use 
dynamics and the coarser the scale, the more indirect land-use change will be mixed in with our 
deforestation driver results. If we were to take this to the extreme to consider the whole world as 
a single interconnected unit, we would then be assuming that the agricultural commodities 
expanding at the global level are the (likely mainly indirect) drivers of deforestation. This would 
thus entail putting some rather strong assumptions about indirect land-use change between 
countries and continents (also, at this scale, data only showing net changes would mask a lot of 
important changes which might still be “visible” in net data at finer spatial scales). At some point 
it would probably make more sense to go into the mechanisms through which agricultural 
expansion, change, or loss in one place might affect expansion, change, and loss in another (e.g., 
the elasticities of e.g., intensification and demand (Angelsen, 2010; Hertel, 2011).  
 
The temporal scale of the analysis is another “lever” (or aspect) that can affect whether the 
results reflect direct or indirect land-use changes. Again, in an ideal case, if we have a sequence of 
maps with both high spatial and temporal resolution, it will, in general, be easier to distinguish 
between the direct and indirect drivers, because we can see for each pixel what the land is used 
for after it was deforested. However, even if we had perfect data on the sequences of land use, 
the question of how to allocate deforestation between land uses remains. Part of this question 
can be answered by knowledge about the typical time dynamics for the establishment of different 
crops and pasture in different places: for example, in Brazil, cropland, e.g., for soy can expand – 
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and be detected – quite rapidly after deforestation (Morton et al., 2006; Song et al., 2021), whereas 
oil palm takes longer and sometimes isn’t planted until after several years of degraded land after 
deforestation (Gaveau et al., 2016). This is the purpose of the time lag in our land-balance model: 
it intends to reflect that a certain amount of time is assumed to pass between the clearing of the 
forest and the establishment of subsequent land uses (though, as noted above, the suitable time 
lag may differ considerably between crops and regions, which is not yet reflected in our model).  
 
However, part of the question of which land uses, or crops, to attribute deforestation to is more 
a matter of judgement (Davis et al., 2014; Persson et al., 2014) (this relates to the allocation 
problem used, for example, in life-cycle assessment (Baumann & Tillman, 2004)): We need to 
infer which of the products stemming from the cleared land were the drivers of the deforestation 
– and for how many years of subsequent production. There are several potential challenges here. 
First, some of the products produced on deforested land might not be the reason (or a very 
small part of the reason) for why the forest was cleared. For example, in South America, rice is 
sometimes planted for a year or two to prepare the land for subsequent soy cultivation (Brown et 

al., 2013). Should any deforestation be attributed to that rice? Second, the drivers of 
deforestation are often interrelated and there might be multiple products being produced on the 
cleared land (e.g., through double- or triple-cropping (Galford et al., 2008; Spera et al., 2014) or in 
sequence over somewhat longer periods of time). For example, in Latin America, pasture is often 
the first agricultural land use following deforestation. However, increased demand for beef (or 
leather) is not always the only, or even the main, reason behind the expansion for pasture: 
instead, pasture expansion is often connected with soy, both as a result of indirect land use 
change where soybean cultivation has replaced pasture elsewhere (Barona et al., 2010; Song et al., 
2021), and because the pasture and soy sectors are sometimes interconnected through capital and 
actors (Gasparri & le Polain de Waroux, 2015; Arima et al., 2017; Richards & Arima, 2018). In 
time series data of land cover (or use), this might show as soy appearing after a few years (e.g., 
Song et al. (2021) find almost as much soy established more than three years after deforestation 
as they find soy that was established within three years). Third, non-land-use drivers of 
deforestation will not be apparent with this approach but can present similar allocation 
problems. Logging and timber harvesting can occur in conjunction with cropland expansion (and 
the relative economic rationale between them likely varies)(Gaveau et al., 2013; Tarigan et al., 
2015; IUFRO, 2016). Should the deforestation then be split between soy and pasture, and 
between the timber and the crops, when there is such joint causality? And, if so, how? For some 
purposes, it is possible to attribute deforestation to multiple drivers (i.e., the same deforestation 
hectares or emissions are allocated to more than one product), but for others, it is important not 
to double count (e.g., consumption-based accounting, life-cycle assessment).  
 
The choice of time lag is one way in which we can choose what part we see in the sequences of 
land uses following deforestation. In the examples above, a short time lag might tend to capture 
more rice and pasture, whereas a somewhat longer one might capture more soy. There is thus 
some a relationship between the time lag and whether the results will capture direct or indirect 
commodity drivers of deforestation. However, this relationship is neither unequivocal nor linear; 
certainly, we would not infer that the bare land (and also perhaps not the rice) following rather 
immediately after deforestation was the driver. To select an ideal time lag, we would already need 
to know quite a lot about the typical land-use dynamics in the region, including how long time it 



23 
 

takes for different crops (or pasture) to become established (and observable in the data, be it 
remotely sensed or in agricultural statistics), about driver interrelationships and how they play 
out over time (such as pasture and soy in Latin America), and perhaps also which crops are the 
main motivation for clearing the land.  
 
How specific one can be about the time lag and whether one can distinguish direct and indirect 
land-use drivers will depend on the temporal and spatial scale of the available data. If one has 
annual data (like the agricultural statistics we use in our land balance model, and as Song et al. 
(2021) have for soy), there is clearly more choice than when one uses single-year extent or land 
cover maps (like we use in Paper I, and like Goldman et al. (2020) use for a few drivers). 
However, to be able to give a good account on the land-use dynamic at the local scale, high 
resolution in both time and space is needed: for example, with our land balance model, even 
though we have an annual resolution of the input agricultural statistics, we still cannot separate 
direct and indirect drivers because of the poor spatial resolution. 
 
Additionally, the deforestation was likely done with anticipation of returns for more than one 
year. This is the purpose of amortization in our land-balance model (it is sometimes called 
annualization: it deals with the choice of how many years of production to assign deforestation 
to (and whether to distribute it equally over the years, or tonnes produced, or in some other 
way); this becomes especially important when further attributing deforestation to commodities 
being produced from the agricultural land, e.g., when we want to connect them to trade 
(Cederberg et al., 2011; Ponsioen & Blonk, 2012; Davis et al., 2014; Hörtenhuber et al., 2014; 
Persson et al., 2014).  
 
Another way of dealing with such temporal issues – both the time lag and the amortization – is 
to consider any commodity (and potentially derivatives) produced on land deforested after a 
given “cut-off date” as linked to deforestation. This is the approach taken by many recent zero-
deforestation commitments and, e.g., in the proposed legislation on deforestation-free products 
in the EU (under which “no commodities and products in the scope of the regulation would be allowed to enter 

or exit the EU market if they were produced on land subject to deforestation or forest degradation after that date 

[31 December 2020]”) (European Commission Directorate-General for Environment, 2021, p. 11). 
 
Multiple decisions relating to spatial and temporal scale, and to allocation between drivers, will 
thus affect whether the deforestation attributed to commodities is direct or indirect. That said, 
most commodity drivers, at least as discussed in the type of research done here, are still rather 
close towards the end of the causal chain, compared with broader underlying drivers in the sense 
of, say demographic or institutional factors.  

3.2. Approach 

3.2.1. Attributing deforestation to agriculture, commodities, or other drivers  

All papers included in this thesis provide quantifications of deforestation drivers, thus 
contributing to the aim of examining the causes of deforestation in the tropics. The approach 
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used, however, differs between the papers (Table 3). Paper I presents a spatially explicit analysis, 
using global maps on forest loss and subsequent land cover to quantify to what extent forest loss 
is directly followed by cropland and pastures, respectively. Papers II and III attribute 
deforestation to more detailed groups of agricultural commodities, but at a coarser spatial scale, 
using a simple land-balance model with input data primarily summarised at the country level 
(Figure 2).  
 

 
Figure 2. An overview of the main analysis steps of the land-balance model that was first 

introduced in Papers II & III, subsequently improved for Pendrill et al. (2022b), and used in 
Paper IV. This figure is an updated version of Figure 1 in Paper II, where the data sources have 

been updated to reflect the most recent version (Pendrill et al., 2022b) 
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The basic assumption (based on the literature) that underlies this model is that if there is forest 
loss in a country, and pasture or cropland is expanding, the deforestation was due to the 
expanding agriculture. It is designed to reflect the predominant land-use transitions relating to 
tropical deforestation. The input data used for Paper II include those based on remote sensing, 
as well as agricultural statistics. Since the publication of Paper II, we have also developed and 
updated our land-balance model further, attributing deforestation to all individual crops in the 
FAOSTAT database (rather than to a more limited number of crop groups), which we have 
made available online on Zenodo (Pendrill et al., 2022b). Results from this enhanced version of 
the model are included in Paper IV.  
 
