
Thesis for the Degree of Doctor of Philosophy

A Veri�ed Theorem Prover for
Higher-Order Logic

Oskar Abrahamsson

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden
2022



A Veri�ed Theorem Prover for Higher-Order Logic
Oskar Abrahamsson
ISBN 978-91-7905-735-0

© 2022 Oskar Abrahamsson

Doktorsavhandlingar vid Chalmers Tekniska Högskola
Ny serie nr. 5201
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology and
University of Gothenburg
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31-772 1000

Printed at Reproservice, Chalmers University of Technology
Gothenburg, Sweden, 2022



Abstract

This thesis is about mechanically establishing the correctness of computer
programs. In particular, we are interested in establishing the correctness of tools
used in computer-aided mathematics. We build on tools for proof-producing
program synthesis, and veri�ed compilation, and a veri�ed theorem proving
kernel. With these, we have produced an interactive theorem prover for higher-
order logic, called Candle, that is veri�ed to accept only true theorems. To
the best of our knowledge, Candle is the only interactive theorem prover for
higher-order logic that has been veri�ed to this degree.

Candle and all technology that underpins it is developed using the HOL4
theorem prover. We use proof-producing synthesis and the veri�ed CakeML
compiler to obtain a machine code executable for the Candle theorem prover.
Because the CakeML compiler is veri�ed to preserve program semantics, we
are able to obtain a soundness result about the machine code which implements
the Candle theorem prover.
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Chapter 1

Introduction

This thesis is concerned with establishing the correctness of computer programs
using rigorous mathematical proof. In particular, we concern ourselves with
a class of programs called interactive theorem provers, which are tools used
for computer-assisted mathematics. Our main contribution is a system for
interactive theorem proving which has been mechanically veri�ed to be correct
using another interactive theorem prover. By correctness, we mean that the
theorem prover is unable to prove any falsehood.

1.1 Motivation

The primary focus of this thesis is the correctness of computer programs. We
use mathematical methods when reasoning about program correctness, because
we wish to have the highest con�dence possible in our conclusions. When we
use mathematics to establish the correctness of a computer program, we say
that we subject it to formal veri�cation.

Formal veri�cation of software at a high level of detail requires complex
models about programming languages and computers, and gives rise to large
and detailed mathematical proofs. Maintaining these models, and producing
and checking such detailed proofs, is generally beyond what a human can
manage with only pen and paper. To this end, we use tools called interactive
theorem provers, which are designed to assist humans in precisely this task.

Interactive theorem provers help us manage the complexity involved in
formal veri�cation by managing our mathematical de�nitions, theorems and
proofs; by checking all proof steps for correctness; and by automating the
tedious parts of our work, so that we may focus on its high-level aspects.

With mechanized proof checking, we no longer have to concern ourselves
with the correctness of our proofs: instead, what matters is the correctness of
the tool that checks the proof. It is therefore imperative that the interactive
theorem prover we use works as advertised: it must be impossible to use the
system to prove falsehoods.

Of course, one way to establish the correctness of an interactive theorem
prover is to subject it to formal veri�cation! This is the main contribution
of this thesis: a new interactive theorem prover for higher-order logic, called
Candle, which has been formally veri�ed to be correct. Candle’s correctness
result states that anything that Candle claims to be a theorem is actually true.
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1.2 Concepts

In this section, we introduce the necessary background for this thesis. We
explain the most important concepts that underpin this work, and what their
relevance to the work is.

Formal logic. Formal logics are mathematical languages that enable us to
model and reason about concepts very precisely. They also enable us to con-
struct and check proofs in a mechanical way. A formal logic consists of a
syntax, i.e., symbols that make up logical statements, and proof rules that gov-
ern how symbols and statements may be combined to form new statements,
and a well-de�ned meaning of the syntax, called a semantics.

For a logic to be useful, it should only be possible to use its proof rules
to derive syntax that is true according to its semantics. A calculus with this
property is said to be sound with respect to the semantics. Reasoning using a
sound calculus is guaranteed to result in valid proofs.

Higher-order logic (HOL). Higher-order logic is an expressive formal logic,
based on Church’s type theory. Its expressivity allows it to both describe
the syntax and semantics of programming languages, and to be used as a
programming language itself. Writing programs in the same language as we
state facts about those programs makes the task of veri�cation simpler, because
it minimizes the number of layers of abstraction present between speci�cation
and implementation.

Interactive theorem provers (ITPs). Interactive theorem provers are com-
puter programs designed to assist humans with reasoning in a formal logic.
They are called interactive because human interaction is required to guide the
system when carrying out proof. Even so, modern ITPs employ a signi�cant
degree of automation to reduce the amount of tedious work a human has to
carry out when constructing a formal proof.

All terms, de�nitions, and proof commands that a user enters into the ITP
system are checked for wellformedness, meaning that the user can trust any
theorem produced by the system, as long as they trust the correctness of the
system itself.

The LCF approach. The LCF approach is a method of designing theorem
provers in a way that enables extensibility without compromising soundness.
In the LCF approach, theorems are modeled as an abstract data type in a
functional programming language (called ML, for Meta Language), accessible
only by means of functions corresponding to the primitive inferences (i.e. the
rules of the proof calculus) of the logic. The LCF approach was pioneered by
Milner and his collaborators as part of the Edinburgh LCF system [27] over
forty years ago, but most modern ITPs are still designed in the LCF style.
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TheHOL4 theorem prover. The HOL4 theorem prover [57] is an interactive
theorem prover for higher-order logic. Like most other HOL theorem provers,
it follows the LCF tradition; its ancestry traces back to Mike Gordon’s original
HOL system [26], which in turn evolved from Edinburgh LCF [27].

HOL4 is host to several state-of-the-art code generation techniques and
tools that we develop and make use of in this work [50, 61]. This includes,
e.g., the CakeML programming language and its compiler, as well as a veri�ed
implementation of a HOL logical kernel, called the Candle kernel. Both CakeML
and the Candle kernel are important parts that underpin the work presented in
this thesis, and are discussed below.

HOL Light. HOL Light [34] is a minimalistic HOL theorem prover. It shares a
common ancestry with HOL4, but its implementation is more lightweight, and
its trusted kernel is simpler. However, HOL Light comes with powerful automa-
tion, and an extensive library of formalized mathematics. The system played a
key role in the formalization of Hales’ proof of the Kepler conjecture [32]. Our
new theorem prover, Candle, is a veri�ed implementation of HOL Light.

CakeML and proof-producing code generation. CakeML is a functional
programming language that comes with a veri�ed compiler [61], and a proof-
producing code generation mechanism for the HOL4 system [50]. Using the
CakeML tools, it is possible to synthesize executable programs from functions
in the HOL4 logic (i.e., HOL). The CakeML compiler comes with an interactive
read-eval-print loop, and has been proven to only produce executables that
behave as the input programs they were created from.

The compiler and its tools have been used to produce various veri�ed
programs, for example: a SAT proof checker [60]; a checker for �oating-point
error bounds [11]; a checker for vote counting [25]; a monitor for cyber-physical
systems [13]; and a veri�ed implementation of the HOL Light kernel, called
the Candle kernel, discussed below.

The kernel of the Candle theorem prover. The Candle theorem prover
kernel [41] is a veri�ed implementation of the HOL Light kernel. The Candle
kernel is veri�ed to be sound with respect to the semantics of HOL, meaning
that the kernel is guaranteed to accept only valid proof steps. Its veri�cation
was carried out using the HOL4 system by Kumar, et al. [41], and the CakeML
tools can be used to produce an executable version of the kernel. The Candle
kernel is the logical kernel used by the Candle theorem prover.

The OpenTheory framework. The main contribution of the OpenTheory
framework [37] is the OpenTheory article format [38]: a format for transferring
logical theories between HOL theorem provers. OpenTheory articles provide
a means to record and store proofs of HOL theorems; several HOL theorem
provers can store logical de�nitions and proofs in this format. The OpenTheory
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framework includes an unveri�ed proof checking tool [39]. We use OpenTheory
articles as the proof format for a new veri�ed HOL proof checker, which is
described below.

A veri�ed OpenTheory proof checker. One of the contributions of this
thesis is a new, veri�ed proof checker for OpenTheory articles. The OpenTheory
proof checker is a mechanized proof checker that reads OpenTheory articles,
and uses the Candle kernel to check the validity of inferences. Incorporating
the Candle kernel into our proof checker enables us to build on its soundness
result. The proof checker is compiled to executable machine code using the
CakeML compiler, which is semantics preserving. As a result, we obtain a
soundness result about the resulting machine code.

The Candle interactive theorem prover. The main contribution of this
thesis is a new, fully veri�ed interactive theorem prover for HOL, called Candle,
which aims to be a faithful clone of HOL Light. Candle’s development touches
on most of the concepts explained so far: it builds on the CakeML compiler’s
interactive read-eval-print loop and the previously veri�ed Candle kernel. Can-
dle’s top-level correctness result states that all its theorems are valid statements
w.r.t. a formal semantics of higher-order logic.

1.3 Contributions

The main contribution of this thesis is the construction and soundness proof of
a new interactive theorem prover, called Candle:

• Candle has been veri�ed sound with respect to a formal semantics of
HOL. Its main soundness result is a strong end-to-end theorem that
guarantees the soundness of the machine code artifact that executes the
Candle theorem prover. To the best of our knowledge, Candle is the
only interactive theorem prover for HOL that has been subjected to this
degree of veri�cation.

The journey towards this goal has brought along with it several contributions:

• We extended existing techniques for proof-producing program synthe-
sis from functional programs written in higher-order logic (Chapter 2).
The new techniques can synthesize programs that manipulate mutable
state and perform I/O from HOL functions modeling these e�ects using
monads. These techniques are used in all other contributions in this
thesis.

• We developed a new proof-checker for higher-order logic, and verify its
soundness (Chapter 3). The proof checker was developed in the HOL4
logic, and can be compiled to machine code by the veri�ed CakeML
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compiler. Using the CakeML compiler allows us to obtain a soundness
result for the machine code which executes the proof checker.

• In our work on Candle, we showed that the soundness of an entire
LCF-style theorem prover system can be proved from the soundness
of its kernel (Chapter 4). Traditional soundness arguments for LCF-
style ITPs rest on the type system of the ML compiler which hosts the
system. We chose a di�erent approach for Candle, and distilled what is
su�cient to ensure prover soundness into a few syntactic and semantic
requirements, and augmented the actual Candle implementation to satisfy
these requirements by construction.

• We added a new, veri�ed rule for computation to the Candle theorem
prover kernel (Chapter 5). Contemporary ITPs either implement slow
and safe rules of computation, or achieve speed by relying on insecure
methods for computing normal forms outside their trusted parts. We
show that one can have both speed and safety with a veri�ed interactive
theorem prover.

1.4 Summary of included papers

This thesis consists of four papers, listed below. Each paper is given a short
summary in the following subsections.

I Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Mag-
nus O. Myreen, Michael Norrish, and Yong Kiam Tan. Proof-Producing
Synthesis of CakeML from Monadic HOL Functions. J. Autom. Reason.,
64(7):1287–1306, Springer, 2020.

II Oskar Abrahamsson. A Veri�ed Proof Checker for Higher-Order Logic.
J. Log. Algebraic Methods Program., 112:100530, Elsevier, 2020.

III Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas
Sewell. Candle: A Veri�ed Implementation of HOL Light. In Interactive
Theorem Proving (ITP), volume 237 of LIPIcs, 3:1–3:17, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

IV Oskar Abrahamsson and Magnus O. Myreen. Fast, Veri�ed Computation
for Candle. Technical report, 2022.

All four papers appear in this document unedited, with the exception of adjust-
ments to typesetting.

1.4.1 Proof-Producing Synthesis of CakeML fromMonadic

HOL Functions

Paper I introduces a tool which makes it possible to perform programming in
HOL, using state and e�ects, such as I/O, and exceptions. For the uninitiated,
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one can understand this as: using the HOL4 logic as a programming language,
and automatically translating those programs to equivalent CakeML code. The
technical contributions in this paper extends previous work on synthesis of
non-e�ectful CakeML programs [50]. See Chapter 2 in this thesis for Paper I.

We say that the tool is proof-producing because each at execution, the tool
derives a proof that relates the input logical functions with the synthesized
program output. The proof certi�es that the synthesized program will compute
the same values during execution, and modify the state in the same way, as
the input logical functions. As a consequence, any veri�cation result about the
logical functions can be made into a result about the synthesized program code.

All useful programs (i.e., those programs that produce something observ-
able) perform side e�ects. By side e�ects, we mean operations such as externally
visible modi�cations to memory, and performing I/O. The work in this paper al-
lows us to model side-e�ects and I/O inside the logic using monads [64], thereby
granting us greater expressivity when using HOL as a programming language.
These features were crucial to the development of the work in Papers II, III,
and IV, which are described below.

Statement of contribution. I implemented some of the examples discussed
in Paper I, including the OpenTheory proof checker which is the focus of
Paper II, and some other examples included in the source code repository for
the tool. I also contributed to the writing of the paper, particularly Section 2.7.

1.4.2 A Veri�ed Proof Checker for Higher-Order Logic

Paper II introduces a mechanized proof checker for proofs of theorems in HOL.
The checker is veri�ed to be sound down to the level of machine code that
executes it. To the best of our knowledge, it is the only proof checker for HOL
that has been veri�ed to this degree of rigor. See Chapter 3 in this thesis for
Paper II.

The checker itself is a computer program, implemented using HOL as a
programming language. It reads proofs of HOL theorems represented in the
OpenTheory article format [38] as input and uses the Candle kernel [41] to
check proof steps, and outputs a verdict stating whether the proof is valid.

The proof checker is veri�ed to be sound with respect to the semantics of
HOL, meaning that it is guaranteed to accept only proofs of true theorems. We
are able to obtain this soundness result because the checker uses, as its logical
kernel, the Candle theorem prover kernel [41], which is veri�ed to be sound.

The techniques presented in Paper I are used to synthesize stateful CakeML
from the proof checker function in the logic, and to transport its soundness
theorem to the level of CakeML code. The resulting CakeML code is compiled to
executable machine code in a proof-producing way, by executing the CakeML
compiler [61] inside the HOL4 logic. This approach transports the soundness
result of the checker further, to level of the machine code that executes the
proof checker.
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Statement of contribution. I am the sole author of Paper II. All work is
my own, aside from the initial implementation of the OpenTheory abstract
machine, which was done by Ramana Kumar before my work started.

1.4.3 Candle: A Veri�ed Implementation of Higher-Order

Logic

Paper III contributes a new, veri�ed interactive theorem prover for HOL, called
Candle. The theorem prover is built on the previously veri�ed Candle theorem
prover kernel [41], from which it also takes its name. Candle makes use of
the CakeML compiler’s new dynamic compilation primitive, called Eval1, to
provide interactivity and extensibility. This is achieved by allowing the user
to enter arbitrary program text at runtime, which is compiled and executed
dynamically.

We have proved a strong soundness result for Candle: anything that the
system claims to be a theorem is a valid statement according to a formal
semantics of HOL, regardless of what program text the user enters into the system
at runtime. Candle’s soundness theorem is stated in terms of the machine code
which executes the theorem prover; and it is, to our knowledge, the only such
result for a HOL theorem prover.

An important part of the work in Paper III was to make Candle as faithful
to HOL Light as possible. To this end, the CakeML compiler was extended with
a new parser frontend for the subset of OCaml that is used by the HOL Light
base libraries and theories. As a consequence, Candle can execute a substantial
part of HOL Light’s code and theories.

Statement of contribution. I set up the safety invariants for program values
that guarantees the veracity of theorem values at runtime, and proved the main
simulation theorem which states that these invariants are preserved by the
source language semantics. I proved most of the top-level soundness theorem
for the Candle ITP, and contributed to the writing of this paper.

1.4.4 Fast, Veri�ed Computation for Candle

Paper IV is about extending the Candle kernel with a veri�ed rule for compu-
tation. The rule has been shown to be sound with respect to Candle’s HOL
semantics, and has been fully integrated into the Candle theorem prover and
its soundness proofs.

Most modern HOL ITPs come with functionality for computing normal
forms of terms, but the implementations of these functions are either excessively
slow, or rely on unveri�ed computation outside of the theorem provers logic.

Safe computation functions in modern HOL ITPs are slow because the
LCF design of these systems require that any computations decompose to

1This work is not yet published.
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applications of primitive inference rules. Unfortunately, these rules usually
perform tedious type checking, and checks for α-conversion, and expensive
substitutions.

Some ITPs forego their trusted kernels altogether, and implement fast
computation rules using interpreters, and unveri�ed translations between
logical terms, and the internal language representation of the interpreter.

In Paper IV, we extend Candle’s veri�ed kernel with a computation function,
and update its veri�cation proofs. In doing so, we show that it is possible to
extend the trusted kernel of a HOL theorem prover with a fast interpreter for
computation without compromising soundness. The end-to-end soundness
proof of Candle has been updated to cover this addition to the kernel.

Paper IV is a technical report where the development is supported by completed
formal proofs.

Statement of contribution. I implemented the �rst three versions of the
interpreter that is used in computing normal forms of terms, and proved the
correctness of the interpreters, and proved the soundness of the computation
rules built around the interpreters. I integrated the computation rules and their
correctness results with the existing Candle ITP development, and updated
Candle’s soundness result. I contributed to the writing of this paper.

