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An integral equation reformulation of the Maxwell transmission problem is presented. The reformulation uses 
techniques such as tuning of free parameters and augmentation of close-to-rank-deficient operators. It is designed 
for the eddy current regime and works both for surfaces of genus 0 and 1. Well-conditioned systems and field 
representations are obtained despite the Maxwell transmission problem being ill-conditioned for genus 1 surfaces 
due to the presence of Neumann eigenfields. Furthermore, it is shown that these eigenfields, for ordinary 
conductors in the eddy current regime, are different from the classical Neumann eigenfields for superconductors. 
Numerical examples, based on the reformulation, give an unprecedented 13-digit accuracy both for transmitted 
and scattered fields.
1. Introduction

This work concerns the Maxwell transmission problem (MTP), which 
is the problem of computing the electromagnetic wave transmitted 
through and scattered from a bounded object Ω+ ⊂ 𝐑3, given an inci-

dent time-harmonic electromagnetic wave in the exterior region Ω− =
𝐑3 ⧵ Ω+. Consider Ω+ with boundary surface Γ, generalized diameter 
𝐿 = sup{|𝑥 − 𝑦| ; 𝑥, 𝑦 ∈ Ω+} and Ω− being vacuum. The corresponding 
wavenumbers are

𝑘+ = 𝜔
√
(𝜖0𝜖𝑟 + 𝑖𝜎∕𝜔)𝜇0 , (1)

𝑘− = 𝜔
√

𝜖0𝜇0 , (2)

where 𝜔, 𝜖0, 𝜇0, 𝜖𝑟, 𝜎 denote frequency, permittivity and permeability of 
vacuum, and relative permittivity and conductivity of Ω+. In terms of 
the wavenumbers, the conductivity is 𝜎 = Re(𝑘2+∕(𝑖𝜂0𝑘−)) and the skin 
depth equals 1∕Im (𝑘+). Since magnetic materials often have non-linear 
properties and exhibit hysteresis we restrict ourselves to non-magnetic 
materials, for which the linear MTP (7) below is an accurate physical 
model.

As 𝜎 →∞ for fixed 𝜔 > 0, the object Ω+ approaches a perfect elec-

tric conductor (PEC) with zero internal fields and with the electric field 
normal and the magnetic field tangential to Γ. The PEC boundary con-

dition, that the electric field is normal to Γ, is only proper if the skin 
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depth is much smaller than the diameter of the object. This is why the 
PEC boundary condition cannot be applied to metals at low frequencies. 
On the other hand it applies, with good accuracy, to a superconductor 
for frequencies ranging from zero up to very high values. The reason 
is that a superconductor is also a perfect diamagnet. Therefore we re-

fer to the limit 𝜎 →∞ for the MTP as the superconducting limit, despite 
restricting ourselves to non-magnetic materials.

In scattering theory, the regime 𝑘−𝐿 ≪ 1 is referred to as the 
Rayleigh regime. Here the scattered far fields are accurately determined 
by the induced electric and magnetic dipole moments in Ω+, an approx-

imation widely used in optics and microwave theory [21, Sec. 10.1] and 
with application in radar, lidar, and radio communication [29,20,28]. 
The scattered near fields from sub-wavelength objects are important 
in non-destructive testing, where they serve as input data to solvers 
that extract information about the objects’ interior [13,8]. The design 
of integrated circuits often requires the determination of inductances, 
capacitances, and resistances of sub-wavelength components based on 
both transmitted and scattered fields [33].

When 𝜎∕𝜔 ≫ 𝜖0𝜖𝑟, then arg(𝑘+) ≈ 𝜋∕4 in (1) and

|𝑘+|𝐿 ≈
√

𝜂0𝜎𝐿
√

𝑘−𝐿, (3)

where also |𝑘+|𝐿 ≫ 𝑘−𝐿. We refer to 𝜎𝐿 as the scaled conductivity of 
Ω+. Here 𝜂0𝜎𝐿 and 𝑘−𝐿 are dimensionless, and 𝜂0 =

√
𝜇0∕𝜖0 ≈ 377 Ohm 

is the wave impedance of vacuum. The pair of wavenumbers (𝑘−, 𝑘+)
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Fig. 1. Performance of Dirac (B-aug1) on the “starfish torus” (71) with inci-

dent partial waves (44) and arg(𝑘+) = 𝜋∕4. The expression 𝑌 (𝑋) at red points 
(𝑘−𝐿, |𝑘+|𝐿) says that GMRES needs 𝑋 iterations and that 𝑌 -digit accuracy (74), 
or better, is achieved in each of the fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} at all 90,000 field 
points in the computational domain. The PEC regime is in dark green and light 
green. The eddy current regime is in blue and dark green (vacuum in Ω−). The 
dashed line is the upper limit of realizable |𝑘+|𝐿 for 𝐿 = 1 m (silver in Ω+ , vac-

uum in Ω−). Red points outside the eddy current regime, with arg(𝑘+) = 𝜋∕4, 
can be realized if Ω− is a dielectric.

is said to be in the eddy current regime if 𝐿 ≪ 1∕𝑘− and |𝑘+| ≫ 𝑘−. The 
eddy current regime is in blue and dark green in Fig. 1. There is an 
upper limit on conductivity 𝜎 ≲ 6 ⋅ 107 S/m in ordinary conductors, that 
is, non-superconducting materials. Thus |𝑘+|𝐿 ≲ 𝐶

√
𝑘−𝐿, where 𝐶 ≈

1.5 ⋅ 105
√

𝐿 with 𝐿 measured in meters, is the physical part of the eddy 
current regime for objects of given size 𝐿. When 𝐿 = 1 m this limit is 
the dashed line in Fig. 1. The low-frequency asymptote for any ordinary 
conductor with 𝜎 > 0 and 𝐿 = 1 m, is a line parallel to, and below, this 
dashed line. The dark green and light green areas in Fig. 1 is the regime 
where the PEC boundary condition is applicable with a reasonably small 
relative error. To stay in this area when 𝜔 → 0, it is necessary that 𝜎 →
∞. It is seen that for 𝐿 = 1 m and 𝑘−𝐿 < 10−5 the PEC approximation is 
invalid for ordinary conductors, but it holds for superconductors. This 
is so since the surface resistance of a superconductor is low enough to 
be considered to be zero in the entire eddy current regime, see [16], 
and zero surface resistance implies the PEC boundary condition on Γ.

We refer to solvers based on boundary integral equations (BIEs) that 
model the full MTP as full-wave solvers, in contrast to solvers which 
build on an approximation to the MTP. When |𝑘+|𝐿 ≪ 1, a standard ap-

proximation is to determine the dipole moments by solving Laplace’s 
equation, and for |𝑘+|𝐿 ≫ 1 the standard approximation is to use the 
PEC boundary condition. Between these two extremes it is necessary to 
solve the MTP without approximations. The full-wave solvers for the 
MTP in the eddy current regime that we have found in the literature 
are [27,33,4]. Rucker et al. [27] give an overview of full-wave solvers, 
which give at best a relative error of 1% in scattering situations compa-

rable to our Fig. 3. Zhu et al. [33] describe a full-wave solver used for 
an open source program FastImp. Chhim et al. [4] present a full-wave 
solver based on the PMCHWT BIE. We lack data to judge the accuracy 
of the BIEs in [33] and [4]. The analysis in [4] appears to be limited 
to 𝜔 → 0 for fixed 𝜎, leaving a possible gap to the green PEC regime in 
Fig. 1. Also, numerical evaluation of the field representations is missing 
in [4], cf. Section 8.5. Other BIEs rather solve the quasi-static approx-

imation of the MTP obtained by neglecting the dispacement current in 
Ampère’s law, which limits their validity. For justifications of such eddy 
current models, see [1,25,3]. As these rather sparse results in the liter-

ature indicate, it is indeed a challenging problem to design BIEs for 
the MTP in the eddy current regime. As we discuss below, reasons for 
this is that the fields may differ much in size and for Γ of non-zero 
146
genus the MTP itself is actually ill-posed in the eddy current regime as 
𝑘− → 0. By the limit being in the eddy current regime, we mean that |𝑘+|∕𝑘− → ∞. More precisely, in such limits there is an incident field 
for which some of the transmitted and scattered fields differ drastically 
from their generic magnitude. We refer to Sections 5, 8.3 and 8.4 for 
details. See Hiptmair [19] for more background on eddy current com-

putations.

For our numerical method to be efficient when Im (𝑘+) is large, we 
always assume that |𝑘+|𝐿 ≲ 50, so our standing assumption in numerical 
evaluations is that

0 < 𝑘−𝐿≪ |𝑘+|𝐿≲ 50. (4)

In this paper, we achieve BIEs that compute all the fields to a minimum 
of 13 accurate digits in the entire regime (4), for Γ of genus 0 as well as 
genus 1. See Fig. 8 in Section 8.6 for genus 0 and Fig. 1 for genus 1. Our 
BIEs appear to be the only known full-wave solvers for the MTP that 
compute all fields accurately and fast in all of (4). We point out that 
although arg(𝑘−) = 0 and arg(𝑘+) = 𝜋∕4 in all our numerical examples, 
there is no approximation of the full MTP (7) involved, and a known 
permittivity can be included in 𝑘+.

The Dirac BIE from [18,17] is the starting point for the present work 
and from now on referred to as Dirac (A). This BIE is based on the em-

bedding of Maxwell’s equations into an elliptic Dirac equation and a 
Cauchy integral representation for the fields (Eq. (28) below). Schemat-

ically, given the incident wave 𝑔 on Γ, we have

ℎ↦ (𝐹+, 𝐹−)↦ 𝑔, (5)

and solve the Dirac BIE for the density ℎ on Γ, from which the 
ansatz/Cauchy representation yields the transmitted electric and mag-

netic fields 𝐹+ = (𝐸+, 𝐻+) in Ω+ and the scattered fields 𝐹− = (𝐸−, 𝐻−)
in Ω−. The Dirac BIE is a size 8 ×8 block system using 50, not all distinct, 
integral operators of double and single layer type, which can be used on 
any Lipschitz regular boundary Γ. It has 12 free parameters, as recalled 
in (24) below, and these can be chosen to avoid false eigenwavenum-

bers for all passive materials. As for low-frequency breakdown, the only 
regimes found in [18,17] where the Dirac (A) exhibits false eigen-

wavenumbers is when 𝑘± → 0 at the same time as �̂� = 𝑘+∕𝑘− → ∞
or �̂� → 0. (We refer to [17, Sec. 3] for a discussion about the no-

tions of eigenwavenumbers and low-frequency breakdown. See also 
Section 4 for the notions of dense-mesh breakdown and topological low-

frequency breakdown.) This corresponds to the false eigenwavenumber 
at 𝑥 = −1 in [17, Fig. 9(b)], and it should be noted that this single peak 
contains the whole eddy current regime shown in Fig. 1. (The reverse 
eddy current regime corresponding to 𝑥 = +1, where the roles of Ω±
have been swapped, is less important in applications, and we omit the 
details.)

The design of all Dirac BIEs starts by tuning, that is, carefully assign-

ing values to the free parameters, to avoid false eigenwavenumbers and 
optimize numerical performance. The main result of this paper consists 
of two new parameter choices for Dirac BIEs in the eddy current regime, 
referred to as Dirac (A∞) and Dirac (B), which, at a low cost, enable 
us to simultaneously compute the four fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} to al-

most full machine precision. A key problem in the eddy current regime 
is that the fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} may differ much in size, and tuning 
the parameters to account for this becomes a non-trivial matter. In par-

ticular, the transmitted electric field 𝐸+ is typically much smaller than 
the other fields. It is nevertheless important to compute also 𝐸+ with 
a small relative error, since the measurable eddy current 𝐽 = 𝜎𝐸+ will 
have the same relative error.

An important take-home message from the present paper is that 
in order to stably solve the MTP through (5), it is necessary both (a) 
to have a well-conditioned BIE for computing the density ℎ from the 
boundary datum 𝑔, and (b) to have a well-conditioned representation 
of the fields, for computing the fields 𝐹± from the density ℎ. For Dirac 
(A∞), it is in general (b) that is problematic since its field evaluation al-
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lows for large fields, see (50), and this sometimes leads to cancellation 
and loss of accuracy for small fields like 𝐸+. Dirac (B) is adapted to the 
small size of 𝐸+, see (54). It is then rather (a) which is challenging, but 
we still obtain a well-conditioned system. To eliminate null densities ℎ
we use augmentation, that is we suitably add a finite-rank matrix to the 
system to be solved, without changing the physical solutions. We ex-

plain in Sections 3 and 4 our general process for designing Dirac BIEs. 
The augmentation techniques explained in Section 4 are of independent 
interest beyond the MTP. After such augmentations, which for our BIEs 
are needed only as 𝑘− → 0, we obtain BIEs referred to as (A∞-aug) and 
(B-aug0∕1) for the MTP. Our augmentations build on a careful analy-

sis of null spaces and ranges of the quasi-static limit operators, given in 
the Appendix. In absense of such detailed knowledge one could try ran-

dom augmentations as in [30]. However, most of our operators require 
a careful choice of augmentation or else well-conditioning and accuracy 
will be lost.

Turning to objects Ω+ with non-zero genus, an additional difficulty 
at high scaled conductivities is that Neumann eigenfields, similar to 
those in PEC scattering [7,9], appear also in the MTP in the eddy cur-

rent regime as 𝑘− → 0. More surprisingly, such Neumann eigenfields 
are present at low frequencies even for finite non-zero scaled conduc-

tivities, although the terminology “eigenfield” may not be appropriate 
to describe this phenomenon. The same Neumann eigenfield appears in 
the low-frequency limit for all ordinary conductors, regardless of the 
value of 𝜎. We have not found this Neumann eigenfield for ordinary 
conductors in the literature. In particular it is not related to the notion 
of 𝑘-Neumann fields from [23,10,11], since it is a static field and the 
magnetic field is not tangential on the surface. However, when 𝜎 →∞
as 𝜔 → 0, our Neumann eigenfield approaches the classical static PEC 
Neumann eigenfield. See (45) and numerical examples and discussion in 
Sections 8.3 and 8.4, where it is shown that there exists an incident field 
for which some of the transmitted and scattered fields differ drastically 
from their generic magnitude. This means that for Γ of non-zero genus, 
the MTP itself is ill-conditioned in the eddy current regime. We dis-

cuss the Neumann eigenfields in some detail in Section 5, and here only 
stress one important point: according to our discussion above, the phys-

ical eddy current eigenfields appearing in ordinary conductors are those 
shown in Fig. 2(g,h,i). The Neumann eigenfields computed with the PEC 
boundary condition appear only in superconductors. See Fig. 2(a,b,c).

At the end of the paper, we give in Section 9 a proof of the result, 
which we have not found in the literature, that the essential spectrum 
of the MTP coincides with that of the Neumann–Poincaré operator. This 
proof further illustrates the flexibility of the free Dirac parameters. We 
conclude the paper in Section 10 with some remarks on the usage of 
(A∞-aug) and (B-aug0∕1).