Paper IV reviews existing pantropical datasets as well as the literature, to quantify the direct 
expansion of productive agricultural land and, also, assesses more broadly the links between 
agriculture and land-use dynamics (e.g., land speculation). These papers all focus on tropical and 
subtropical areas: Paper I on Latin America, while Paper II and IV span, respectively, 156 and 87 
countries across Latin America, Asia and Africa. 

3.2.2. Attributing carbon emissions to commodity drivers 

While the deforestation area associated with different agricultural drivers indicates the main 
causes of deforestation, the further consequences of these land-use changes also matter. Paper 
III seeks to identify further carbon emissions associated with the land-cover change from forest 
to something else. 

In Paper III, the carbon emissions are quantified by estimating the changes to carbon stocks as a 
piece of land is changed from one type to another. Carbon is stored in biomass above ground 
(above-ground biomass, or AGB) as well as below ground (below-ground biomass, or BGB) and 
also in organic matter in the soil (soil organic carbon, or SOC) including in peatlands.  

The knowledge and data available for different carbon reservoirs vary; the best described is 
generally AGB, while there is considerable uncertainty when it comes to BGB, and even more so 
for SOC. For changes in AGB, there are multiple spatially-explicit estimates based on remote 
sensing (e.g., Saatchi et al., 2011; Baccini et al., 2012; Harris et al., 2012; Achard et al., 2014; 
Tyukavina et al., 2015; Avitabile et al., 2016; Baccini et al., 2017), which agree reasonably well at 
the continental level but diverge more at the regional level (Mitchard et al., 2013; Avitabile et al., 
2016). For BGB, most studies follow an approach similar to the IPCC Guidelines for National 
Greenhouse Gas Inventories (IPCC, 2006) combining ratios between AGB and BGB with 
typical values from the literature. In Paper III, therefore, carbon stock change is estimated with 
different levels of precision and with varying levels of uncertainty, ranging from 30-m remote-
sensing based data on the AGB stocks prior to forest loss (Zarin et al., 2016) to estimates from 
the literature on typical SOC changes when a broad land-use category changes to another broad 
category (Don et al., 2011). Thus, while the results indicate the carbon emissions associated with 
deforestation, significant improvements to the estimates of carbon stock (or carbon-stock 
changes) would be needed to quantify the actual emissions associated with each land-cover 
change. 
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3.3. Main findings 

3.3.1. How much tropical deforestation is driven by agriculture? 

The review in Paper IV revealed that existing pantropical estimates of the extent of agriculture-
driven deforestation vary greatly, between 4.3 and 9.6 million hectares per year (on average from 
2011–2015). A key explanation behind this seemingly large uncertainty is that agriculture 
contributes to deforestation in different ways, and the amount varies between estimates in part 
because they differ in what type of causality they assess.  
 
A key contribution of Paper IV is that it explicitly distinguishes between (and quantifies) some of 
these different ways in which deforestation is driven by agriculture. First, it defines agriculture-

driven deforestation as “Deforestation for which agriculture, directly or indirectly, is a cause”. This definition 
was chosen to reflect that deforestation drivers often interact; even where agriculture is a driver 
of deforestation, there are always underlying (or indirect) drivers (Geist & Lambin, 2002; 
Meyfroidt, 2016). There may also be interacting direct drivers, e.g., deforestation might be 
directly due to both demand for agricultural expansion and demand for timber (Gaveau et al., 
2013; Tarigan et al., 2015; IUFRO, 2016). We estimate that around 6.4–8.8 Mha/y, or 90–99%, 
of tropical deforestation is agriculture-driven in this sense.  
 

Figure 3. Agriculture contributes to deforestation in many, often interacting, ways. The 
overwhelming majority of tropical deforestation is agriculture-driven deforestation (the whole circle). 
Part of this constitutes deforestation resulting in agricultural production (left). However, there is also 
agriculture-driven deforestation without expansion of agricultural production, which can occur through 

several mechanisms (right). (Figure reused from Paper IV.) 
 
Paper IV then subdivides this agriculture-driven deforestation into two mutually exclusive 
categories: (i) Deforestation resulting in agricultural production and (ii) Agriculture-driven deforestation 

without expansion of agricultural production (Figure 3). The first – deforestation resulting in agricultural 

production – is used for deforestation that can be attributed to the expansion of land under active 
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agricultural production systems. This is often the kind of deforestation envisaged when we talk 
about deforestation driven by agriculture, where forests are cleared and replaced by some 
agricultural land use producing for example a crop, or cattle. This is also the kind of 
deforestation we quantify with our land-balance model, first presented in Paper II (and 
subsequently used in Papers III and IV), which amounts to at least 4.3 Mha/y on average from 
2011–2015. 
 
The second category – agriculture-driven deforestation without expansion of agricultural production – is used 
for deforestation occurring in landscapes where agriculture is the dominant driver of forest loss, 
but that does not result in recorded, productive, and actively-managed agricultural land. Based on 
multiple lines of evidence, Paper IV presents several potential mechanisms through which 
agriculture may drive deforestation without resulting in productive agricultural land. Such 
potential mechanisms include unclear or contested land tenure; land speculation; crop booms 
and busts; fires used for forest clearing or land management that spread to adjacent forests; and 
short-lived or abandoned agriculture, e.g., due to low suitability of the land or inadequate 
management. Incomplete records of agricultural area and production might also explain some of 
the deforestation currently in this category; this should then thus fall under deforestation resulting in 

agricultural expansion if monitoring systems improve. We find that around 2.0–4.5 Mha per year of 
agriculture-driven deforestation occurs without the expansion of agricultural production. Put 
together, this means that around one-third to one-quarter of agriculture-driven deforestation 
ends up not actually being used for agricultural production. 
 
Though the main contribution of Paper I lies in highlighting some important limitations of 
combining global datasets/maps for assessing the drivers of deforestation (see Chapter 5), Paper 
I does also quantify deforestation that was driven by agriculture across Latin America. It uses a 
more spatially-explicit approach, determining where tree cover loss was replaced by cultivated 
land or grassland for the time period 2001–2011. Its estimates are reasonably similar to those 
found in Paper IV (Table 4), at least for the countries with the highest deforestation rates. 
 
Using the distinctions from Paper IV, most of the deforestation attributed to agriculture in Paper 
I – at least for the expansion of cultivated land – would probably fall under deforestation resulting in 

agricultural production rather than agriculture-driven deforestation without expansion of agricultural production. 
That said, GlobeLand30’s Cultivated land-class does also include abandoned arable lands (Chen 

et al., 2015) and its Grassland-class (used in Paper I to identify pasture expansion into cleared 
forests) does not explicitly say whether or not the land is used for grazing. Part of it might thus 
instead be agriculture-driven deforestation without expansion of agricultural production, but that would not 
be readily distinguishable.  
 
It is also possible that agriculture-driven deforestation without expansion of agricultural production might 
appear in additional classes in the GlobeLand30 following tree cover loss, such as shrubland or 
forest. Indeed, one of the challenges in interpreting the results in Paper I is that quite a large 
share (around one-third on average) of the GFC tree cover loss is still classified as Forest in the 
GlobeLand30 data in the years after the tree cover loss. One potential explanation for this could 
then be that it is due to agriculture-driven deforestation without expansion of agricultural production, which 
has been abandoned or not taken into use, thus resulting rapidly in enough regrowth for it to 
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count as forest in GlobeLand30. However, without additional analyses, that would be pure 
speculation; there is currently not much there to say anything about the causality and establish 
whether GFC tree cover loss followed by GlobeLand30 Forest (or Shrubland) was agriculture-
driven or not. Additionally, for most countries in Paper I, the data do not show an increase over 
time in the proportion of forest following the tree cover loss event; it is therefore not evident 
that regrowth is a large explanation for this. This could be explored further, for example, by 
comparing the spatially explicit results in Paper I to data on the dominant drivers of tree cover 
loss (Curtis et al., 2018); to the by-country extents of agriculture-driven deforestation without 
expansion of agricultural production in Paper IV; and to the Vancutsem et al. (2021) data on 
tropical moist forest cover changes that show both short-lived forest disturbances and regrowth. 
That said, I think the main explanation discussed in Paper I still holds: that errors compound 
when datasets are combined and that this is further exacerbated by that the accuracy of remotely 
sensed data is lower when land cover is heterogeneous and forest losses are fragmented or small-
scale.  
 