The rest of this thesis consists of four chapters, each corresponding to one of
the papers listed above.
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Chapter 2

Proof-Producing Synthesis of CakeML
from Monadic HOL Functions

Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar,
Magnus O. Myreen, Michael Norrish, and Yong Kiam Tan

Abstract. We introduce an automatic method for producing stateful ML
programs together with proofs of correctness from monadic functions in HOL.
Our mechanism supports references, exceptions, and I/O operations, and can
generate functions manipulating local state, which can then be encapsulated for
use in a pure context. We apply this approach to several non-trivial examples,
including the instruction encoder and register allocator of the otherwise pure
CakeML compiler, which now bene�ts from better runtime performance. This
development has been carried out in the HOL4 theorem prover.

Published in Journal of Automated Reasoning, 2020.
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2.1 Introduction

This paper is about bridging the gap between programs veri�ed in logic and
veri�ed implementations of those programs in a programming language (and
ultimately machine code). As a toy example, consider computing the nth
Fibonacci number. The following is a recursion equation for a function, fib, in
higher-order logic (HOL) that does the job:

fib n = if n < 2 then n else fib (n − 1) + fib (n − 2)

A hand-written implementation (shown here in CakeML [42], which has similar
syntax and semantics to Standard ML) would look something like this:

fun fiba i j n = if n = 0 then i else fiba j (i+j) (n-1);
(print (n2s (fiba 0 1 (s2n (hd (CommandLine.arguments())))));
print "\n")

handle _ => print_err ("usage: " ^ CommandLine.name() ^ " <n>\n");

In moving from mathematics to a real implementation, some issues are apparent:

(i) We use a tail-recursive linear-time algorithm, rather than the exponential-
time recursion equation.

(ii) The whole program is not a pure function: it does I/O, reading its ar-
gument from the command line and printing the answer to standard
output.

(iii) We use exception handling to deal with malformed inputs (if the argu-
ments do not start with a string representing a natural number, hd or
s2n may raise an exception).

The �rst of these issues (i) can easily be handled in the realm of logical
functions. We de�ne a tail-recursive version in logic:

fiba i j n = if n = 0 then i else fiba j (i + j ) (n − 1)

then produce a correctness theorem, ` ∀n. fiba 0 1 n = fib n , with a simple
inductive proof (a 5-line tactic proof in HOL4, not shown).

Now, because fiba is a logical function with an obvious computational coun-
terpart, we can use proof-producing synthesis techniques [50] to automatically
synthesise code veri�ed to compute it. We thereby produce something like
the �rst line of the CakeML code above, along with a theorem relating the
semantics of the synthesised code back to the function in logic.

But when it comes to handling the other two issues, (ii) and (iii), and
producing and verifying the remaining three lines of CakeML code, our options
are less straightforward. The �rst issue was easy because we were working with
a shallow embedding, where one writes the program as a function in logic and
proves properties about that function directly. Shallow embeddings rely on an
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fibm () =
do

args ← commandline (arguments ());
a ← hd args;
n ← s2n a;
stdio (print (n2s (fiba 0 1 n)));
stdio (print "\n")

od otherwise
do

name ← commandline (name ());
stdio (print_err ("usage: " ^ name ^ " <n>\n"))

od

Figure 2.1. The Fibonacci program written using do-notation in logic.

analogy between mathematical functions and procedures in a pure functional
programming language. However, e�ects like state, I/O, and exceptions, can
stretch this analogy too far. The alternative is a deep embedding: one writes
the program as an input to a formal semantics, which can accurately model
computational e�ects, and proves properties about its execution under those
semantics.

Proofs about shallow embeddings are relatively easy since they are in the
native language of the theorem prover, whereas proofs about deep embeddings
are �lled with tedious details because of the indirection through an explicit
semantics. Still, the explicit semantics make deep embeddings more realistic.
An intermediate option that is suitable for the e�ects we are interested in
— state/references, exceptions, and I/O — is to use monadic functions: one
writes (shallow) functions that represent computations, aided by a composition
operator (monadic bind) for stitching together e�ects. The monadic approach
to writing e�ectful code in a pure language may be familiar from the Haskell
language which made it popular.

For our nth Fibonacci example, we can model the e�ects of the whole
program with a monadic function, fibm, that calls the pure function fiba to do the
calculation. Figure 2.1 shows how fibm can be written using do-notation familiar
from Haskell. This is as close as we can get to capturing the e�ectful behaviour
of the desired CakeML program while remaining in a shallow embedding.
Now how can we produce real code along with a proof that it has the correct
semantics? If we use the proof-producing synthesis techniques mentioned
above [50], we produce pure CakeML code that exposes the monadic plumbing
in an explicit state-passing style. But we would prefer veri�ed e�ectful code
that uses native features of the target language (CakeML) to implement the
monadic e�ects.

In this paper, we present an automated technique for producing veri�ed
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e�ectful code that handles I/O, exceptions, and other issues arising in the move
from mathematics to real implementations. Our technique systematically es-
tablishes a connection between shallowly embedded functions in HOL with
monadic e�ects and deeply embedded programs in the impure functional lan-
guage CakeML. The synthesised code is e�cient insofar as it uses the native
e�ects of the target language and is close to what a real implementer would
write. For example, given the monadic fibm function above, our technique
produces essentially the same CakeML program as on the �rst page (but with a
let for every monad bind), together with a proof that the synthesised program
is a re�nement.

Contributions Our technique for producing veri�ed e�ectful code from
monadic functions builds on a previous limited approach [50]. The new gener-
alised method adds support for the following features:

• global references and exceptions (as before, but generalised),
• mutable arrays (both �xed and variable size),
• input/output (I/O) e�ects,
• local mutable arrays and references, which can be integrated seamlessly

with code synthesis for otherwise pure functions,
• composable e�ects, whereby di�erent state and exception monads can

be combined using a lifting operator, and,
• support for recursive programs where termination depends on monadic

state.
As a result, we can now write whole programs as shallow embeddings and obtain
real veri�ed code via synthesis. Prior to this work, whole program veri�cation
in CakeML involved manual deep embedding proofs for (at the very least) the
I/O wrapper. To exercise our toolchain, we apply it to several examples:

• the nth Fibonacci example already seen (exceptions, I/O)
• the Floyd Warshall algorithm for �nding shortest paths (arrays)
• an in-place quicksort algorithm (polymorphic local arrays, exceptions)
• the instruction encoder in the CakeML compiler’s assembler (local arrays)
• the CakeML compiler’s register allocator (local refs, arrays)
• the Candle theorem prover’s kernel [41] (global refs, exceptions)
• an OpenTheory [37] article checker (global refs, exceptions, I/O)
In §2.6, we compare runtimes with the previous non-stateful versions of

CakeML’s register allocator and instruction encoder; and for the OpenTheory
reader we compare the amount of code/proof required before and after using
our technique.

The HOL4 development is at https://code.cakeml.org; our new synthe-
sis tool is at https://code.cakeml.org/tree/master/translator/monadic.
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Additions. This paper is an extended version of our earlier conference pa-
per [35]. The following contributions are new to this work: a brief discussion
of how polymorphic functions that use type variables in their local state can be
synthesized (§2.4), a section on synthesis of recursive programs where termina-
tion depends on the monadic state (§2.5), and new case studies using our tool,
e.g., quicksort with polymorphic local arrays (§2.4), and the CakeML compiler’s
instruction encoder (§2.6).

2.2 High-level ideas

This paper combines the following three concepts in order to deliver the con-
tributions listed above. The main ideas will be described brie�y in this section,
while subsequent sections will provide details. The three concepts are:

(i) synthesis of stateful ML code as described in our previous work [50],

(ii) separation logic [55] as used by characteristic formulae for CakeML [29],

(iii) a new abstract synthesis mode for the CakeML synthesis tools [50].

Our previous work on proof-producing synthesis of stateful ML (i) was
severely limited by the requirement to have a hard-coded invariant on the
program’s state. There was no support for I/O and all references had to be
declared globally. At the time of its development, we did not have a satisfactory
way of generalising the hard-coded state invariant.

In this paper we show (in §2.3) that the separation logic of CF (ii) can be used
to neatly generalise the hard-coded state invariant of our prior work (i). CF-
style separation logic easily supports references and arrays, including resizable
arrays, and, supports I/O too because it allows us to treat I/O components as if
they are heap components. Furthermore, by carefully designing the integration
of (i) and (ii), we retain the frame rule from the separation logic. In the context
of code synthesis, this frame rule allows us to implement a lifting feature for
changing the type of the state-and-exception monads. Being able to change
types in the monads allows us to develop reusable libraries — e.g. veri�ed �le
I/O functions — that users can lift into the monad that is appropriate for their
application.

The combination of (i) and (ii) does not by itself support synthesis of code
with local state due to inherited limitations of (i), wherein the generated code
must be produced as a concrete list of global declarations. For example, if
monadic functions, say foo and bar, refer to a common reference, say r, then r
must be de�ned globally:

val r = ref 0;
fun foo n = ...; (* code that uses r *)
fun bar n = ...; (* code that uses r and calls foo *)
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In this paper (in §2.4), we introduce a new abstract synthesis mode (iii)
which removes the requirement of generating code that only consists of a list
of global declarations, and, as a result, we are now able to synthesise code such
as the following, where the reference r is a local variable:

fun pure_bar k n =
let
val r = ref k
fun foo n = ... (* code that uses r *)
fun bar n = ... (* code that uses r and calls foo *)

in Success (bar n) end
handle e => Failure e;

In the input to the synthesis tool, this declaration and initialisation of local
state corresponds to applying the state-and-exception monad. Expressions that
fully apply the state-and-exception monad can subsequently be used in the
synthesis of pure CakeML code: the monadic synthesis tool can prove a pure
speci�cation for such expressions, thereby encapsulating the monadic features.

2.3 Generalised approach to synthesis of

stateful ML code

This section describes how our previous approach to proof-producing synthesis
of stateful ML code [50] has been generalised. In particular, we explain how
the separation logic from our previous work on characteristic formulae [29]
has been used for the generalisation (§2.3.3); and how this new approach
adds support for user-de�ned references, �xed- and variable-length arrays,
I/O functions (§2.3.4), and a handy feature for reusing state-and-exception
monads (§2.3.5).

In order to make this paper as self-contained as possible, we start with a
brief look at how the semantics of CakeML is de�ned (§2.3.1) and how our
previous work on synthesis of pure CakeML code works (§2.3.2), since the new
synthesis method for stateful code is an evolution of the original approach for
pure code.

2.3.1 Preliminaries: CakeML semantics

The semantics of the CakeML language is de�ned in the functional big-step
style [53], which means that the semantics is an interpreter de�ned as a func-
tional program in the logic of a theorem prover.

The de�nition of the semantics is layered. At the top-level the semantics
function de�nes what the observable I/O events are for a given whole program.
However, more relevant to the presentation in this paper is the next layer down:
a function called evaluate that describes exactly how expressions evaluate. The
type of the evaluate function is shown below. This function takes as arguments
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a state (with a type variable for the I/O environment), a value environment,
and a list of expressions to evaluate. It returns a new state and a value result.

evaluate : δ state→ v sem_env→ exp list→ δ state× (v list, v) result

The semantics state is de�ned as the record type below. The �elds relevant
for this presentation are: refs, clock and �i. The refs �eld is a list of store values
that acts as a mapping from reference names (list index) to reference and array
values (list element). The clock is a logical clock for the functional big-step
style. The clock allows us to prove termination of evaluate and is, at the same
time, used for reasoning about divergence. Lastly, �i is the parametrised oracle
model of the foreign function interface, i.e. I/O environment.

δ state = 〈| clock : num ; refs : store_v list ; �i : δ �i_state ; . . . |〉
where store_v = Refv v | W8array (word8 list) | Varray (v list)

A call to the function evaluate returns one of two results: Rval res for
successfully terminating computations, and Rerr err for stuck computations.

Successful computations, Rval res , return a list res of CakeML values.
CakeML values are modelled in the semantics using a datatype called v. This
datatype includes (among other things) constructors for (mutually recursive)
closures (Closure and Recclosure), datatype constructor values (Conv), and literal
values (Litv) such as integers, strings, characters etc. These will be explained
when needed in the rest of the paper.

Stuck computations, Rerr err , carry an error value err that is one of the
following. For this paper, Rraise exc is the most relevant case.

• Rraise exc indicates that evaluation results in an uncaught exception exc.
These exceptions can be caught with a handle in CakeML.

• Rabort Rtimeout_error indicates that evaluation of the expression con-
sumes all of the logical clock. Programs that hit this error for all initial
values of the clock are considered diverging.

• Rabort Rtype_error, for other kinds of errors, e.g. when evaluating ill-
typed expressions, or attempting to access unbound variables.

2.3.2 Preliminaries: Synthesis of pure ML code

Our previous work [50] describes a proof-producing algorithm for synthesising
CakeML functions from functions in higher-order logic. Here proof-producing
means that each execution proves a theorem (called a certi�cate theorem)
guaranteeing correctness of that execution of the algorithm. In our setting,
these theorems relate the CakeML semantics of the synthesised code with the
given HOL function.

The whole approach is centred around a systematic way of proving theorems
relating HOL functions (i.e. HOL terms) with CakeML expressions. In order

16



for us to state relations between HOL terms and CakeML expressions, we need
a way to state relations between HOL terms and CakeML values. For this we
use relations (int, list ·, · −→ ·, etc.) which we call re�nement invariants. The
de�nition of the simple int re�nement invariant is shown below: int i v is true
if CakeML value v of type v represents the HOL integer i of type int.

int i = (λ v . v = Litv (IntLit i))

Most re�nement invariants are more complicated, e.g. list (list int) xs v states
that CakeML value v represents lists of int lists xs of HOL type int list list.

We now turn to CakeML expressions: we de�ne a predicate called Eval in
order to conveniently state relationships between HOL terms and CakeML
expressions. The intuition is that Eval env exp P is true if exp evaluates (in
environment env ) to some result res (of HOL type v) such that P holds for res ,
i.e. P res . The formal de�nition below is cluttered by details regarding the
clock and references: there must be a large enough clock and exp may allocate
new references, refs ′, but must not modify any existing references, refs . We
express this restriction on the references using list append ++. Note that any
list index that can be looked up in refs has the same look up in refs ++ refs ′.

Eval env exp P =
∀ refs.
∃ res refs ′.

eval_rel (empty with refs := refs) env exp
(empty with refs := refs ++ refs ′) res ∧ P res

The use of Eval and the main idea behind the synthesis algorithm is most
conveniently described using an example. The example we consider here is the
following HOL function:

add1 = (λ x . x + 1)

The main part of the synthesis algorithm proceeds as a syntactic bottom-up
pass over the given HOL term. In this case, the bottom-up pass traverses HOL
term λ x . x + 1. The result of each stage of the pass is a theorem stated in
terms of Eval in the format shown below. Such theorems state a connection
between a HOL term t and some generated code w.r.t. a re�nement invariant
ref _inv that is appropriate for the type of t .

general format: assumptions ⇒ Eval env code (ref _inv t)

For our little example, the algorithm derives the following theorems for the
subterms x and 1, which are the leaves of the HOL term. Here and elsewhere in
this paper, we display CakeML abstract syntax as concrete syntax inside b · · · c,
i.e. b1c is actually the CakeML expression Lit (IntLit 1) in the theorem prover
HOL4; similarly bxc is actually displayed as Var (Short "x") in HOL4. Note that
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both theorems below are of the required general format.

` T ⇒ Eval env b1c (int 1)

` Eval env bxc (int x ) ⇒ Eval env bxc (int x )
(2.1)

The algorithm uses theorems (2.1) when proving a theorem for the com-
pound expression x + 1. The process is aided by an auxiliary lemma for integer
addition, shown below. The synthesis algorithm is supported by several such
pre-proved lemmas for various common operations.

` Eval env x1 (int n1) ⇒
Eval env x2 (int n2) ⇒
Eval env bx1 + x2c (int (n1 + n2))

By choosing the right specialisations for the variables, x1, x2, n1, n2, the algo-
rithm derives the following theorem for the body of the running example. Here
the assumption on evaluation of bxc was inherited from (2.1).

` Eval env bxc (int x ) ⇒ Eval env bx + 1c (int (x + 1)) (2.2)

Next, the algorithm needs to introduce the λ-binder in λ x . x + 1. This
can be done by instantiation of the following pre-proved lemma. Note that
the lemma below introduces a re�nement invariant for function types, −→,
which combines re�nement invariants for the input and output types of the
function [50].

` (∀ v x . a x v ⇒ Eval (env [n 7→ v ]) body (b (f x ))) ⇒
Eval env bfn n => bodyc ((a −→ b) f )

An appropriate instantiation and combination with (2.2) produces the following:

` T ⇒ Eval env bfn x => x + 1c ((int −→ int) (λ x . x + 1))

which, after only minor reformulation, becomes a certi�cate theorem for the
given HOL function add1:

` Eval env bfn x => x + 1c ((int −→ int) add1)

Additional notes. The main part of the synthesis algorithm is always a
bottom-up traversal as described above. However, synthesis of recursive func-
tions requires an additional post-processing phase which involves an automatic
induction proof. We omit a detailed description of such induction proofs since
we have described our solution previously [50]. However, we discuss our solu-
tion at a high level in §2.5.3 where we explain how the previously published
approach has been modi�ed to tackle monadic programs in which termination
depends on the monadic state.
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2.3.3 Synthesis of stateful ML code

Our algorithm for synthesis of stateful ML is very similar to the algorithm
described above for synthesis of pure CakeML code. The main di�erences are:

• the input HOL terms must be written in a state-and-exception monad,
and

• instead of Eval and · −→ ·, the derived theorems use EvalM and · −→M ·,

where EvalM and · −→M · relate the monad’s state to the references and foreign
function interface of the underlying CakeML state (�elds refs and �i). These
concepts will be described below.