2. The Maxwell and the two Helmholtz problems

We fix notation for the remainder of the paper. Let Ω+ be a bounded, 
connected domain in 𝐑3 with Lipschitz regular boundary surface Γ and 
an unbounded, connected, exterior Ω−. Let 𝐿 = sup{|𝑥 −𝑦| ; 𝑥, 𝑦 ∈Ω+} be 
the generalized diameter of Ω+. Starting from Section 6, we use unit of 
length so that 𝐿 is of order 1, which is convenient in numerical compu-

tations. The outward unit normal on Γ is 𝜈, surface measure is 𝑑Γ, and 
{𝜈, 𝜏, 𝜃} denotes a positive ON-frame on Γ. (Singularities of the frame 
on a null set does not present a problem.) In 𝐑3, {𝝆, 𝜽, 𝒛} denotes the 
standard cylindrical ON-frame. We consider time-harmonic fields with 
time dependence 𝑒−𝑖𝜔𝑡, and angular frequency 𝜔 > 0. The domains Ω±
are homogeneous with material properties described by wavenumbers 
𝑘±, and we write

�̂� = 𝑘+∕𝑘−. (6)

All our numerical examples use arg(𝑘−) = 0 and arg(𝑘+) = 𝜋∕4, but 
our BIEs (A∞) and (B-aug0/1) apply to more general wavenumbers 
Im (𝑘±) ≥ 0 satisfying (4).
147
We consider Maxwell transmission problems MTP(𝑘−, 𝑘+, 𝛼)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜈 ×𝐸+ = 𝜈 × (𝐸0 +𝐸−), 𝑥 ∈ Γ,
𝜈 ×𝐻+ = (�̂�2∕𝛼)𝜈 × (𝐻0 +𝐻−), 𝑥 ∈ Γ,
∇×𝐸+ = 𝑖𝑘+(�̂�−1𝐻+), ∇× (�̂�−1𝐻+) = −𝑖𝑘+𝐸

+, 𝑥 ∈Ω+,

∇×𝐸− = 𝑖𝑘−𝐻
−, ∇×𝐻− = −𝑖𝑘−𝐸

−, 𝑥 ∈Ω−,

𝑥∕|𝑥| ×𝐸− −𝐻− = 𝑜(|𝑥|−1𝑒Im (𝑘−)|𝑥|), 𝑥→∞,

𝑥∕|𝑥| ×𝐻− −𝐸− = 𝑜(|𝑥|−1𝑒Im (𝑘−)|𝑥|), 𝑥→∞,

(7)

where 𝐸0 and 𝐻0 are the incident fields from sources in Ω−, and we 
want to solve for 𝐸± and 𝐻±. In particular

ˆ

Γ

𝜈 ⋅𝐸−𝑑Γ = 0 (8)

holds by the jump relations and the divergence theorem. For a discus-

sion of the 𝐿2 topology considered for the fields and the corresponding 
trace space, we refer to [18, Sec. 5]. The physical Maxwell transmission 
problem that we aim to solve is MTP(𝑘−, 𝑘+)= MTP(𝑘−, 𝑘+, ̂𝑘2), with 
𝛼 = �̂�2, where the tangential parts of both the electric and magnetic 
fields are continuous across Γ. However, we also use auxiliary MTPs 
with other values of the parameter 𝛼.

Remark 1. The 𝑘± are related to the total permittivities 𝜖± and per-

meabilities 𝜇± by 𝑘± = 𝜔
√

𝜖±𝜇± in Ω± respectively. We follow the 
convention from [17] where in all 𝐑3, the 𝐻 field is the magnetic field 
rescaled by the wave impedance 

√
𝜇−∕𝜖−. The field �̂�−1𝐻+, appearing 

in (7), is the magnetic field rescaled by the wave impedance 
√

𝜇+∕𝜖+
in Ω+. This field is natural when formulating Maxwell’s equations as a 
Dirac equation, and was denoted 𝐵+ in [18].

Besides MTPs, we also consider auxiliary Helmholtz transmission 
problems HTP(𝑘−, 𝑘+, 𝛽)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢+ = 𝑢0 + 𝑢−, 𝑥 ∈ Γ,
𝜕𝜈𝑢

+ = 𝛽𝜕𝜈(𝑢0 + 𝑢−), 𝑥 ∈ Γ,
Δ𝑈+ + 𝑘2+𝑈

+ = 0, 𝑥 ∈Ω+,

Δ𝑈− + 𝑘2−𝑈
− = 0, 𝑥 ∈Ω−,

𝜕𝑥∕|𝑥|𝑈− − 𝑖𝑘−𝑈
− = 𝑜(|𝑥|−1𝑒Im (𝑘−)|𝑥|), 𝑥→∞,

(9)

where 𝑢0 is the trace of the incident wave 𝑈0, and we want to solve for 
𝑈±. We use the elliptic Dirac type equation

⎡⎢⎢⎢⎢⎣
0 ∇⋅ 0 0
∇ 0 −∇× 0
0 ∇× 0 ∇
0 0 ∇⋅ 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝐹0
𝐹1
𝐹2
𝐹3

⎤⎥⎥⎥⎥⎦
= 𝑖𝑘

⎡⎢⎢⎢⎢⎣
𝐹0
𝐹1
𝐹2
𝐹3

⎤⎥⎥⎥⎥⎦
, (10)

for two scalar fields 𝐹0 and 𝐹3, and two vector fields 𝐹1 and 𝐹2, which 
embeds one Maxwell and two Helmholtz equations. Indeed, for 𝐹0 =
𝐹3 = 0, (10) amounts to Maxwell’s equations for 𝐹1 =𝐸+ and

𝐹2 = �̂�−1𝐻+ (11)

in Ω+, and for 𝐹1 = 𝐸− and 𝐹2 = 𝐻− in Ω−. Moreover, the Helmholtz 
equation for 𝑈 amounts to (10) for 𝐹0 = 𝑖𝑘𝑈 , 𝐹1 = ∇𝑈 and 𝐹2 = 𝐹3 = 0, 
as well as for 𝐹3 = 𝑖𝑘𝑈 , 𝐹2 = ∇𝑈 and 𝐹0 = 𝐹1 = 0. A main point with the 
Dirac formalism is that it avoids divergence- and curl-free constraints, 
by complementing the divergence-free Maxwell vector fields with the 
Helmholtz gradient vector fields.

The Dirac transmission problem DTP(𝑘−, 𝑘+, 𝛼, 𝛽, 𝛾) which is funda-

mental in our formalism is
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⎧⎪⎪⎨⎪⎪⎩

𝐹+ =𝑀(𝐹 0 + 𝐹−), 𝑥 ∈ Γ,
𝐃𝐹+ = 𝑖𝑘+𝐹

+, 𝑥 ∈Ω+,

𝐃𝐹− = 𝑖𝑘−𝐹
−, 𝑥 ∈Ω−,

(𝑥∕|𝑥|− 1)𝐹− = 𝑜(|𝑥|−1𝑒Im (𝑘−)|𝑥|), 𝑥→∞.

(12)

The Dirac derivative 𝐃𝐹 is the left-hand side in (10), and replacing ∇
by the vector 𝑥 in this matrix yields the Clifford product 𝑥𝐹 appearing 
in the Dirac radiation condition. (For a short explanation of the under-

lying multivector formalism we refer to [18, Sec. 3], and for the long 
explanation we refer to [26].) On Γ, we write Dirac fields 𝐹 as

𝐹 =
[
𝐹0 𝜈 ⋅ 𝐹2 𝑭 2𝑇 𝐹3 𝜈 ⋅ 𝐹1 𝑭 1𝑇

]
, (13)

with tangential fields 𝑭 𝑗𝑇 = (𝜏 ⋅𝐹𝑗 )𝜏 + (𝜃 ⋅𝐹𝑗 )𝜃, 𝑗 = 1, 2. The jump matrix 
𝑀 is the diagonal matrix

𝑀 = diag
[
�̂�∕(𝛼𝛽) 1∕�̂� �̂�∕𝜶 1∕𝛾 1∕𝛼 𝟏

]
, (14)

when acting on 𝐹 in (13). This special structure of 𝑀 ensures that the 
DTP decouples in a certain way into one MTP with parameter 𝛼 and 
two HTPs with parameters 𝛽 and 𝛾 . See [18, Prop. 8.4].

For a given wavenumber 𝑘, the Dirac equation 𝐃𝐹 = 𝑖𝑘𝐹 comes with 
a Cauchy reproducing formula for 𝐹 , similar to the classical one for 
analytic functions and 𝑘 = 0. When acting on 𝐹 , written as in (13), the 
singular Cauchy integral on Γ is

𝐸𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝐾𝜈′
𝑘

0 𝑲1,3∶4 0 𝑆𝑘 𝟎
𝐾2,1 −𝐾𝜈

𝑘
𝑲2,3∶4 𝑆2,5 0 𝑺2,7∶8

𝑲3∶4,1 𝑲3∶4,2 −𝑴∗
𝑘

𝑺3∶4,5 𝟎 𝑺3∶4,7∶8
0 𝑆𝑘 𝟎 −𝐾𝜈′

𝑘
0 𝑲5,7∶8

𝑆6,1 0 𝑺6,3∶4 𝐾6,5 −𝐾𝜈
𝑘

𝑲6,7∶8
𝑺7∶8,1 𝟎 𝑺7∶8,3∶4 𝑲7∶8,5 𝑲7∶8,6 −𝑴∗

𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

In this paper, we enumerate the scalar components of Dirac fields (13)

by 1, … , 8, and use boldface vector notation for the tangential vectors 
parts 3:4 and 7:8. We denote the causal fundamental solution to the 
Helmholtz equation, normalized with a factor of −2, by

Φ𝑘(𝑥) =
𝑒𝑖𝑘|𝑥|
2𝜋|𝑥| . (16)

The operators appearing along the diagonal are the acoustic double 
layer

𝐾𝜈′
𝑘
𝑓 (𝑥) = p.v.

ˆ

Γ

∇Φ𝑘(𝑦− 𝑥) ⋅ 𝜈(𝑦)𝑓 (𝑦)𝑑Γ(𝑦) (17)

with real adjoint −𝐾𝜈
𝑘
𝑓 , where 𝜈(𝑦) is replaced by 𝜈(𝑥), and the real 

adjoint 𝑴∗
𝑘

of the acoustic magnetic dipole operator

𝑴𝑘𝑓 (𝑥) = 𝜈(𝑥) × p.v.

ˆ

Γ

∇Φ𝑘(𝑦− 𝑥) × 𝑓 (𝑦)𝑑Γ(𝑦). (18)

Also appearing is the acoustic single layer

𝑆𝑘𝑓 (𝑥) = 𝑖𝑘

ˆ

Γ

Φ𝑘(𝑦− 𝑥)𝑓 (𝑦)𝑑Γ(𝑦), (19)

with the scaling factor 𝑖𝑘. The remaining operators 𝐾 and 𝑆 include 
various products of the frame vectors {𝜈, 𝜏, 𝜃} and are detailed in [17, 
Eq. (27)].

A fundamental algebraic property of 𝐸𝑘 is that for each wavenumber 
𝑘 ∈𝐂, we have 𝐸2

𝑘
= 𝐼 . Using the associated Hardy projections

𝐸±
𝑘
= 1

2 (𝐼 ±𝐸𝑘), (20)

we can express DTP(𝑘−, 𝑘+, 𝛼, 𝛽, 𝛾) compactly as

⎧⎪⎨⎪⎩
𝐹+ =𝑀(𝐹 0 + 𝐹−),
𝐸−

𝑘+
𝐹+ = 0,

𝐸+ 𝐹− = 0,
(21)
𝑘−
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for 𝐹± and 𝐹 0 on Γ. The condition 𝐸−
𝑘+

𝐹+ = 0 is equivalent to 𝐹+ be-

longing to the range of the projection operator 𝐸+
𝑘+

, that is, 𝐹+ is the 
trace of a solution to 𝐃𝐹+ = 𝑖𝑘+𝐹

+ in Ω+. Similarly 𝐸+
𝑘−𝐹

− = 0 encodes 
that 𝐹− is the trace of an exterior Dirac solution with wavenumber 𝑘−, 
which satisfies the Dirac radiation condition.

3. The Dirac integral equation

In [18], BIEs for DTP(𝑘−, 𝑘+, 𝛼, 𝛽, 𝛾) were derived as follows. We 
make a field representation 𝐹+ = 𝑟𝐸+

𝑘+
(𝑀 ′𝑃 ′ℎ), 𝐹− = −𝐸−

𝑘−
(𝑃 ′ℎ) and 

multiply the jump relation 𝐹+ =𝑀(𝐹− + 𝐹 0) by 𝑃 . In matrix notation, 
this amounts to the BIE

𝑃
[
𝐸+

𝑘+
−𝑀𝐸−

𝑘−

][ 𝑟 0
0 1

][
𝐸+

𝑘+
𝑀 ′

−𝐸−
𝑘−

]
𝑃 ′ℎ = 𝑃𝑀𝑓 0, (22)

for the density ℎ with 8 scalar components. We write 𝑓 0 = 𝐹 0|Γ for the 
incident field on Γ. The preconditioning matrices 𝑃 , 𝑃 ′ will be chosen 
as constant diagonal matrices, and the scaling parameter 𝑟 is 𝑟 = 1∕�̂� in 
all our Dirac BIEs.

The well posedness of DTP(𝑘−, 𝑘+, 𝛼, 𝛽, 𝛾) is equivalent to invertibil-

ity of 
[
𝐸+

𝑘+
−𝑀𝐸−

𝑘−

]
, as a map from the direct sum of the ranges 

of 𝐸+
𝑘+

and 𝐸−
𝑘−

. Consider also an auxiliary DTP(𝑘+, 𝑘−, 𝛼′, 𝛽′, 𝛾 ′), with 
the wavenumbers swapped, with an auxiliary Maxwell jump param-

eter 𝛼′ and with two auxiliary Helmholtz jump parameters 𝛽′, 𝛾 ′. 
The duality result from [18, Prop. 8.5] shows that well posedness of 

DTP(𝑘+, 𝑘−, 𝛼′, 𝛽′, 𝛾 ′) is equivalent to invertibility of 
[
𝐸+

𝑘+
𝑀 ′

−𝐸−
𝑘−

]
, as a 

map onto the direct sum of the ranges of 𝐸+
𝑘+

and 𝐸−
𝑘−

, with

𝑀 ′ = diag
[
1∕𝛼′ 1∕𝛾 ′ 𝟏 �̂� 1∕(�̂�𝛼′𝛽′) 𝟏∕(𝜶′�̂�)

]
. (23)

The resulting Dirac BIE (22) has 12 free parameters

𝑟, 𝛽, 𝛾, 𝛼′, 𝛽′, 𝛾 ′ and 𝑃 ′ = diag
[
𝑝′1 𝑝′2 𝒑′3∶4 𝑝′5 𝑝′6 𝒑′7∶8

]
(24)

to be chosen. We recall that 𝛼 = �̂�2 for the non-magnetic Maxwell trans-

mission problem that we want to solve. For 𝑟 and 𝑃 ′, any non-zero and 
finite complex numbers are allowed, although we have always used 
𝑟 = 1∕�̂� so far. Given 𝑃 ′, we choose 𝑃 so that

𝑃 (𝑟𝑀 ′ +𝑀)𝑃 ′ = 𝐼, (25)

and set 𝑁 = 𝑃𝑀 and 𝑁 ′ = 𝑟𝑀 ′𝑃 ′. This turns the Dirac BIE (22) into a 
second kind integral equation

ℎ+ (𝑃𝐸𝑘+
𝑁 ′ −𝑁𝐸𝑘−

𝑃 ′)ℎ = 2𝑁𝑓 0, (26)

where we have used that (𝐸±
𝑘
)2 =𝐸±

𝑘
= 1

2 (𝐼 ±𝐸𝑘). The operator to invert 
on Γ is 𝐼 +𝐺, where 𝐺 denotes the singular integral operator

𝑃𝐸𝑘+
𝑁 ′ −𝑁𝐸𝑘−

𝑃 ′ = 𝑃 (𝐸𝑘+
(𝑟𝑀 ′) −𝑀𝐸𝑘−

)𝑃 ′, (27)

containing 30 scalar integral operators of double layer type, and 20
scalar integral operators of single layer type, according to (15). For 
a given choice of parameters, the operator 𝐺 is computed using [18, 
Eqs. (131), (132)].