Table 4. Comparison between estimated rates of agriculture-driven deforestation from pan-
tropical studies for four Latin American countries. Rates are summarized across different time 

periods (in millions of hectares per year), for the four Latin American countries with the highest 
deforestation rates in 2011–2015. Note that deforestation rates have fluctuated over the years; 
for example, in Brazil the rates have fluctuated considerably, seeing a large decline after 2004, 
though rates began increasing again during the mid-2010s (Hansen et al., 2013; INPE, 2022). 

Abbreviations used: “agr.” = Agriculture, “def.” = deforestation, “prod” = production, 
deforestation.    

Agr.-driven 
def. 

Def. resulting 
in agr. prod. 

Deforestation replaced 
by cultivated land or 

grassland 

  

Paper IV 
Paper IV, 
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 2001–2011    0.15 

2011–2015 0.20 0.24 0.05  
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3.3.2. Which commodities drive deforestation? 

The results from our land-balance model, presented in Papers II and IV, show that much of the 
tropical deforestation resulting in agricultural production was associated with just a handful of 
commodities and land uses (Table 5, Figure 4). Pasture expansion is the dominant land use 
following deforestation by far, accounting for around half of the deforestation resulting in 
agricultural production (and forest plantations). The expansion of oil palm and soybean 
cultivation together accounts for approximately another fifth. Expansion of tree plantations is 
found to account for at least 8% (average 2016–2018), though there are indications that this is an 
underestimate (cf. Goldman et al., 2020) (and it should be noted that this number does not 
comprehensively quantify the role of the demand for timber and other wood products, as only 
the role of expanding tree plantations is included; thus, e.g., the role of logging of natural forest 
that can precede the deforestation for the expansion of agriculture and other land uses is not 
captured). Much of the remainder of deforestation resulting in agricultural production is likely 
due to just six other commodities and crops: rubber, cocoa, coffee, rice, maize, and cassava 
(Figure 3), though these estimates are less reliable than for oil palm and soy. 
 

Table 5. Deforestation attribution to commodities – aggerated into groups – by region. Rates 
are in thousands of hectares per year, on average for 2016–2018. Data from our land-balance 

model, version 1.1 (Pendrill et al., 2022b). This is the same version of the data as used in Paper 
IV, though here presented from a larger set of 135 countries and a different time period. 

Commodity / 
region: 

Brazil 
Rest of 

Americas 
Indonesia 

Rest of 
Asia-

Pacific 

Rest of 
Africa 

Total 

Cattle products 1 261 221 21 387 958 2 849 

Palm oil 3 67 689 11 6 775 

Forest plantation 187 123 4 110 30 453 
Vegetables, fruit, 
nuts 40 124 57 75 99 396 

Cereal grains nec 81 81 100 15 52 329 

Crops nec 14 125 55 39 37 269 

Soybeans 185 44 21 0 5 255 

Paddy rice 9 31 121 60 22 244 

Oil seeds 22 8 1 20 31 82 

Total 1 802 824 1 070 718 1 239 5 652 

 
The variation between countries is large, however. In the Asia-Pacific region, palm oil and tree 
plantations together accounted for just under half of the deforestation resulting in agricultural 
production (or tree plantation expansion) during 2016–2018, while in Latin America, cattle meat 
alone accounted for more than half of the deforestation resulting agricultural production (Table 
5, Figure 4). Paper I also assesses the relative roles of cropland and pasture expansion in 
replacing forests across Latin America. It also shows large variations in the dominating land uses 
following deforestation between – and within – countries.  
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Figure 4. Attribution of deforestation area (in millions of hectares) (a) and carbon dioxide 
emissions (in megatonnes of CO2) (b) per year (on average for the period 2011–2014) to 

commodities and regions from Papers II and III. The width of a region on the x-axes 
corresponds to the total deforestation area/emissions attributed to that region, whereas the y-
axes show the relative proportion within each country/region attributed to each commodity 

group. The area of the rectangles in the figure thus represents the deforestation area/emissions 
attributed to each region-commodity group combination, and the percentages within them 

indicate each combination’s proportion of the embodied deforestation area/emissions. (The data 
for Paper II have been modified to match the commodity groups and set of countries used in 

Paper III.)  
 
In general, less deforestation is attributed to grassland in Paper I than to pasture in Paper II. This 
difference is probably largely due to the incomplete separation between cropland and pasture in 
the dataset used in Paper I; instead of distinct classes for pasture and cropland, it has classes for 
Grassland and Cultivated land, which both include certain pasture types. Overall, therefore, 
though the papers provide quite a coherent picture of the area of forest loss driven by the 
expansion of agriculture, the results from our land-balance model likely provide a better 
representation of deforestation attributed to pasture and cropland than does Paper I. Paper IV 
further compares the results from our land-balance model with other studies; most notably, 
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Goldman et al. (2020), but also several regional or national-specific studies for key commodities 
and countries. 
 
The uncertainty varies considerably between commodities. Paper IV discusses several sources of 
uncertainty in estimates of commodity-driven deforestation, including the availability and quality 
of underlying data; interrelated drivers [e.g., deforestation for pasture in Latin America is often 
interlinked with other drivers, including crops and land speculation (Richards et al., 2014; 
Gasparri & le Polain de Waroux, 2015; Gibbs et al., 2015b; Miranda et al., 2019)]; and to what 
extent the methods are able to adequately describe the dynamics of different deforestation 
drivers. Some key results from this are discussed in Chapter 5. 
 
Another valuable output from the research for this thesis is also the dataset itself (Pendrill et al., 
2022b) attributing deforestation across the tropics to all individual commodities in the 
FAOSTAT data for every year from 2005 to 2018. This dataset is produced using our land-
balance model (introduced in Paper II) and is one of the first and, currently, the most 
comprehensive, sources describing the extent and type of commodity-driven tropical 
deforestation (Pendrill et al., 2022a). This dataset has been used by non-governmental 
organisations (e.g., WWF (Pacheco et al., 2021) and Ceres (Richards et al., 2020)), government 
agencies, e.g., in the UK (Croft et al., 2021) and Denmark (Energistyrelsen, 2021), and by the EU 
Commission (European Commission Directorate-General for Environment, 2021). 

3.3.3. Attributed deforestation compared to attributed deforestation 

emissions  

The results from Paper II and Paper III can be used to investigate how the choice of indicator – 
here hectares of deforestation versus CO2 emissions resulting from the land-use change – can 
influence the result. While the main commodities associated with deforestation-related carbon 
emissions in Paper III are similar to the commodities associated with deforestation area in Paper 
II, the relative importance of countries and commodities differ somewhat (Figure 4). In the 
deforestation-area attribution, Brazil is the dominating country by far (33% of the total). In the 
attribution of the associated carbon emissions, Brazil is still dominant; however, its relative role 
is smaller (around a quarter), while the relative role of Indonesia is notably larger (from around a 
seventh of the deforestation-area attribution, to almost a quarter for the carbon-emission 
attribution). Similarly, cattle meat is the dominant commodity irrespective of the indicator, but 
less markedly so for the deforestation carbon emissions than for deforestation area. Conversely, 
the relative role of oilseeds is greater from an emissions perspective, especially for Indonesia and 
the rest of the Asia-Pacific region.  
 
In short, while the broad picture is similar concerning drivers of deforestation and its 
concomitant carbon emissions, there are some notable differences in the relative role of both 
countries and individual commodities. As such, deforestation area is an incomplete indicator of 
the carbon emissions associated with deforestation. For other impact categories, such as 
biodiversity and changes to local climate and hydrology, the differences can potentially be larger 
(and almost certainly different), making it important to be aware that single indicators give but a 
limited view of the full impacts of deforestation. 



32 
 

 
 



33 
 

4. What is the contribution of international trade to 

driving deforestation and associated CO2 emissions?  

4.1. Background 

4.1.1. Following embodied deforestation and emissions through trade to 

consumption 

The previous parts of this thesis have focussed on analysing drivers of deforestation in the 
vicinity of where forests are being lost. However, the patterns of demand are becoming more 
complex and spatially disconnected from the supply, as products are increasingly traded 
internationally, often in multi-stage supply chains (Lambin & Meyfroidt, 2011; Yu et al., 2013; 
Wood et al., 2018). It is therefore vital not only to consider the causes of deforestation at the 
point of production but also to understand where – and for what purpose – the demand is 
arising. 
 