Generic state-and-exceptionmonad. The new generalised synthesis work-
�ow uses the following state-and-exception monad (α, β, γ) M, where α is
the state type, β is the return type, and γ is the exception type.

(α, β, γ) M = α → (β, γ) exc × α

where (β, γ) exc = Success β | Failure γ

We de�ne the following interface for this monad type. Note that syntactic
sugar is often used: in our case, we write do n ← foo; return (bar n) od (as
was done in §2.1) when we mean bind foo (λn. return (bar n)).

return x = λ s. (Success x ,s)

bind x f =
λ s. case x s of (Success y ,s) ⇒ f y s | (Failure x ,s) ⇒ (Failure x ,s)

x otherwise y =
λ s. case x s of (Success v ,s) ⇒ (Success v ,s) | (Failure e ,s) ⇒ y s

Functions that update the content of state can only be de�ned once the state
type is instantiated. A function for changing a monad M to have a di�erent
state type is introduced in §2.3.5.

De�nitions and lemmas for synthesis. We de�ne EvalM as follows. A
CakeML source expression exp is considered to satisfy an execution relation
P if for any CakeML state s , which is related by state_rel to the state monad
state st and state assertion H , the CakeML expression exp evaluates to a result
res such that the relation P accepts the transition and state_rel_frame holds
for state assertion H . The auxiliary functions state_rel and state_rel_frame will
be described below. The �rst argument ro can be used to restrict e�ects to
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references only, as described a few paragraphs further down.

EvalM ro env st exp P H =
∀ s.

state_rel H st s ⇒
∃ s2 res st2 ck .

(evaluate (s with clock := ck) env [exp] = (s2,res)) ∧
P st (st2,res) ∧ state_rel_frame ro H (st ,s) (st2,s2)

In the de�nition above, state_rel and state_rel_frame are used to check that
the user-speci�ed state assertion H relates the CakeML states and the monad
states. Furthermore, state_rel_frame ensures that the separation logic frame
rule is true. Both use the separation logic set-up from our previous work on
characteristic formulae for CakeML [29], where we de�ne a function st2heap
which, given a projection p and CakeML state s , turns the CakeML state into a
set representation of the reference store and foreign-function interface (used
for I/O).

The H in the de�nition above is a pair (h ,p) containing a heap assertion
h and the projection p. We de�ne state_rel (h ,p) st s to state that the heap
assertion produced by applying h to the current monad state st must be true
for some subset produced by st2heap when applied to the CakeML state s . Here
* is the separating conjunction and T is true for any heap.

state_rel (h ,p) st s = (h st * T) (st2heap p s)

The relation state_rel_frame states: any frame F that is true separately from
h st1 for the initial state is also true for the �nal state; and if the references-
only ro con�guration is set, then the only di�erence in the states must be in
the references and clock, i.e. no I/O operations are permitted. The ro �ag is
instantiated to true when a pure speci�cation (Eval) is proved for local state
(§2.4).

state_rel_frame ro (h ,p) (st1,s1) (st2,s2) =
(ro ⇒ ∃ refs. s2 = s1 with refs := refs) ∧
∀F .

(h st1 * F ) (st2heap p s1) ⇒
(h st2 * F * T) (st2heap p s2)

We prove lemmas to aid the synthesis algorithm in construction of proofs.
The lemmas shown in this paper use the following de�nition of monad.

monad a b x st1 (st2,res) =
case (x st1,res) of

((Success y ,st),Rval [v ]) ⇒ (st = st2) ∧ a y v
| ((Failure e ,st),Rerr (Rraise v)) ⇒ (st = st2) ∧ b e v
| _ ⇒ F

Synthesis makes use of the following two lemmas in proofs involving monadic
return and bind. For return x , synthesis proves an Eval-theorem for x . For bind,
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it proves a theorem that �ts the shape of the �rst four lines of the lemma and
returns a theorem consisting of the last two lines, appropriately instantiated.

` Eval env exp (a x ) ⇒
EvalM ro env st exp (monad a b (return x )) H

` ((assums1 ⇒ EvalM ro env st e1 (monad b c x ) H ) ∧
∀ z v .

b z v ∧ assums2 z ⇒
EvalM ro (env [n 7→ v ]) (snd (x st)) e2 (monad a c (f z )) H ) ⇒

assums1 ∧ (∀ z . (fst (x st) = Success z ) ⇒ assums2 z ) ⇒
EvalM ro env st blet n = e1 in e2c (monad a c (bind x f )) H

2.3.4 References, arrays and I/O

The synthesis algorithm uses specialised lemmas when the generic state-and-
exception monad has been instantiated. Consider the following instantiation of
the monad’s state type to a record type. The programmer’s intention is that the
lists are to be synthesised to arrays in CakeML and the I/O component IO_fs is
a model of a �le system (taken from a library).

example_state =
〈| ref1 : int; farray1 : int list; rarray1 : int list; stdio : IO_fs |〉

With the help of getter- and setter-functions and library functions for �le I/O,
users can conveniently write monadic functions that operate over this state
type.

When it comes to synthesis, the automation instantiates H with an ap-
propriate heap assertion, in this instance: ASSERT. The user has informed
the synthesis tool that farray1 is to be a �xed-size array and rarray1 is to be
a resizable-size array. A resizable-array is implemented as a reference that
contains an array, since CakeML (like SML) does not directly support resizing
arrays. Below, REF_REL int ref1_loc st .ref1 asserts that int relates the value held
in a reference at a �xed store location ref1_loc to the integer in st .ref1. Similarly,
ARRAY_REL and RARRAY_REL specify a connection for the array �elds. Lastly,
STDIO is a heap assertion for the �le I/O taken from a library.

ASSERT st =
REF_REL int ref1_loc st .ref1 * RARRAY_REL int rarray1_loc st .rarray1 *

ARRAY_REL int farray1_loc st .farray1 * STDIO st .stdio

Automation specialises pre-proved EvalM lemmas for each term that might
be encountered in the monadic functions. As an example, a monadic function
might contain an automatically de�ned function update_farray1 for updating
array farray1. Anticipating this, synthesis automation can, at set-up time, au-
tomatically derive the following lemma which it can use when it encounters
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update_farray1.

` Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup_var bfarray1c env = Some farray1_loc) ⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x )) (ASSERT,p)

2.3.5 Combining monad state types

Previously developed monadic functions (e.g. from an existing library) can be
used as part of a larger context, by combining state-and-exception monads with
di�erent state types. Consider the case of the �le I/O in the example from above.
The following EvalM theorem has been proved in the CakeML basis library.

` Eval env e (string x ) ∧
(lookup_var bprintc env = Some print_v) ⇒
EvalM F env st bprint ec (monad unit b (print x )) (STDIO,p)

This can be used directly if the state type of the monad is the IO_fs type.
However, our example above uses example_state as the state type.

To overcome such type mismatches, we de�ne a function li�M which can
bring a monadic operation de�ned in libraries into the required context. The
type of li�M r w is (α, β, γ) M → (ε, β, γ) M, for appropriate r and w .

li�M r w op = λ s. let (ret ,new) = op (r s) in (ret ,w (K new) s)

Our li�M function changes the state type. A simpler lifting operation can be
used to change the exception type.

For our example, we de�ne stdio f as a function that performs f on the
IO_fs-part of a example_state. (The fib example in §2.1 used a similar stdio.)

stdio = li�M (λ s. s.stdio) (λ f s. s with stdio updated_by f )

Our synthesis mechanism automatically derives a lemma that can transfer
any EvalM result for the �le I/O model to a similar EvalM result wrapped in the
stdio function. Such lemmas are possible because of the separation logic frame
rule that is part of EvalM. The generic lemma is the following:

` (∀ st . EvalM ro env st exp (monad a b op) (STDIO,p)) ⇒
∀ st . EvalM ro env st exp (monad a b (stdio op)) (ASSERT,p)

And the following is the transferred lemma, which enables synthesis of HOL
terms of the form stdio (print x ) for Eval-synthesisable x .

` Eval env e (string x ) ∧
(lookup_var bprintc env = Some print_v) ⇒
EvalM F env st bprint ec (monad unit exc (stdio (print x ))) (ASSERT,p)

Changing the monad state type comes at no additional cost to the user; our
tool is able to derive both the generic and transferred EvalM lemmas, when
provided with the original EvalM result.
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2.4 Local state and the abstract synthesis mode

This section explains how we have adapted the method described above to also
support generation of code that uses local state and local exceptions. These
features enable use of stateful code (EvalM) in a pure context (Eval). We used
these features to signi�cantly speed up parts of the CakeML compiler (see §2.6).

In the monadic functions, users indicate that they want local state to be
generated by using the following run function. In the logic, the run function
essentially just applies a monadic function m to an explicitly provided state st .

run : (α, β, γ) M→ α→ (β, γ) exc
run m st = fst (m st)

In the generated code, an application of run to a concrete monadic function,
say bar, results in code of the following form:

fun run_bar k n =
let
val r = ref ... (* allocate, initialise, let-bind all local state *)
fun foo n = ... (* all auxiliary funs that depend on local state *)
fun bar n = ... (* define the main monadic function *)

in Success (bar n) end (* wrap normal result in Success constructor *)
handle e => Failure e; (* wrap any exception in Failure constructor *)

Synthesis of locally e�ectful code is made complicated in our setting for
two reasons: (i) there are no �xed locations where the references and arrays
are stored, e.g. we cannot de�ne ref1_loc as used in the de�nition of ASSERT in
§2.3.4; and (ii) the local names of state components must be in scope for all of
the function de�nitions that depend on local state.

Our solution to challenge (i) is to leave the location values as variables (loc1,
loc2, loc3) in the heap assertion when synthesising local state. To illustrate, we
will adapt the example_state from §2.3.4: we omit IO_fs in the state because I/O
cannot be made local. The local-state enabled heap assertion is:

LOCAL_ASSERT loc1 loc2 loc3 st =
REF_REL int loc1 st .ref1 * RARRAY_REL int loc2 st .rarray1 *

ARRAY_REL int loc3 st .farray1

The lemmas referring to local state now assume they can �nd the right variable
locations with variable look-ups.

` Eval env e1 (num n) ∧ Eval env e2 (int x ) ∧
(lookup_var bfarray1c) env = Some loc3) ⇒
EvalM ro env st bArray.update (farray1,e1,e2)c
(monad unit exc (update_farray1 n x )) (LOCAL_ASSERT loc1 loc2 loc3,p)

Challenge (ii) was caused by technical details of our previous synthesis
methods. The previous version was set up to only produce top-level declarations,
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which is incompatible with the requirement to have local (not globally �xed)
state declarations shared between several functions. The requirement to only
have top-level declarations arose from our desire to keep things simple: each
synthesised function is attached to the end of a concrete linear program that is
being built. It is bene�cial to be concrete because then each assumption on the
lexical environment where the function is de�ned can be proved immediately
on de�nition. We will call this old approach the concrete mode of synthesis,
since it eagerly builds a concrete program.

In order to support having functions access local state, we implement a
new abstract mode of synthesis. In the abstract mode, each assumption on the
lexical environment is left as an unproved side condition as long as possible.
This allows us to de�ne functions in a dynamic environment.

To prove a pure speci�cation (Eval) from the EvalM theorems, the automa-
tion �rst proves that the generated state-allocation and -initialisation code
establishes the relevant heap assertion (e.g. LOCAL_ASSERT); it then composes
the abstractly synthesised code while proving the environment-related side
conditions (e.g. presence of loc3). The �nal proof of an Eval theorem requires
instantiating the references-only ro �ag to true, in order to know that no I/O
occurs (§2.3.3).

Type variables in local monadic state

Our previous approach [50] allowed synthesis of (pure) polymorphic functions.
Our new mechanism is able to support the same level of generality by permitting
type variables in the type of monadic state that is used locally. As an example,
consider a monadic implementation of an in-place quicksort algorithm, quicksort,
with the following type signature:

quicksort : α list → (α → α → bool) → (α state, α list, exn) M
where α state = 〈| arr : α list |〉

The function quicksort takes a list of values of type α and an ordering on
α as input, producing a sorted list as output. However, internally it copies
the input list into a mutable array in order to perform fast in-place random
accesses.

The heap assertion for α state is called POLY_ASSERT, and is de�ned below:

POLY_ASSERT A loc st = RARRAY_REL A loc st .arr

Here, A is a re�nement invariant for logical values of type α. This parametri-
sation over state type variables is similar to the way in which location values
were parametrised to solve challenge (i) above.

Applying run to quicksort, and synthesising CakeML from the result gives
the following certi�cate theorem which makes the stateful quicksort callable
from pure translations.

` (list a −→ (a −→ a −→ bool) −→ exc_type (list a) exn)
run_quicksort brun_quicksortc
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Here exc_type (list a) exn is the re�nement invariant for type (α list, exn) exc.
For the quicksort example, we have manually proved that quicksort will

always return a Success value, provided the comparison function orders values
of type α. The result of this e�ort is CakeML code for quicksort that uses state
internally, but can be used as if it is a completely pure function without any
use of state or exceptions.

2.5 Termination that depends on monadic state

In this section, we describe how the proof-producing synthesis method in
§2.3 has been extended to deal with a class of recursive monadic functions
whose termination depends on the state hidden in the monad. This class of
functions creates new di�culties, as (i) the HOL4 function de�nition system is
unable to prove termination of these functions; and, (ii) our synthesis method
relies on induction theorems produced by the de�nition system to discharge
preconditions during synthesis.

We address issue (i) by extending the HOL4 de�nition system with a set
of congruence rewrites for the monadic bind operation, bind (§2.5.2). We then
explain, at a high level, how the proof-producing synthesis in §2.3 is extended
to deal with the preconditions that arise when synthesising code from recursive
monadic functions (§2.5.3).

We begin with a brief overview of how recursive function de�nitions are
handled by the HOL4 function de�nition system (§2.5.1).

2.5.1 Preliminaries: function de�nitions in HOL4

In order to accept recursive function de�nitions, the HOL4 system requires a
well-founded relation to be found between the arguments of the function, and
those of recursive applications. The system automatically extracts conditions
that this relation must satisfy, attempts to guess a well-founded relation based
on these conditions, and then uses this relation to solve the termination goal.

Function de�nitions involving higher-order functions (e.g. bind) sometimes
causes the system to derive unprovable termination conditions, if it cannot
extract enough information about recursive applications. When this occurs, the
user must provide a congruence theorem that speci�es the context of the higher-
order function. The system uses this theorem to derive correct termination
conditions, by rewriting recursive applications.

2.5.2 Termination of recursive monadic functions

By default, the HOL4 system is unable to automatically prove termination
of recursive monadic functions involving bind. To aid the system in extract-
ing provable termination conditions, we introduce the following congruence
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theorem for bind:

` (x = x ′) ∧ (s = s ′) ∧
(∀ y s ′′. (x ′ s ′ = (Success y ,s ′′)) ⇒ (f y s ′′ = f ′ y s ′′)) ⇒
(bind x f s = bind x ′ f ′ s ′)

(2.3)

Theorem (2.3) expresses a rewrite of the term bind x f s in terms of rewrites
involving its component subterms (x , f , and s), but allows for the assumption
that x ′ s ′ (the rewritten e�ect) must execute successfully.

However, rewriting de�nitions with (2.3) is not always su�cient: in addition
to ensuring that the e�ect x in bind x f executed successfully, the HOL4
system must also know the value and state resulting from its execution. This
problem arises because the monadic state argument to bind is left implicit in
user de�nitions. We address this issue by rewriting the de�ning equations of
monadic functions using η-expansion before passing them to the de�nition
system, making all partial bind applications syntactically fully applied. The
whole process is automated so that it is opaque to the user, allowing de�nition
of recursive monadic functions with no additional e�ort.

2.5.3 Synthesising ML from recursive monadic functions

The proof-producing synthesis method described in §2.3.2 is syntax-directed
and proceeds in a bottom-up manner. For recursive functions, a tweak to this
strategy is required, as bottom-up traversal would require any recursive calls
to be treated before the calling function (this is clearly cyclic).

We begin with a brief explanation of how our previous (pure) synthesis
tool [50] tackles recursive functions, before outlining how our new approach
builds on this.