From the density ℎ, obtained by solving (26), we compute the traces 
on Γ of the Dirac fields 𝐹± as

𝐹+|Γ =𝐸+
𝑘+

𝑁 ′ℎ and 𝐹−|Γ = −𝐸−
𝑘−

𝑃 ′ℎ. (28)

The fields 𝐹± in Ω± are computed by instead using the corresponding 
non-singular (replacing 𝑥 ∈ Γ by 𝑥 ∈ Ω±) versions of the Cauchy inte-

grals 𝐸±
𝑘±

in (28). Discarding the two auxiliary Helmholtz components 
in 𝐹± (which are 0 for Maxwell data 𝑓 0), and recalling (11), this yields 
𝐸± and 𝐻±. These field formulas are detailed in [17, Eqs. (28)–(31)]. 
Note that in computing 𝐻+, the factor �̂� from (11) cancels the factor 
𝑟 = 1∕�̂� in 𝑁 ′ from (28), whereas this factor 1∕�̂� remains in 𝐸+. Note 
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also that the minus sign in the second equation in (28) is contained in 
the field equations [17, Eqs. (28), (30)].

3.1. Dirac (A)

The Dirac parameters[
𝑟 𝛽 𝛾 𝛼′ 𝛽′ 𝛾 ′

]
=
[
1
�̂�

𝜉 𝑎
1
�̂�

1
�̂�

𝑎
]
,

𝑃 ′ = diag
[
1 �̂�1∕2(1 + 𝑎)−1∕2 �̂�

𝟏∕𝟐 1 1 �̂�

�̂�+𝟏

]
,

(29)

were proposed in [18, Thm. 2.3], where 𝑎 = �̂�∕|�̂�|. Here the overline 
symbol denotes the complex conjugate and

𝜉 = 1 + 𝑖𝛿 arg(�̂�) (30)

is a tuning factor, set to 𝜉 = 1 in [18] and further discussed below. The 
relations above then give

𝑃 =
[

𝜉

�̂�−1+𝜉
�̂�1∕2(1 + 𝑎)−1∕2 �̂�𝟏∕𝟐

𝟐
1

1+𝑎

1
1+�̂�−2

𝟏
]
,

𝑁 =
[

1
1+𝜉�̂�

1
�̂�1∕2

(1 + 𝑎)−1∕2 𝟏
𝟐�̂�𝟏∕𝟐

1
1+𝑎

1
1+�̂�2

𝟏
]
,

𝑁 ′ =
[
1 1|�̂�|1∕2 (1 + 𝑎)−1∕2 𝟏

�̂�𝟏∕𝟐
1 1 𝟏

𝟏+�̂�

]
.

(31)

The main operator 𝐺 from (27) is in general not compact, not even on 
smooth domains. However, we have that 𝐺 is nilpotent modulo compact 
operators on smooth domains. This property is important for the effi-

ciency of GMRES, since it implies that the only accumulation point for 
the spectrum of 𝐺 is zero. The above choices of 𝑟, 𝛽 = 1, 𝛼′, 𝛽′ ensure this 
through cancellations in the (1:2,3:4) and (7:8,5:6) blocks. The choices 
of 𝛾, 𝛾 ′ were made only to avoid false eigenwavenumbers by chosing 
suitable complex arguments for them.

In [17, Sec. 5.1], we chose 𝛿 = 0.2∕𝜋 in (30). This turns the com-

plex argument of 𝛽 slightly towards the argument of �̂�, which avoids 
false eigenwavenumbers in plasmonic scattering. The change is still 
small enough for 𝐺 to be close to a nilpotent operator modulo com-

pact operators on smooth Γ, so that iterative solvers converge rapidly. 
See Section 4. We refer to this Dirac BIE as Dirac (A), which performs 
well on any Lipschitz surface, of any genus, as long as |�̂�| is bounded 
away from 0 and ∞. Throughout [18,17], we only consider |�̂�| which 
are not too large or small, and the choice for 𝑃 ′ is then less important. 
In the present paper, we allow �̂�→∞, and then the parameters need to 
be chosen with more care, since Dirac (A) is no longer performing well.

4. Tuning and augmentation

We describe in this section some ideas for designing efficient BIEs 
in general, and Dirac BIEs in particular. A first step is to obtain Fred-

holm operators both (a) for the system to be solved and (b) for the 
field representation, by tuning the free parameters in the BIE. Recall 
that an operator is Fredholm if its null space is finite-dimensional and 
its range is closed and has finite codimension. An operator that fails to 
be Fredholm, for example a differential or hypersingular operator, may 
lead to “dense-mesh breakdown” in the computation, in the terminol-

ogy of [31]. Even if the operators are Fredholm for each 𝑘− > 0, but not 
uniformly as 𝑘− → 0, there may be a low-frequency breakdown in the 
computation.

The top three considerations in tuning Dirac BIEs are the following.

• The singular integral operator 𝐺 should be close in norm to a nilpo-

tent operator modulo compact operators on smooth Γ, to work well 
in an iterative solver. Our experience is that the choice 𝑟 = 1∕�̂� is 
necessary for this.

• The complex arguments of 𝛽∕�̂�, 𝛾∕�̂�, 𝛼′�̂�, 𝛽′�̂� and 𝛾 ′�̂� should be

≤ 𝜋 − arg(𝑘+∕𝑖) − arg(𝑘−∕𝑖) (32)
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to avoid false eigenwavenumbers. When 𝑘± are on the real or imag-

inary axis, a strict inequality is required, and sometimes arg(−𝑧)
may replace arg(𝑧), for 𝑧 being one of the five complex numbers 
above. We refer to [18, Props. 8.4-5 and Defn. 2.1] for details. 
False essential spectrum may appear when one of 𝛽, 𝛾, 𝛼′, 𝛽′, 𝛾 ′ is in 
a compact subset of the negative real axis (−∞, 0). See Section 9.

The role of the tuning factor 𝜉 from (30) in the Dirac BIEs is to 
slightly adjust parameters, not only 𝛽, but also 𝛼′ and 𝛾 ′ in the 
Dirac BIEs presented below, to obtain a strict inequality in (32). 
This typically ensures that false eigenwavenumbers are avoided 
in plasmonic scattering, that is when (arg(𝑘−), arg(𝑘+)) = (0, 𝜋∕2) or 
(𝜋∕2, 0).

• The coefficients in 𝐺, depending on 𝑃 , 𝑃 ′, 𝑁, 𝑁 ′, should be uni-

formly bounded in the set of 𝑘± considered. For this, we note that 
it is sufficient but not necessary to have 𝑃 , 𝑃 ′, 𝑁, 𝑁 ′ bounded. That 
it is needed to have 𝑁 bounded is clear from the right-hand side in 
(26). Most importantly, 𝑁 ′ and 𝑃 ′ should be chosen so that (28)

computes the fields at the correct scale. The generic scale for the 
fields in the eddy current regime is discussed in Section 5 below.

A second step in the design of efficient BIEs is to remove remain-

ing finite-dimensional null spaces in the Fredholm maps. In an abstract 
setting, the typical situation is that finite-dimensional null spaces open 
up as a parameter 𝜆 → 0, depending on the topology of Γ, causing a 
“topological low-frequency breakdown”. See [7,9,12] for examples of 
this generic problem for BIEs. We remove such null spaces through aug-

mentation. Recall from (5) that the typical construction of a BIE is to 
compose jump relations 𝑔 = 𝐵𝜆𝐹 and a field representation 𝐹 = 𝐴𝜆ℎ to 
obtain a linear system

𝑔 = (𝐼 +𝐺𝜆)ℎ = 𝐵𝜆𝐴𝜆ℎ. (33)

Here both 𝑔 and ℎ belong to a suitable space of functions on Γ, but the 
domain of 𝐵𝜆 and the range of 𝐴𝜆 consist of a space of fields 𝐹 = 𝐹± in 
Ω± satisfying the differential equation, or equivalently a corresponding 
space of traces 𝐹±|Γ on Γ. We assume that both 𝐴𝜆 and 𝐵𝜆 are Fred-

holm maps with index 0. In general both maps 𝐴𝜆 and 𝐵𝜆 may require 
augmentation. We refer to augmentation of the right factor, the field 
representation, as (R) augmentation, and to augmentation of the left 
factor, the jump relations, as (L) augmentation.

The logic behind the two types of augmentations is quite different. 
We therefore discuss them separately, starting with two elementary but 
illustrative examples of augmentation of BIEs for Helmholtz boundary 
value problems, with no aim for completeness or full proofs. It is clear 
from these examples that (R) augmentation is required when we have 
null densities ℎ +𝐺0ℎ = 0 corresponding to zero fields 𝐹 =𝐴0ℎ = 0. Oth-

erwise (L) augmentation is required in order to obtain an invertible 
system.

Example 1 (Exterior Dirichlet problem). Consider the Dirichlet problem 
𝑢|Γ = 𝑔 for Δ𝑢 +𝑘2𝑢 = 0 in Ω−, with standard Sommerfeld radiation con-

dition at ∞, for 𝑘 in a neighbourhood of 0. This has a unique solution 𝑢
for all 𝑘 in a neighbourhood of 0, including 0, so no (L) augmentation 
is needed. Using the standard double layer potential representation of 𝑢
however, leads to a BIE ℎ +𝐾𝜈′

𝑘
ℎ = 2𝑔, which at 𝑘 = 0 has a null space 

spanned by constant functions ℎ. We resolve this problem by using an 
(R) augmented field representation

𝑢(𝑥) =
ˆ

Γ

∇Φ𝑘(𝑦− 𝑥) ⋅ 𝜈(𝑦)ℎ(𝑦)𝑑Γ(𝑦) + Φ𝑘(𝑥− 𝑝)
ˆ

Γ

ℎ𝑑Γ(𝑦), 𝑥 ∈Ω−, (34)

with some fixed 𝑝 ∈ Ω+. In dimension two, the fundamental solution 
Φ𝑘(𝑥 − 𝑝) = (𝑖∕2)𝐻 (1)

0 (𝑘|𝑥 − 𝑝|) uses the Hankel function and needs to 
be divided by log(𝑘) in the second term in (34). This leads to the (R) 
augmented BIE ℎ +𝐾𝜈′

𝑘
ℎ + 𝑏𝑘(𝑐ℎ) = 2𝑔 with the finite-rank operator 𝑏𝑘𝑐

added, where 𝑏𝑘 = Φ𝑘(⋅ − 𝑝)|Γ and 𝑐ℎ =
´
Γ ℎ𝑑Γ. This is stably solvable 

for ℎ, for all 𝑘 near 0, and the field 𝑢 is computed from the augmented 
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representation (34). This can be seen as a rank-1 version of the com-

bined field integral equation [6, Eq. (3.25)], which only removes the 
false eigenwavenumber at 𝑘 = 0. It can also be seen as a generalization 
to 𝑘 ≠ 0 of the standard treatment for 𝑘 = 0 in [15, p. 345].

In an abstract setting, (R) augmentation can be described as follows. 
We consider a parameter 𝜆 → 0, and for each fixed 𝜆 ≠ 0 we compose 
jump relations 𝐵𝜆 and field representations 𝐴𝜆 as in (33) to obtain a 
system

ℎ+𝐺𝜆ℎ = 𝑔. (35)

We assume that free parameters have been tuned so that 𝐼 + 𝐺𝜆 is in-

vertible for each 𝜆 ≠ 0, but that it is merely a Fredholm map at 𝜆 = 0. 
Assume for simplicity that the null space N(𝐼 +𝐺0) is one-dimensional. 
If 𝐵0 is invertible and the null space for 𝐼 + 𝐺0 comes from the field 
representation 𝐴0, then we identify a functional 𝑐 that is non-zero on 
N(𝐴0) = N(𝐼 + 𝐺0) and a field/solution 𝐹𝜆 for each parameter 𝜆, such 
that 𝐹𝜆 → 𝐹0 where 𝐹0 does not belong to the range R(𝐴0). Let 𝑏𝜆 =𝐵𝜆𝐹𝜆

be the corresponding boundary datum. The obtained (R) augmented BIE 
uses the field representation 𝐹 =𝐴𝜆ℎ +𝐹𝜆(𝑐ℎ), where the density ℎ now 
solves the (R) augmented system (𝐼 +𝐺𝜆 + 𝑏𝜆𝑐)ℎ = 𝑔.

Example 2 (Interior Neumann problem). Consider the Neumann problem 
𝜕𝜈𝑢|Γ = 𝑔 for Δ𝑢 +𝑘2𝑢 = 0 in Ω+, for 𝑘 in a neighbourhood of 0. We have a 
unique solution 𝑢, except at 𝑘 = 0, and an (L) augmentation is required. 
To note is thatˆ

Γ

𝑔𝑑Γ = −𝑘2
ˆ

Ω+

𝑢𝑑𝑥, (36)

which forces 
´
Ω+

𝑢𝑑𝑥 = 0 if 𝑘 ≠ 0 and 
´
Γ 𝑔𝑑Γ = 0. The standard single 

layer potential 𝑢(𝑥) =
´
Γ Φ𝑘(𝑥 − 𝑦)ℎ(𝑦)𝑑Γ(𝑦), 𝑥 ∈ Ω+, gives a representa-

tion of all solutions 𝑢 in Ω+ and needs no (R) augmentation, but leads to 
the BIE ℎ −𝐾𝜈

𝑘
ℎ = 2𝑔, which for 𝑘 = 0 has a one-dimensional null space. 

For 𝑘 ≠ 0, define the functional

𝑐𝑘ℎ =
ˆ

Ω+

𝑢𝑑𝑥= − 1
𝑘2

ˆ

Γ

𝑔𝑑Γ = − 1
2𝑘2

ˆ

Γ

(ℎ−𝐾𝜈
𝑘
ℎ)1𝑑Γ =

ˆ

Γ

ℎ𝑤𝑘𝑑Γ, (37)

with weight function 𝑤𝑘 = (𝐾𝜈′

0 1 −𝐾𝜈′
𝑘
1)∕(2𝑘2). The last equality in (37)

follows from duality and 𝐾𝜈′

0 1 = −1. By Taylor expansion of ∇Φ𝑘, this 
computation of 𝑤𝑘 can be stabilized, and for 𝑘 ≠ 0 our BIE is seen to be 
equivalent to

ℎ−𝐾𝜈
𝑘
ℎ+ 𝑏(𝑐𝑘ℎ) = 2𝑔 − 𝑘−2𝑏

ˆ

Γ

𝑔𝑑Γ. (38)

Choosing the constant function 𝑏 = 1 on Γ, the operator 𝐼 − 𝐾𝜈
𝑘
+ 𝑏𝑐𝑘

is well-conditioned for all 𝑘 near 0, and the previous low-frequency 
breakdown has moved to the simpler computation of the second term 
on the right-hand side.