There is, therefore, increasing recognition that only evaluating impacts from the production side 
can be limiting, especially when responsibility is to be assigned and where policies do not cover 
the entire system of interest (Munksgaard & Pedersen, 2001; Peters, 2008; Duus-Otterström & 
Hjorthen, 2019). A prominent example of this is that countries committing to reduce their 
carbon emissions under the United Nations Framework Convention on Climate Change and the 
Kyoto Protocol (sometimes referred to as Annex-I or Annex-B countries) report only emissions 
occurring within their national/territorial boundaries (IPCC, 2006). There are indications that 
this territorial approach has resulted in (at least weak) carbon leakage: developed Annex-I 
countries seeking to reduce their domestic emissions tend to be net importers of embodied 
carbon emissions, thus meeting part of their consumption needs by relying on imports from 
(primarily developing) countries not covered by the emissions-reduction commitments (non-
Annex I/B countries) (Peters & Hertwich, 2008; Peters, 2010; Peters et al., 2011; Kanemoto et al., 
2014). (However, this trend may be changing: net emissions transfers between OECD and non-
OECD countries peaked and then plateaued after 2006, as did emissions embodied in both 
production and consumption in OECD countries (Wood et al., 2019). Still, developed countries 
do remain net importers of embodied emissions.) Also, as the capacity to act towards reducing 
impacts lies not only at the point of production but potentially also along the supply chain all the 
way to the point of consumption (e.g., by reducing demand in the first place), there is increasing 
attention brought to the value of complementing production-based approaches with different 
perspectives, including consumption-based (“downstream”) ones, as well as those sharing 
responsibility between producers and consumers (Lenzen & Murray, 2010; Steininger et al., 2016; 
Duus-Otterström & Hjorthen, 2019).  
 
The role of international trade and consumption in driving deforestation and deforestation 
emissions has gained increasing attention in recent years. There are multiple supply chain 
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initiatives to reduce deforestation in the private sector (Lambin et al., 2018; Ellis & Weatherer, 
2022) and the public sector is following suit. The EU, the UK, and the US all current have 
proposed legislation focused on regulating the import of agricultural and forestry commodities 
stemming from deforested land (European Commission, 2021; Schatz, 2021; UK Public General 
Acts, 2021). A few countries, including the UK (Croft et al., 2021) and Sweden 
(Miljömålsberedningen, 2022), are additionally considering and experimenting with indicators on 
their consumption-based impacts on climate and on the environment more broadly (including 
those from deforestation). Indeed, the research in this thesis partly aimed at contributing to a 
research project on “Policy-Relevant Indicators for National Consumption and Environment” (PRINCE) 
funded by Swedish Environmental Protection Agency (Steinbach et al., 2018). 
 
Trade models enable the evaluation of impacts from consumption-based perspectives, thus 
complementing production-based assessments (Peters, 2008; Lenzen & Murray, 2010; 
Wiedmann et al., 2011; Wiedmann & Lenzen, 2018). They are frequently used for calculating the 
embodied, upstream impacts associated with the consumption of a product (similar to the goal 
of a life-cycle assessment), or for looking at the trade of environmental impacts between 
countries (trade models, in general, are also widely used outside the environmental domain) 
(Miller & Blair, 2009; Minx et al., 2009; Kitzes, 2013; Wiedmann & Lenzen, 2018).  
 
A common use of trade models thus lies in carbon footprinting and consumption-based 
accounting of CO2 emissions (e.g., Peters, 2008; Davis & Caldeira, 2010; Peters et al., 2011), 
environmental (Weinzettel et al., 2014) and material footprinting (Wiedmann et al., 2015), along 
with a range of other impacts embodied in trade (Wiedmann & Lenzen, 2018), including water 
consumption (Lutter et al., 2016), biomass (Erb et al., 2009), biodiversity loss and species threats 
(Moran & Kanemoto, 2017; Sun et al., 2022), and health impacts of air pollution (Zhang et al., 
2017). Closer to the area of interest in this thesis, there have been several studies assessing land 
use embodied in trade (e.g., Meyfroidt et al., 2010; Steen-Olsen et al., 2012; Weinzettel et al., 
2013). However, prior to my research, there were very few studies of land-use change embodied in 
trade. At that point, studies were limited to a few countries and commodities (Saikku et al., 2012; 
Karstensen et al., 2013; Henders et al., 2015) or of highly limited temporal resolution and 
availability (Cuypers et al., 2013). In the past few years, there have come multiple studies 
exploring more detailed deforestation and trade relationships (frequently based on the Trase 
data, e.g., (Escobar et al., 2020; zu Ermgassen et al., 2020a; zu Ermgassen et al., 2020b; Leijten et 

al., 2022)), but there are still very few studies that cover a comprehensive set of agricultural 
commodities across the whole tropics (the main exception is Nguyen and Kanemoto (2021)). In 
this thesis, Papers II and III seek to fill part of this gap, by quantifying pan-tropical deforestation 
embodied in trade. 
 
By examining where the demand for the products stems from, trade models present one way of 
beginning to “unpack” the sources of the demand behind the direct drivers of deforestation. We 
might find out from where – geographically – the demand originates. With some types of trade 
models, we can also gain information on which sector of the economy (e.g., cattle farming, 
manufacturing, or retail) generates the demand. In this way, we can learn more about the linkages 
between consumption and a range of environmental impacts associated with the production 
(Kitzes, 2013; Henders & Ostwald, 2014). 



35 
 

 
The most common types of trade models used for examining environmental linkages range from 
(a) direct adoption of bilateral trade statistics and (b) (bio-)physical trade models, to (c) multi-
regional input-output (MRIO) models (Kitzes, 2013; Henders & Ostwald, 2014; Bruckner et al., 
2015; Schaffartzik et al., 2015; Hubacek & Feng, 2016). The boundaries between the different 
types are not fixed, and hybrid approaches exist to varying extents. These models have several 
commonalities and some key differences. They differ particularly in the type of metric used 
(economic, i.e., dollars, in the typical MRIOs, versus physical units, e.g., kilograms, in the 
physical trade models) and in how far down the supply chain the embodied impacts are followed 
(Kitzes, 2013; Henders & Ostwald, 2014; Bruckner et al., 2015; Schaffartzik et al., 2015; Hubacek 
& Feng, 2016).  
 
These approaches thus reflect different views on what constitutes (the place of) consumption; in 
complex supply chains, there can be many points at which a product (e.g., soy) can be traded, re-
exported, used as an input for further processing, or consumed (e.g., in a service sector). For 
example, a ton of soy can be exported from Brazil to the Netherlands, re-exported to Germany, 
where it is crushed and subsequently exported to Spain, fed to pigs, ending up as ham on a 
frozen pizza produced in Italy, eaten by workers in a French factory producing cars subsequently 
sold to a final consumer in the UK. In addition to the point of final consumption (which is 
primarily identified in MRIO models), there can therefore also be many points of intermediate 
consumption, which for some purposes – e.g., those seeking to address deforestation through 
international supply chains – may be more relevant than final consumption. Different trade 
model approaches seek to portray these different levels of consumption, and the different 
models are therefore suitable for different research questions and policy purposes (Kitzes, 2013; 
Bruckner et al., 2015; Schaffartzik et al., 2015; Hubacek & Feng, 2016). 
 
Direct adoption of bilateral trade statistics is the most basic method of linking production to 
consumers through trade. As an example, this is the method adopted by the Trase platform 
(www.trase.earth) for selected commodity production and export systems (e.g., soy and beef 
from several countries in South America (zu Ermgassen et al., 2020a; zu Ermgassen et al., 
2020b)). With this type of approach, the point of first import is considered the point of demand; 
i.e., in the example above, this would be in the Netherlands.  
 
Physical trade models, sometimes also called biophysical trade models, (bio-)physical accounting, 
go one or a few steps further towards accounting also for the fact that products (i) that have 
been imported may be exported again, either in the same form as they were originally imported 
(re-exported), and (ii) may have been further processed before original or subsequent export 
(Bruckner et al., 2015; Schaffartzik et al., 2015; Hubacek & Feng, 2016). Accounting for re-
exports and processing requires choices about how to deal with imbalances in trade statistics and 
– when accounting for derived forms – how to link processed materials back to their raw 
equivalents (Kastner et al., 2011; Bruckner et al., 2019). Whilst some of these models (e.g., 
Kastner et al., 2011; Croft et al., 2018; Bruckner et al., 2019) can account for some level of 
processing, processing into more complex products or their use within, e.g., services, is typically 
not included. They thus model the supply chain to a point of intermediate, rather than final, 
consumption; i.e., in the example above, this would be in Germany or Spain. 
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Multi-regional input-output (MRIO) models aim to model supply chain flows to the point of 
final consumption. They thus seek to comprehensively account for intermediate inputs and 
processing through all (or most) sectors of the economy, in order to identify the final (rather 
than an intermediate) point of consumption of products or services (Kitzes, 2013); i.e., in the 
example above, this would be in the UK. Alongside the frequent use of MRIOs to assess the 
trade in various environmental impacts, input-output modelling was originally developed outside 
of the environmental domain and remains widely used for many other purposes (Miller & Blair, 
2009). Examples of MRIOs include Eora (Lenzen et al., 2012a; Lenzen et al., 2013b), Exiobase 
(Stadler et al., 2018) and GTAP (Aguiar et al., 2019)).  
 