Pure recursive functions. As an example, consider the function gcd that
computes the greatest common divisor of two positive integers:

gcd m n = if n > 0 then gcd n (m mod n) else m

Before traversing the function body of gcd in a bottom-up manner, we simply as-
sume the desired Eval result to hold for all recursive applications in the function
de�nition, and record their arguments during synthesis. This results in the fol-
lowing Eval theorem for gcd (where Eq is de�ned as Eq a x = (λ y v . (x = y ) ∧ a y v ),
and is used to record arguments for recursive applications):

` (n > 0 ⇒
Eval env bgcdc ((Eq int n −→ Eq int (m mod n) −→ int) gcd)) ⇒
Eval env bgcdc ((Eq int m −→ Eq int n −→ int) gcd)

(2.4)

and below is the desired Eval result for gcd:

` Eval env bgcdc ((Eq int m −→ Eq int n −→ int) gcd) (2.5)
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Theorems (2.4) and (2.5) match the shape of the hypothesis and conclusion
(respectively) of the induction theorem for gcd:

` (∀m n. (n > 0 ⇒ P n (m mod n)) ⇒ P m n) ⇒ ∀m n. P m n

By instantiating this induction theorem appropriately, the preconditions in (2.4)
can be discharged (and if automatic proof fails, the goal is left for the user to
prove).

Monadic recursive functions. Function de�nitions whose termination de-
pends on the monad give rise to induction theorems which also depend on
the monad. This creates issues, as the monad argument is left implicit in the
de�nition. As an example, here is a function linear_search that searches through
an array for a value:

linear_search val idx =
do

len ← arr_length;
if idx ≥ len then return None else
do

elem ← arr_sub idx ;
if elem = val then return (Some idx ) else linear_search val (idx + 1)

od
od

When given the above de�nition, the HOL4 system automatically derives the
following induction theorem:

` (∀ val idx s.
(∀ len s ′ elem s ′′.

(arr_length s = (Success len ,s ′)) ∧ ¬(idx ≥ len) ∧
(arr_sub idx s ′ = (Success elem ,s ′′)) ∧ elem 6= val ⇒
P val (idx + 1) s ′′) ⇒

P val idx s) ⇒
∀ val idx s. P val idx s

(2.6)

The context of recursive applications (arr_length and arr_sub) has been extracted
correctly by HOL4, using the congruence theorem (2.3) and automated η-
expansion for bind (see §2.5.2).

However, there is now a mismatch between the desired form of the EvalM
result and the conclusion of the induction theorem: the latter depends explictly
on the state, but the function depends on it only implicitly. We have modi�ed
our synthesis tool to account for this, in order to correctly discharge the nec-
essary preconditions as above. When preconditions cannot be automatically
discharged, they are left as proof obligations to the user, and the partial results
derived are saved in the HOL4 theorem database.
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2.6 Case studies and experiments

In this section, we present the runtime and proof size results of applying our
method to some case studies.

Register allocation. The CakeML compiler’s register allocator is written
with a state (and exception) monad but it was previously synthesized to pure
CakeML code. We updated it to use the new synthesis tool, resulting in the
automatic generation of stateful CakeML code. The allocator bene�ts signi�-
cantly from this change because it can now make use of CakeML arrays via
the synthesis tool. It was previously con�ned to using tree-like functional
arrays for its internal state, leading to logarithmic access overheads. This is
not a speci�c issue for the CakeML compiler; a veri�ed register allocator for
CompCert [12] also reported log-factor overheads due to (functional) array
accesses.

Tests were carried out using versions of the bootstrapped CakeML compiler.
We ran each test 50 times on the same input program, recording time elapsed in
each compiler phase. For each test, we also compared the resulting executables
10 times, to con�rm that both compilers generated code of comparable quality
(i.e. runtime performance). Performance experiments were carried out on an
Intel i7-2600 running at 3.4GHz with 16 GB of RAM. The results are summarized
in Table 2.1. Full data is available at https://cakeml.org/ijcar18.zip. 1

Table 2.1. Compilation and run times (in seconds) for various CakeML bench-
marks. These compare a version of the CakeML compiler where the register
allocator is purely functional (old) against a version which uses local state and
arrays (new).

Timing

Benchmark

kn
uth-

ben
dix sm

ith
-

norm
al-

for
m tai

l-

�b pid
ig-

its life log
ic

Compile (old) 18.15 16.34 8.86 9.16 9.51 12.31
Run (old) 19.58 23.53 16.60 15.47 25.59 23.33

Compile (new) 1.21 1.46 0.99 1.02 1.05 1.62
Run (new) 19.90 22.91 16.70 15.64 24.17 22.33

In the largest program (knuth-bendix), the new register allocator ran 15
times faster (with a wide 95% CI of 11.76–20.93 due in turn to a high standard
deviation on the runtimes for the old code). In the smaller pidigits bench-
mark, the new register allocator ran 9.01 times faster (95% CI of 9.01–9.02).

1These tests were performed for the earlier conference version of this paper [35] comparing two
earlier versions of the CakeML compiler. The compiler has changed signi�cantly since then but we
have we kept these experiments because they provide a fairer comparison of register allocation
performance with/without using the synthesis tool to generate stateful code.
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Across 6 example input programs, we saw ratios of runtimes between 7.58 and
15.06. Register allocation was previously such a signi�cant part of the compiler
runtime that this improvement results in runtime improvements for the whole
compiler (on these benchmark programs) of factors between 2 and 9 times.

Speeding up the CakeML compiler. The register allocator exempli�es
one way the synthesis tool can be used to improve existing, veri�ed CakeML
programs and in particular, the CakeML compiler itself. Brie�y, the steps are:
(i) re-implement slow parts of the compiler with, e.g., an appropriate state
monad, (ii) verify that this new implementation produces the same result as the
existing (veri�ed) implementation, (iii) swap in the new implementation, which
synthesizes to stateful code, during the bootstrap of the CakeML compiler.
(iv) The preceeding steps can be repeated as desired, relying on the automated
synthesis tool for quick iteration.

As another example, we used the synthesis tool to improve the assembly
phase of the compiler. A major part of time spent in this phase is running the
instruction encoder, which performs several word arithmetic operations when it
computes the byte-level representation of each instruction. However, duplicate
instructions appear very frequently, so we implemented a cache of the byte-level
representations backed by a hash table represented as a state monad (i). This
caching implementation is then veri�ed (ii), before a veri�ed implementation
is synthesized where the hash table is implemented as an array (iii). We also
iterated through several candidate hash functions (iv). Overall, this change
took about 1-person week to implement, verify, and integrate in the CakeML
compiler. We benchmarked the cross-compile bootstrap times of the CakeML
compiler after this change to measure its impact across di�erent CakeML
compilation targets. Results are summarized in Table 2.2. Across compilation
targets, the assembly phase is between 1.25 to 1.64 times faster.

Table 2.2. CakeML compiler cross-compile bootstrap time (in seconds) spent in
the assembly phase for its various compilation targets. † For the ARMv8 target,
the cross-compile bootstrap does not run to completion at the point of writing.
This is for reasons unrelated to the changes in this paper.

Timing

Cross-Compilation Target

ARMv6 ARMv8 (†) MIPS RISC-V x64
Assembly (old) 8.86 - 8.69 9.21 8.27
Assembly (new) 6.43 - 6.94 6.7 5.04

OpenTheory article checker. The type changing feature from §2.3.5 enabled
us to produce an OpenTheory [37] article checker with our new synthesis
approach, and reduce the amount of manual proof required in a previous
version. The checker reads articles from the �le system, and performs each
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logical inference in the OpenTheory framework using the veri�ed Candle
kernel [41]. Previously, the I/O code for the checker was implemented in
stateful CakeML, and veri�ed manually using characteristic formulae. By
replacing the manually veri�ed I/O wrapper by monadic code we removed 400
lines of tedious manual proof.

2.7 Related work

E�ectful code using monads. Our work on encapsulating stateful computa-
tions (§2.4) in pure programs is similar in purpose to that of the ST monad [44].
The main di�erence is how this encapsulation is performed: the ST monad relies
on parametric polymorphism to prevent references from escaping their scope,
whereas we utilise lexical scoping in synthesised code to achieve a similar
e�ect.

Imperative HOL by Bulwahn et al. [14] is a framework for implementing
and reasoning about e�ectful programs in Isabelle/HOL. Monadic functions are
used to describe stateful computations which act on the heap, in a similar way
as §2.3 but with some important di�erences. Instead of using a state monad,
the authors introduce a polymorphic heap monad – similar in spirit to the
ST monad, but without encapsulation – where polymorphism is achieved by
mapping HOL types to the natural numbers. Contrary to our approach, this
allows for heap elements (e.g. references) to be declared on-the-�y and used as
�rst-class values. The drawback, however, is that only countable types can be
stored on the heap; in particular, the heap monad does not admit function-typed
values, which our work supports.

More recently, Lammich [43] has built a framework for the re�nement of
pure data structures into imperative counterparts, in Imperative HOL. The
re�nement process is automated, and re�nements are veri�ed using a program
logic based on separation logic, which comes with proof-tools to aid the user
in veri�cation.

Both developments [14, 43] di�er from ours in that they lack a veri�ed
mechanism for extracting executable code from shallow embeddings. Although
stateful computations are implemented and veri�ed within the con�nes of
higher-order logic, Imperative HOL relies on the unveri�ed code-generation
mechanisms of Isabelle/HOL. Moreover, neither work presents a way to deal
with I/O e�ects.

Veri�ed compilation. Mechanisms for synthesising programs from shallow
embeddings de�ned in the logics of interactive theorem provers exist as com-
ponents of several veri�ed compiler projects [5, 36, 48, 50]. Although the main
contribution of our work is proof-producing synthesis, comparisons are rele-
vant as our synthesis tool plays an important part in the CakeML compiler [42].
To the best of our knowledge, ours is the �rst work combining e�ectful compu-
tations with proof-producing synthesis and fully veri�ed compilation.

30



CertiCoq by Anand et al. [5] strives to be a fully veri�ed optimising compiler
for functional programs implemented in Coq. The compiler front-end supports
the full syntax of the dependently typed logic Gallina, which is rei�ed into a
deep embedding and compiled to Cminor through a series of veri�ed compila-
tion steps [5]. Contrary to the approach we have taken [50] (see §2.3.2), this
rei�cation is neither veri�ed nor proof-producing, and the resulting embedding
has no formal semantics (although there are attempts to resolve this issue [6]).
Moreover, as of yet, no support exists for expressing e�ectful computations
(such as in §2.3.4) in the logic. Instead, e�ects are deferred to wrapper code
from which the compiled functions can be called, and this wrapper code must
be manually veri�ed.

The Œuf compiler by Mullen et al. [48] is similar in spirit to CertiCoq in that
it compiles pure Coq functions to Cminor through a veri�ed process. Similarly,
compiled functions are pure, and e�ects must be performed by wrapper code.
Unlike CertiCoq, Œuf supports only a limited subset of Gallina, from which it
synthesises deeply embedded functions in the Œuf-language. The Œuf language
has both denotational and operational semantics, and the resulting syntax
is automatically proven equivalent with the corresponding logical functions
through a process of computational denotation [48].

Hupel and Nipkow [36] have developed a compiler from Isabelle/HOL to
CakeML AST. The compiler satis�es a partial correctness guarantee: if the
generated CakeML code terminates, then the result of execution is guaranteed
to relate to an equality in HOL. Our approach proves termination of the code.

2.8 Conclusion

This paper describes a technique that makes it possible to synthesise whole
programs from monadic functions in HOL, with automatic proofs relating the
generated e�ectful code to the original functions. Using the separation logic
from characteristic formulae for CakeML, the synthesis mechanism supports
references, exceptions, I/O, reusable library developments, encapsulation of
locally stateful computations inside pure functions, and code generation for
functions where termination depends on state. To our knowledge, this is the
�rst proof-producing synthesis technique with the aforementioned features.

We hope that the techniques developed in this paper will allow users of
the CakeML tools to develop veri�ed code using only shallow embeddings.
We hope that only expert users, who develop libraries, will need to delve into
manual reasoning in CF or direct reasoning about deeply embedded CakeML
programs.
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Chapter 3

A Veri�ed Proof Checker for
Higher-Order Logic

Oskar Abrahamsson

Abstract. We present a computer program for checking proofs in higher-
order logic (HOL) that is veri�ed to accept only valid proofs. The proof checker
is de�ned as functions in HOL and synthesized to CakeML code, and uses the
Candle theorem prover kernel to check logical inferences. The checker reads
proofs in the OpenTheory article format, which means proofs produced by vari-
ous HOL proof assistants are supported. The proof checker is implemented and
veri�ed using the HOL4 theorem prover, and comes with a proof of soundness.

Published in Journal of Logic and Algebraic Methods in Programming, 2020.
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3.1 Introduction

This paper is about a veri�ed proof checker for theorems in higher-order
logic (HOL). A proof checker is a computer program which takes a logical
conclusion together with a proof object representing the steps required to
prove the conclusion, and returns a verdict whether or not the proof is valid.

Our checker is designed to read proof objects in the OpenTheory article
format [37]. OpenTheory articles contain instructions on how to construct
types, terms and theorems of HOL from previously known facts. The tool starts
with the axioms of higher-order logic as its facts, and uses a previously veri�ed
implementation of the HOL Light kernel (called Candle) [41] to carry out all
logical inferences. If all commands are successfully executed, the tool outputs
a list of all proven theorems together with the logical context in which they
are true.

The proof checker is implemented as a function (shallow embedding) in the
logic of the HOL4 theorem prover [57]. We verify the correctness of the proof
checker function, and prove a soundness theorem. This theorem in the HOL4
system guarantees that any theorem produced as a result of a successful run of
the tool is a theorem in HOL.

Using a proof-producing synthesis mechanism [35] we synthesize a CakeML
program from the shallow embedding. The resulting program is compiled to
executable machine code using the CakeML compiler. Compilation is carried
out completely within the logic of HOL4, enabling us to combine our soundness
result with the end-to-end correctness theorem of the CakeML compiler [61].
This gives a theorem that guarantees that the proof checker is sound down to
the machine code that executes it.

Contributions In this work we present a veri�ed proof checker for HOL. To
the best of our knowledge, this is the �rst veri�ed implementation of a proof
checker for HOL. As a consequence of using the CakeML tools, we are able to
obtain a correctness result about the executable machine code that is the proof
checker program.

Overview To reach this goal we require:
(i) a �le format for proof objects in HOL for which there exists sample

proofs;
(ii) tool support for reasoning about the correctness of the actual implemen-

tation of our proof checker (as opposed to a model); and
(iii) a convincing way of connecting the correctness of the proof checker

implementation with the machine code we obtain when compiling it.
We address (i) by using the OpenTheory framework [37]. Although originally
designed with theory sharing between theorem provers in mind, the framework
includes a convenient format for storing proofs, as well as a library of theorems.
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The issue (ii) is tackled by implementing our proof checker in a computable
subset of the HOL4 logic. In this way we are able to draw precise conclusions
about the correctness of our program without the overhead of a program logic.
Additionally, the implementation of the Candle theorem prover kernel [41] and
its soundness proof lives in HOL4: we can use this result directly, as opposed
to assuming it.

Finally, (iii) is addressed using the CakeML compiler toolchain. The CakeML
toolchain can produce executable machine code from shallow embeddings of
programs in HOL4. The compilation is proof-producing, and yields a theorem
which states the correctness of the resulting machine code in terms of the
logical functions from which it was synthesized. Consequently, any statement
about the logical speci�cation can be made into a statement about the machine
code that executes it.

We start by introducing the OpenTheory framework, the CakeML compiler
and the Candle theorem prover kernel (§3.2). We then explain, at a high level,
the steps required to produce the proof checker implementation and verify its
correctness (§3.3).

We show the details of the implementation (and speci�cation) of the tool
as a shallow embedding in the logic (§3.4), and how this shallow embedding
is automatically re�ned into an equivalent CakeML program using a proof-
producing synthesis procedure (§3.5).

We compile the synthesised program into machine code, and obtain a
correctness theorem relating the machine code with the shallow embedding
(§3.7). Following this, we state a theorem describing end-to-end correctness
(soundness) of the proof checker, and describe how the proof is carried out
using the existing soundness result of the Candle kernel (§3.8).

Finally, we comment on the results of running the checker on a collection
of article �les, and compare its execution time to that of an existing (unveri�ed)
tool implemented in Standard ML (§3.9).

Notation Throughout this paper we use typewriter font for listings of
ML program code, and sans-serif for constants and italics for variables in
higher-order logic. The double implication ⇐⇒ stands for equality between
boolean terms, and all other logical connectives (e.g.⇒, ∧, ∨, ¬, . . . ) have their
usual meanings.
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3.2 Background

In this section we introduce the tools and concepts used in the remainder of
this paper.

3.2.1 The OpenTheory framework

The purpose of the OpenTheory framework [37] is to facilitate sharing of
logical theories between di�erent interactive theorem provers (ITPs) that use
HOL as their logic. Several such systems exist; e.g. HOL4 [57], HOL Light [34],
ProofPower-HOL [8]. Although the logical cores of these tools coincide to
some degree, the systems built around the logics (e.g. theory representation,
and storage) are very di�erent.

The aim of OpenTheory is to reduce the amount of duplicated e�ort when
developing theories in these systems. It attempts to do so by de�ning:

• a version of HOL contained within the intersection of the logics of these
tools, and

• a �le format for storing instructions on how to construct de�nitions and
theorems in this logic.

Collections of type- and constant de�nitions, terms and theorems are bun-
dled up into theories, and instructions for reconstructing theories are recorded
in OpenTheory articles. An OpenTheory article is a text �le consisting of a
sequence of commands corresponding to primitive inferences and term con-
structors/destructors of HOL.