In an abstract setting, (L) augmentation can be described as follows. 
Consider 𝐼 + 𝐺𝜆 = 𝐵𝜆𝐴𝜆 as 𝜆 → 0 as above, but assume now that the 
field representation 𝐴0 is invertible but that 𝐵0 has a one-dimensional 
null space. We identify a scalar equation

𝑐𝜆ℎ = 𝑑𝜆𝑔, (39)

which follows from ℎ + 𝐺𝜆ℎ = 𝑔 for 𝜆 ≠ 0, but may fail at 𝜆 = 0. The 
equation (39) often appears by rescaling one scalar component of the 
jump relations so that 𝑐𝜆 is normalized. We assume that 𝑐𝜆 → 𝑐0 as 𝜆 → 0, 
where 𝑐0 ≠ 0 on N(𝐼 +𝐺0). Typically 𝑑𝜆𝑔 will not stay bounded as 𝜆 → 0, 
unless we assume that data satisfy 𝑑𝜆𝑔 = 0, in which case we speak of 
a homogeneous (L) augmentation. Choosing an auxiliary function 𝑏 ∉
R(𝐴0) = R(𝐼 + 𝐺0), we obtain the (L) augmented BIE with system (𝐼 +
𝐺𝜆 + 𝑏𝑐𝜆)ℎ = 𝑔 + 𝑏(𝑑𝜆𝑔) and field representation as before.
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For Dirac BIEs, the factorization 𝐼 +𝐺𝜆 = 𝐵𝜆𝐴𝜆 is given by (22). Fol-

lowing the ideas presented in this section, we obtain the augmentations 
for our Dirac BIE that are stated in Sections 6 and 7. The derivation 
of these augmentations are found in Appendix A. It should be noted 
that Dirac (A∞) only requires a single (L) augmentation for the Dirich-

let eigenfield, regardless of the genus of Γ, whereas Dirac (B) for Γ of 
genus 𝑔 ≥ 0 requires 1 +𝑔 (R) augmentations and 1 +𝑔 (L) augmentations 
for the Dirichlet and Neumann eigenfields, and an (L) augmentation of 
a Helmholtz eigenfield.

Remark 2. An alternative technique for augmenting a BIE in the form 
(𝐼 +𝐺𝜆)ℎ = 𝑔 is to add equations and unknowns. Consider[
𝐼 +𝐺𝜆 𝐵𝜆

𝐶𝜆 𝐷𝜆

][
ℎ

𝑎

]
=
[

𝑔

𝑑𝜆𝑔

]
. (40)

With only one extra equation and unknown in (40), and with 𝐷𝜆 = −1, 
the elimination of 𝑎 shows that (40) is equivalent to the additive (L) 
augmentation described above.

Now (40) can be converted to Fredholm second kind block triangu-

lar form, which is better suited for an iterative solver, using[
𝐼 𝐵𝜆

𝐶𝜆 𝐷𝜆

]
(41)

as a left- or right preconditioner in (40). The inverse of (41) can be 
efficiently applied via the solution of a system involving the Schur com-

plement of 𝐼 . See [14, Sec. 4.1] for an example. Nevertheless, we find 
that our additive augmentations are easier to work with than this more 
traditional technique involving extra equations and preconditioners.

Augmentations have been frequently used in literature. Most of 
these concern the simpler problem of augmenting static Laplace or bi-

harmonic problems, which corresponds to augmenting only 𝐼 +𝐺0, that 
is, 𝐼 + 𝐺𝜆 at 𝜆 = 0. Static homogeneous (L) augmentation appears in 
[24, p. 257]. Static (R) augmentation appears in [14, Eqs. (11),(23)]. 
Non-static inhomogeneous (L) augmentation appears in [9, Rem. 1].

5. Eddy current eigenfields

Assume that the incident fields 𝐸0 and 𝐻0 have magnitude of order 
1 on Γ. Then the transmitted magnetic field 𝐻+ is of order 1 since 
Ω+ is non-magnetic, and the scattered electric field 𝐸− is also of order 
1, assuming that we are in the eddy current regime. The transmitted 
electric field 𝐸+ satisfies ∇ ×𝐸+ = 𝑖𝑘−𝐻

+, ∇ ⋅𝐸+ = 0 and

𝜈 ⋅𝐸+ = �̂�−2𝜈 ⋅ (𝐸− +𝐸0), (42)

which shows that 𝐸+ is of order max(𝑘−𝐿, |�̂�−2|) in the generic scatter-

ing situation. From this we conclude that the magnitude of the eddy 
current

𝐽 = 𝜎𝐸+ = Re(𝑘2+∕(𝑖𝜂0𝑘−))𝐸
+ (43)

is of order max(|𝑘+|2𝐿, 𝑘−), and the scattered magnetic field 𝐻− is of 
order max((|𝑘+|𝐿)2, 𝑘−𝐿).

The incident field that we use in our numerical examples is a sum 
of the two lowest order axially symmetric spherical vector waves [22, 
Eq. (7)]

𝐸0(𝑥) =𝐺(𝑥) + 𝑘−1− ∇ ×𝐺(𝑥) , 𝐻0(𝑥) = −𝑖𝐸0(𝑥) . (44)

Here 𝐺(𝑥) =
√
3∕(8𝜋)𝑗1(𝑘−|𝑥|)𝜌|𝑥|−1𝜽 and 𝑗1 is the spherical Bessel func-

tion of order 1.

We see two types of eigenfields appearing in the eddy current regime 
as 𝑘− → 0, which generalize the classical (exterior) Dirichlet and Neu-

mann eigenfields (or Dirichlet and Neumann vector fields in the termi-

nology of [5]) in PEC scattering, and where the magnitude of the fields 
can differ drastically from those described above. As discussed below, 
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the Dirichlet eigenfield is non-physical in the sense that it cannot be 
excited by sources in Ω−, whereas the Neumann eigenfield, see (46)

and Fig. 2(g,h,i) for ordinary conductors, indeed can be excited by such 
sources, and is of physical origin and not an artifact of any field rep-

resentation. We say that there exists an eigenfield in the eddy current 
regime if there are incident fields such that

‖𝐸+‖∕max(𝑘−𝐿, |�̂�−2|) + ‖𝐸−‖+ ‖𝐻+‖+ ‖𝐻−‖‖𝐸0‖+ ‖𝐻0‖ →∞, (45)

as 𝑘− → 0 along a curve in the (𝑘−, 𝑘+) plane, contained in the eddy 
current regime. Here the norm ‖ ⋅ ‖ of a vector field on Γ is the sum of 
the 𝐻−1∕2(Γ) norm of its normal component and the 𝐻−1∕2(curl, Γ) norm 
of its tangential part. See [18, Eq. (65)]. The eigenfield is defined to be 
the limit of {𝐸+, 𝐸−, 𝐻+, 𝐻−}, normalized suitably. In the sum in (45), 
we have scaled each of the four fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} by the generic 
size of the corresponding measurable field {𝐸+, 𝐸0 +𝐸−, 𝐻+, 𝐻0 +𝐻−}.

The classical exterior Dirichlet eigenfield is a divergence- and curl-

free electric field in Ω− which is normal on Γ and decays at ∞, resulting 
from a net charge in Ω+. However, Ω+ is assumed to have zero net 
charge and thus such eigenfields cannot be excited by sources located 
in Ω−. Since we only assume sources in Ω−, we will not see any Dirich-

let eigenfields appearing. Our augmentations of null spaces related to 
the Dirichlet eigenfields build on (8). This condition excludes Dirichlet 
eigenfields 𝐸−, since the maximum principle applied to the electric po-

tential shows that 𝜈 ⋅𝐸− cannot change sign, which forces 𝐸− to be zero 
in Ω−.

The classical exterior Neumann eigenfield is a divergence- and curl-

free magnetic field in Ω− which is tangential on Γ and decays at ∞, 
resulting from an electric current on the surface of genus ≥ 1 of a su-

perconductor. For a torus, the current is in the 𝜃 direction, and the 
Neumann eigenfield is in the 𝜏 direction on Γ. For an ordinary con-

ductor, we see the Neumann eigenfield appearing in (7) as 𝑘− → 0 in 
the eddy current regime, as follows. Instead of 𝐸+ we consider the 
auxiliary field 𝐸+ = 𝐸+∕ max(𝑘−𝐿, |�̂�−2|), since in the generic scatter-

ing situation the field �̃�+ is of order 1. Setting 𝐸0 = 𝐻0 = 0, the first 
equation in (7) shows that 𝜈 × 𝐸− = 0, since 𝐸+ → 0 as 𝑘− → 0 in the 
eddy current regime. This forces 𝐸− = 0 since 𝐸− is a divergence- and 
curl-free vector field in Ω− and satisfies (8). From the jump relation 
𝜈 ⋅ 𝐸+ = �̂�−2𝜈 ⋅ 𝐸−, which follows from the second equation in (7), we 
conclude that 𝜈 ⋅ 𝐸+ = 0. Therefore 𝐸+, as well as the eddy current 
𝐽 = 𝜎𝐸+, is a divergence- and curl-free vector field in Ω+ with vanishing 
normal component at Γ. Finally the magnetic field 𝐻 is a divergence-

free vector field in 𝐑3 solving

∇×𝐻 =

{
𝜂0𝐽 , in Ω+,

0, in Ω−,
(46)

which follows from (7) since −𝑖𝑘+�̂� = 𝜂0𝜎. To summarize, the De 
Rham cohomology space 𝐻1(Ω+), see for example [26, Sec. 10.6], 
parametrizes the Neumann eigenfields. More precisely the eddy cur-

rent 𝐽 = 𝜎𝐸+ is a divergence- and curl-free field which is tangential 
on Γ, and the associated magnetic field is obtained by applying the 
Biot–Savart operator to 𝜂0𝐽 . Note from (46) for the Neumann eigen-

field that 𝐻 and 𝐽 are independent of 𝜎 for all ordinary conductors with 
0 < 𝜎 <∞. In contrast to the Dirichlet eigenfields, the Neumann eigen-

fields can be excited by sources in Ω−. Thus some ill-conditioning is 
inevitable in any BIE since the Neumann eigenfield is a physical eigen-

field. By an inhomogeneous (L) augmentation similar to Example 2, we 
shall obtain a well-conditioned system and field representation, locat-

ing the ill-conditioning to the simpler computation of the right hand 
side for the system. In Section 8, we demonstrate that the Neumann 
eigenfield in an ordinary conductor can be excited by the incident field

𝐸0(𝑥) = 𝑖𝑐2𝐻
(1)
1 (𝑘−𝜌)𝜽, 𝐻0(𝑥) = 𝑐2𝐻

(1)
0 (𝑘−𝜌)𝒛, (47)

normalized with 𝑐2 = 1∕|𝐻 (1)
1 (𝑘−)| and where 𝐻 (1)

𝑛 is the first kind Han-

kel function of order 𝑛. This field can in principle be generated by a thin 
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wire along the 𝑧-axis made of a material with high relative permeabil-

ity 𝜇𝑟 ≫ 1. By closing the wire in a large loop and exciting a magnetic 
field inside the wire by a coil around the wire, a field like (47) will be 
incident on Γ.

An important point is that the Neumann eigenfield obtained in the 
PEC approximation is not the eigenfield appearing in ordinary con-

ductors. The difference is illustrated in Fig. 2 where (g,h,i) shows the 
Neumann eigenfield appearing in ordinary conductors. Note that the 𝐻
field penetrates into Ω+ and that the eddy current flows in the interior 
of Ω+, unlike the Neumann eigenfield for superconductors shown in 
Fig. 2(a,b,c), where the current flows on the surface Γ, as shown quali-

tatively in Fig. 2(a). Fig. 2(d,e,f) shows an intermediate eigenfield in the 
case when the scaled conductivity grows inversely proportional to 𝑘−
as 𝑘− → 0 so that the skin depth is fixed in the sense that 𝑘+ = 10(1 + 𝑖). 
Here we see how 𝐽 and 𝐻 begin to be expelled from Ω+.

Note that the ill-posedness of the MTP in the eddy current regime 
for Γ of genus 1, due to the existence of Neumann eigenfields, does not 
contradict conservation of energy. Since we consider total permittivities 
𝜖+ that are imaginary, there will be no transmitted electric energy in 
Ω+, only a large magnetic energy. However, to excite the Neumann 
eigenfield requires an incident field like (47), which requires a large 
power to be produced by the coil.

6. Dirac (A∞)

For the remainder of this paper, we choose unit of length so that 𝐿 is 
of order 1. In [17], it was demonstrated that Dirac (A) works well near 
the quasi-static limit 𝑘± → 0, provided |𝑘+| and 𝑘− are comparable in 
size. In this section, we first formulate a Dirac BIE, referred to as (A∞), 
that, after augmentation, is intended to be used in the eddy current 
regime (4). The resulting BIE, referred to as (A∞-aug), is insensitive to 
the genus of Γ and builds on (29), but differs in the choices of 𝛼′, 𝛽′
and the preconditioning 𝑃 ′. It is demonstrated in Section 8 that Dirac 
(A∞-aug) performs well when the Neumann eigenfields are excited.

Dirac (A∞) is defined by the parameters[
𝑟 𝛽 𝛾 𝛼′ 𝛽′ 𝛾 ′

]
=
[
1
�̂�

𝜉 𝑎
1|�̂�|�̂� 𝑎 𝑎

]
,

𝑃 =
[

�̂�2

(|�̂�|+(�̂�𝜉)−1)⟨𝜎⟩ �̂�

(1+𝑎)⟨𝜎⟩ �̂�

𝟐⟨𝝈⟩
1

1+𝑎

1
1+�̂�−2

𝟏
𝟏+𝒂

]
,

𝑃 ′ =
[ ⟨𝜎⟩

�̂�2
⟨𝜎⟩ ⟨𝝈⟩ 1 1 𝟏

]
,

𝑁 =
[

�̂�2

(|�̂�|�̂�𝜉+1)⟨𝜎⟩ 1
(1+𝑎)⟨𝜎⟩ 𝟏

𝟐⟨𝝈⟩
𝑎

1+𝑎

1
1+�̂�2

𝟏
𝟏+𝒂

]
,

𝑁 ′ =
[ ⟨𝜎⟩

𝑎�̂�

⟨𝜎⟩|�̂�| ⟨𝝈⟩

�̂�
1 1 𝒂

]
.

(48)

Here 𝑎 = �̂�∕|�̂�|, 𝜉 is as in (30), and

⟨𝜎⟩ = 1 + |𝑘+�̂�|. (49)

We have the following behaviour of Dirac (A∞):

• The coefficients in 𝐺 of Dirac (A∞) are uniformly bounded and, 
similar to 𝐺 of Dirac (A), the 𝐺 of Dirac (A∞) is close to a nilpotent 
operator modulo compact operators on smooth Γ due to cancella-

tions in blocks (1:2,3:4) and (7:8,5:6). Furthermore, the norm of the 
(5:8,1:4) block is of order 𝑘−⟨𝜎⟩, whereas the norm of the (1:4,5:8) 
block is of order |𝑘+�̂�∕⟨𝜎⟩|.