The type of trade model, consequently, affects the type/level of driver that the results will 
describe, and the choice of model should, therefore, be made with consideration for the research 
questions or policy aims (Bruckner et al., 2015; MacDonald et al., 2015; Hubacek & Feng, 2016). 
Understanding the country-to-country trade flows using a physical trade model (or, ideally, with 
even higher spatial resolution within a country) is probably more relevant for actors such as 
companies, investors and governments wanting to reduce deforestation through direct supply 
chain interventions such as due diligence requirements on imported products, commodity 
moratoria, zero-deforestation commitments, and other demand-side and supply chain measures. 
For example, unless a piece of legislation intends to require due diligence on very highly 
processed products or on services, an MRIO is likely less suitable. However, for consumption-
based accounting, using an MRIO analysis to follow embodied impacts further through the 
supply chain to the point of final demand is more useful for understanding better the underlying 
drivers (Peters, 2008; Wiedmann & Barrett, 2013; Hubacek & Feng, 2016). Thus, the choice of 
methods for the attribution of deforestation drivers and the choice of trade model affects the 
type of driver and level of causality described. 

4.1.2. A primer to input-output trade models 

Here I will give a brief and simplified introduction to input-output modelling. This is the basis 
for MRIOs, and parts also apply to physical trade models. For a more thorough introduction, 
see, e.g., Kitzes (2013) and Miller and Blair (2009). 
 
In essence, trade models describe interrelationships between sectors and between regions (e.g., 
countries). Sectors (and regions) are not only producers of goods (outputs), but also consume 
goods (inputs) while producing their outputs (Miller & Blair, 2009). Thus, in order to meet a 
given level of final/external demand, the total output from sectors needs to cover not only the 
final demand but also the demand for intermediary products (as inputs) in various production 
sectors (Miller & Blair, 2009; Kitzes, 2013). To take an example (illustrated in Figure 5a), imagine 
a very simple economy consisting of two sectors: agriculture and industry. To produce output, 
the agriculture sector uses various inputs, both from its own sector (e.g., feed for cattle) and 
from the industry sector (e.g., machinery and fertiliser). These intermediary products also need to 
be produced, which in turn require further inputs, and so on, and so forth. Input-output 
modelling provides a way to summarise all of these “upstream” inputs, without double counting 
them, to find the total output needed to meet a certain level of final demand (Kitzes, 2013).  
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Figure 5. A simplified example of input-output sector interrelationships. (a) Schematic 

illustration of two sectors consuming inputs and producing output both for final demand and for 
use as inputs in other sectors (intermediary products). The dollar values show the amounts of 

input needed to produce $1 of output to final demand. In this example, producing $1 of 
agricultural output requires $0.5 of input from agriculture as well as $0.2 from industry. (b) A 

corresponding technical coefficients matrix (A) shows the same thing. The technical coefficients 
matrix, in essence, gives a ”recipe” of the inputs needed to create $1 of output from each sector. 
Viewed in another way, A also shows the share of output from one sector going to another; here, 

for example, 10% of the output from agriculture is consumed by the industry sector. 
 
This is accomplished using a set of vectors, matrices and linear algebra equations, at the core of 
which lies the technical coefficients matrix, A, which describes the interrelationships between 
sectors (and regions) mentioned above (Miller & Blair, 2009; Kitzes, 2013) (an example is 
illustrated in Figure 5b). The technical coefficients matrix shows both where the outputs from 
each sector go (if reading the rows) and what inputs are needed by the sector (if reading the 
columns) (Miller & Blair, 2009). So, element aij of A shows the share of output from sector i that 
is consumed by sector j. The Leontief Input-Output model (named by its creator),  
 

� � �� � ���	
 
 
can then be used to find the total output vector x, depending on the level of final demand 
expressed in vector y (each with one element for each sector) (Miller & Blair, 2009). (I is an 
identity matrix, and (I – A)-1 is sometimes called the Leontief matrix.)  
 
A multi-regional input-output analysis (MRIO) works the same way, but where each element 
corresponds to sector-region combinations, rather than just between sectors (Miller & Blair, 2009). 
The type of physical trade model used in Papers II–IV also uses similar mathematics to describe 
trade between countries (export shares) by assuming that domestic production and imports are 
distributed proportionally between consumption as well as exports (Kastner et al., 2011). 
 
Environmental input-output analysis – that is, connecting some kind of environmental impact to 
the trade – expands the Leontief model described above by accounting also for some type(s) of 
environmental impacts associated with the total output needed to meet a level of final demand 
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(or, e.g., for a single product bought by a consumer). This is done by introducing (pre-
multiplying by) an intensity vector listing the environmental impacts (e.g., tonnes of carbon 
emissions) associated with $1 (or, e.g., 1 tonne, 1 kcal, or 1 gram of protein, if it is a model using 
physical units) of sector output for each sector (Wiedmann et al., 2011; Kitzes, 2013). 

4.1.3. Limitations of trade models 

One central limitation shared by all trade models is an assumption of homogeneity. All products 
within the same sector (or sector-region combination) are assumed to be exported to the same 
extent (that specified in A). They are also assumed to have the same environmental impact (per 
unit of measure; e.g., per dollar, in the case of MRIOs, or, e.g., per kilo or calorie of product, in 
the case of physical trade models) (Kitzes, 2013; Bruckner et al., 2015). These are 
oversimplifications, further exacerbated by the fact that commodity categories, and sometimes 
also regions, are in many cases quite aggregated, especially for global MRIOs (Bouwmeester & 
Oosterhaven, 2013; Majeau-Bettez et al., 2016). For example, EXIOBASE3, the MRIO database 
used in Papers III and IV has a joint category for “other crops”. This category mixes cash crops 
(such as cocoa, coffee and tea) with subsistence products (such as cassava) (Stadler et al., 2018; 
Weinzettel & Wood, 2018), which clearly differ in the extent to which they are exported and 
quite likely also in the environmental impact of their production. EXIOBASE is one of the 
global MRIOs with the highest resolution for food sectors, though the most recent version of 
GTAP (10) has a higher sectoral resolution for agriculture (Aguiar et al., 2019). 
 
Another limitation of trade models lies in the quality of the input data (Kitzes, 2013; Tukker et 
al., 2018). The values in matrix A describing the interrelationships between sectors and 
countries/regions are based on observed economic data (and thus limited by the time frames for 
which such data are available) (Miller & Blair, 2009; Wiedmann et al., 2011; Kitzes, 2013). These 
data are often compiled from multiple sources, which may not be using the same standards, 
introducing additional uncertainties. For MRIOs, transactions between sectors within countries 
are often based on data from supply-and-use tables compiled by national statistics offices; for 
trade between countries, a common data source is the UN Commodity Trade Statistics Database 
(Comtrade) (Tukker & Dietzenbacher, 2013). Comtrade collates trade statistics from official 
records (What is UN Comtrade? , 2020), and these vary considerably in quality. Those compiling 
global MRIOs often need to reconcile conflicting data as well as infer data where they are 
missing, and many MRIOs also have some “rest-of-the-world” regions, grouping together 
multiple countries which may differ considerably in their trade patterns (Wiedmann et al., 2011; 
Tukker & Dietzenbacher, 2013; Tukker et al., 2018). For physical trade models focused on 
agricultural trade, data from the UN FAO’s FAOSTAT are often used. For this, the FAO 
compiles data from a combination of sources, including the United Nations Statistics Division 
(UNSD, which manages UN Comtrade), Eurostat, and national authorities (FAO, 2017). The 
source data are checked for outliers, and trade partner data is used for non-reporting countries or 
missing data, but this means that – in contrast to UN Comtrade – many entries are based on 
trade-partner records or unofficial figures. 
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4.2. Approach 

To examine further where the demand for commodities associated with deforestation stems 
from, Papers II and III use trade models to trace the commodities with embodied deforestation 
(Paper II) and concomitant emissions (Paper III) through international supply chains to 
consumers across the world. The use of trade models permits an examination of the relative 
roles of domestic and international demand, as well as the identification of major consumer 
countries and regions. 