Article �les are usually produced by instructing a HOL theorem prover to
record all primitive inferences used in the construction of theorems. In order
to reconstruct the theory information, the OpenTheory framework de�nes an
abstract machine that operates on article �les. The machine interprets article
commands into calls to a logical kernel, which in turn reconstructs the theory
elements.

We have constructed our proof checker to read input represented in the
OpenTheory article format. Our proof checker is a HOL function that is a
variation on the OpenTheory abstract machine. In particular, we have left the
machine without its built-in logical kernel, and let the Candle theorem prover
kernel perform all logical reasoning.

3.2.2 The Candle theorem prover kernel

The Candle theorem prover kernel is a veri�ed implementation of the HOL
Light logical kernel by Kumar et al. [41]. The kernel is implemented as a
collection of monadic functions [64] in a state-and-exception monad in the
logic of the HOL4 theorem prover, and is proven sound with respect to a formal
semantics which builds on Harrison’s formalization of HOL Light [33].
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As discussed in §3.2.1, we will use the Candle theorem prover kernel to
execute all logical operations in our proof checker. Clearly, the main advantage
of using the Candle kernel over implementing our own is its soundness result,
which guarantees the validity of all HOL inferences executed by the kernel.

We return to Candle in §3.4, where we explain how our proof-checker is
constructed on top of the the Candle kernel; and in §3.8, where we show how
to utilize its soundness result when verifying the end-to-end correctness of our
checker.

3.2.3 The CakeML ecosystem

CakeML is a language in the style of Standard ML [47] and OCaml [45]. The
language has a formal semantics, and supports most features familiar from
Standard ML, such as references, I/O and exceptions.

The CakeML ecosystem consists of:

(i) the CakeML language and its formal semantics;
(ii) the end-to-end veri�ed CakeML compiler, which can be run inside HOL;

(iii) tools for generating and reasoning about CakeML programs.

The CakeML compiler is an optimizing compiler for the CakeML language.
The compiler backend supports code generation for multiple targets, including
32- and 64-bit �avors of Intel and ARM architectures, RISC-V and MIPS. The
compiler is formally veri�ed to produce machine code that is semantically com-
patible with the source program it compiles [61]. The compiler implementation,
execution and veri�cation is carried out completely within the logic of the
HOL4 theorem prover.

Using the proof-producing synthesis mechanism of the CakeML ecosystem
[35] together with the CakeML compiler’s top-level correctness theorem, the
system produces a theorem relating the resulting executable machine code with
its logical speci�cation. This enables us to extract useful, veri�ed programs
from logical functions in HOL4.

In §3.5 we show how we use the CakeML toolchain to synthesize a CakeML
program from the logical speci�cation of our proof checker; in §3.7 this program
is compiled to machine code.

3.3 High-level approach

There are several parts involved in our proof checker development; a framework
for storing logical theories (§3.2.1), a veri�ed theorem prover kernel (§3.2.2),
and a veri�ed compiler (§3.2.3). In this section we explain, at a high level, how
these parts come together into a veri�ed program for checking HOL proofs.

Our program implementation consists chie�y of functions within the HOL4
logic, because this simpli�es veri�cation greatly. The CakeML compiler, on
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the other hand, operates on CakeML abstract syntax. Consequently, we must
�rst move from logical functions to CakeML syntax; and �nally, to executable
machine code. Furthermore, the compilation is carried out within the logic of
the theorem prover.

3.3.1 Terminology: levels of abstraction

There are clearly several layers of abstraction involved. Here is the terminology
we will use:

• the de�nition of the OpenTheory abstract machine,
• a shallow embedding which implements the de�nition,
• a deep embedding that is a re�nement of the shallow embedding, and
• the machine code which is obtained from compiling the deep embedding.

The shallow embedding is a function in the logic of HOL4. The deep embedding
is CakeML abstract syntax synthesized from the shallow embedding. This
abstract syntax is represented as a datatype in the logic. Finally, the machine
code is a sequence of bytes which can be linked to produce an executable that
runs the proof-checker.

3.3.2 Overview of steps

We now turn to an overview of the steps we take to produce the veri�ed proof
checker:

A.1 We begin by constructing a shallow embedding from the de�nition of the
OpenTheory abstract machine. The shallow embedding is a monadic func-
tion in the logic of HOL4. As previously mentioned in §3.2.1, the logical
kernel is left out; what is left is a machine that performs bookkeeping
of theory data (i.e. theorems, constants and types). The actual work of
logical reasoning is left to the veri�ed Candle kernel.
Concretely, we achieve this by implementing our shallow embedding in
the same state-and-exception monad as the Candle logical kernel. In this
way we are able to include the Candle kernel implementation as part of
our program.

A.2 We synthesize deeply-embedded CakeML code from the shallow embed-
ding of Step A.1 using a proof-producing mechanism. As a result of this
synthesis we obtain a certi�cate theorem stating that the deep embedding
is a re�nement of the shallow embedding.

A.3 We prove a series of invariants for the shallow embedding. These invari-
ants are needed in order to make use of the main soundness theorem
of the Candle theorem prover. We will return to the details of these
invariants in §3.8.
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A.4 Using the existing Candle soundness theorem, we prove that any valid
sequent produced by a successful run of the shallowly embedded proof
checker is in fact true by the semantics of HOL. With the aid of the
certi�cate theorems from A.2, we are able to conclude that the same
holds for the deeply-embedded CakeML program.

A.5 Finally, the CakeML compiler is used to compile the deep embedding
from A.2 into executable machine code. The compilation is carried out
completely within the HOL4 logic, and produces a theorem that the
machine code is compatible with the deep embedding. By combining this
theorem with the results from A.2 and A.3, we obtain a theorem asserting
that the machine code is a re�nement of shallow embedding from A.1.

Finally, we connect the theorems from parts A.3 and A.5. The result is a theorem
establishing soundness for the machine code that executes our proof checker.

Before we can describe the �nal end-to-end correctness theorem (§3.8),
we will describe the OpenTheory abstract machine (§3.4), how we synthesize
code from the shallow embeddings (§3.5), extend our program with veri�ed I/O
capabilities (§3.6), and �nally, compile it to machine code (§3.7).

3.4 The OpenTheory abstract machine

The OpenTheory framework de�nes a �le format (articles) for storing logical
theories, and an abstract machine for extracting theories from such �les. In this
section we describe the operation of the abstract machine, and explain how we
construct a shallow embedding in the HOL4 logic which implements it.

The OpenTheory machine is a stack-based abstract machine, which con-
structs types, terms and theorems of HOL by executing commands that update
the machine state in various ways. Its operation is as follows. Commands are
read from the input (a proof article), and interpreted into one of two types of
actions:

(i) logical operations, such as inferences, constructor- or destructor applica-
tions on logical syntax; or

(ii) commands used to organize the machine state in various ways, such as
stack and other data structures.

At any time during the run of the machine, theorems and de�nitions may be
�nalized by committing them to a special store. Once �nalized, these theorems
are never touched again.

3.4.1 Machine state

The state maintained by the machine during execution is the following:

40



• A stack of objects. We shall describe these objects shortly, but they include
e.g. terms and types of HOL. The stack is the primary source of input
(and destination for output) of commands.

• A dictionary, mapping natural numbers to objects. The dictionary enables
persistent storage of objects that would otherwise be consumed by stack
operations.

• A special stack dedicated to storing exported theorems. Once the produc-
tion of a theorem is complete, it is pushed onto the theorem stack. Once
there, it cannot be manipulated any further.

• A list of external assumptions on the logical context in which theorems
are checked. Concretely, these assumptions are logical statements taken
as axioms during the run of the machine, allowing for some modularity
in theory reconstruction. For technical reasons, we leave this part out of
our implementation; see §3.10 for further discussion.

We construct the record type state to represent the machine state. Here stack, dict
and thms represent the aforementioned object stack, dictionary, and theorem
stack, respectively. We also store a number linum for reporting the current
position in the article �le in case of error.

state = 〈|
stack : object list;
dict : object num_map;
thms : thm list;
linum : int
|〉

3.4.2 Objects

All commands in the OpenTheory machine read input from the stack. Di�erent
commands accept di�erent types of input, ranging from integer- and string
literals, to terms of HOL. We unify these types under a datatype called object.
See Figure 3.1 for the de�nition of object.

In summary, the type object is made up of:
• syntactic elements of HOL (Type, Term, and Thm);
• references (by name) to variables and constants in HOL (Var and Const);

and
• auxiliaries used in the construction of the above, such as lists and literals

(List, Num, and Name).

3.4.3 Commands

Commands fetch input by popping object type elements from the stack. Those
commands that produce results push these onto the stack.
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object =
Num int
| Name string
| List (object list)
| TypeOp string
| Type type
| Const string
| Var (string × type)
| Term term
| Thm thm

Figure 3.1. The type of OpenTheory objects. Those commands executed by
the OpenTheory machine that take inputs and/or produce results use the type
object.

As an example, consider the proof command called deductAntisym. The
command deductAntisym pops two theorems (th1 and th2) from the stack, and
calls on Candle to execute the inference rule DEDUCT_ANTISYM_RULE on these.
Finally, the result is pushed back onto the stack.

Here is the de�nition of deductAntisym (using do-notation for monadic
functions, which is familiar from Haskell):

deductAntisym s =
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← DEDUCT_ANTISYM_RULE th1 th2;
return (push (Thm th) s)

od

Here, s (of type state) represents the state of the abstract machine. The internal
commands pop and push are used for manipulating the object stack, and the
function getThm extracts a value of type thm from an object with constructor
Thm (or raises an exception otherwise). Finally, the machine executes the
following primitive inference of HOL Light [34] on the theorems th1 and th2:

Γ ` p ∆ ` q

(Γ− {q}) ∪ (∆− {p}) ` p = q
DEDUCT_ANTISYM_RULE

At the time of writing, there are 36 commands in the OpenTheory article
format. For each proof command in the article format we implement the cor-
responding operation as a monadic HOL function. In addition, we implement
some internal commands (such as push and pop above) to access and/or manip-
ulate the machine state. For a complete listing of article commands and their
semantics, see [38].
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3.4.4 Wrapping up

Finally, we wrap our proof command speci�cations up into a function called
readLine. The function readLine is the shallow embedding of the OpenTheory
abstract machine. This function takes a machine state and a line of text (corre-
sponding to a proof command) as input, and returns an updated state. If the
execution of a command fails, an exception is raised and execution halts. The
full de�nition of readLine is shown in Appendix 3.A.

3.5 Proof-producing synthesis of CakeML

At this stage we have a shallow-embedded implementation of the OpenTheory
abstract machine in HOL4 (see §3.4), together with the functions that make up
the Candle theorem prover kernel. We apply a proof-producing synthesis tool
[35] to the shallow embedding, and obtain the following:

• a deeply-embedded CakeML program, that can be compiled by the CakeML
compiler; and

• a certi�cate theorem stating that the deep embedding (the program) is a
re�nement of the shallow embedding (the logical functions).

The certi�cate theorem produced by the synthesis mechanism is absolutely
vital for the veri�cation carried out in §3.8, as it eliminates the gap between the
shallow- and deeply embedded views of the proof checker program (cf. §3.3).
Using the certi�cate, we may turn any statement about the shallow embedding
into a statement about the semantics of the deep embedding.

3.5.1 Re�nement invariants

Before discussing the certi�cate theorem for our proof checker, we will take a
step back and look at certi�cate theorems in general. This is the general shape
of a certi�cate theorem produced by the proof-producing synthesis:

` INV x v

Here, INV is a relation stating that the deeply-embedded CakeML value v is a
re�nement of the shallow embedding x . We call INV a re�nement invariant.

The CakeML tools de�ne several re�nement invariants for most basic types
(integers, strings, etc.), as well as higher-order invariants; e.g. for expressing
re�nements of function types. Here is the invariant −→, connecting the HOL
function f and the CakeML function g :

` (A −→ B) f g
where the types are

f : α→ β
A : α→ v→ bool (speci�es re�nement of values of type α)
B : β → v→ bool (speci�es re�nement of values of type β)

(3.1)
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Certi�cate theorems in the style of the Theorem (3.1) are generally obtained
when synthesizing pure CakeML programs from logical functions. The CakeML
tools de�ne two alternative re�nement invariants for dealing with (potentially
e�ectful) monadic functions: ArrowP, and ArrowM. The invariant ArrowM is
used in place of −→ to express re�nement of monadic functions. The invariant
ArrowP extends ArrowM to permit side-e�ects; e.g. state updates.

3.5.2 Certi�cate theorem

Here is the certi�cate theorem for our shallow embedding readLine:

` ArrowP F (hol_store,p) (Pure (Eq string_type line_v))
(ArrowM F (hol_store,p) (EqSt (Pure (Eq reader_state_type state_v)) state)

(Monad reader_state_type hol_exn_type)) readLine readline_v
(3.2)

The speci�cs of the symbols involved in this theorem are outside the scope of
this paper; see e.g. [35]. In short, the Theorem (3.2) states that readline_v is a
re�nement of readLine. Here, readline_v is the deep embedding that was synthe-
sized from readLine. The invariants ArrowP and ArrowM tell us that readline_v
was synthesized from a (curried) monadic function.

3.6 Proof checker program with I/O

Our proof-checker implementation is just about ready to be compiled; all that
remains is to provide the synthesized deep embedding from §3.5 with input
from the �le system. We achieve this by wrapping the deep embedding in a ML
program which takes care of I/O. The veri�cation of the wrapper is explained
in §3.6.2. Here is the listing for the wrapper program.

fun reader_main () =
let
val _ = init_reader ()

in
case CommandLine.arguments () of
[fname] => read_file fname

| [] => read_stdin ()
| _ => TextIO.output TextIO.stdErr msg_usage

end;

The program reader_main is parsed into a deeply embedded CakeML program.
Here is an overview of the functionality performed by reader_main:

(i) The program starts by initializing the logical kernel, in particular it
installs the axioms of higher-order logic (init_reader).
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(ii) An article is read from a �le (read_file), or standard input (read_stdin),
and split into commands. These commands are then passed one by one to
readLine (see §3.4) until the input is exhausted, or an exception is raised.

(iii) In case of success, the program prints out the proved theorems, together
with the logical context in which they are theorems. In case of failure,
the wrapper reports the line number of the failing command and exits.

We intentionally leave out listings of read_file and read_stdin for brevity.
See Appendix 3.B for the full listings.

3.6.1 Speci�cation

Unlike previous stages of development (§3.5), the program reader_main must
be manually veri�ed to implement its speci�cation. We de�ne a logical func-
tion reader_main as the speci�cation of reader_main. It is de�ned in terms
of two functions read_file and read_stdin, corresponding to read_file and
read_stdin, respectively. See Appendix 3.C for the de�nitions of read_file
and read_stdin.

We de�ne reader_main as follows:

reader_main fs refs cl =
let refs = snd (init_reader () refs) in
case cl of

[fname] ⇒ read_file fs refs fname
| [] ⇒ read_stdin fs refs
| _ ⇒ (add_stderr fs msg_usage,refs ,None)

The arguments to the function reader_main is a model of the �le system, fs ;
a list of command line arguments, cl ; and a model of the Candle kernel state
(i.e. the contents of references at runtime), refs .

Both read_file and read_stdin are de�ned in terms of our shallow embedding
readLine. Consequently, reader_main becomes the top-level speci�cation for the
entire proof checker program.

3.6.2 Veri�cation using characteristic formulae

To show that reader_main adheres to its speci�cation reader_main (see A.3 in
§3.3) we prove a theorem using the characteristic formulæ (CF) framework for
CakeML [29]. The CF framework provides a program logic for ML programs.
Program speci�cations in CF are stated using Hoare-style triples

{|P |} f · a {|Q|}

where P and Q are pre- and post-conditions on the program heap, expressed in
separation logic; and f · a denotes the application of f to the argument list a.
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Correctness of main program This is the theorem we prove to assert that
reader_main_v (the deeply-embedded syntax of reader_main) implements its
speci�cation reader_main:

` (∃ s. init_reader () refs = (Success (),s)) ∧ input_exists fs cl ∧
unit_type () unit_v ⇒
{|commandline cl ∗ stdio fs ∗ hol_store refs|}

reader_main_v · [unit_v ]
{|POSTv res.
〈unit_type () res〉 ∗ stdio (fst (reader_main fs refs (tl cl)))|}

(3.3)

Here, ∗ is the separating conjunction; commandline, stdio, and hol_store are heap
assertions for the program command line, �le system, and the state of the
Candle logical kernel, respectively; and POSTv binds the function return value,
for use in the post-condition. The exact details of the Theorem (3.3) are not
important here; for an in-depth treatment, see [29].

Theorem (3.3) is the main speci�cation of our deeply-embedded proof
checker program reader_main_v. It should be read as: “if the program reader_-
main_v is executed from any initial state in which kernel initialization succeeds,
and if any input exists on the �le system, then the program terminates with a
result of type unit, and produces exactly the output that reader_main does.”

The proof of Theorem (3.3) makes use of the certi�cate theorem from §3.5.2
which gives the semantics of the synthesized code readline_v in terms of the
logical function readLine.

Summary We conclude this section by summarizing our e�orts so far.

(i) We have constructed a shallow embedding of the OpenTheory abstract
machine, on top of the Candle theorem prover kernel (§3.4).

(ii) We have synthesized deeply-embedded CakeML from the shallow embed-
ding, and obtained a certi�cate theorem (§3.5).