• All entries in 𝑁 are bounded. Inserting 𝑁 ′ and 𝑃 ′ into (28), it is 
seen that

‖𝐸±|Γ‖ ≲ ‖ℎ‖ and ‖𝐻±|Γ‖ ≲ ⟨𝜎⟩‖ℎ‖. (50)

This possibility of having large transmitted and scattered fields, 
even if the density ℎ is not large, explains why (A∞) is able to 
accurately compute the fields when the Neumann eigenfields are 
excited.

• For fixed 𝑘± ≠ 0, the choice of 𝛽, 𝛾, 𝛼′, 𝛽′, 𝛾 ′ guarantees invertibility 
of 𝐼 + 𝐺. The limit operator 𝐼 + 𝐺0 as 𝑘± → 0 in the eddy current 
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Fig. 2. Neumann eigenfields of the “starfish torus” (71), normalized so that max |𝐻| = 1; (a,d,g) eddy current |𝐽𝜃 |; (b,e,h) |𝐻𝜌|; (c,f,i) |𝐻𝑧|; (a,b,c) eigenfield for a 
superconductor; (d,e,f) borderline eddy current-PEC eigenfield at 𝑘+ = 10(1 + 𝑖); (g,h,i) eigenfield of an ordinary conductor.
regime is a Fredholm operator of index zero, and it has nullity 1 re-

gardless of the genus of Γ. See Appendix A. At high conductivities, 
this analysis breaks down, but computations suggest that the null 
space remains one-dimensional.

Following Section 4, we make one (L) augmentation to remove the 
Dirichlet eigenfield. Recall from Section 5 that this eigenfield cannot 
be excited by sources in Ω−, and therefore a homogeneous (L) aug-

mentation is appropriate. For details we refer to Appendix A. The field 
representation for Dirac (A∞) fails to be a Fredholm map as 𝑘− → 0, 
as discussed in Section 8.5, and (R) augmentations are therefore not 
applicable.

6.1. Dirac (A∞-aug)

To remove the Dirichlet eigenfield we make the homogeneous (L) 
augmentation of Dirac (A∞)

𝑐1
𝐷
ℎ = −

ˆ

Γ

(𝐸−
𝑘−

𝑃 ′ℎ)6𝑑Γ,

𝑏1
𝐷
=
[
0 0 𝟎 0 1 𝟎

]𝑇
.

(51)

Here −́Γ 𝑓𝑑Γ denotes the average value of a function 𝑓 on Γ. We thus 
obtain a Dirac (A∞-aug), intended for Γ of any genus. Given 𝑓 0, we 
solve the augmented system

ℎ+𝐺ℎ+ 𝑏1
𝐷
(𝑐1

𝐷
ℎ) = 2𝑁𝑓 0, (52)
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with 𝐺, 𝑐1
𝐷
, 𝑏1

𝐷
from (27), (51), and the parameters (48) above. This 

yields ℎ, from which we compute the fields using (28).

7. Dirac (B)

Recall that we are using unit of length so that 𝐿 is of order 1. In 
this section, we first formulate a Dirac BIE, referred to as (B), for the 
MTP(𝑘−, 𝑘+, ̂𝑘2) that, after augmentation, is intended to be used in the 
eddy current regime (4). Dirac (B) is radically different in the choices 
of parameters from both Dirac (A) and Dirac (A∞), and is designed to 
compute each of the fields 𝐸±, 𝐻± accurately when the Neumann fields 
are not excited. It is defined by the parameters[

𝑟 𝛽 𝛾 𝛼′ 𝛽′ 𝛾 ′
]
=
[
1
�̂�

�̂�|�̂�|2 �̂�2

𝜉

1
𝜉

1
�̂�

1
𝜉

]
,

𝑃 =
[

1
𝜉�̂�−1+𝑎−2

�̂�

𝜉+1
�̂�

𝟐
�̂�2⟨𝜎⟩ 1

1+𝜉�̂�−2
�̂�2⟨𝜎⟩ 1

𝜉+�̂�−1
𝟏

𝟏+𝝃�̂�−𝟐

]
,

𝑃 ′ =
[
1 1 𝟏 ⟨𝜎⟩

�̂�2
⟨𝜎⟩
�̂�

𝟏
]
,

𝑁 =
[

1
1+𝜉𝑎2∕�̂�

1
𝜉+1

𝟏
𝟐

𝜉⟨𝜎⟩ 1
1+𝜉�̂�−2

1⟨𝜎⟩ 1
𝜉+�̂�−1

𝟏
𝟏+𝝃�̂�−𝟐

]
,

𝑁 ′ =
[

𝜉

�̂�

𝜉

�̂�

𝟏
�̂�

⟨𝜎⟩
�̂�2

𝜉⟨𝜎⟩
�̂�2

𝝃

�̂�𝟐

]
,

(53)

where 𝑎 = �̂�∕|�̂�|, 𝜉 is as in (30), and ⟨𝜎⟩ is as in (49). We have the 
following behaviour of Dirac (B):

• The coefficients in 𝐺 are uniformly bounded for all |�̂�| ≳ 1. The op-

erator 𝐺 is close to a nilpotent operator modulo compact operators 
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on smooth Γ, but unlike Dirac (A) and (A∞), this is due to cancel-

lations mainly in blocks (3:4,1:2) and (5:6,7:8). Furthermore, the 
norm of the (5:8,1:4) block is of order |𝑘+�̂�∕⟨𝜎⟩|, whereas the norm 
of the (1:4,5:8) block is of order 𝑘−⟨𝜎⟩.

• All entries in 𝑃 ′, 𝑁, 𝑁 ′ are uniformly bounded for all |�̂�| ≳ 1, and 
𝑁 ′ is adapted to the generic sizes of the fields, as discussed in 
Section 5, so that

(|�̂�2|∕⟨𝜎⟩)‖𝐸+|Γ‖, ‖𝐸−|Γ‖, ‖𝐻+|Γ‖, ‖𝐻−|Γ‖ (54)

are all ≲ ‖ℎ‖.

• For fixed 𝑘± ≠ 0, the choice of 𝛽, 𝛾, 𝛼′, 𝛽′, 𝛾 ′ guarantees invertibility 
of 𝐼 + 𝐺. The limit operator 𝐼 + 𝐺0 as 𝑘− → 0 in the eddy current 
regime is a Fredholm operator of index zero, but its nullity depends 
on 𝑘+ as well as on the genus of Γ. See Appendix A.

Following Section 4, we make a number of augmentations. First the 
field representation requires one or two (R) augmentations, depending 
on the genus of Γ, to become well-conditioned. Once this is done, one 
or two (L) augmentations are needed to remove the Dirichlet eigenfield 
and the null space associated with the Neumann eigenfield. It is only 
the Neumann eigenfield which can be excited by Maxwell sources in 
Ω−, so that an inhomogeneous (L) augmentation is needed. A final (L) 
augmentation is also needed to remove an eigenfield which is present 
in the Dirac equation, but which is outside the Maxwell equations. For 
details we refer to Appendix A.

7.1. Dirac (B-aug0)

Consider Γ of genus 0. We first make an (R) augmentation

𝑐𝑅
𝐷
ℎ = −

ˆ

Γ

ℎ6𝑑Γ,

𝑏𝑅
𝐷
= 2𝑁𝐸−

𝑘−
𝑒6,

(55)

where 𝑒6 =
[
0 0 𝟎 0 1 𝟎

]𝑇
, which has the effect of adding the 

Dirichlet eigenfield to the field representation. That field is missing in 
Dirac (B). This is needed to avoid a null space for the system. But since 
the Dirichlet eigenfield cannot be excited by sources in Ω−, we also 
make a homogeneous (L) augmentation

𝑐2
𝐷
ℎ = −

ˆ

Γ

(𝐸−
𝑘−
(𝑃 ′ℎ+ 𝑒6(𝑐𝑅𝐷ℎ)))6𝑑Γ,

𝑏2
𝐷
= 𝑒1,

(56)

where 𝑒1 =
[
1 0 𝟎 0 0 𝟎

]𝑇
, which again removes the Dirichlet 

eigenfield. The two augmentations 𝑏𝑅
𝐷
𝑐𝑅
𝐷

and 𝑏2
𝐷
𝑐2
𝐷

together make the 
system stably solvable when 𝑘+�̂� ≳ 1. When 𝑘+�̂� ≪ 1 we also have a 
second eigenfield for the DTP. This field comes from one of the auxiliary 
HTPs, and we make a homogeneous (L) augmentation

𝑐1
𝐻
ℎ = −

ˆ

Γ

(𝐸+
𝑘+

�̂�𝑁 ′ℎ)1𝑑Γ,

𝑏1
𝐻
=
[
0 0 𝟎 0 1 𝟎

]𝑇
.

(57)

We thus obtain a Dirac BIE, referred to as (B-aug0), intended for Γ of 
genus 0. Given 𝑓 0, we solve the augmented system

ℎ+𝐺ℎ+ (𝑏𝑅
𝐷
𝑐𝑅
𝐷
+ 𝑏2

𝐷
𝑐2
𝐷
+ 𝜒𝑏1

𝐻
𝑐1
𝐻
)ℎ = 2𝑁𝑓 0, (58)

with 𝐺, 𝑏𝑅
𝐷
𝑐𝑅
𝐷

, 𝑏2
𝐷
𝑐2
𝐷

and 𝑏1
𝐻
𝑐1
𝐻

from (27), (55), (56) and (57) using the 
parameters (53). Here

𝜒 =

{
0, |𝑘+�̂�| ≳ 1,
1, |𝑘+�̂�|≪ 1,

(59)

but numerically 𝜒 = 1 seems to work in both cases. This yields ℎ, from 
which we compute the fields using the augmented field representation
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𝐹+|Γ =𝐸+
𝑘+

𝑁 ′ℎ,

𝐹−|Γ = −𝐸−
𝑘−
(𝑃 ′ℎ+ 𝑒6(𝑐𝑅𝐷ℎ)).

(60)

7.2. Dirac (B-aug1)

Consider an axially symmetric Γ of genus 1. (The construction in this 
section generalizes to arbitrary Γ of genus 1, if the 𝜏 and 𝜃 directions 
are suitably defined.) As for genus 0 we make the augmentations 𝑏𝑅

𝐷
𝑐𝑅
𝐷

and 𝑏2
𝐷
𝑐2
𝐷

to remove the Dirichlet eigenfield. But for genus 1, we also 
need to make an (R) augmentation

𝑐𝑅
𝑁
ℎ = −

ˆ

Γ

ℎ8𝑑Γ,

𝑏𝑅
𝑁
= 2

⟨𝜎⟩
�̂�2

𝑃𝐸+
𝑘+

𝑒8,

(61)

which has the effect of adding the Neumann eigenfield to the field rep-

resentation. That field is also missing in Dirac (B). This gives the field 
representation

𝐹+|Γ =𝐸+
𝑘+
(𝑁 ′ℎ+

⟨𝜎⟩
�̂�2

𝑒8(𝑐𝑅𝑁ℎ)),

𝐹−|Γ = −𝐸−
𝑘−
(𝑃 ′ℎ+ 𝑒6(𝑐𝑅𝐷ℎ)).

(62)

We use 𝑒8 =
[
0 0 0 0 0 0 0 1

]𝑇
, which seems to work numer-

ically, but the derivation in Appendix A uses 𝑒8 with the 𝜃 component 
on Γ of the interior Neumann eigenfield in its last component.

For 𝑘+�̂� ≪ 1, we need to adjust the HTP augmentation 𝑏1
𝐻
𝑐1
𝐻

to (62), 
and we set

𝑐2
𝐻
ℎ = −

ˆ

Γ

(𝐸+
𝑘+
(�̂�𝑁 ′ℎ+

⟨𝜎⟩
�̂�

𝑒8(𝑐𝑅𝑁ℎ)))1𝑑Γ,

𝑏2
𝐻
=
[
0 0 𝟎 0 1 𝟎

]𝑇
.

(63)

What remains is the more subtle inhomogeneous (L) augmentation 
of the Neumann eigenfield. As discussed in Section 5, the MTP is ill-
posed in itself due to the presence of the Neumann eigenfield, but we 
make an inhomogeneous (L) augmentation that makes the system well-

conditioned at the expense of adding an unbounded functional 𝑑1
𝑁

to 
the right-hand side. Let

𝑐1
𝑁
ℎ = −

ˆ

Γ

(
𝐸+

𝑘+
((�̂�2∕⟨𝜎⟩)𝑁 ′ + 𝑒8𝑐

𝑅
𝑁
)ℎ
)
8
𝑤𝑑Γ

+ �̂�2⟨𝜎⟩ −
ˆ

Γ

(
𝐸−

𝑘−
𝑃 ′ℎ1∶5

)
8
𝑤𝑑Γ + �̂�2⟨𝜎⟩ −

ˆ

Γ

1
2

(
(𝐸0 −𝐸𝑘−

)ℎ7∶8
)
8
𝑤𝑑Γ,

𝑏1
𝑁
=
[
0 0 0 0 0 0 0 1

]𝑇 = 𝑒8,

𝑑1
𝑁
𝑓 0 = �̂�2⟨𝜎⟩ −

ˆ

Γ

(𝑓 0)8𝑤𝑑Γ,

(64)

where 𝑤 = 𝜏 ⋅𝐻|Γ is a weight function discussed below, and 𝐻 denotes 
an exterior PEC Neumann eigenfield. Although the factor �̂�2∕⟨𝜎⟩ makes 
𝑑1
𝑁

unbounded, it turns out that 𝑑1
𝑁
𝑓 0 stays bounded by 𝑓 0 unless the 

Neumann eigenfield is excited. More precisely, 𝑑1
𝑁
𝑓 0∕ maxΓ |𝑓 0|, mea-

sures how much of the Neumann eigenfield will be excited. Indeed, an 
application of Stokes’ theorem shows that

𝑑1
𝑁
𝑓 0 =

𝑖𝑘+�̂�⟨𝜎⟩|Γ|
ˆ

Ω−

𝐻0 ⋅𝐻𝑑𝑥, (65)

where |Γ| denotes the area of Γ and 𝐻0 is, as before, the incident mag-

netic field.

The equation 𝑐1
𝑁
ℎ = 𝑑1

𝑁
𝑓 0 is seen to be equivalent to continuity of 

the 𝜃 component of the electric field across Γ, and normalized with the 
generic size of 𝐸+. See Appendix A. We denote by ℎ1∶5 the density ℎ
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with components 6:8 set to zero, and likewise ℎ7∶8 denotes the density 
ℎ with components 1:6 set to zero. For this augmentation to work, it is 
essential to use a specific positive weight function 𝑤: the 𝜏-component 
of the exterior PEC Neumann eigenfield, normalized so that −́Γ𝑤𝑑Γ =
1. The weight function can be computed as 𝑤 = 𝜃 ⋅ 𝑓 , where 𝑓 is the 
solution to the size 2 × 2 block eigenfunction equation

(𝑰 +𝑴0)𝑓 = 0, (66)

and 𝑴0 is the static magnetic dipole operator (18). Equivalently, and 
perhaps better from a numerical point of view, 𝑤 can be computed as

𝑤 = 𝜏 ⋅𝐻0 +𝐾𝜏
0𝜓, (67)

where 𝜓 is the solution to the single block Fredholm second kind inte-

gral equation

(𝐼 +𝐾𝜈
0 )𝜓 = −𝜈 ⋅𝐻0, (68)

which can be solved iteratively. Note also that the system in (68) is half 
the size of the system (66). Here 𝐾𝜏

0 is defined as 𝐾𝜈
0 , but with 𝜈(𝑥) re-

placed by 𝜏(𝑥), and 𝐻0 denotes the magnetic field produced by a steady 
current in a circular wire around Ω+ (or any computable divergence-

and curl-free vector field in Ω− which is not a gradient field).