In both Papers II and III, a physical trade model by Kastner et al. (2011) was used to follow 
country-to-country trade flows to where commodities were physically consumed as food or in 
industrial processes. Paper III additionally used a state-of-the-art multi-regional input-output 
model (MRIO), EXIOBASE3 (Wood et al., 2015; Stadler et al., 2018). The MRIO provides a 
complementary perspective by following the embodied deforestation and deforestation 
emissions further through monetary trade flows in all sectors of the economy (although with less 
detailed regional and commodity resolution). The MRIO data thus includes embodied 
deforestation initially utilized domestically and subsequently exported in different forms, such as 
protein and biodiesel, as well as more indirectly, e.g., in services. Paper IV also summarises the 
relative roles of domestic and export demand, using data from our updated data on deforestation 
(and deforestation emissions) risk embodied in production and consumption uploaded to 
Zenodo (Pendrill et al., 2022b), based on both the trade model approaches (the Kastner et al. 
(2011) physical trade model and the EXIOBASE MRIO).  

Looking at deforestation embodied in international trade also permits widening the focus to 
include a consumption perspective on deforestation, in addition to more conventional 
production-side perspectives. 

For deforestation, in Paper II, we relate imports of embodied deforestation to trends and 
changes in forest cover within the importing countries. In particular, we do this in light of their 
stage of forest transition. Forest transitions is a concept used to describe where regions (or 
countries), as they develop, tend to shift from decreasing their (net) forest area to increasing it 
instead (Mather, 1992; Rudel et al., 2005). Thus, we first distinguish between countries in 
different stages of forest transition, depending on their rate of forest change and current forest 
cover. We then assess whether countries that are increasing their forest cover or reducing their 
deforestation rates (i.e., countries that have gone through or are undergoing a forest transition), 
also tend to import commodities that are contributing to deforestation in other countries. We 
also calculate to what extent such imports of embodied deforestation offset the forest gains 
made by countries that have undergone a forest transition. 

For deforestation emissions, in Paper III, we make several consumption-side comparisons. We 
compare the imports of embodied deforestation by developed (Annex I) countries to the size of 
domestic (territorial) agricultural emissions as reported to the UNFCCC. We also calculate 
deforestation/land-use change carbon footprints: per capita, for countries’ food consumption, 
and per kilogram of product, for key forest risk commodities. 
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4.3. Main findings 

4.3.1. Role of international trade and domestic consumption 

Papers II and III in this thesis were among the first to quantify the relative roles of domestic and 
export demand that underlies the commodity-driven deforestation, revealing that around three-
quarters of commodities with embodied deforestation area and emissions are primarily 
consumed domestically. Though domestic consumption thus dominates, there is still a 
substantial share, especially of some commodities, which are destined for export markets and 
eventually consumed outside the producing country, and thus outside the country where the 
deforestation impacts took place. 
 
As noted above, the choice of the type of trade model will affect the results. On average (2011–
2015) for the physical trade model 24% of deforestation embodied in agricultural commodity 
production was exported (based on Pendrill et al. (2022b), which presents updated estimates of 
deforestation embodied in trade building on the model introduced in Papers II and III)). The 
results from MRIO show that on average 35% of deforestation attributed to agricultural 
commodity production is ultimately linked to final consumption in countries other than that of 
production.  
 
The relative importance of domestic and international demand varies considerably between 
commodities. Beef is primarily consumed domestically (international demand accounting for 
only 12% in the physical trade model, 24% in the MRIO), while palm oil and soy are primarily 
linked to international demand (physical trade model, soy: 69%, palm oil: 58%, MRIO: oilseeds 
75%) (Pendrill et al., 2022b) (Figure 6).  
 
The share of embodied deforestation and concomitant emissions attributed to international 
demand varies significantly not only between commodities but also between countries. For 
countries in the Asia-Pacific region, nearly half of the embodied deforestation and deforestation 
emissions were attributed to international demand (on average, 39% and 44% exported, 
respectively), whereas for countries in Africa, the demand for commodities with embodied 
deforestation and deforestation emissions was primarily domestic (on average, 10% and 9% 
exported, respectively).  
 
Though domestic consumption remains the dominant underlying source of demand, the share of 
deforestation embodied in international trade (around 35% in the results from the MRIO) is still 
substantial compared with most other types of environmental impacts [excepting the extraction 
of raw materials, ores, and coal (Wiedmann & Lenzen, 2018)]. The equivalent share in MRIO 
studies assessing varying environmental impacts are, for example, 23–26% of fossil carbon 
emissions (Davis and Caldeira (2010); Peters et al. (2011), 22% of health impacts of air pollution 
(Zhang et al. (2017)), 25–28% of nitrogen pollution (Oita et al. (2016)), 24–32% of water 
consumption (Lenzen et al. (2013a)), 30% of global species threat (Lenzen et al. (2012b)), 25% of 
all agro-food emissions (based on physical product flows) (Piñero et al., 2022), and 22% of 
agricultural land and 27% of land use emissions (Hong et al., 2022). This is a key result of Paper 
III, which is further pronounced if looking solely at crops, where the share exported is 48%. 



41 
 

Paper II shows that this high export share of embodied deforestation stems mainly from Brazil, 
Indonesia, and Argentina, which are high-deforestation countries, and export much of their 
crops (27–74%) and especially those with embodied deforestation (49–76%).  
 

 
 

Figure 6. Country-level distribution of the share of deforestation embodied in commodity 
production that is exported, by commodity groups and major tropical regions for the period 

2011–2015, based on a physical trade model Kastner et al. (2011). Data is taken from Pendrill et 
al. (2022b). The boxplots are based on country-year values within each region and represent the 

median, first and third quartiles, with whiskers showing the maximum and minimum values 
(though extending no further than 1.5 times the interquartile range; black dots indicate outliers). 
The blue coloured circles show the weighted average export share for the physical trade model 

(Kastner), and the yellow circles show the average export share for the multiregional input-
output model EXIOBASE (there are no boxplots for this model, as the regional aggregation 

implies there are only a couple of data points per region). The fact that the average export share 
for the physical model is typically higher (by margin) than the median share, reflects the fact that 
major producers of each commodity tend to export larger shares. Note that the results from the 

two models are not directly comparable, due to differences in system boundaries and model 
structure (see Chapter 4.1 for a discussion on differences between trade model types). This figure 

and caption are reused from the supporting material of Paper IV. 

4.3.2. Consumption of traded deforestation 

Although domestic consumption remains the key driver of demand for the agricultural 
commodities contributing to deforestation, the results in both Papers II and II show that, from a 
consumption perspective, imports of embodied deforestation can still be sizeable. It is also 
possible that the international trade flows may have an outsized role in driving landscape-scale 
land-use dynamics, though this is not something I have explored in my thesis. 
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In Paper II, we found that a majority (79%) of exported deforestation is consumed in countries 
that are currently increasing their forest cover (post-forest transition countries), thus partly 
offsetting some of the net forest gains made by these countries. For many countries, imports of 
embodied deforestation rivalled or exceeded domestic gains in forest area: for example, for India, 
deforestation abroad offset almost 60% of forest gains. On average, imports of embodied 
deforestation offset around a third of the net forest gains made in the countries that have 
undergone a forest transition. The net forest area saved in the post-forest transition countries is 
potentially larger, though, as imports may also have prevented domestic deforestation (in 
addition to enabling forests to expand). However, the results do indicate (in line with Pfaff and 
Walker (2010)), that achieving a global forest transition will be more challenging than achieving 
local or regional ones since there is no “outside region” that can help facilitate a global forest 
transition by supplying land-demanding products. 
 
In Paper III, we found that, for many developed countries, the imports of embodied 
deforestation emissions are of a similar order of magnitude as the domestic emissions from 
agriculture. On average, for the Annex I countries to the UNFCCC, deforestation emissions 
embodied in imports amount to 17–31% of the reported territorial agricultural emissions. For 
key forest-risk commodities, such as palm oil and beef, we found carbon footprints from 
deforestation and peatland drainage to be in the same order of magnitude as non-land-use 
change emission footprint. The per capita deforestation carbon footprint of food consumption 
was found to be highest for Brazil (2.6 tCO2 cap-1 yr-1; primarily due to domestic beef 
consumption). For emerging economies (China, India, South Africa), the footprints are generally 
low (< 0.1 tCO2 cap-1 yr-1), while for most developed countries they lie around 0.3 tCO2 cap-1 yr-1. 
For the EU, this implies that deforestation emissions in the period 2010–2014 constituted a 
substantial share (around 15%) of the total carbon footprint of an average EU diet. Thus, 
although the overall contribution of EU consumption on the total extent of tropical 
deforestation is fairly small, it remains a relatively large share of the climate impact of the EU’s 
food consumption.  
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5. What are the current key limitations & knowledge 

gaps for assessing the drivers of deforestation?  
 