(iii) Finally, in this section, we have extended our deep embedding in code
which handles I/O operations, and veri�ed that the sum of the parts
implements the semantics of the shallow embedding.

Below, we show how the CakeML compiler is used to compile reader_main_v
to executable machine code, while at the same time producing a proof of
re�nement.

3.7 In-logic compilation

In this section we explain how the proof checker program from §3.6 is compiled
in a way which allows us to obtain a strong correctness guarantee on the
machine code produced by the compilation.

The CakeML compiler supports two modes of compilation:
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(i) compilation of deep embeddings inside the HOL4 logic, by evaluating
the shallow-embedded compiler under a call-by-value semantics;

(ii) compilation of source �les (read from the �le system) using a veri�ed
compiler executable.

In mode (i), the compiler produces a theorem which states that the resulting
machine code is a re�nement of the input program. This theorem is the CakeML
compiler top-level correctness theorem specialized on the program it compiles,
its speci�cation, and the target architecture.

The CakeML compiler comes with backends for multiple architectures:
x86-64, ARMv6, ARMv8, RISC-V, and MIPS [22]. The models used for reasoning
about the machine code of these targets were speci�ed using the L3 speci�ca-
tion language [21], and were not designed speci�cally for use in the CakeML
compiler.

We apply the in-logic compilation mode (i) to the deeply-embedded CakeML
program from §3.6. In what follows, reader_main_v is the deep embedding of the
proof checker program, and reader_main is its top-level speci�cation (semantics).

Here is the theorem we obtain when compiling reader_main_v:

` input_exists fs cl ∧ wfcl cl ∧ wfFS fs ∧ STD_streams fs ⇒
(installed_x64 reader_code (basis_�i cl fs) mc ms ⇒
machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit { Terminate Success (reader_io_events cl fs) } ) ∧
let (fs_out ,hol_refs ,final_state) = reader_main fs init_refs (tl cl)
in

extract_fs fs (reader_io_events cl fs) = Some fs_out

(3.4)
In brief, this theorem states that the semantics of the machine code of the
compiled program reader_code only includes behaviors allowed by the shal-
low embedding reader_main. We will explain Theorem (3.4) in the following
paragraphs.

Assumptions on the environment Theorem (3.4) contains the following
assertion, which ensures that reader_code is executed in a machine state ms
where the necessary code and data are correctly installed in memory:

installed_x64 reader_code (basis_�i cl fs) mc ms

The arguments to installed_x64 are the concrete machine code reader_code, a
machine state ms , and an architecture-speci�c con�guration, mc. In addition,
it takes an oracle basis_�i cl fs , which represents our assumptions about the
�le system and command line.

Out-of-memory errors The top-level correctness result of the CakeML
compiler guarantees that any machine code obtained from compilation is se-
mantically compatible with the observable semantics of the source program that
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was compiled. Concretely, compatible means “equivalent, up to failure from
running out of memory.” This is expressed in Theorem (3.4) by the following
lines:

machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit { Terminate Success (reader_io_events cl fs) }

Here, machine_sem denotes the semantics of the machine code produced during
compilation, and extend_with_resource_limit {· · · } is the set of all pre�xes of
the observable semantics of the source program, as well as all those pre�xes
concatenated with a �nal event that denotes failure.

Observable semantics The CakeML compiler’s correctness is stated in terms
of observable events. This semantics consists of a (possibly in�nite) sequence of
I/O events that modify our model of the world in some way. The following line
states that the result of running these computations amounts to the same mod-
i�cations of the �le system model fs , as the program speci�cation reader_main
does:

extract_fs fs (reader_io_events cl fs) = Some fs_out

With the help of Theorem (3.5) we have established a convincing connection
between the logical speci�cation of our proof checker (§3.4), and the machine
code which executes it. Consequently, any claims made about the shallow-
embedded proof checker can be transported to the level of machine code. In
the next section, we bring all of these results together to form a single top-level
correctness theorem.

3.8 End-to-end correctness

In this section we present the main correctness theorem for the OpenTheory
proof checker. This theorem is a soundness result which ensures that the
executable machine code that is the compiled proof checker (§3.7) only accepts
valid proofs of theorems. In particular, we show that any theorem constructed
from a successful run of the OpenTheory proof checker is in fact true by the
semantics of HOL. This result is made possible by the soundness theorem of
the Candle theorem prover kernel [41].
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Here is the soundness result for the OpenTheory proof checker.

` input_exists fs cl ∧ wfcl cl ∧ wfFS fs ∧ STD_streams fs ⇒
(installed_x64 reader_code (basis_�i cl fs) mc ms ⇒
machine_sem mc (basis_�i cl fs) ms ⊆
extend_with_resource_limit

{ Terminate Success (reader_io_events cl fs) } ) ∧
∃ fs_out hol_refs s.

extract_fs fs (reader_io_events cl fs) = Some fs_out ∧
(no_errors fs fs_out ⇒
reader_main fs init_refs (tl cl) = (fs_out ,hol_refs ,Some s) ∧
hol_refs.the_context extends init_ctxt ∧
fs_out = add_stdout (flush_stdin (tl cl) fs)

(print_theorems s hol_refs.the_context) ∧
∀ asl c.

mem (Sequent asl c) s.thms ∧
is_set_theory µ ⇒
(thyof hol_refs.the_context,asl) |= c)

where no_errors fs fs_out = (fs.stderr = fs_out .stderr)

(3.5)

The �rst part of Theorem (3.5) is identical to the machine code correctness
theorem (3.4) in §3.7. In short, it states that the machine code reader_code
faithfully implements the shallow embedding reader_main; see §3.7 for details.

The interesting parts of Theorem (3.5) are the last few lines, starting at the
existential quanti�cation ∃ fs_out . The lines

no_errors fs fs_out ⇒
reader_main fs init_refs (tl cl) = (fs_out ,hol_refs ,Some s) ∧ . . .

state: if no errors were displayed on screen, then the OpenTheory proof checker
successfully processed all commands in the article, and returned a �nal state s
of type state.

The next few lines contain information about this �nal state; in particular,
that:

• all constructed theorems (those in s.thms; see §3.4) are true under the
semantics of HOL;

• the logical context (hol_refs .the_context) in which these theorems are
true is the result of a sequence of valid updates to the initial context of
the Candle kernel; and

• the result displayed on screen (add_stdout · · ·) by the program is a textual
representation of the logical context and the constructed theorems.

Before moving on, we note a somewhat particular feature of Theorem (3.5);
namely the requirement is_set_theory µ. In brief, is_set_theory assumes the
existence of a set theory expressive enough to contain the semantics of HOL; it
is used in the Candle soundness result to lift syntactic entailment to semantic
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entailment. We will touch on the subject brie�y in §3.8.1, but refer readers to
Kumar, et al. [41] for an in-depth discussion.

We will use the remainder of this section to explain how we obtain a
soundness result for the shallow embedding from §3.4. We then compose
this result with the machine code theorem from §3.7 in order to obtain the
Theorem (3.5).

3.8.1 The Candle soundness result

In this section we explain what is required to make use of the Candle soundness
result when proving our top-level correctness theorem (3.5). The formalization
of the Candle logical kernel is divided in two parts: a calculus of proof rules for
constructing sequents, and a formal semantics. Both systems are de�ned in the
logic of HOL4.

We will not attempt to explain the formalization at any greater depth as
this is well outside the scope of this work. However, a basic understanding
of some of the techniques used to obtain the Candle soundness result will be
necessary to arrive at Theorem (3.5) in §3.8.

Syntactic predicates The Candle proof development de�nes a number of
predicates on syntactic elements of HOL. The most important of these is the
relation THM, which states that a sequent is the result of a valid inference in
HOL, in a speci�c context. It is de�ned in terms of a proof rule for HOL, `:

THM ctxt (Sequent asl c) = (thyof ctxt ,asl) ` c

Here, ` is an inductively de�ned relation that makes up the proof calculus
(i.e. syntactic inference rules) of the higher-order logic implemented by the
Candle logical kernel. We leave out the de�nition of ` here; see e.g. [41, 33] for
a description of the calculus.

For the proof rule ` to establish validity of inferences, it imposes some
restrictions on terms and types used in inferences; e.g. terms must be well-
typed, constants and types must be de�ned prior to use, and type operators
must be used with their correct arity. These restrictions are established by the
relations TYPE and TERM.

Soundness Finally, any statement about ` (and consequently, THM) can
be turned into a statement about semantic entailment, thanks to the main
soundness result of the Candle kernel [41]:

is_set_theory µ ⇒ ∀ hyps c. hyps ` c ⇒ hyps |= c

We make use of this in §3.8.3 to lift a syntactic result about our proof checker
into the semantic domain.
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3.8.2 Preserving invariants

In order to establish soundness for our proof checker, we need to show a result
which states that all theorems constructed by the proof-checker are in fact true
theorems of HOL. In this section we explain how this is achieved by proving a
preservation result for the shallow embedding from §3.4.

We will obtain this result in three steps, by:

(i) de�ning a property for the type object, which will establish the relevant
invariants (THM, etc.) on the HOL syntax carried by object (§3.4.2);

(ii) de�ning a property for the OpenTheory machine state type state (§3.4.1),
imposing the object property from (i) on all its objects; and

(iii) proving that the property from (ii) is preserved under the shallow em-
bedding readLine (§3.4.4).

Object predicate We start by addressing Step (i), and de�ne a property on
objects:

OBJ ctxt obj =
case obj of

List xs ⇒ every (OBJ ctxt) xs
| Type ty ⇒ TYPE ctxt ty
| Term tm ⇒ TERM ctxt tm
| Thm thm ⇒ THM ctxt thm
| Var (n ,ty) ⇒ TERM ctxt (Var n ty) ∧ TYPE ctxt ty
| _ ⇒ T

The function OBJ asserts that all types are valid, e.g. type operators exist in the
context ctxt , and have the correct arity (TYPE); and that all terms are well-typed
in ctxt , and contain only de�ned constants (TERM).

State predicate Next, we carry out Step (ii) by lifting the properties OBJ and
THM to the state type. We do this with a function called READER_STATE:

READER_STATE ctxt state =
every (THM ctxt) state.thms ∧
every (OBJ ctxt) state.stack ∧
∀n obj .

lookup (Num n) state.dict = Some obj ⇒
OBJ ctxt obj

The important part about READER_STATE is that THM holds for all HOL sequents
in the theorem stack state .thms; enforcing OBJ on the stack and dictionary is
simply a means to achieving this.

Preservation theorem Finally, we take care of Step (iii). We prove the fol-
lowing preservation theorem, which guarantees that THM holds for all sequents

51



in the program state, at all times during execution:

` STATE ctxt refs ∧ READER_STATE ctxt st ∧
readLine line st refs = (res ,refs ′) ⇒
∃upd .

STATE (upd ++ ctxt) refs ′ ∧
∀ st ′. res = Success st ′ ⇒ READER_STATE (upd ++ ctxt) st ′

(3.6)

The relation STATE connects the logical context ctxt with the concrete state
of the Candle kernel at runtime. The context ctxt is modeled as a sequence
of updates (e.g. constant- and type de�nitions, new axioms, etc.). With this in
mind, Theorem (3.6) can be read as: “the relations STATE and READER_STATE
are preserved under readLine, up to a �nite sequence of valid context updates
to the initial context ctxt .”

Using Theorem (3.6), we are able to prove that THM holds for all theorems
kept in the state at all times, as long as the function readLine starts from an
initial state where this is true (e.g. the empty state). In §3.8.3 we compose this
result with the Candle soundness result (§3.8.1), and show that soundness holds
for our shallow embedded proof checker.

3.8.3 Soundness of the shallow embedding

With Theorem (3.6) in §3.8.2, we showed that any sequent constructed by the
proof checker at runtime is the result of a valid inference in HOL. In this
section we lift this result into a theorem about soundness, by using the Candle
soundness result shown in §3.8.1.

Our soundness theorem is stated in terms of the proof checker speci�cation
reader_main from §3.6.1:

` is_set_theory µ ∧
reader_main fs init_refs cl = (fs_out ,hol_refs ,Some s) ⇒
(∀ asl c.

mem (Sequent asl c) s.thms ⇒
(thyof hol_refs.the_context,asl) |= c) ∧

hol_refs.the_context extends init_ctxt ∧
fs_out = add_stdout (flush_stdin cl fs) (print_theorems s hol_refs.the_context)

(3.7)
With this theorem, we have all ingredients required to obtain the main correct-
ness Theorem (3.5) from §3.8:

• Theorem (3.7) is stated in terms reader_main, and guarantees that the
main proof checker program from §3.6 is sound.

• Theorem (3.4) shows that the machine code reader_code is a re�nement
of the program in §3.6.

Because both these theorems are stated in terms of reader_main, the results can
be trivially composed in the HOL4 system to produce the desired theorem (3.5).
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3.9 Results

Our proof checker was used to check a few articles from the OpenTheory
standard library. These articles were selected based on the number of proof
commands contained in the article (i.e. their size); larger article �les exist in
the standard library, but require signi�cantly more time to process. All articles
were successfully processed without errors.

We have evaluated the performance of our proof checker program, and
compared it to an existing (unveri�ed) tool [39], built using three Standard ML
compilers: MLton [20], Poly/ML [46] and Moscow ML [1]. Tests were carried
out on a Intel i7-7820HQ running at 2.90 GHz with 16 GB RAM, by recording
time elapsed when running each tool 10 times on the same input. The results
of the performance measurements are shown in Table 3.1.

Table 3.1. Comparison of average running times when running each tool 10
times on each input. Times are formatted as (mean± σ).

bool.art base.art real.art word.art

# commands 62k 1718k 1285k 2121k

OPC 0.353± 0.002 s 9.730± 0.156 s 7.260± 0.018 s 12.05± 0.133 s

MLT 0.076± 0.002 s 1.967± 0.016 s 1.526± 0.008 s 2.629± 0.015 s
PML 0.160± 0.002 s 6.597± 0.192 s 4.410± 0.060 s 7.623± 0.165 s
MML 0.934± 0.008 s 85.01± 0.655 s 46.45± 0.137 s 121.9± 0.395 s

OPC/MLT 4.63 4.95 4.76 4.58
OPC/PML 2.21 1.48 1.65 1.58
OPC/MML 0.38 0.11 0.16 0.10

where OPC is our veri�ed proof-checker binary
MLT is the OpenTheory tool compiled with MLton
PML ———— ” ———— Poly/ML
MML ———— ” ———— Moscow ML

When compared against the OpenTheory tool [39], our proof checker runs
a factor of 4.7 times slower than the MLton compiled binary on average, and
1.7 times slower than the Poly/ML binary on average. A signi�cant portion of
this slowdown is caused by poor I/O performance, as our proof checker spends
about half of its time performing system calls for I/O. It is di�cult to determine
the exact cause of the remainder of the slowdown; our HOL implementation
is di�erent from that of the OpenTheory tool, and the performance of the
executable code generated by the compilers used in this test varies greatly (cf.
Table 3.1). We expect that improvements to CakeML I/O facilities will improve
the performance of our proof checker.
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3.10 Discussion and related work

In this work we have implemented and veri�ed a proof checker for HOL that
checks proofs in the OpenTheory article format. The proof checker builds on
the veri�ed Candle theorem prover kernel by Kumar, et al. [41], and uses the
CakeML toolchain [35, 61, 42] to produce a veri�ed executable binary. To the
best of our knowledge, this is the �rst fully veri�ed proof checker for HOL.

We have left out some features present in the OpenTheory article format
when implementing our checker. In particular, theories in the OpenTheory
framework support external assumptions, such as constant de�nitions, type
operators, and axioms. Our proof checker implementation (§3.4) does not
currently support external assumptions, because of the way in which constants
and type operators are treated in the readLine function. However, we believe it
could be extended to do so without compromising soundness.

The main motivation behind the OpenTheory article format is mainly
theorem export. Our tool checks the validity of proofs by carrying out all
inferences required to reconstruct theorems, and if the reconstruction succeeds,
we know by the correctness result in §3.8 that the theorem must be valid.
However, this approach is not without its drawbacks, as there is no way to tell
the checker what theorem we expect it to prove. Hence, if proof recording has
gone awry (for whatever reason), it is possible that we prove a di�erent (albeit
still true) theorem.

HOL proof checkers It appears that proof checkers for higher-order logic
are few and far between.

The OpenTheory framework [37] includes a tool called the OpenTheory
tool [39], written in Standard ML. Among other things, the tool is capable of
checking OpenTheory articles in the same way our veri�ed proof checker is.
When compared to the OpenTheory tool (§3.9), our tool runs slower, and sup-
ports fewer of the features available in the OpenTheory framework. However,
the correctness of the OpenTheory tool has not been veri�ed in any way.

The HOL Zero system by Adams [3] is a theorem prover for higher-order
logic with a particular focus on trustworthiness. Unlike ours, the system is
not formally veri�ed; instead, its claims of high reliability are grounded in a
simple and understandable design of the logical kernel on which the tool builds.
Unlike other HOL provers, the tool is not interactive, but rather, it acts as a
proof-checker of sorts.

Veri�ed proof checkers The IVY system (McCune and Shumsky [56]) is
a veri�ed prover for �rst-order logic with equality. IVY relies on fast, trusted
C code for �nding proofs, and veri�es the resulting proofs using a checker
algorithm which has been veri�ed sound using the ACL2 system [40].