In total, we obtain a Dirac BIE referred to as (B-aug1) and intended 
for Γ of genus 1. Given 𝑓 0, we solve the augmented system

ℎ+𝐺ℎ+ (𝑏𝑅
𝐷
𝑐𝑅
𝐷
+ 𝑏2

𝐷
𝑐2
𝐷
+ 𝑏𝑅

𝑁
𝑐𝑅
𝑁
+ 𝑏1

𝑁
𝑐1
𝑁
+ 𝜒𝑏2

𝐻
𝑐2
𝐻
)ℎ = 2𝑁𝑓 0 + 𝑏1

𝑁
(𝑑1

𝑁
𝑓 0),

(69)

with 𝐺, 𝑏𝑅
𝐷
𝑐𝑅
𝐷

, 𝑏2
𝐷
𝑐2
𝐷

, 𝑏𝑅
𝑁
𝑐𝑅
𝑁

, 𝑏1
𝑁
𝑐1
𝑁
𝑑1
𝑁

, 𝑏2
𝐻
𝑐2
𝐻

, from (27), (55), (56), (61), 
(64), (63) using the parameters (53). This yields ℎ, from which we com-

pute the fields using (62).

8. Numerical examples

The properties of Dirac (A∞-aug) from Section 6.1 and (B-aug0/1) 
from Sections 7.1 and 7.2 are now illustrated in a series of numerical 
examples involving two objects Ω+ with axially symmetric surfaces:

• The “rotated starfish” has a surface Γ of genus 0, with generating 
curve

𝑟(𝑠) = (1 + 0.25 sin(5𝑠))(cos(𝑠), sin(𝑠)), 𝑠 ∈ [−𝜋∕2, 𝜋∕2], (70)

and generalized diameter 𝐿 ≈ 2.4.

• The “starfish torus” has a surface Γ of genus 1, with generating 
curve

𝑟(𝑠) = 1 + 0.5(1 + 0.25 sin(5𝑠))(cos(𝑠), sin(𝑠)), 𝑠 ∈ [−𝜋,𝜋], (71)

and generalized diameter 𝐿 ≈ 3.2.

The incident fields, when such are present, are either (44) or (47). These 
are all of order 1 on Γ, except 𝐻0 in (47), which is of order |𝑘− log(𝑘−)|.

Our computations rely on Fourier–Nyström discretization [32], 
where a sequence of decoupled modal problems, with modal index 𝑛, 
are solved using a mix of 16th- and 32nd-order composite panel-based 
discretization and where linear systems are solved iteratively using 
GMRES with a stopping criterion threshold of machine epsilon in the es-

timated relative residual. The implementation of this numerical scheme 
is the same as that used in [17, Sec. 10]. In particular, the scheme is 
thoroughly verified for Dirac (A) and genus 0 in [17, Sec. 10.3] both un-

der mesh refinement and by comparison with semi-analytic results. In 
the present work, Dirac (A∞-aug) and (B-aug0/1) are verified against 
Dirac (A) to the extent possible. The codes are implemented in MAT-

LAB, release 2020a, and executed on a workstation equipped with an 
Intel Core i7-3930K CPU and 64 GB of RAM.
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Both fields (44) and (47) are axially symmetric and excite only the 
mode 𝑛 = 0, which is the only Fourier mode affected by our augmenta-

tions for any incident field. More precisely, in all our augmentations 𝑏𝑐
for Dirac (A∞-aug) and (B-aug0/1), the vector 𝑏 is a mode-0 function, 
whereas 𝑐ℎ = 0 for all mode-𝑛 functions ℎ with 𝑛 ≠ 0. This is straightfor-

ward to verify, given the fact that 𝐸±
𝑘
ℎ is a mode-𝑛 function, whenever 

ℎ is such a function. To see the latter, assume that ℎ𝛼 = 𝑒𝑖𝑛𝛼ℎ, where 
ℎ𝛼 denotes the function ℎ rotated an angle 𝛼 around the 𝑧-axis. Write 
ℎ = ℎ+ + ℎ− in the splitting in Hardy subspaces from [26, Thm. 9.3.9], 
where ℎ± = 𝐸±

𝑘
ℎ. Denote by ℎ±𝛼 the function ℎ± rotated as above. We 

have

ℎ+𝛼 + ℎ−𝛼 = ℎ𝛼 = 𝑒𝑖𝑛𝛼ℎ = 𝑒𝑖𝑛𝛼ℎ+ + 𝑒𝑖𝑛𝛼ℎ−. (72)

By the uniqueness in this splitting and the rotational invariance of 𝐃𝐹 =
𝑖𝑘𝐹 and the Dirac radiation condition, it follows that we must have 
ℎ±𝛼 = 𝑒𝑖𝑛𝛼ℎ±. Thus 𝐸±

𝑘
ℎ = ℎ± are also mode-𝑛 functions as claimed.

Several of our experiments result in field images and error images. 
When assessing the accuracy of computed fields, and in the absence 
of semi-analytic results, we adopt a procedure where to each numeri-

cal solution we also compute an overresolved reference solution, using 
roughly 50% more points in the discretization of the system under 
study. The absolute difference between these two solutions is denoted 
the estimated absolute error. The fields are always computed at 90,000
field points on a Cartesian grid in the computational domains shown.

8.1. The number of accurate digits in field evaluations

Since the transmitted and scattered fields differ much in size, it is 
important to measure their relative errors appropriately. In the exte-

rior Ω−, the measurable fields are 𝐸0 + 𝐸− and 𝐻0 + 𝐻−. Hence it is 
motivated to normalize the error in 𝐸− and 𝐻− by the maximum of |𝐸0 + 𝐸−| and |𝐻0 + 𝐻−| in Ω−, respectively. In the interior Ω+, the 
measurable fields are 𝐸+ and 𝐻+. Hence it is motivated to normalize 
the error in 𝐸+ and 𝐻+ by the maximum of |𝐸+| and |𝐻+| in Ω+. How-

ever, note that when 𝑘± ≈ 0, all field components are almost harmonic 
functions and the maximum principle for such functions motivates re-

placing the above maxima by the maxima of each field component on 
Γ. Summarizing, we use the relative errors{

maxΩ+
|𝐸+

err|
maxΓ |𝐸+| ,

maxΩ−∩ |𝐸−
err|

maxΓ |𝐸0 +𝐸−| , maxΩ+
|𝐻+

err|
maxΓ |𝐻+| ,

maxΩ−∩ |𝐻−
err|

maxΓ |𝐻0 +𝐻−|
}

(73)

in the four fields {𝐸+, 𝐸−, 𝐻+, 𝐻−}, where  denotes the computational 
domain and 𝐹err denotes the estimated absolute error in a field 𝐹 . The 
number of accurate digits in a field 𝐹 is

𝑌 = −round(log10 𝜖), (74)

where 𝜖 denotes the relative error defined in (73).

Note that the relative error in the equally measurable eddy current 
𝐽 , will be the same as the relative error in 𝐸+.

8.2. The high conductivity “rotated starfish”

We consider the field (44) incident on the “rotated starfish” with 
𝐿 ≈ 2.4 cm defined by (70), at wavenumbers 𝑘− = 10−8 cm−1 and 
𝑘+ = 1 + 𝑖 cm−1. This corresponds to a frequency 𝜔 ≈ 300 rad/s and 
conductivity 𝜎 ≈ 5.3 ⋅ 107 S/m, which for example occurs for copper. 
Since the surface Γ has genus 0, we compute the scattered and trans-

mitted fields using Dirac (B-aug0). The number of accurate digits (74)

obtained for the fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} are {13, 14, 13, 14} and GMRES 
needs 33 iterations. The amplitudes of a selection of components of the 
fields 𝐸± and 𝐻± are shown in Fig. 3 along with field errors. Note that, 
unlike (74), the errors shown in Figs. 3–6 are estimated absolute er-

rors. The component 𝐸𝑧 is similar to 𝐸𝜌 and shows a scattered electric 
field 𝐸− which is close to normal on Γ. Fig. 3(c) shows that the trans-

mitted electric field 𝐸+ is of order 10−9. Fig. 3(e) shows that most of 
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Fig. 3. Field images for scattering of (44) by the “rotated starfish” (70) at 𝑘− = 10−8, 𝑘+ = 1 + 𝑖; (a) scattered/transmitted amplitude |𝐸𝜌|; (c) scattered/transmitted 
amplitude |𝐸𝜃 |; (e) scattered/transmitted amplitude |𝐻𝑧|. (b,d,f) log10 of estimated absolute error of complex fields using (B-aug0), for (a,c,e) respectively.
the incident magnetic field 𝐻0, which is mainly in the 𝑧 direction, is 
transmitted into the non-magnetic object. The components 𝐻𝜌 and 𝐻𝜃

(not shown) are of order 10−2 and 10−9 respectively. This agrees with 
the discussion beginning Section 5 which predicts all the fields to be of 
order 1 except 𝐸+, which is of order 𝑘− = 10−8 cm−1.

For comparison, solving the same scattering problem with Dirac 
(A∞-aug) takes 36 iterations and gives {5, 14, 6, 6} accurate digits for 
{𝐸+, 𝐸−, 𝐻+, 𝐻−}. This gives numerical support for choosing (B-aug0) 
for eddy current scattering with surfaces of genus 0. This is so since 
(A∞-aug) computes the fields at the wrong scale (50), with subsequent 
loss of accuracy.

8.3. The high conductivity “starfish torus”

We consider the “starfish torus” with 𝐿 ≈ 3.2 cm defined by (71), 
again at wavenumbers 𝑘− = 10−8 cm−1 and 𝑘+ = 1 + 𝑖 cm−1.

First, we use the incident field (44), for which |𝑑1
𝑁
𝑓 0|∕ maxΓ |𝑓 0| ≈

0.4. This indicates that (44) does not excite the Neumann eigenfield 
and motivates using Dirac (B-aug1). The number of accurate digits ob-

tained for {𝐸+, 𝐸−, 𝐻+, 𝐻−} are {13, 13, 13, 14}, and GMRES needs 37
iterations. Solving the single block system (68), which is needed only 
155
once for a given Γ, requires 20 iterations. The amplitudes of a selection 
of components of the fields 𝐸± and 𝐻± are shown in Fig. 4 along with 
field errors. Qualitatively, the result is similar to that in Section 8.2.

For comparison, solving the same scattering problem with Dirac 
(A∞-aug) also takes 37 iterations but gives {6, 13, 7, 7} accurate digits 
for {𝐸+, 𝐸−, 𝐻+, 𝐻−}. This gives numerical support for choosing (B-

aug1) for eddy current scattering with surfaces of genus 1 when the 
Neumann eigenfield is not excited. This is so since (A∞-aug) computes 
the fields at the wrong scale (50), with subsequent loss of accuracy.

Second, we use the incident field (47), for which |𝑑1
𝑁
𝑓 0|∕ maxΓ |𝑓 0| ≈

6 ⋅ 107. This indicates that (47) does excite the Neumann eigenfield, 
and motivates using Dirac (A∞-aug). The number of accurate digits 
obtained for {𝐸+, 𝐸−, 𝐻+, 𝐻−} are {13, 14, 13, 13} and GMRES needs 24
iterations. The amplitudes of a selection of components of the fields 𝐸±

and 𝐻± are shown in Fig. 5 along with field errors. It is clearly seen that 
the incident field (47) does excite the Neumann field. The scattered and 
transmitted fields are very similar to those shown in Fig. 2(g,h,i), except 
for the scale. Note that 𝑘−1− 𝐸+ and 𝐻± are of order 108, which is the 
scale (54) that (A∞-aug) is adapted to, and a factor of 108 larger than 
the scale of a generic field as in the discussion beginning Section 5. The 
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Fig. 4. Field images for scattering of (44) by the “starfish torus” (71) at 𝑘− = 10−8, 𝑘+ = 1 + 𝑖; (a) scattered/transmitted amplitude |𝐸𝜌|; (c) scattered/transmitted 
amplitude |𝐸𝜃 |; (e) scattered/transmitted amplitude |𝐻𝑧|. (b,d,f) log10 of estimated absolute error of complex fields using (B-aug1), for (a,c,e) respectively.
components 𝐸𝜌, 𝐸𝑧, and 𝐻𝜃 (not shown) are of order 10−16, 10−16, and 
10−9.

For comparison, solving the same scattering problem with Dirac 
(B-aug1) takes 32 iterations and gives {13, 7, 13, 13} accurate digits for 
{𝐸+, 𝐸−, 𝐻+, 𝐻−}. This gives numerical support for choosing (A∞-aug) 
for eddy current scattering with surfaces of genus 1 when the Neumann 
eigenfield is excited. To see why (B-aug1) gives loss of accuracy in 𝐸−

in this example, note that the right-hand side in (69) is of order 108 due 
to 𝑑1

𝑁
𝑓 0 in the second term. Since the system in (69) is well-conditioned 

and has norm of order 1, the density ℎ will also be of order 108. When 
finally computing the fields with (62) then, according to (54), if no can-

cellation occurs 𝐸− will be of order 108. But as we see in Fig. 5(a) 𝐸−

is of order 1, and this is due to cancellation in (62) which leads to the 
loss of accuracy.

8.4. The medium conductivity “starfish torus”

We consider the field (47) incident on the “starfish torus” (71) with 
𝐿 ≈ 3.2 cm, now at wavenumbers 𝑘− = 10−8 cm−1 and 𝑘+ = 10−4(1 + 𝑖)
cm−1. This corresponds to a frequency 𝜔 ≈ 300 rad/s and a conductiv-

ity 𝜎 ≈ 0.53 S/m, which for example occurs for seawater. Furthermore, 
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|𝑑1
𝑁
𝑓 0|∕ maxΓ |𝑓 0| ≈ 4 ⋅ 107, which indicates that (44) does excite the 

Neumann eigenfield and motivates using Dirac (A∞-aug). The number 
of accurate digits obtained for {𝐸+, 𝐸−, 𝐻+, 𝐻−} are {13, 15, 13, 13} and 
GMRES needs 16 iterations. The amplitudes of a selection of compo-

nents of the fields 𝐸± and 𝐻± are shown in Fig. 6 along with field 
errors. This result is very similar to Fig. 5, with the difference that 𝐽
and 𝐻 are a factor of 108 smaller now. However, since the conductiv-

ity is also a factor of 108 smaller, the transmitted electric field 𝐸+ has 
barely changed and the fields 𝐸+ and 𝐻± are still a factor of 108 larger 
than what is expected in a generic scattering situation, according to 
the discussion beginning Section 5. The important point that we want 
to make is that, although none of the transmitted and scattered fields 
𝐸±, 𝐻± are significantly larger than the incident fields 𝐸0, 𝐻0, we are 
looking at an excited Neumann eigenfield, according to (45). Indeed, in 
the generic scattering situation when the eigenfield is not excited, the 
magnitude of 𝐸+ would be of order 10−8.