The research for this thesis – and especially the summary of our current understanding of the 
ways in which agriculture drives deforestation in Paper IV – also serves to reveal a few crucial 
data gaps. This includes (i) a lack of consistent data on deforestation trends over time, (ii) 
multiple and interrelated uncertainties in assessing commodity-specific land-use dynamics, and 
(iii) an overall, systematically poorer understanding of deforestation and its drivers in dry forests 
and across the African continent.  

5.1 Consistent data on deforestation rates and trends are lacking 

First, although we do know that deforestation is falling in some areas of the tropics 
(strengthened by regional analyses), the overall trend in tropical deforestation, surprisingly, 
remains somewhat unresolved (Figure 1). A lack of consistent pan-tropical data on deforestation, 
covering both dry and wet tropical forests, currently impedes our capacity to make meaningful 
comparisons of the extent of conversion between regions and agricultural systems. Thus, while 
there is a growing body of evidence on the impact of local-to-regional policy interventions on 
reducing deforestation (Bastos Lima et al., 2019; Börner et al., 2020; Meyfroidt et al., 2020), there 
remains a need for improved and consistent pantropical data on deforestation rates over time to 
evaluate the effectiveness of policy measures towards net reductions of deforestation.  
 
Our capacity to assess the extent of deforestation, its drivers, and the progress towards reducing 
its negative impacts would thus be strengthened by further improvements to deforestation data. 
In particular, it would be valuable to ensure that there are deforestation data that are as 
consistent as possible over time and that assess losses of natural forests in both the dry and wet 
tropics.  
 
That said, deforestation metrics can only ever provide a crude proxy for multiple, interacting 
changes in land cover and land use and their underlying drivers. Their impacts vary significantly 
between biomes: one hectare of forest lost may result in vastly different environmental impacts 
depending on the type of ecosystem and how much of it remains standing. The impact will of 
course also depend on the type and intensity of the subsequent land use (Phalan et al., 2011; 
Kehoe et al., 2015; Newbold et al., 2015; Erb et al., 2017b). Improved monitoring of the impacts, 
such as biodiversity loss, carbon emissions and changes to the local and regional climate, might 
resolve some of the challenges arising from the lack of a clear line between forest degradation 
and deforestation and between forests and other valuable ecosystems (Sexton et al., 2016). After 
all, forest conversion can have a rather different impact on the environment if it takes place in a 
highly biodiverse or carbon-dense biome, compared to one that is less so. 
 
 



44 
 

5.2 Attributing deforestation to commodities still faces considerable 

challenges 

There are multiple uncertainties and potential for improving the evidence base in terms of 
identifying the agricultural drivers of deforestation (detailed more extensively in the 
supplementary material S6d of Paper IV).  
 
First, one of the bottlenecks towards improving the identification of pantropical agricultural 
deforestation drivers is the availability of accurate subnational or spatially-explicit data on the 
extent of specific crops and of pasture and how these are changing over time. Aside from oil 
palm and soy, which have been reasonably mapped for most of their production areas (Descals et 
al., 2021; Song et al., 2021), the attribution of deforestation to pasture and individual crops is 
typically based on sources of considerably lower fidelity (see, e.g., Table 1 in Paper IV for an 
overview of the data quality of the underlying data). The sources used include agricultural 
statistics at coarse – often national – scale and which are frequently based on unofficial estimates 
or imputation, as well as single-year, often outdated, maps of pasture and (often modelled) crop 
extents at 10-km resolution (in contrast, tree cover loss is assessed for 30-m pixels). The situation 
is particularly dire for pasture: most global land cover and use datasets do not specifically 
distinguish pasture (at best, providing separate classes for grassland and agriculture) (Joshi et al., 
2016; Li et al., 2018; Oliveira et al., 2020) and the only dedicated global pasture map (Ramankutty 

et al., 2008) outside Latin America is available only for the year 2000. For crops and cropland, the 
MapSPAM initiative collects and disaggregates agricultural statistics into maps (currently 
available for 2000, 2005 and 2010), but the input crop statistics are generally only available at the 
national level (Yu et al., 2020).  
 
Paper I also highlights the need to exercise care that the classification of land cover/use matches 
the purpose at hand. The “Cultivated land” class of the global land cover dataset used 
(GlobeLand30) in Paper I, which several studies interpret and use as cropland, in fact also 
contains significant amounts of planted pastures. Second, it shows that forest loss identified by 
one dataset was frequently still identified as forest in a land cover dataset over the same area a 
few years later. This indicates that combining datasets to identify land-cover transitions can 
suffer from limited accuracy (as errors compound when maps are combined (Fuller et al., 2003)), 
especially in areas with heterogeneous land cover or small-scale forest loss.  
 
To better capture the sequences of commodities following deforestation and distinguishing the 
direct and indirect land use changes, requires annual data – or at least data that are consistent 
over multiple points in time – covering all major crops (accounting also for multiple harvests) 
and pasture area at least at the subnational level. These data do not need to cover the whole 
tropics, provided they do include the regions where deforestation is occurring. Hopefully, the 
increased availability of high-resolution data and improved methods for analysing them 
(Masolele et al., 2021) can facilitate this; indeed, there has been considerable progress in just the 
past couple of years, with the release of maps for soy for Latin America (Song et al., 2021), as 
well as high-resolution global maps on oil palm plantations (Descals et al., 2021) and on cropland 
extents and changes over time (Potapov et al., 2022). 
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There is likely also further progress that can be made in the methods used for establishing which 
commodities were the cause of the deforestation. For example, interacting drivers and land uses 
(e.g., soy and pasture dynamics in Brazil) are currently rarely dealt with except at a cursory level.  
 
Improvements can also relate to more technical specificities, such as examining and making 
more explicit the impact of methods choices, including spatial scale and temporal aspects; and, 
though technical, these specificities are intertwined with the type of causality the approach will 
reflect. For example, Paper II explored the effects of increasing the spatial scale of the analysis 
for Brazil and Indonesia, from national-level (as used for all other countries) to subnational level, 
showing that increased spatial resolution led to better representation of the land-use dynamics in 
the deforestation regions. The subsequent trade analysis would also benefit from improved 
spatial resolution, but, in practice, this is frequently limited by data availability on subnational 
trade patterns (Gardner et al., 2018). Coarser-grained analyses will, therefore, likely be needed to 
prioritise where acquiring additionally detailed data is warranted (Godar et al., 2016). 
 
There is thus an ongoing need for developing robust methods, standards, and definitions on how 
to attribute deforestation to different drivers. This would also benefit from increased awareness 
that different methods – and thus numbers – highlight potential responsibility in different ways, 
thus making them more useful for different types of policies (Meyfroidt, 2016). The increasing 
availability of regional data sources could also help validate the performance of the global 
approaches in different regions. 

5.3 The uncertainties are systematically poorer for dry forests and 

Africa 

The uncertainties around deforestation rates and its drivers are not evenly distributed over the 
tropics. There are several reasons for this and – put together – they result in us knowing less 
about the extent and causes of deforestation in dry (rather than wet) forests and across the 
African continent. First, remote sensing is more challenging where vegetation is heterogeneous, 
e.g., where tree cover is varied or intermediate, where deforestation is done in smaller patches, 
and where there is a mix of agriculture and natural vegetation (Hansen et al., 2013; Pérez-Hoyos 
et al., 2017; Rufin et al., 2022). Second, agricultural statistics are, in general, less reliable for 
subsistence and small agricultural holdings (FAO, 2021), and the capacity to collect agricultural 
statistics is especially limited for many agencies across Africa (Ramankutty et al., 2008; World 
Bank, 2010). Third, land use change research, in general, has focused less on dry forests 
compared with wet forests (Bastin et al., 2017; Schröder et al., 2021) and less on Africa compared 
with other continents (Busch & Ferretti-Gallon, 2017). This is also reflected in the results of a 
literature search done for Paper IV, where we found only a handful of national-level studies 
assessing deforestation resulting in agricultural production (6 studies identified for the whole of 
Africa, compared with > 25 each for Latin America and Asia). With a considerable part (around 
a third) of dry forests currently in active deforestation frontiers (Buchadas et al., 2022), this 
systematically poorer understanding of deforestation and its drivers in these regions is 
particularly concerning. 
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5.4 Further steps towards understanding the mechanisms behind 

deforestation 

There are of course further steps that can be taken towards improving our understanding of the 
mechanisms behind deforestation and thus the evidence base on which measures to reduce 
deforestation can be based. (The following points are hinted at in Paper IV, though not 
discussed in much detail.) 
 
Effectively tackling deforestation depends on understanding who deforests and why. Is 
deforestation dominated by large- or smallholders, and are they producing for semi-subsistence 
or commercial demand? And how much clearing is illegal? To these questions, there are currently 
few and only partial answers at national and regional, never mind pantropical, scales. This is 
partly because of the challenge of determining such drivers based on remote sensing. 
 