Ridge and Margetson [56] implements a theorem prover for �rst-order logic,
and veri�es it complete and sound with respect to a standard semantics. The
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development and veri�cation is carried out in Isabelle/HOL [51], and includes
an “algorithm which tests a sequent s for �rst-order validity.” The algorithm
can be executed within the Isabelle/HOL logic, by using the rewrite engine.

The Milawa theorem prover (Davis and Myreen [18]) is perhaps the most
impressive work to date in the space of veri�ed theorem provers. Milawa is
an extensible theorem prover for a �rst-order logic, in the style of ACL2 [40].
The system starts out as a simple proof checker, and is able to bootstrap itself
into a fully-�edged theorem prover by replacing parts of its logical kernel at
runtime. In [18], the authors verify that Milawa is sound down to the machine
code which executes it, when run on top of their veri�ed LISP implementation
Jitawa.

3.11 Summary

We have presented a veri�ed computer program for checking proofs of theorems
in higher-order logic. The proof checker program is implemented in CakeML,
and is compiled to machine code using the CakeML compiler. The program
reads proof articles in the OpenTheory article format, and has been formally
veri�ed to only accept valid proofs. To the best of our knowledge, this is the
�rst formally veri�ed proof checker for HOL.

The proof checker implementation and its proof is available at GitHub:
code.cakeml.org/tree/master/candle/standard/opentheory

Acknowledgements The original implementation of the OpenTheory stack
machine in monadic HOL was done by Ramana Kumar, who also provided
helpful support during the course of this work. The author would also like to
thank Magnus Myreen for feedback on this text. Finally, the author thanks the
anonymous reviewers for their helpful comments.
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3.A OpenTheory abstract machine

The de�nition of the shallow-embedded OpenTheory machine (§3.4.4).

readLine line s =
if line = "version" then
do
(obj ,s) ← pop s; getNum obj ;
return s

od
else if line = "absTerm" then
do
(obj ,s) ← pop s; b ← getTerm obj ;
(obj ,s) ← pop s; v ← getVar obj ;
tm ← mk_abs (mk_var v ,b);
return (push (Term tm) s)

od
else if line = "absThm" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; v ← getVar obj ;
th ← ABS (mk_var v) th;
return (push (Thm th) s)

od
else if line = "appTerm" then
do
(obj ,s) ← pop s; x ← getTerm obj ;
(obj ,s) ← pop s; f ← getTerm obj ;
fx ← mk_comb (f ,x );
return (push (Term fx ) s)

od
else if line = "appThm" then
do
(obj ,s) ← pop s; xy ← getThm obj ;
(obj ,s) ← pop s; fg ← getThm obj ;
th ← MK_COMB (fg ,xy);
return (push (Thm th) s)

od

. . .
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. . .

else if line = "assume" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← ASSUME tm;
return (push (Thm th) s)

od
else if line = "axiom" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
(obj ,s) ← pop s; ls ← getList obj ;
ls ← map getTerm ls;
th ← find_axiom (ls ,tm);
return (push (Thm th) s)

od
else if line = "betaConv" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← BETA_CONV tm;
return (push (Thm th) s)

od
else if line = "cons" then
do
(obj ,s) ← pop s; ls ← getList obj ;
(obj ,s) ← pop s;
return (push (List (obj ::ls)) s)

od
else if line = "const" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (Const n) s)

od
else if line = "constTerm" then
do
(obj ,s) ← pop s; ty ← getType obj ;
(obj ,s) ← pop s; nm ← getConst obj ;
ty0 ← get_const_type nm;

. . .
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. . .

tm ←
case match_type ty0 ty of

None ⇒ failwith "constTerm"

| Some theta ⇒ mk_const (nm ,theta);
return (push (Term tm) s)

od
else if line = "deductAntisym" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← DEDUCT_ANTISYM_RULE th1 th2;
return (push (Thm th) s)

od
else if line = "def" then
do
(obj ,s) ← pop s; n ← getNum obj ;
obj ← peek s;
if n < 0 then failwith "def" else

return (insert_dict (Num n) obj s)
od

else if line = "defineConst" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
(obj ,s) ← pop s; n ← getName obj ;
ty ← type_of tm;
eq ← mk_eq (mk_var (n ,ty),tm);
th ← new_basic_definition eq ;
return (push (Thm th) (push (Const n) s))

od
else if line = "defineConstList" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; ls ← getList obj ;
ls ← map getNvs ls;
th ← INST ls th;
th ← new_specification th;
ls ← map getCns ls;
return (push (Thm th) (push (List ls) s))

od
. . .
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. . .

else if line = "defineTypeOp" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; getList obj ;
(obj ,s) ← pop s; rep ← getName obj ;
(obj ,s) ← pop s; abs ← getName obj ;
(obj ,s) ← pop s; nm ← getName obj ;
(th1,th2) ← new_basic_type_definition nm abs rep th;
(_,a) ← dest_eq (concl th1);
th1 ← ABS a th1;
th2 ← SYM th2;
(_,Pr) ← dest_eq (concl th2);
(_,r) ← dest_comb Pr ;
th2 ← ABS r th2;
return (push (Thm th2) (push (Thm th1) (push (Const rep)

(push (Const abs) (push (TypeOp nm) s)))))
od

else if line = "eqMp" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← EQ_MP th1 th2;
return (push (Thm th) s)

od
else if line = "hdTl" then
do
(obj ,s) ← pop s; ls ← getList obj ;
case ls of
[] ⇒ failwith "hdTl"

| h ::t ⇒ return (push (List t) (push h s))
od

else if line = "nil" then return (push (List []) s)
else if line = "opType" then
do
(obj ,s) ← pop s; ls ← getList obj ;
args ← map getType ls;
(obj ,s) ← pop s; tyop ← getTypeOp obj ;
t ← mk_type (tyop ,args);
return (push (Type t) s)

od
. . .
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. . .

else if line = "pop" then do (_,s) ← pop s; return s od
else if line = "pragma" then
do
(obj ,s) ← pop s;
nm ← handle (getName obj ) (λ e. return "bogus");
if nm = "debug" then failwith (state_to_string s) else return s

od
else if line = "proveHyp" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← PROVE_HYP th2 th1;
return (push (Thm th) s)

od
else if line = "ref" then
do
(obj ,s) ← pop s; n ← getNum obj ;
if n < 0 then failwith "ref" else
case lookup (Num n) s.dict of

None ⇒ failwith "ref"

| Some obj ⇒ return (push obj s)
od

else if line = "refl" then
do
(obj ,s) ← pop s; tm ← getTerm obj ;
th ← REFL tm;
return (push (Thm th) s)

od
else if line = "remove" then
do
(obj ,s) ← pop s; n ← getNum obj ;
if n < 0 then failwith "ref" else
case lookup (Num n) s.dict of

None ⇒ failwith "remove"

| Some obj ⇒ return (push obj (delete_dict (Num n) s))
od

. . .
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. . .

else if line = "subst" then
do
(obj ,s) ← pop s; th ← getThm obj ;
(obj ,s) ← pop s; (tys ,tms) ← getPair obj ;
tys ← getList tys;
tys ← map getTys tys;
th ← handle_clash (INST_TYPE tys th) (λ e. failwith "the impossible");
tms ← getList tms;
tms ← map getTms tms;
th ← INST tms th;
return (push (Thm th) s)

od
else if line = "sym" then
do
(obj ,s) ← pop s; th ← getThm obj ;
th ← SYM th;
return (push (Thm th) s)

od
else if line = "thm" then
do
(obj ,s) ← pop s; c ← getTerm obj ;
(obj ,s) ← pop s; h ← getList obj ;
h ← map getTerm h;
(obj ,s) ← pop s; th ← getThm obj ;
th ← ALPHA_THM th (h ,c);
return (s with thms := th ::s.thms)

odelse if line = "trans" then
do
(obj ,s) ← pop s; th2 ← getThm obj ;
(obj ,s) ← pop s; th1 ← getThm obj ;
th ← TRANS th1 th2;
return (push (Thm th) s)

od
else if line = "typeOp" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (TypeOp n) s)

od
. . .
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. . .

else if line = "var" then
do
(obj ,s) ← pop s; ty ← getType obj ;
(obj ,s) ← pop s; n ← getName obj ;
return (push (Var (n ,ty)) s)

od
else if line = "varTerm" then
do
(obj ,s) ← pop s; v ← getVar obj ;
return (push (Term (mk_var v)) s)

od
else if line = "varType" then
do
(obj ,s) ← pop s; n ← getName obj ;
return (push (Type (mk_vartype n)) s)

od
else
case s2i line of

Some n ⇒ return (push (Num n) s)
| None ⇒

case explode line of
"" ⇒ failwith ("unrecognised input: " ˆ line)
| "\"" ⇒ failwith ("unrecognised input: " ˆ line)
| #"""::c::cs ⇒

return
(push (Name (implode (front (c::cs)))) s)

| _ ⇒ failwith ("unrecognised input: " ˆ line)
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3.B Listings of CakeML code

The listing for read_stdin (§3.6).

fun read_stdin () =
let

val ls = TextIO.inputLines TextIO.stdin
in

process_list ls init_state
end;

The listing for read_file (§3.6).

fun read_file file =
let

val ins = TextIO.openIn file
in

process_lines ins init_state;
TextIO.closeIn ins

end
handle TextIO.BadFileName =>

TextIO.output TextIO.stdErr
(msg_filename_err file);

The listing for process_list, which calls process_line on a list of
commands.

fun process_list ls s =
case ls of

[] => TextIO.print
(print_theorems s (Kernel.context ()))

| l::ls =>
case process_line s l of

Inl s =>
process_list ls (next_line s)

| Inr e =>
TextIO.output TextIO.stdErr (line_fail s e);
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The listing for process_lines, which reads a proof command (string)
from an input stream, and calls process_line on the result, until the input
is exhausted.

fun process_lines ins st0 =
case TextIO.inputLine ins of

None =>
TextIO.print (print_theorems st0 (Kernel.context ()))

| Some ln =>
case process_line st0 ln of

Inl st1 =>
process_lines ins (next_line st1)

| Inr e =>
TextIO.output TextIO.stdErr (line_fail st0 e))`;

The listing for process_line, which calls a synthesized version of
readLine (§3.5) on a proof command (§3.4.3).

fun process_line st ln =
if invalid_line ln then

Inl st
else

Inl (readline (preprocess ln) st)
handle Fail e => Inr e;
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3.C Speci�cations for CakeML code

The de�nition of readLines, which calls on readLine (§3.4.4, and Ap-
pendix A) to process a list of proof commands (§3.4.3).

readLines lines st =
case lines of
[] ⇒ return (st ,lines_read st)
| l ::ls ⇒

if invalid_line l then readLines ls (next_line st) else
do

st ′ ← handle (readLine (preprocess l) st)
(λ e. failwith (line_num_err st e));

readLines ls (next_line st ′)
od

The de�nition of read_file (§3.6.1).

read_file fs refs fname =
if inFS_fname fs (File fname) then
case readLines (all_lines fs (File fname)) init_state refs of
(Success (s ,_),refs) ⇒

(add_stdout fs (print_theorems s refs.the_context),refs ,Some s)
| (Failure (Fail e),refs) ⇒ (add_stderr fs e ,refs ,None)

else (add_stderr fs (msg_filename_err fname),refs ,None)

The de�nition of read_stdin (§3.6.1).

read_stdin fs refs =
let fs ′ = fastForwardFD fs 0 in
case readLines (all_lines fs (IOStream "stdin")) init_state refs of
(Success (s ,_),refs) ⇒

(add_stdout fs ′ (print_theorems s refs.the_context),refs ,Some s)
| (Failure (Fail e),refs) ⇒

(add_stderr fs ′ e ,refs ,None)
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Chapter 4

Candle: A Veri�ed Implementation of
HOL Light

Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and
Thomas Sewell

Abstract. This paper presents a fully veri�ed interactive theorem prover for
higher-order logic, more speci�cally: a fully veri�ed clone of HOL Light. Our
veri�cation proof of this new system results in an end-to-end correctness theo-
rem that guarantees the soundness of the entire system down to the machine
code that executes at runtime. Our theorem states that every exported fact
produced by this machine-code program is valid in higher-order logic. Our
implementation consists of a read-eval-print loop (REPL) that executes the
CakeML compiler internally. Throughout this work, we have strived to make
the REPL of the new system provide a user experience as close to HOL Light’s
as possible. To this end, we have, e.g., made the new system parse the same
variant of OCaml syntax as HOL Light. All of the work described in this paper
has been carried out in the HOL4 theorem prover.

Published in Interactive Theorem Proving, 2022.
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4.1 Introduction

Interactive theorem provers (ITPs) for higher-order logic, such as HOL4, HOL
Light, Isabelle/HOL and ProofPower, are designed to be as sound as possible.
Their implementations follow an LCF-style architecture, which means that each
prover has a small kernel that implements the inference rules of the hosted
logic (higher-order logic) and the rest of the system is set up in such a way that
all soundness-critical inferences must be performed by the functions inside the
small kernel. The beauty of this approach is that there is not much soundness-
critical source code, which means that this code can quite easily be manually
inspected (or even veri�ed). As a result, soundness bugs in these ITPs are very
rare.

In search of ever stronger assurance guarantees, one might ask: is it really
the case that only the code of the kernel needs to be trusted in order to trust
the soundness of an entire ITP implementation? At the level of source code,
the answer is yes. However, source code is not what runs on real machines.
As a result, one should also take into consideration the implementation of the
programming language that hosts the ITP. All of the ITPs mentioned above rely
on complex implementations of functional programming languages, such as
Poly/ML and OCaml, and they rely on their interactive implementations, where
users can (and do) provide new program text while the ITP is running. The
implementations of these hosting functional languages are far more complex
than the kernels of these ITPs.

In this paper we address the question: is it possible to develop an ITP
for higher-order logic (HOL) for which soundness can be proved down to the
machine code that runs it? In prior work, soundness has been proved for kernels
of ITPs, but not for entire HOL ITPs. Our question requires us to consider a
proof of soundness for the prover including the at runtime user-provided source
code, and beyond that, for the interactive implementation of the underlying
functional programming language. Our answer is: yes, it is possible to develop
such an end-to-end veri�ed ITP for HOL, as we explain in this paper.

Contributions This paper’s contribution is a new ITP called Candle1, which
consists of a clone of HOL Light running on top of a proved-to-be-safe CakeML-
based read-eval-print loop (REPL).

• Our veri�cation e�orts result in a machine-code program, the Candle
prover, for which we have proved that any theorem statement that it
outputs follows by the inference rules of HOL (and, since these rules are
sound, is valid by the semantics of HOL). To the best of our knowledge,
this is the most comprehensive soundness result proved for a HOL ITP.

• This development can be seen as a major case study of the CakeML
project, since it touches on almost every aspect of the CakeML project.

1The name Candle comes from the combination of CakeML and HOL Light.
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This work is the �rst use of CakeML’s new source primitive called Eval,
which allows compilation and execution of user-provided program text
at runtime.

• The resulting Candle ITP is designed to provide a user experience as
close to HOL Light’s as possible. For this purpose, we have made the new
system parse the same variant of OCaml syntax as HOL Light. Our aim is
to make it as straightforward as possible to port HOL Light developments
to Candle.

The work described in this paper has been carried out in the HOL4 theorem
prover [57]. Our proofs and binaries of Candle are available at: https://
cakeml.org/candle.

4.2 Approach

This section provides a high-level outline of our work on Candle. Subsequent
sections provide more details.

Prior work that we build on The results described in this paper build on
substantial prior work. In particular, we build on our prior work on construction
of a proved-to-be-sound implementation of a HOL Light-like kernel [41]. In
that work, we proved that CakeML implementations of HOL Light’s kernel
functions are sound w.r.t. a formalisation of higher-order logic. Our new work
on Candle also depends on many parts of the CakeML ecosystem: in particular,
our proved-to-be-safe REPL relies on the CakeML compiler’s ability to compile
itself (bootstrapping).

Overview of new work The new work in this paper can be divided into the
following three high-level steps:

1. We prove at the source level that any reasonable program that contains
the Candle kernel as a pre�x can only output facts that follow from the
inference rules of HOL (Sec. 4.3);

2. We use CakeML’s new Eval primitive to construct a proved-to-be-safe
read-eval-print loop (REPL) that is su�cient for HOL Light-like interac-
tion (Sec. 4.4);

3. Using CakeML’s compiler correctness theorem, we transport the source-
level soundness results down to the machine code that is the real imple-
mentation (Sec. 4.5).

The work for Step 1 centres around a whole-program simulation proof
which establishes that only acceptable values, v_ok, are present in the system.
Here a value v is considered v_ok if all the soundness-critical values, i.e., the
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values representing HOL types, terms and theorems, within v are valid in the
current logical context maintained by the Candle kernel. These soundness-
critical values �ow around unmodi�ed outside of the kernel. The interesting
case is when one of the kernel’s functions is called. At these calls, we make use
of our prior work on the soundness of the kernel functions. Throughout these
proofs, a layer of complexity is added by the fact that CakeML’s operational
semantics is (almost completely) untyped.

