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Abstract—In this paper, self-adaptive controllers for renewable
energy communities based on data-driven approach are proposed
to mitigate the voltage rise and transformer congestion at the
community level. In the proposed approach, the transformer
loading percentage is estimated by the trained data-driven model,
which uses the extreme gradient boosting regression algorithm
based on a measurement set acquired from critical coupling
points of the communities. To avoid voltage rise issues, the
droop control parameters (i.e., voltage threshold for P − V ,
Q−V curves) are adaptively tuned based on the solar irradiance
availability and estimated transformer loading. The proposed
approach has been tested in the IEEE European LV distribution
network. Results showed that the control approach could effec-
tively reduce 22.2% of the total overloaded instances, while still
keeping voltage magnitude in the operation range. This method
can help DSOs manage voltage violation and congestion without
further communication.

Index Terms—Droop control, transformer loading estimation,
transformer congestion, voltage rise.

I. INTRODUCTION

Power systems are facing challenges while integrating a
massive amount of distributed energy resources (DER), es-
pecially at the distribution network level due to a lack of
advanced monitoring and control solutions [1], [2]. Either
voltage violations or overloading of network assets, i.e. trans-
former, power cables, are observed that hinder the integration
of DERs. Proper control coordination of DERs is expected to
be an effective solution to avoid large investment for network
upgrade and extension.

DER control solutions have been proposed to cope with each
of these issues (i.e., voltage rise and transformer congestion)
separately. On the one hand, the overvoltage mitigation solu-
tions have been extensively studied [3], [4]. In [3], solutions
were proposed for overvoltage mitigation based on droop
control, i.e., P − V , Q − V . To improve the performance of
the local droop in terms of fair curtailment, our previous study
has shown the advantage of using consensus-based algorithm

The work leading to this paper is part of the FlexiGrid project
which received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 864048. Website:
https://flexigrid.org/.

to allocate better curtailment resources within specific control
areas [4]. Meanwhile, solutions for transformer overloading
have been limited to some research works, e.g., by exploring
flexibility resources from the demand-side [5]–[7].

There is, however, a strong correlation between voltage
violation and overloading of network assets. In [8], the impact
of controlling DERs to cope with transformer overloading
and overvoltage has been discussed. The authors in [9],
[10] addressed the same issues with a solution to coordinate
existing controllers including on-load tap changer connecting
the medium and low-voltage networks. However, these works
are based on an assumption of having perfect information and
controllability over DERs and control assets which are not
likely the case in reality.

Having awareness of asset loading would be valuable for
DERs to not only control voltage at the coupling point,
i.e., local impact, but also manage active and reactive power
properly. In our previous work, an estimation of transformer
loading is developed based on training data with the model-
based random tree of a critical set of voltage measurement
[11]. In this paper, we proposed a self-adaptive control (SAC)
scheme for DER clusters which inherits the sequential droop
control (SDC) method while having an awareness of asset
(transformer) loading. Overall, the main contributions of this
paper are twofold:

• The data-driven transformer loading estimation is adopted
to provide the monitoring function to the congestion
management, which is trained using extreme gradient
boosting regression (XGBR) algorithm. With this mon-
itoring signal, the transformer loading can be controlled
in real-time.

• The SAC scheme for renewable communities is proposed
that solves the transformer overloading problems, while
mitigating voltage rise issues due to high PV penetration
in the distribution networks. This proposed control strat-
egy can be adopted by the energy communities to solve
the grid issues.

The IEEE European LV distribution network with collected



PV data in the Netherlands is used to test the proposed control.
The numerical results showed that the proposed control could
effectively reduce the transformer overloading period while
mitigating the voltage rise issues.

II. PROBLEM FORMULATION

This section elaborates the transformer overloading issue in
the distribution network related to the uses of the SDC method.