Quantifying the role of timber extraction and logging in driving deforestation across the tropics 
is another area which would improve our understanding of deforestation drivers. These are 
generally also considered important direct drivers of deforestation (Pacheco et al., 2021), and can 
occur in conjunction with or as a precursor to agricultural expansion into forests (Gaveau et al., 
2013; Tarigan et al., 2015; IUFRO, 2016). Though we know that timber extraction has a 
considerable impact on forest degradation (Pearson et al., 2014; Pearson et al., 2017; Matricardi et 
al., 2020), the role of logging in driving deforestation has yet to be consistently quantified across 
the tropics.  
 
Furthermore, the various mechanisms underlying the broader (and more indirect) roles that 
agriculture has in driving deforestation remain to be quantified. Given that around one-third to 
one-half of agriculture-driven deforestation does not result in active agricultural production (a 
main finding of Paper IV), further research on the possible mechanisms behind this – including 
quantifying their relative importance in different places – would be valuable to help support the 
design of policies or other measures to reduce also such deforestation.  
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6. Discussion, policy relevance, and closing words 
This thesis and its appended papers have aimed at improving our knowledge of what drives 
deforestation across the tropics, focusing especially on the manifold ways through which 
agriculture contributes to causing deforestation. My PhD research has made some contributions 
to science as well as some contributions that are relevant to addressing deforestation in practice 
and policy. 
 
As I see it, this thesis has contributed to science in three main ways. First, it has advanced our 
knowledge of deforestation drivers. It is among the first to provide a comprehensive picture of 
the amount of deforestation (and associated carbon emissions) that is driven by the expansion of 
different agricultural commodities across the whole tropics (though still at a rather coarse 
resolution, and, woefully, often based on data of limited quality). This thesis has also advanced 
our knowledge of the relative importance of international and domestic markets in fuelling the 
demand for the commodities associated with deforestation.  
 
Second, this thesis has shown a few areas where improving the evidence base is needed. Paper I 
lays out some of the challenges to using global remote sensing datasets for assessing the drivers 
of deforestation, showing that, even when individual land cover (change) datasets have high 
accuracy, when they are combined their joint accuracy may still be too poor to be able to 
consistently quantify post-forest land use with sufficient discrimination between pastures and 
cropland, especially in heterogeneous landscapes. Paper IV elaborates further on knowledge 
gaps, showing (i) that there remains a need for improved pantropical data on deforestation rates 
and trends, (ii) that attributing deforestation to commodities still faces substantial challenges, 
including considerable data gaps, especially for pastures outside of Latin America and for non-
cash crops, and (iii) that the uncertainties around the rates and drivers of deforestation are 
systematically poorer for dry forests and across the African continent.  
 
Third, this thesis makes a couple of contributions which support more theoretical or conceptual 
aspects of land system science. First, in Paper III, we provide empirical evidence relating to 
forest transition theories, by assessing to what extent countries that have undergone a forest 
transition – and have begun to increase their net forest cover – instead import commodities that 
have caused deforestation somewhere else. We find that nearly 80% of the deforestation 
embodied in international trade ends up being consumed in these post-forest transition countries 
and that their imports offset on average one-third of their domestic forest area gains. Second, 
Paper IV introduces a distinction between agriculture-driven deforestation that either (i) results 
in agricultural production (i.e., it can be attributed to the expansion of land under active 
agricultural production systems) or (ii) occurs without resulting in the expansion of recorded and 
productive agricultural land. This distinction might serve as a useful framework; it might also 
help open up an avenue for future research in terms of efforts to assess and quantify the various 
indirect mechanisms (such as land speculation and tenure issues) through which agriculture 
causes deforestation but without producing much benefit (at least not in terms of agricultural 
production).  
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This thesis also has several implications and can be useful for designing more effective policies 
and efforts to curb deforestation. First, our dataset on deforestation risk embodied in the 
production and consumption of different agricultural commodities (which was first developed 
for Papers II and III, and further used in Paper IV) can, in and of itself, help both private and 
public actors seeking to identify deforestation risk. Commodity buyers and traders, as well as 
investors (see, e.g., (Richards et al., 2020)), can use these (comparatively coarse-level) data to 
triage which countries and commodities likely carry more deforestation risk for them, thus 
potentially requiring further attention and more detailed assessments. The deforestation carbon 
emissions data are, for example, currently being used as part of climate risk assessments of 
different sectors by a Dutch bank. They can also be explored as part of countries’ consumption-
based accounting. This dataset is also being used, e.g., as one basis for the due diligence 
provisions in the UK’s Environment Act, and to inform the product scope in the impact 
assessment for the EU’s proposed legislation on deforestation-free products (European 
Commission Directorate-General for Environment, 2021). 

Second, Papers II, III and IV, show that only a small number of agricultural commodities drive a 
large share of the deforestation attributed to the expansion of agricultural production 
(confirming the findings of previous studies, e.g., Henders et al. (2015)). At the surface, this 
indicates that supply-chain and demand-side efforts to reduce deforestation may address a 
relatively large part of the deforestation by focusing only on a limited set of commodities. 
Brazil’s Soy Moratorium provided a prime successful example of this (Nepstad et al., 2014; Gibbs 
et al., 2015a; Gibbs et al., 2015b; Gollnow et al., 2022). This is currently the approach intended by, 
e.g., the EU’s proposed legislation on deforestation-free products, where due-diligence 
requirements are set to apply only to a handful of commodities. It is also the approach of 
companies making zero-deforestation commitments targeting key commodities such as palm oil, 
beef, and high-value crops, such as cocoa and coffee (Donofrio et al., 2017; Lambin et al., 2018; 
Garrett et al., 2019; Bager & Lambin, 2022). One concern with these approaches, however, is that 
– unless the underlying demand is addressed – their effectiveness may be undermined by leakage 
(le Polain de Waroux et al., 2017; Lambin et al., 2018) or by supply-chain “bifurcation”, whereby 
the deforestation-free production simply goes to conscious consumers, and deforestation 
continues largely unabated unless the majority of a commodity’s consumption is covered by 
deforestation-free requirements (Garrett et al., 2019; Lyons-White et al., 2020; Gollnow et al., 
2022). 

Third, in Paper IV we argue that there are some fundamental limits to what can be directly 
accomplished by focusing solely on stamping out the trade or imports of commodities produced 
on recently deforested land. The first reason for this is that around one-third to one-half of 
agriculture-driven deforestation does not result in active agricultural production (as shown in 
Paper IV). Since no commodities are produced from this land, commodity-specific initiatives are 
mainly moot for addressing this type of agriculture-driven deforestation. The second reason for 
the limits of policies promoting deforestation-free international supply chains is that 
international demand is behind just around a quarter of the deforestation resulting in agricultural 
production. Therefore, even though imports from, e.g., the EU and the US, drive quite a large 
share of the deforestation associated with international trade, their share of total agriculture-
driven deforestation is considerably smaller. Instead, effectively curbing agriculture-driven 
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deforestation therefore needs to address also domestic demand as well as the broader and 
underlying parts of agriculture-driven deforestation (such as land speculation, tenure issues, and 
fires). That said, in Papers II and III, we show that the role of international demand in driving 
deforestation exceeds that of many other environmental impacts and that the carbon emissions 
associated with deforestation still constitute a considerable share of the carbon footprint of food. 
Addressing deforestation abroad therefore remains an important strategy for, e.g., the EU, in 
order to reduce their impacts. Put together, this indicates that curbing deforestation will likely 
require a combination of measures that also go beyond specific commodities, towards 
partnerships between producer and consumer markets and governments. New measures to 
prohibit imports of commodities linked to deforestation in consumer markets, such as those 
under negotiation in the EU, the UK, and the US, represent a major step forward from largely 
voluntary efforts to combat deforestation to date. But although commodity-specific initiatives to 
combat deforestation can be invaluable (e.g., as seen with the soy moratorium in Brazil), the goal 
of achieving reduced deforestation on the ground is more likely to be achieved if they can further 
help foster concerted action on rural development, territorial governance, and land-use planning. 
The mechanisms through which this can be achieved remains a research frontier.  

I hope and believe that this thesis has contributed to increasing our knowledge about the role 
and importance of agriculture in driving deforestation. And I hope it does so in a way that can 
help contribute to the design of more effective policies and private-sector efforts to stop it. At 
this unique moment in time, where there is unprecedented acknowledgement that we need to 
curb deforestation, but where deforestation rates keep remaining obstinately high, we urgently 
need to act and find ways to feed and fuel the Earth without undermining its capacity to 
continue to do so.  
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