For comparison, solving the same scattering problem with Dirac (B-

aug1) takes 27 iterations and gives {13, 8, 13, 13} accurate digits for 
{𝐸+, 𝐸−, 𝐻+, 𝐻−}. Again this gives numerical support for choosing 
(A∞-aug) for eddy current scattering with surfaces of genus 1 when 
the Neumann eigenfield is excited.
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Fig. 5. Field images for scattering of (47) by the “starfish torus” (71) at 𝑘− = 10−8, 𝑘+ = 1 + 𝑖; (a) scattered/transmitted amplitude |𝐸𝜃 |; (c) scattered/transmitted 
amplitude |𝐻𝜌|; (e) scattered/transmitted amplitude |𝐻𝑧|. (b,d,f) log10 of estimated absolute error of complex fields using (A∞-aug), for (a,c,e) respectively.
8.5. Condition numbers for systems and field representations

We here examine Dirac (A∞-aug) and Dirac (B-aug1) from a con-

dition number point of view. Recall from the discussion in the Intro-

duction that the computation of the transmitted and scattered fields 
involves (a) solving a linear system for the density ℎ, followed by (b) 
applying the field formulas to ℎ. The important point that we want 
to stress is that condition numbers for the system (a) alone give in-

sufficient information for assessing a BIE. Indeed, Fig. 7(a) shows that 
Dirac (A∞-aug), after augmentation, has a well-conditioned system. But 
we have seen that (A∞-aug) in general only computes the fields accu-

rately when the Neumann eigenfield is excited. Fig. 7(b) reveals that 
the important missing information is that the field representation (28)

is ill-conditioned for (A∞-aug), for all modes 𝑛. We see a low-frequency 
breakdown in this field representation since it fails to be a Fredholm 
map as 𝑘− → 0. This is unavoidable since the only way that (A∞-aug) 
can compute fields much smaller than the Neumann eigenfield is by 
cancellation in the field evaluations. To be precise, the condition num-

bers in Fig. 7(b,d) refer to the map

ℎ↦ (�̂�2∕⟨𝜎⟩𝐸+|Γ,𝐸−|Γ,𝐻+|Γ,𝐻−|Γ), (75)
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where we have scaled the fields by their generic size in the eddy current 
regime, as discussed in Section 5.

Fig. 7(c,d) shows that for (B-aug1), we have succeeded in con-

structing a BIE where both the system and the field representation are 
well-conditioned, after augmentation. That this is possible for (B-aug0) 
and genus 0 is perhaps less surprising, since the MTP in this case is 
well-conditioned. But for (B-aug1) and genus 1, we recall that the MTP 
itself is ill-conditioned. Our design of (B-aug1) is such that the Neu-

mann eigenfield is hiding in the preprocessing, the computation of the 
right-hand side in (69), and in particular in computing 𝑑1

𝑁
𝑓 0. To be 

precise, in order to assess the efficiency of a BIE one must take into 
account three computations: the preprocessing involved in computing 
the right-hand side 𝑔 in (5), the solution of the main linear system that 
produces the density ℎ, and finally the postprocessing involved in com-

puting the fields 𝐹±. For our ill-conditioned MTP, it is clearly the best 
option to let the Neumann eigenfield appear only in the preprocessing, 
as in (B-aug1). It should be noted that 𝑑1

𝑁
𝑓 0 in general requires careful 

computation, since for general incident fields 𝑓 0 this integral involves 
cancellations. However, for mode-0 fields like (44) and (47) there are 
no such cancellations.
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Fig. 6. Field images for scattering of (47) by the “starfish torus” (71) at 𝑘− = 10−8, 𝑘+ = 10−4(1 + 𝑖); (a) scattered/transmitted amplitude |𝐸𝜃 |; (c) scattered/transmitted 
amplitude |𝐻𝜌|; (e) scattered/transmitted amplitude |𝐻𝑧|. (b,d,f) log10 of estimated absolute error of complex fields using (A∞-aug), for (a,c,e) respectively.
8.6. Performance of (B-aug0/1) in the eddy current regime

We conclude this section by surveying the accuracy and speed of 
Dirac (B-aug0/1) across the regime (4), with the incident field (44), 
which we have seen does not excite the Neumann eigenfield. We com-

pute the minimum number of accurate digits, as defined in Section 8.1, 
in the four fields {𝐸+, 𝐸−, 𝐻+, 𝐻−} at all 90,000 field points in the 
computational domain. This minimum 𝑌 , at pairs of wavenumbers 
across the regime (4), is reported in Fig. 1 for Dirac (B-aug1) and the 
“starfish torus” (71), and in Fig. 8 for Dirac (B-aug0) and the “rotated 
starfish” (70). Within parentheses is also reported in these figures, the 
number of iterations 𝑋 that it takes GMRES to compute the density ℎ. 
We conclude that there is no low-frequency breakdown for Dirac (B-

aug0/1) in the regime (4).

As customary, we also show, in Fig. 9, results analogous to those 
in Fig. 8 but for the unit sphere and where the reference solutions are 
semi-analytic solutions given by Mie theory – rather than overresolved, 
purely numerical, solutions. The computational domain is  = {−2 ≤
𝑥 ≤ 2, −2 ≤ 𝑧 ≤ 2}. Fig. 9 shows that the solutions obtained with Dirac 
(B-aug0) in the eddy current regime agree with the Mie solutions at 
least as well as they agree with the overresolved reference solutions in 
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Fig. 8. The number of GMRES iterations required is lower, however, 
because the scattering problem on the sphere is simpler.

9. The Maxwell essential spectrum

We prove in this section the following result, announced in [17, Sec. 
6].

Theorem 1. Let Γ ⊂ 𝐑3 be a bounded Lipschitz surface, and let 𝑘± ∈ 𝐂 ⧵
{0}, Im (𝑘±) ≥ 0. Assume that �̂� is not negative real. Then the non-magnetic 
Maxwell transmission problem MTP(𝑘−, 𝑘+, ̂𝑘2) defines a Fredholm map, in 
𝐿2

loc
norm of the fields up to Γ, if and only if

(1 + �̂�2)∕(1 − �̂�2) ∉ 𝜎ess(𝐾𝜈′

0 ;𝐻1∕2(Γ)), (76)

where 𝐾𝜈′

0 is the Neumann–Poincaré operator, that is (17) with 𝑘 = 0.

Note that for all passive non-magnetic materials, the technical condi-

tion that �̂� should not be negative real, is always satisfied. The essential 
spectrum appears when 𝜖 = �̂�2 is negative real. In three dimensions, 
𝜎ess(𝐾𝜈′ ; 𝐻1∕2(Γ)) may be non-symmetric with respect to 0. Theorem 1
0
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Fig. 7. The “starfish torus” (71) at high conductivities 𝑘− ∈ [10−16, 1], 𝑘+ = 1 + 𝑖. First row: condition numbers for (A∞-aug); (a) system (52); (b) field representation 
(28). Second row: condition numbers for (B-aug1); (c) system (69); (d) field representation (62).
Fig. 8. Performance in the eddy current regime of Dirac (B-aug0) on the “ro-

tated starfish” (70) with incident partial waves (44). Notation as in Fig. 1.

shows in particular that the Fredholm property of MTP(𝑘−, 𝑘+, ̂𝑘2) only 
depends on 𝜖, and is not in general symmetric when replacing 𝜖 by 𝜖−1.

Proof. The idea is to use an auxiliary Dirac BIE with parameters[
𝑟 𝛽 𝛾 𝛼′ 𝛽′ 𝛾 ′

]
=
[
1∕�̂� 1 1 1∕�̂� 1∕�̂� 1

]
. (77)

Here we are not concerned with false eigenwavenumbers, and have 
tuned the free Dirac parameters only so that we avoid false essential 
spectrum, assuming that �̂� is not negative real. Preconditioning is also 
irrelevant for this proof, and we let 𝑃 = 𝑃 ′ = 𝐼 . Consider the Dirac inte-

gral operator

𝐸+
𝑘+
(𝑟𝑀 ′) +𝑀𝐸−

𝑘−
= 1

2 (𝑟𝑀
′ +𝑀 +𝐸𝑘+

(𝑟𝑀 ′) −𝑀𝐸𝑘−
) (78)

from (22). With our choice of parameters (77), we have
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Fig. 9. Performance in the eddy current regime of Dirac (B-aug0) on the unit 
sphere with incident partial waves (44) and with reference solutions from Mie 
theory. Notation as in Fig. 1.

𝑟𝑀 ′ +𝑀 = diag
[
1 + 1

�̂�

1
�̂�
+ 1

�̂�

𝟏
�̂�
+ 𝟏

�̂�
1 + 1 1 + 1

�̂�2
𝟏
�̂�
+ 𝟏

]
. (79)

Modulo compact operators, the operator 𝐸𝑘+
(𝑟𝑀 ′) −𝑀𝐸𝑘−

equals the 
entry-wise product of

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
�̂�

0 𝟏
�̂�
− 𝟏

�̂�
0 �̂�− 1

�̂�
𝟎

1 − 1
�̂�

1
�̂�
− 1

�̂�

𝟏
�̂�
− 𝟏

�̂�
�̂�− 1

�̂�
0 𝟏− 𝟏

�̂�
𝟏− 𝟏

�̂�
𝟏
�̂�
− 𝟏

�̂�
𝟏
�̂�
− 𝟏

�̂�
�̂�− 𝟏

�̂�
𝟎 𝟏− 𝟏

�̂�
0 1 − 1 𝟎 1 − 1 0 𝟏

�̂�
− 𝟏

�̂�− 1
�̂�2

0 𝟏− 𝟏
�̂�𝟐

1 − 1
�̂�2

1 − 1
�̂�2

𝟏
�̂�
− 𝟏

�̂�𝟐
�̂�− 𝟏 𝟎 𝟏− 𝟏 𝟏− 𝟏 𝟏− 𝟏 𝟏

�̂�
− 𝟏

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(80)

(not simplifying some entries to zero in order to show what cancella-

tions occur) and 𝐸𝑘 from (15), with Φ𝑘 replaced by Φ0 in the opera-
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tors, and the factor 𝑖𝑘− in front of the single layer operators. See [18, 
Eq. (132)]. The compactness of the approximation of 𝐸𝑘 was proved 
in [2, Lem. 3.20].

We now exploit a number of block triangular structures, modulo 
compact operators, in the matrix (78) which (77) entails. Recall from 
[18, Sec. 5] that the Dirac integral operator acts in the function space

3 =𝐻1∕2(Γ)⊕𝐻−1∕2(Γ)⊕𝐻−1∕2(curl,Γ)⊕𝐻1∕2(Γ)

⊕𝐻−1∕2(Γ)⊕𝐻−1∕2(curl,Γ), (81)

which coincides, up to equivalence of norms, with the function space 
from [2]. Note that we here have omitted the Hodge star present in [18, 
Eq. (64)], since we in the present paper conform to the standard vector 
representation of the magnetic field. The function space 𝐻−1∕2(curl, Γ)
consists, roughly speaking, of tangential vector fields in 𝐻−1∕2 with tan-

gential curl also in 𝐻−1∕2. The precise definition of 𝐻−1∕2(curl, Γ) on 
Lipschitz Γ is in [18, Eq. (65)].

First, we claim that the (5:8,1:4) block is compact. Indeed, the only 
possibly non-compact operators are in blocks (5,2) and (7:8,3:4), and 
here we have cancellation 1 − 1. This shows that (78) is a Fredholm 
operator on 3 if and only if its diagonal (1:4,1:4) and (5:8,5:8) blocks 
are so. Second, within these diagonal blocks we have cancellation in 
blocks (1:2,3:4) and (7:8,5:6). This gives a block triangular structure 
inside the diagonal (1:4,1:4) and (5:8,5:8) blocks, which shows that 
(78) is Fredholm if and only if its diagonal (1,1), (2,2), (3:4,3:4), (5,5), 
(6,6) and (7:8,7:8) blocks are Fredholm operators. This is true for the 
(2,2), (3:4,3:4) and (5,5) blocks, since these operators are (1∕�̂�)𝐼𝐻−1∕2(Γ), 
(1∕�̂�)𝐼𝐻−1∕2(curl,Γ) and 𝐼𝐻1∕2(Γ), respectively. Also the (1,1) and (7:8,7:8) 
blocks in (78) are Fredholm operators since by assumption (�̂�+ 1)∕(�̂�−
1) ∉ (−1, 1), and the essential spectra of 𝐾𝜈′

0 ∶ 𝐻1∕2(Γ) → 𝐻1∕2(Γ) and 
𝑴∗

𝑘
∶ 𝐻−1∕2(curl, Γ) → 𝐻−1∕2(curl, Γ) are contained in (−1, 1). This is a 

well-known consequence of the Plemelj symmetrization principle and 
boundary Hodge decompositions. A precise reference is [2, Cor. 4.7(i)], 
which contains the spectral estimates of both 𝐾𝜈′

0 and 𝑴∗
0 upon letting 

𝑘 = 0 and writing 𝐸𝑘 in matrix form as in (15).

We conclude that (78) is a Fredholm operator if and only if the (6,6) 
block is so, which by duality is equivalent to (76). Moreover, assuming 
that �̂� is not negative real, then the auxiliary Maxwell and Helmholtz 
problems corresponding to the parameters 𝛽, 𝛾, 𝛼′, 𝛽′, 𝛾 ′, all define Fred-

holm maps, and it follows from the proofs of [18, Props. 8.4, 8.5] that 
(78) is a Fredholm operator if and only if MTP(𝑘−, 𝑘+, ̂𝑘2) defines a Fred-

holm map. Combining these two equivalences completes the proof.

10. Concluding remarks

We conclude with some guiding remarks for the reader chiefly in-

terested in coding the BIEs proposed in this paper. Eddy current com-

putations are difficult since it is difficult to achieve both (a) a well-

conditioned BIE for computing the density ℎ and (b) a well-conditioned 
representation of the fields. Dirac (B-aug0), presented in Section 7.1, 
always achieves (a) and (b) for boundary surfaces of genus 0. Dirac (B-

aug1), presented in Section 7.2, almost always achieves (a) and (b) for 
boundary surfaces of genus 1. There are no null spaces for the systems 
and there are no low-frequency breakdowns in these two integral equa-

tion reformulations for the Maxwell transmission problem. The only 
incident field which leads to loss of accuracy with Dirac (B-aug1) for 
genus 1 is (47), which is a pathological field which typically does not 
appear in applications. For (47) we can accurately compute the fields 
with Dirac (A∞-aug), as presented in Section 6.1.

Data availability

Data will be made available on request.
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Appendix A. Augmentations

In this appendix, we derive the augmentations proposed in Sec-

tions 6 and 7, following the general principles explained in Section 4. 
Throughout this section, we consider the limit as 𝑘− → 0 in the eddy 
current regime (4). To be able to perform the analysis below, we set 
the tuning factor 𝜉 = 1, and also assume that 𝑘+ → 0. Note that this 
holds for all ordinary conductors. For non-physical limits when 𝜎 →∞
so that 𝑘+ ̸→ 0, the analysis below needs to be adjusted and becomes 
more complicated. However, the heuristics is that the larger |𝑘+| is, the 
fewer augmentations are needed. We denote by 𝐾 and 𝑆 , operators of 
the form

𝐾𝑓 (𝑥) = p.v.