A. Sequential Droop Control

The SDC method regulates the power outputs of PV systems
based on the local available information to solve the voltage
rise problems. This method is formulated by combining Q−V
and P − V droop control scheme in a sequential manner.
The SDC method is schematically shown in Fig. 1 and
mathematically expressed in Eq. 1 and Eq. 2. The V = 0.9
p.u. and V = 1.1 p.u. are the lower and upper limits of voltage
control. Given house i in the network, V gQ

i and V tQ
i (at point

(1)) are the threshold level for reactive power injection and
absorption, respectively. V tP

i at point (2) is the threshold level
for active power curtailment.

Qnet
i =



Qi

(V gQ
i − Vi)

(V gQ
i − V )
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i
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i

−Qi
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i )
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i )
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i )
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In normal operation, i.e., voltage magnitude at the point
of connection (POC) Vi in the range from V gQ

i to V tQ
i , the

aaP net
i , Qnet

i

PMPP
i

Qi

−Qi

0 V V gQ
i V tQ

i V tP
i V

V(1) (2)

Fig. 1: The SDC mechanism applied for PV unit i connect to
bus i, the SDC consists of Q − V droop control (dark blue
curve) and P − V droop control (red curve).

reactive power output of PV inverter is set to zero, while the
active power injection P net

i is set to PMPP
i , the maximum power

point. When Vi exceeds V tQ
i , the PV inverter starts absorbing

reactive power following Q − V droop. If Vi is increased
higher than V tP

i , then the reactive power absorption is set to
maximum value −Qi, and the active power output is curtailed
follow P − V droop. The Qi is calculated as follows:

Qi = min(Qi1, Qi2) (3)

Qi1 =
√
(Si)2 − (P net

i )2, (4)

Qi2 = (tan[arccos(PF)])P net
i , (5)

with Si is PV inverter apparent power, P net
i is active power

output, and the power factor ranging from 0.9 lagging to 0.9
leading for PV connected at distribution network [12].

B. Transformer Loading
The SDC method is presented in section II-A, which miti-

gates the voltage rise issue while reducing the amount of active
power curtailment. To do so, reactive power absorption is used
together with active power curtailment. It can significantly
reduce the amount of active power curtailment. An example
of a radial feeder with installed PVs is shown in Fig. 2. The
apparent power flow through the transformer is calculated as
follows:

Strans =
√
(P trans)2 + (Qtrans)2

=

√√√√(

n∑
i=1

(PPV
i − PL

i ))2 + (

n∑
i=1

(QPV
i +QL

i ))
2

(6)

where, n is a number of buses, for this simple example we
assume that every bus has a connected PV and a load. It can
be seen from Eq. 6, the apparent power of the transformer is
increased due to the active power injection (PPV

i ) to/reactive
power absorption (QPV

i ) from the external grid. Thus, during
the high irradiance condition, the transformer can be over-
loaded while solving the voltage rise issue. Without having an
awareness of the asset loading, the controllers with location-
specific focuses might worsen the loading of transformers,
leading to the degradation of network assets.

III. PROPOSED CONTROL STRATEGY

The proposed control strategy aims to mitigate voltage rise
along the feeder due to high PV generation and solve the
overloading of the distribution transformers. In this regard,
the regression-based method is first employed to estimate the
transformer loading. Next, the SAC method is formulated to
solve both voltage rise and transformer overloading issues by
coordinating PV systems in the network.

A. Data-driven Transformer Loading Estimation
The data-driven method for transformer loading estimation

is adopted from our previous study [11]. This data-driven



method is trained to realize the relationships between the
transformer loading and voltage magnitudes measured at the
POC. Accordingly, a regression model is obtained to estimate
transformer loading from a set of measured voltage magnitude.

The regression model utilizes the XGBR algorithm which
is an ensemble tree algorithm with the aim of minimizing the
objective function given as [13],

N∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (7)

where N is the size of data, ŷ
(t−1)
i denotes the prediction

output at the (t− 1)-th (i.e., previous) iteration of the i-th in-
stance, yi denotes the observation, ft denotes the independent
tree structure at the t-th iteration, l denotes the loss function
measuring the difference between yi, ŷ

(t−1)
i , and ft, and Ω(ft)

denotes the penalty term for the model complexity. The term
Ω(f) can be calculated as,

Ω(f) = γL+
1

2
α||ω2|| (8)

where L is the number of leaves in the tree, ω is the score of
leaves, and γ and α are regularisation coefficients [14].

Fig. 2: The proposed control architecture with installed PVs.
P trans, Qtrans are the active, reactive power flow via the
transformer. Ŝtrans is the estimated apparent power of trans-
former. V tP

i , V tQ
i are input control signal for SDC. The (P net

i ,
Qnet

i ) are the input control signal of PV inverters. Lastly, Vcrit

is critical voltage of each community.

B. Self-Adaptive Controller

Fig. 2 presents the control architecture of the proposed
control method. This strategy consists of two layers: a lo-
cal control, which is presented in section II-A and a co-
ordination control layer. The local control is based on the
SDC mechanism, and the coordination control is based on a
regression-based transformer loading estimation mechanism,
which is presented in section III-A. The local control layer
is responsible for continuously monitoring the voltage at the
POC and regulating the active and reactive power of PV units.
The coordination control layer, which operates with a lower
response speed than the local control layer, is responsible
for adequately coordinating PV systems for both the voltage
level violations and transformer overloading by periodically
adjusting set-points of the local control layer.

As can be seen in Fig. 2, the output power set points
of the PV inverters (P net

i , Qnet
i ) are determined by the local

control layer, which regulates the active power curtailment
and reactive power absorption scheme of PV units in response
to the voltage at POC follow the droop setting. Furthermore,
the P − V and Q − V droop control parameters, i.e., the
threshold levels (V tP

i and V tQ
i ), are adaptively calculated

by the coordination control layer. The coordination control
layer is developed as a correction control layer to the local
control, which solves the voltage rise issue while preventing
the transformer be overloaded.

As discussed in section III-A, the trained XGBR model
is able to estimate the transformer loading status with a
limited number of voltage measurements from households.
Thus, the transformer loading monitoring can be performed
within local energy communities. Then, the voltage rise and
transformer overloading issues are controlled by communities
control architecture, named SAC method. Fig. 3 shows the
coordination control algorithm. It is worth noting that the
proposed control algorithm is implemented every 15 minutes.
The initial value for SDC is started with V tP

i,0 = 1.09 p.u.
and V tQ

i,0 = 1.05 p.u., which helps PV inverter inject more
active power to the grid. In each community, the node with
a higher voltage profile (due to PV active power injection)
is selected as critical voltage, Vcrit, which is located at the
end of the feeder. This Vcrit is used as the input signal for
the voltage rise control function. The V tP

i is increased until
the critical voltage reaching to 1.09 p.u. The V tP

i is kept
constant if the critical voltage is in the band of 1.09 p.u.
to 1.1 p.u., this is to prevent the voltage violation due to
the control action. When the Vcrit ≥ 1.1 p.u., this means
the voltage rise happens, the V tP

i is reduced to curtail active
power injection from PV inverters (the incremental change of
V tP
i , and V tQ

i is α = β = 0.01, and is chosen by trial and
error to minimized voltage violation). Together with voltage
rise, the transformer loading status, Ŝtrans, is continuously
estimated using the XGBR model. In normal operation, i.e.,
there is no detected transformer overloading signal, the V tQ

i

is reduced to absorb more reactive power. However, when
the estimated transformer loading Ŝtrans exceeds the rated
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Fig. 3: The flowchart of the SAC algorithm. V tP
i,k and V tQ

i,k are
the threshold value of PV unit i at timestep k. α and β are
incremental change of V tP

i , and V tQ
i .

power (i.e., Strans
per = Ŝtrans/Strans

rated ≥ 100%, the voltage
threshold for reactive power absorption will be increased to
reduce the amount of reactive power absorption. In this sense,
the proposed SAC method can adaptively regulate the inputs
V tP
i , and V tQ

i for SDC based on the voltage magnitude and
transformer loading values.