ˆ

Γ

𝑣(𝑥, 𝑦) ⋅∇Φ0(𝑦− 𝑥)𝑓 (𝑦)𝑑Γ(𝑦), 𝑥 ∈ Γ, (A.1)

and

𝑆𝑓 (𝑥) = 𝑘+�̂�∕⟨𝜎⟩ˆ
Γ

𝑢(𝑥, 𝑦)Φ0(𝑦− 𝑥)𝑓 (𝑦)𝑑Γ(𝑦), 𝑥 ∈ Γ, (A.2)

for some given vector fields 𝑣(𝑥, 𝑦) and scalar functions 𝑢(𝑥, 𝑦). Note that |𝑘+�̂�∕⟨𝜎⟩| ≤ 1.

We recall that N(𝐼 + 𝐾𝜈′

0 ) is spanned by the constant function 1, 
that (𝐾𝜈′

0 )∗ = −𝐾𝜈
0 , and that N(𝐼 −𝐾𝜈

0 ) is spanned by 𝑓 =𝑁Ω−
(1), where 

𝑁Ω−
is the Dirichlet-to-Neumann map for Ω−. Further recall that the 

spectrum of all operators 𝐾𝜈′

0 , 𝐾𝜈
0 and 𝑴∗

0 are contained in [−1, 1], with 
𝜎(𝐾𝜈′

0 ) ∩ {−1, +1} = {−1} and 𝜎(𝐾𝜈
0 ) ∩ {−1, +1} = {+1}. Further 𝜎(𝑴∗

0) ∩
{−1, +1} = ∅ if the genus of Γ is zero and otherwise equals {−1, +1}.

Dirac (A∞-aug)

The limit of 𝐼 +𝐺 is seen to be

𝐼 +𝐺𝐴
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 −𝐾𝜈′

0 0 𝟎 0 𝑆 𝟎
𝐾 𝐼 − 𝑎−1

𝑎+1𝐾
𝜈
0 𝟎 𝑆 0 𝑺

𝑲 𝑲 𝑰 𝑺 𝟎 𝑺

0 0 𝟎 𝐼 − 𝑎−1
𝑎+1𝐾

𝜈′

0 0 𝟎
0 0 𝟎 𝐾 𝐼 −𝐾𝜈

0 𝑲

𝟎 𝟎 𝟎 𝟎 𝟎 𝑰 + 𝑎−1
𝑎+1𝑴

∗
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.3)

where we assume that �̂� ∉ (0, ∞) so that (𝑎 − 1)∕(𝑎 + 1) ∉ [−1, 1], where 
𝑎 = �̂�∕|�̂�|. We note the block triangular structures and that the only non-

invertible diagonal block is the (6,6) block. The null space is seen to be 
spanned by a density of the form ℎ𝐴

𝐷
=
[
ℎ1 ℎ2 𝒉𝟑∶𝟒 0 𝑓 𝟎

]
, and we have 

𝑐1
𝐷
ℎ𝐴
𝐷
≠ 0 at 𝑘− = 0. Moreover, the adjoint (𝐼 +𝐺𝐴

0 )
∗ is seen to have null 

space spanned by a density of the form 
[
0 0 𝟎 ℎ5 1 𝒉𝟕∶𝟖

]
, which 

is not orthogonal to 𝑏1
𝐷

. Therefore the homogeneous (L) augmentation 
𝑏1
𝐷
𝑐1
𝐷

will remove the Dirichlet eigenfield, since 𝑐1
𝐷
ℎ = 0, that is (8), 

holds for all incident fields under consideration.

Dirac (B-aug0)

The limit of 𝐼 +𝐺 is seen to be

𝐼 +𝐺𝐵
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐼 +𝐾𝜈′

0 0 𝑲 0 0 𝟎
0 𝐼 𝟎 0 0 𝟎
𝟎 𝟎 𝑰 𝟎 𝟎 𝟎
0 𝑆 𝟎 𝐼 −𝐾𝜈′

0 0 𝟎
𝑆 0 𝑺 𝐾 𝐼 −𝐾𝜈

0 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑰 +𝑴∗

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.4)

In this section, we assume that Γ has genus 0, so that the (7:8, 
7:8) block is invertible. We note again block triangular structures, 
and now the non-invertible diagonal blocks are the (1,1) and (6,6) 
blocks. If (𝐼 + 𝐺𝐵

0 )ℎ = 0, then ℎ =
[
𝑐1 0 𝟎 0 ℎ6 𝟎

]
, where 𝑐 ∈

𝐂. Here ℎ6 satisfies 𝑐𝑆1 + (𝐼 − 𝐾𝜈 )ℎ6 = 0, which forces 𝑐 = 0 and 
0
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ℎ6 = 𝑓 unless 
´
Γ 𝑆1𝑑Γ is zero. Inspection of the operator 𝑆 appear-

ing in the (6,1) block shows that 
´
Γ 𝑆1𝑑Γ = 2𝑖𝑘+�̂�∕⟨𝜎⟩|Ω+|, where |Ω+|

denotes the volume of Ω+. Therefore the null space includes ℎ𝐷 =[
0 0 𝟎 0 𝑓 𝟎

]
and, as 𝑘+�̂� → 0, also ℎ𝐻 =

[
1 0 𝟎 0 0 𝟎

]
. 

A similar argument applied to the adjoint (𝐼 +𝐺𝐵
0 )

∗ shows that its null 
space always includes ℎ∗

𝐷
=
[
1 0 𝒉𝟑∶𝟒 0 0 𝟎

]
, but as 𝑘+�̂� → 0, 

also ℎ∗
𝐻
=
[
0 ℎ2 𝒉𝟑∶𝟒 ℎ5 𝑓 𝟎

]
.

(1) The homogeneous (L) augmentation 𝑏1
𝐻
𝑐1
𝐻

will remove the addi-

tional null space appearing as 𝑘+�̂�→ 0 since 𝑏1
𝐻

is not orthogonal to ℎ∗
𝐻

and since 𝑐1
𝐻
(ℎ𝐻 ) ≠ 0. Note that 𝐹0 = 0 for any electromagnetic field 𝐹

satisfying (10), and consequently 𝑐1
𝐻
(ℎ) = 0 holds for all incident fields 

under consideration.

(2) The augmentation for ℎ𝐷 is less straightforward since the (6,6) 
entry in 𝑃 ′ vanishes for Dirac (B) at 𝑘− = 0, causing the corresponding 
fields to vanish. This means that the field representation (28) needs to 
be augmented. Recalling (22), we factorize

𝐼 +𝐺𝐵 =
[
𝑃𝐸+

𝑘+
𝐷−1 −𝑁𝐸−

𝑘−

][𝐷𝐸+
𝑘+

𝑁 ′

−𝐸−
𝑘−

𝑃 ′

]
=𝐿𝐵𝑅𝐵. (A.5)

Taking into account (75) and Remark 1, we have rescaled the interior 
fields using the size 8 × 8 matrix 𝐷 = diag

[
�̂� �̂� �̂� �̂�2∕⟨𝜎⟩ �̂�2∕⟨𝜎⟩ �̂�𝟐∕⟨𝝈⟩]. 

In what follows, we write 𝐸± = 1
2 (𝐼 ±𝐸), where 𝐸 denotes the (1:4,1:4) 

= the (5:8,5:8) block in 𝐸0, and 𝑆 denotes the (5:8,1:4) block in 𝐸0, 
but with 𝑖𝑘 replaced by 𝑖𝑘+�̂�∕⟨𝜎⟩ in all operators 𝑆. For the right factor 
𝑅𝐵 , corresponding to the field representation, we have

𝐷𝐸+
𝑘+

𝑁 ′ →

[
𝐸+ 0
𝑆 𝐸+𝐷1

]
and 𝐸−

𝑘−
𝑃 ′ →

[
𝐸− 0
0 𝐸−𝐷2

]
, (A.6)

with size 4 × 4 matrices 𝐷1 = diag [1 1 ⟨𝝈⟩−𝟏] and 𝐷2 = diag [0 0 𝟏]. For 
the left factor 𝐿𝐵 , corresponding to the DTP, we have

𝑃𝐸+
𝑘+

𝐷−1 →

[
𝐷3𝐸

+ 0
𝑆 𝐷4𝐸

+

]
and 𝑁𝐸−

𝑘−
→

[
𝐷5𝐸

− 0
0 𝐷6𝐸

−

]
, (A.7)

with size 4 ×4 matrices 𝐷3 = diag
[
0 1∕2 𝟏∕𝟐

]
, 𝐷4 = diag

[
1 1 𝟎

]
, 

𝐷5 = diag
[
1 1∕2 𝟏∕𝟐

]
and 𝐷6 = diag

[ ⟨𝜎⟩−1 ⟨𝜎⟩−1 𝟏
]
.

(3) If ℎ is in the null space for both limit operators in (A.6), then 
ℎ1∶4 = 𝐸+ℎ1∶4 +𝐸−ℎ1∶4 = 0. From 𝐸−𝐷2ℎ = 0 it follows that ℎ7∶8 is the 
boundary trace of a harmonic vector field for Ω+ with tangential bound-

ary conditions. As in [26, Exc. 10.6.12], it follows that ℎ7∶8 = 0, as we 
assume Γ to have genus 0. Moreover, with ℎ7∶8 = 0, we again see ℎ𝐷

appearing from 𝐸+𝐷1ℎ = 0.

The (R) augmentation 𝑏𝑅
𝐷
𝑐𝑅
𝐷

has 𝑐𝑅
𝐷
(ℎ𝐷) ≠ 0, since 

´
Γ 𝑓𝑑Γ ≠ 0. We 

note that 𝑏𝑅
𝐷

appears from applying 𝐿𝐵 to the fields 𝐹+ = 0 and 𝐹− =
𝐸−

𝑘−
𝑒6, and it remains to check that 𝐸−𝑒6 is not in the range of 𝐸−𝐷2. 

This in turn follows from the divergence theorem, since no divergence-

free vector field in Ω+ can have normal component 𝜈.

(4) With the (R) augmented field representation (60), we can now 
make the homogeneous (L) augmentation 𝑏2

𝐷
𝑐2
𝐷

to remove the Dirichlet 
eigenfield. As for 𝑏1

𝐷
𝑐1
𝐷

, we note that 𝑐2
𝐷
ℎ = 0, that is (8), holds for all 

incident fields under consideration. However, now we use 𝑏2
𝐷
= 𝑒1, since 

this is not orthogonal to ℎ∗
𝐷

.

Dirac (B-aug1)

(1) We repeat the augmentations for (B-aug0), but now assume that 
Γ has genus 1. To be able to perform the analysis, we also assume that ⟨𝜎⟩ →∞. Now 𝑰 +𝑴∗

0 has a one-dimensional null space, leading to ad-

ditional null vectors ℎ𝑁 and ℎ∗
𝑁

, non-zero only in the 7:8 components, 
for 𝐼 +𝐺𝐵

0 and (𝐼 +𝐺𝐵
0 )

∗ respectively.

(2) Since the Neumann eigenfield can be excited by sources in Ω−, 
we aim to remove the above null space by an inhomogeneous (L) aug-

mentation. For the abstract equation (39), we use

(�̂�2∕⟨𝜎⟩)𝜃 ⋅𝐸+ − (�̂�2∕⟨𝜎⟩)𝜃 ⋅𝐸− = (�̂�2∕⟨𝜎⟩)𝜃 ⋅𝐸0, (A.8)
161
which follows by rescaling the first equation in (7). On the left-hand 
side it is the 𝜃 ⋅ 𝐸+ term which will be dominant, and the generic size 
of 𝐸+, as discussed in Section 5, motivates the factor �̂�2∕⟨𝜎⟩. However, 
in computing the fields with (60), we note that the (7:8,7:8) entries in 
𝑁 ′ vanishes at 𝑘− = 0. This indicates that further (R) augmentation is 
needed for Γ of genus 1.

(3) Inspecting the limit operators in (A.6), we see that the new null 
vector ℎ𝑁 is the boundary trace of a harmonic vector field in Ω+ with 
tangential boundary conditions, and hence ℎ𝑁 is in the 𝜃 direction for 
a torus. Therefore 𝑐𝑅

𝑁
(ℎ𝑁 ) ≠ 0 at 𝑘− = 0. We note that 𝑏𝑅

𝑁
appears from 

applying 𝐿𝐵 to the fields 𝐹+ = 𝐸+
𝑘+

𝑒8 and 𝐹− = 0, and it remains to 
prove that 𝐸+𝑒8 is not in the range of 𝐸+𝐷1. For this, we assume that 
𝑒8 is the boundary trace of the interior Neumann eigenfield, and in 
particular has zero surface curl. The assumption that 𝐸+𝑒8 = 𝑒8 is in 
the range of 𝐸+𝐷1 is seen to be equivalent to the existence of a vector 
field 𝐹 and a scalar function 𝑈 in Ω−, decaying at ∞, with ∇ ×𝐹 =∇𝑈 , 
∇ ⋅ 𝐹 = 0 in Ω−, and 𝐹 having tangential part 𝑒8 on Γ. It follows that 
𝐺 = ∇ × 𝐹 is an exterior Neumann eigenfield. But since 𝐺 is a gradient 
vector field, this forces 𝐺 = 0. It follows that 𝐹 is curl-free in Ω−, which 
contradicts Stokes’ Theorem. Therefore 𝑒8 cannot be in the range of 
𝐸+𝐷1.

(4) With the doubly (R) augmented field representation (62), we 
adjust the augmentation 𝑏1

𝐻
𝑐1
𝐻

to 𝑏2
𝐻
𝑐2
𝐻

, and proceed to the inhomoge-

neous (L) augmentation 𝑏1
𝑁
𝑐1
𝑁

based on (A.8). We use (62) to write 𝐸±

in terms of ℎ, and integrate (A.8) with respect to 𝑤𝑑Γ. To see that the 
obtained left-hand side defines a bounded functional 𝑐1

𝑁
ℎ as in (64), we 

rewrite as follows. That the term (�̂�2∕⟨𝜎⟩)𝜃 ⋅𝐸+ depends boundedly on 
ℎ is readily seen by inspecting 𝑁 ′. For the term (�̂�2∕⟨𝜎⟩)𝜃 ⋅𝐸−, we see 
from 𝑃 ′ that it only depends boundedly on ℎ1∶5. Inspection of the (8,6) 
block of 𝐸𝑘−

in (15) reveals that this yields a gradient vector field, with 
zero circulation around the torus. Therefore there is no dependence on 
ℎ6 and the Dirichlet (R) augmentation term. Finally we consider the 
crucial dependence on ℎ7∶8, which as it stands is unbounded. Note from 
(15) that the (7:8,7:8) block in 𝐸−

𝑘−
is (𝑰 +𝑴∗

𝑘−
)∕2. The reason for the 

specific choice of weight 𝑤, is that 𝑤𝜃 is orthogonal to R(𝑰 +𝑴∗
0). This 

allows us to subtract the zero term 
´
Γ((𝑰 +𝑴∗

0)ℎ7∶8)8𝑤𝑑Γ∕2 to obtain 
the third regularized term for 𝑐1

𝑁
ℎ in (64), which depends boundedly 

on ℎ.

To motivate the choice of 𝑏1
𝑁

, we note that (𝑰 + 𝑴0)(ℎ∗𝑁 )7∶8 = 0. 
Hence ℎ∗

𝑁
=
[
0 0 𝟎 0 0 0 𝑤

]
, and it follows that 𝑏1

𝑁
= 𝑒8 is not 

orthogonal to ℎ∗
𝑁

.
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