IV. TEST NETWORK AND INPUT DATA

This section presents the test network and input data, where
the proposed method will be tested. First, the IEEE European
55 buses network is presented. Then, the load profiles, PV
systems data are described. Lastly, the training of the XGBR
model for transformer loading estimation is explained.

A. LV Test Network

Fig. 4 presents the IEEE European 55 buses network. This
is an unbalance three-phase network that is fed by a 250 kVA,
11 kV/0.4 kV distribution transformer [15]. The network has
a radial topology supply to its 55 residential users with single-
phase connections which consist of 21 houses in Phase A, 19
houses in Phase B, and 15 houses in Phase C. Furthermore, the
household is connected with the rooftop PV system. The test
network is assumed to have three different local communities,
that can access the residential smart meter data and control PV
inverter at the customer premises. In this study, the topology
of the test network is assumed to remain constant.

B. Load Profiles and PV System Data

Load profiles for the houses in the test network are mod-
eled using real one-year active power data with 15-minute
resolution from residential customers’ SMs in the Netherlands

Fig. 4: Single-line diagram of the IEEE European LV test
network. It has three different communities which colored with
different colors. The houses with a red circle are controllable
PV units, seven of them are used as the input for transformer
loading estimation (i.e., houses with a blue underline).

[11]. To consider reactive power consumption, all houses
are assumed to have a power factor of 0.97 (inductive).
The installed PV capacities for this study range randomly
from 4.28 kWp to 6.25 kWp, which are based on the actual
installations of residential PV in the Netherlands [16]. The
PF of ±0.9 is adopted to model the reactive power capacity
of PV units in the test network. Furthermore, for modeling
PV generation, the meteorological data, including the solar
irradiation data and the ambient temperature are used, which
are derived from the real measurements in the Netherlands.
As the test network covers a small geographical area, all PV
systems are assumed to have the same meteorological data.

V. TRAINING OF XGBR-BASED REGRESSION MODEL FOR
TRANSFORMER LOADING ESTIMATION

Proper training of the XGBR-based regression model for
transformer loading estimation is vital for performing the
proposed control strategy. A procedure is adopted from our
previous research [11] to train the XGBR-based regression
model for transformer loading estimation. The training proce-
dure is briefly explained into three main stages.

Firstly, an equitable training dataset is prepared, containing
stochastic samples of voltage magnitudes and net active and
reactive power at the POCs. Such stochastic samples are
generated by solving a substantial number of power flows for
the test network using the household load profiles and PV
system data obtained in section IV-B.

Secondly, exploratory data analysis is implemented on the
prepared training dataset, which is followed by the feature
selection process. The exploratory data analysis process ex-
plores the relationship between the transformer loading and
the POC voltage magnitudes. The feature selection aims to
select a subset of the most relevant features (the POC voltage
magnitudes of which houses) from the dataset for constructing
the regression model.
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Fig. 5: (a) - One-year transformer loading profile, where PV
inverters controlled by SDC method. (b) - One-day transformer
loading profile in summer.

Thirdly, given the processed input data, the fitting and
evaluation process is performed for the XGBR algorithm,
which involves tuning the algorithm parameters and evaluating
the generalization error of the model. Nested cross-validation
with a 10×10 set-up for k-fold cross-validation outer loop and
inner loop is adopted to carry out this process in an iteration
manner.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, the test network, which are described in the
previous section will be tested with two control methods, in-
cluding the SDC, and the proposed SAC method. It should be
noted that, only Phase A is used to evaluate the performance of
the proposed method. However, without the loss of generality,
similar results can be obtained for Phase B and C. As analyzed
in our previous work [11], there are 7 important houses (i.e.,
70, 34, 611, 562, 860, 898, 861) in Phase A that have a high
correlation with the transformer loading status. Having the
voltage magnitude of those houses, the transformer loading
can be estimated. However, given small-scale residential PV
systems, the number of controllable PV is added up to 13 (i.e.,
the house with the red circle in Fig. 4) to be adequate to solve
the transformer overloading issue.

One-year transformer loading profile is shown in Fig. 5(a),
where the PV inverters are controlled using the SDC method.
It can be seen that the transformer loading is extreme high in
the period from mid-April to mid-August, i.e., the colored
area in Fig. 5(a). Especially, in some days, the loading is
over 100% due to the high active power injection from the
PV system. Fig. 5(b) illustrate one-day transformer loading
profile in June. It shows the high loading in the mid-day of
the transformer. Fig. 6 shows the PDF of transformer loading
for the case of using SDC and SAC methods. It can be seen
that the proposed method is able to reduce the probability of
overloading instances by controlling the PVs power output. In
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Fig. 6: The probability density function (PDF) of transformer
loading for the cases with using SDC and SAC methods.
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Fig. 7: The box plot of critical voltage magnitude (house 225,
611, and 906 in community 1, 2, and 3, respectively) using
SDC (Fig. 7(a)) and SAC (Fig. 7(b)) methods.

addition, the proposed method allow to reduce the amount of
active power curtailment in normal operation by increasing
the below 100% loading instances of the transformer. The
one-year transformer loading profile shows that the proposed
SAC method reduced 22.2% of the total overloaded instances
(i.e., from 90 to 70) compared to the SDC method. To further
evaluate the performance of the proposed method, the box plot
of critical voltages in three communities is shown in Fig. 7.
As expected, no voltage violations were observed at any time
steps when using the SDC method. Similarly, the voltage is
controlled by the proposed SAC method. Thus, the proposed
SAC method can effectively reduce the period of transformer
overloaded and solve the voltage rise issue.

To demonstrate how the proposed method controls the PVs
power output, the absolute value of active power injection
and reactive power absorption of house 611 is shown in
Fig. 8, which corresponds to the transformer loading in Fig.
5(b).It can be seen in Fig. 8(b), the reactive power absorption
increases following the increase of active power injection
when the loading percentage is still under the limit, i.e.,
Strans
per < 100%. In the case of transformer is being overloaded

around 11 AM, i.e., Strans
per ≥ 100%, the V tQ

i is increased by
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using SAC and SDC methods.

using SAC method to reduce the absorbed reactive power. As
a result, the reactive power absorption decreases to zero (i.e.,
the red curve) to prevent the transformer from overloading.
However, the reactive power absorption of PV by using the
SDC method (i.e., the blue curve) is kept as the maximum
value, Qi in Eq. 3. The transformer overloading issue is still
detected even without any reactive power absorption in the
SAC method. Thus, the active power injection needs to be
curtailed to reduce the transformer loading. The Fig. 8(a)
shows that the active power injection in the SAC method (i.e.,
the red curve) is reduced compared to the active power profile
in the SDC method (i.e., the blue curve). This simulation
results show the proposed control method can regulate the
power output of PVs system to effectively control the voltage
rise and transformer overloading issues.

VII. CONCLUSIONS

This paper presents a self-adaptive DER droop controller
based on data-driven transformer loading estimation, which
solved the voltage rise and transformer overloaded issues. The
XGBR technique is employed to estimate transformer loading
status with a limited set of voltage magnitudes. Then, the
proposed control adaptive calculates threshold values for P−V
and Q − V droop controls based on the transformer loading
status and voltage magnitude of the critical buses. The simu-
lation results in the IEEE European 55 buses network prove
that the proposed method effectively reduces the transformer
overloaded period while mitigating the voltage rise issue. By
using this control method, the local community can help DSO
in managing congestion and voltage violation issues.

As future work, the state estimation method using available
customer data can be used to estimate the grid voltage magni-
tude as well as the transformer overloading. Furthermore, the
advantage controller, such as model predictive control also be
used to optimize the parameters of the droop controls.
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