Even though the proofs for Step 1 are mostly about maintaining v_ok
throughout execution, the �nal soundness theorem proved in Step 1 is not
about values. Instead, it is about what can be seen on the externally facing
foreign-function interface (FFI). This is because our compiler correctness the-
orem talks about events on the FFI channels. As a result, the whole-program
soundness theorem states that every output on a special theorem-printing FFI
channel will only ever contain valid theorem statements.

In Step 2, the challenge was to build a REPL that allows the kind of in-
teractivity that an ITP requires. Here we make use of an evaluate primitive,
Eval, that has recently been added to the CakeML source language. This Eval
primitive evaluates, at runtime, arbitrary user-provided code, which is exactly
what one needs to build a program that implements a REPL. (We hope that
our REPL is su�ciently similar to HOL Light’s to be usable.) A key insight in
this part of the work is that a full functional speci�cation for the REPL is not
required. For the purposes of our soundness theorem, it su�ces to prove that
the REPL is safe, i.e., it never gets the (untyped) operational semantics stuck.

Step 3 is an important step, even though it only takes a few lines of proof to
complete. This step is a straightforward application of the compiler correctness
theorem to: a theorem describing an in-logic evaluation of the compiler; the
Candle soundness theorem proved in Step 1; and the safety theorem for the
REPL from Step 2.

4.3 Proving source-level soundness of the Can-

dle prover

This section explains our work for Step 1, i.e., how we prove, at the CakeML
source level, that any reasonable program built from the Candle kernel is sound.

4.3.1 Idea: soundness-critical values only produced by ker-

nel functions

The idea of LCF-style ITPs is that the soundness of the kernel functions together
with the programming language-based protection of the soundness-critical
datatypes (such as the datatypes representing HOL types, terms and theorems)
imply that no malformed or false types, terms or theorems can be constructed
in the ITP, no matter what user-provided code is executed at runtime.
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The Candle ITP follows the LCF tradition. Our task is thus to formally show,
in HOL4, that this design makes the Candle ITP sound. More speci�cally, in our
case, the task is to prove that any reasonable program that contains the Candle
kernel can only produce well-formed and sound types, terms and theorems of
HOL.

4.3.2 Setting: CakeML’s untyped operational semantics

In an LCF-style ITP, protection of soundness-critical datatypes is usually
achieved by the type system of the implementation language. In ML languages,
the usual route is to make the type, term, and theorem datatypes into abstract
types using the module system. We take a hybrid approach, where the type
system provides some of the protection, while the rest comes from syntactic
safety-checks imposed by the REPL at runtime.

A source of complication arises, in our proofs, from the fact that CakeML’s
operational semantics is almost entirely untyped. CakeML’s operational se-
mantics is written in a functional big-step style that takes a CakeML program
as input and either succeeds, returning a value or a raising exception; or gets
stuck with a runtime type error. CakeML values include literals, vectors, type
constructors, and function values. A function value contains code and a se-
mantic environment, but very little type information. The CakeML operational
semantics lacks information such as the type of function values.

The soundness of our type system and its inferencer implementation [62]
allows us to limit ourselves to considering only programs with a non-erroneous
semantics in our theorems. However, this does not rule out ill-typed programs
from our proofs, as non-erroneous programs can still have ill-typed parts, as
long as those parts are never executed.

4.3.3 Target: a theorem about externally observable events

The top-level correctness statement needs to be in terms of externally visible
I/O events on the CakeML compiler’s foreign-function interface (FFI). This goes
against the natural way of thinking of soundness in terms of what values can
and cannot be constructed during the execution of a program.

This theorem should state that whenever a value of the HOL theorem type
is rendered as text and output on an FFI channel, then that value is indeed a true
theorem of HOL. To achieve this, we need to separate the output of theorems
rendered as text from any other output of the REPL, because the REPL can (and
does) print all sorts of text during runtime; indeed, a user may instruct it to
print any string of text that looks like a theorem, but isn’t. Worse, the HOL
Light pretty-printer is user-customisable and installed at runtime; we have no
way of statically reasoning about this function in our proofs.

We put our soundness story on rock solid foundations by printing theorems
on a special kernel-controlled FFI channel using a printer function which sits
within the kernel. The output from this printer function is di�cult to read,
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f ∈ kernel_funs

inferred ctxt f

TYPE ctxt ty TYPE_TYPE ty v

inferred ctxt v

TERM ctxt tm TERM_TYPE tm v
inferred ctxt v

THM ctxt th THM_TYPE th v
inferred ctxt v

Figure 4.1. The de�ning rules of the inferred predicate. TYPE, TERM and THM
are predicates from the Candle soundness development, stating that a value
is a well-formed type, term, or theorem, with respect to a logical context.
TYPE_TYPE, TERM_TYPE and THM_TYPE are relations invented by the CakeML
code synthesis tool [50] as it processes these types, stating that the deep-
embedded CakeML values v are re�nements of the shallow-embedded HOL
values: ty , tm , th .

but it is unambiguous and invertible, meaning that a theorem and its logical
context can be recovered from the text.

4.3.4 Proof: values stay wellformed

The Candle kernel uses datatypes to represent soundness-critical HOL values:
types, terms and theorems (sequents). It also de�nes functions that consume
and produce values of these datatypes. Syntactic safety checks imposed by
the REPL prevent values from being created using the HOL type constructors.
Thus, the only way to create new values of these datatypes at runtime is by
using the kernel functions.

We wish to establish the soundness of this design formally: that any rea-
sonable program executed from a state which contains only well-formed HOL
values should arrive in a state which contains only well-formed values. Values
and functions de�ned inside the kernel are well-formed. So are types containing
only de�ned type operators, well-typed terms containing only known constants,
and theorems for which there is a derivation in the HOL proof calculus.

We say that a value is safe, written v_ok, if it contains only well-formed
HOL values, written inferred v ; or, if it is not a HOL speci�c value, all of its
sub-values are v_ok. Type constructors for HOL values are not v_ok (or they
would satisfy inferred), nor are references maintained by the kernel, as they
could be used to modify the kernel state. Figure 4.1 shows the de�nition of
inferred, and some of the rules de�ning v_ok are shown in Figure 4.2.

We say that code is safe, written safe_dec, if it does not directly mention
the kernel FFI channel, nor call the constructors for the HOL datatypes. Safe
code is still allowed to pattern match on HOL constructors and call the kernel
functions.

We lift the v_ok predicate to environments and semantics states. An en-
vironment is env_ok if its values are v_ok, and if it maps the HOL constructor
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inferred ctxt v
kernel_vals ctxt v

kernel_vals ctxt v
v_ok ctxt v

every (v_ok ctxt) vs

v_ok ctxt (Vectorv vs)

kernel_vals ctxt f v_ok ctxt v do_partial_app f v = Some g

kernel_vals ctxt g

every (v_ok ctxt) vs
∀ tag x . opt = Some (TypeStamp tag x ) ⇒ x /∈ kernel_types

v_ok ctxt (Conv opt vs)

Figure 4.2. A few of the de�ning rules of the v_ok predicate. Here do_partial_app
constructs a partial application, but fails if the function is fully applied. Conv
is a constructor value, and Vectorv is a vector value, illustrating the recursive
de�nition of v_ok.

names to the correct HOL types. The state predicate, state_ok, maintains that all
non-kernel references contain v_ok values, and ensures that all kernel-owned
references point to values that are re�nements of the references in the state of
the shallow-embedded kernel. It also guarantees that all events on the kernel
FFI channel come from well-formed theorems, written ok_event (de�ned in
Section 4.3.6), and sets up the Eval mechanism (described in Section 4.4.1) in
such a way that it rejects code that is not safe_dec. Furthermore, state_ok asserts
that the state has come far enough in its type numbering to not reuse a type
number belonging to the kernel types.

We can now state and explain the proof of the following simulation result.

Theorem 1. Any execution of safe code (safe_dec), starting from a safe state
(state_ok), in a safe environment (env_ok) either:

• diverges, producing a (potentially in�nite) trace of ok_event I/O events;
or

• ends in a state_ok post-state and results in an env_ok environment.

The majority of the proof of Theorem 1 follows any run-of-the-mill CakeML
simulation proof. The most interesting case is when a kernel function is applied
to an argument, since this is the only case where soundness-critical values are
not simply being propagated.

For each kernel function, we prove a safety result stating that, when the
kernel function is applied to v_ok arguments, it produces v_ok results. For these
function-speci�c safety proofs, we make use of theorems from prior work on
veri�cation of the functions of a HOL kernel.

• The CakeML code implementing the kernel’s functions is automatically
generated by a proof-producing code synthesis tool [50]. This tool proves,
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for each shallow embedding of a kernel function f , that, if the CakeML
code generated for f is given arguments of the correct form/type, then
the CakeML code will compute the same result as an application of f to
those arguments (at the level of the shallow embedding of f ).

• From prior work [41], we have a soundness theorem for each kernel
function. These theorems state that when they are applied to well-formed
HOL values (i.e. satisfying inferred), then they produce well-formed HOL
values.

However, there is a challenge here brought by the untyped setting and
the assumption “if the CakeML code generated for f is given arguments of
the correct form/type”. Our untyped setting means that we cannot always
immediately know that the arguments passed to the kernel functions are of the
right form/type. Instead, all we know is that they satisfy v_ok.

Our solution is to insert dead code that makes the operational semantics
perform a dynamic type check. For example, the kernel function ASSUME has
type term -> thm, but the operational semantics does not see that it will only
be applied to values that are terms. We insert a case-expression that pattern
matches on a top-level constructor of the term type (Var). This case-expression
triggers a dynamic type check in our semantics.

fun ASSUME tm = ((case tm of Var _ _ => () | _ => ()); ...);

The inserted code, i.e. (case tm of Var _ _ => () | _ => ()), has no
impact on performance since the compiler removes it as dead code.

4.3.5 Towards a top-level soundness theorem

The Candle ITP program is made up from the CakeML basis library, the Candle
kernel, and the user-facing REPL. The safety of the REPL is discussed separately
in Section 4.4. To instantiate Theorem 1, we need to show that the initial state
and environments satisfy state_ok and env_ok, respectively.

The program starts by running the basis library, for which state_ok does not
hold: at this stage, the kernel references are not yet allocated, and the counter
for type numbering has not yet reached the kernel types. Hence, Theorem 1 is
not applicable.

We prove a separate simulation theorem, stating that evaluation of the basis
program produces an environment that is env_ok, and a state which contains
only v_ok values and with a next type number counter set to the number used
by the �rst HOL datatype de�nition. The type counter and the number of
references grow monotonically during execution, and all values produced by a
program refer only to type numbers and reference locations that do not exceed
the counts kept in state. Thus all values produced by this execution are trivially
v_ok. From the resulting state, it is possible to de�ne the kernel types and its
references, and end up in a state that is state_ok.
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Showing that the Candle post-state and post-environment (where the REPL
starts executing) is state_ok and env_ok is straightforward but tedious. We
automate the process by making use of some simple facts about env_ok envi-
ronments:

• All kernel functions and values are v_ok by de�nition.

• When two env_ok environments are merged, the result is also env_ok.

• When one adds a v_ok value to an env_ok environment, the result is also
env_ok.

The result is a small piece of custom proof automation which steers HOL4 to a
proof showing that the concrete environments of the kernel values are env_ok,
thereby allowing us to establish state_ok and env_ok for the setting in which
the REPL program executes.

We use these theorems together with Theorem 1 to show that the safety
invariants v_ok, env_ok and state_ok are preserved in any subsequent code
executed by the program.

4.3.6 Source-level soundness theorem

Our source-level soundness proof builds up to the following top-level soundness
theorem stated in terms of CakeML’s observable semantics, semantics_prog.

Here semantics_prog returns a set of behaviours. A behaviour is Fail (for
type error), Terminate k l (for termination) or Diverge ll (for a non-terminating
run). Here l is a list of I/O events performed by the run and ll is a potentially
in�nite list of I/O events.

We prove that each generated I/O event must be well-formed according
to ok_event, which is de�ned to require that any event that communicates on
the special kernel_�i channel must contain output that can be produced using
a thm_to_string function applied to a sequent th that can be derived (THM) by
the inference rules of higher-order logic in a context ctxt .

ok_event (IO_event n out y) =
n = kernel_�i⇒ ∃ ctxt th. THM ctxt th ∧ thm_to_string ctxt th = out

Since the thm_to_string function is crucial for our soundness theorem, we have
made sure that its output is invertible. The actual output is not particularly
human readable in most cases, but it is unambiguous. A small sample output is
shown in Figure 4.3.

Our source-level soundness theorem states that every event satis�es ok_event,
for any non-Fail behaviour and for any program that consists of declarations
candle_code ++ prog , where prog is any list of declarations that syntactically
satis�es every safe_dec.

76



# The following is a theorem of higher-order logic

(Sequent nil (Const T (Tyapp bool)))

# which is proved in the following context

(ConstSpec
((T . . .))
(Comb

(Comb . . .)
(Comb . . .)))

(NewConst = (Tyapp fun (Tyvar A) (Tyapp fun (Tyvar A) (Tyapp bool))))

(NewType bool 0)

(NewType fun 2)

Figure 4.3. Output of print_thm applied to the theorem ` T. Here Sequent
contains nil to indicate that there are no hypothesis on this theorem. This
theorem is true in the context where T is de�ned as T = (λ p. p) = (λ p. p), which
is its de�nition in HOL Light; equality = is a constant of type α→ α→ bool;
types bool and fun are de�ned. Some excess output is elided (. . .) above.

Theorem2. Any non-Fail behaviour res that is in the behaviours of candle_code ++ prog
will only contain externally visible events that satisfy ok_event.

` res ∈ semantics_prog (init_eval_state_for cl fs) init_env (candle_code ++ prog) ∧
every safe_dec prog ∧ res 6= Fail ⇒
∀ e. e ∈ events_of res ⇒ ok_event e

4.4 Construction of a proved-to-be-safe REPL

for Candle

The previous section explained how we have proved that any reasonable pro-
gram, one that satis�es every safe_dec, constructed from the Candle kernel leads
to a sound prover. This section explains how we have built a program that
satis�es every safe_dec and manages to implement a proved to-be-safe read-
eval-print loop (REPL) that provides the kind of user-interaction that theorem
proving with HOL Light requires.
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4.4.1 CakeML’s new Eval source primitive

The most technically demanding part of a REPL is the implementation of the
“E” in REPL, i.e., the part that evaluates user input. This “E” must always run
safely and e�ciently.

To the best of our knowledge, most HOL Light users use HOL Light via
the standard OCaml REPL2 where the “E” compiles user input into bytecode
and then interprets the bytecode. For CakeML and Candle, we implement the
“E” in REPL as: compile, at runtime, the user input to machine code, drop that
machine code into the code segment of the running process and execute the
new machine code by performing a jump to it.

Such runtime compilation can be achieved in CakeML by using CakeML’s
new Eval source primitive. The exact details, implementation and veri�cation
of the new Eval source primitive will be the subject of a di�erent publication.
However, for this paper, it su�ces to have an approximate understanding of its
semantics and to know that the Eval primitive has been fully integrated into
the CakeML compiler and its proofs.

From a bird’s eye view, CakeML’s Eval primitive has the following seman-
tics: it expects as input (among other things): a value representing the AST
for CakeML source declarations to execute, and a value holding a semantic
environment (mappings from names to values and type information); if called
correctly, Eval evaluates the given declarations using the supplied environment,
and, on successful completion, returns a value holding a new environment that
can be used for subsequent calls to Eval.

4.4.2 Building a REPL in CakeML source code

The Eval primitive enables us to implement our REPL conveniently in CakeML
source code. The source code for the main loop of the REPL is shown in
Figure 4.4. This section attempts to explain the code shown in Figure 4.4.

When planning this implementation, a key insight was that we do not need
to prove any input-output-style functional correctness theorem of the REPL.
Instead, for the purposes of our top-level soundness theorem, it su�ces to
implement a REPL that we can prove to be safe. This safety proof needs to
result in a theorem stating that a semantics_prog run of the REPL program can
never result in the Fail behaviour, as can be seen in the assumption res 6= Fail
in Theorem 2. This insight means that we can leave it up to the user to decide
how input is to be read and can leave the pretty printing code quite open ended
too, i.e., mostly unveri�ed.

We will illustrate the working of the code in Figure 4.4 using an example.
For the sake of the example suppose the repl function is given the AST of the
following CakeML declaration as the decs argument.

let x = [1] @ [2];;

2HOL Light adjusts the OCaml REPL so that it uses a custom HOL Light-speci�c OCaml parser.
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01: fun repl (parse, types, conf, env, decs, input_str) =
02: (* input_str is passed in here only for error reporting purposes *)
03: case check_and_tweak (decs, types, input_str) of
04: Inl msg => repl (parse, types, conf, env, report_error msg, "")
05: | Inr (safe_decs, new_types) =>
06: (* here safe_decs are guaranteed to not crash;
07: the last declaration of safe_decs calls !Repl.readNextString *)
08: case eval (conf, env, safe_decs) of
09: Compile_error msg => repl (parse, types, conf, env, report_error msg, "")
10: | Eval_exn e new_conf =>
11: repl (parse, roll_back (types, new_types), new_conf, env, show_exn e, "")
12: | Eval_result new_env new_conf =>
13: (* check whether the program that ran has loaded in new input *)
14: if !Repl.isEOF then () (* exit if there is no new input *) else
15: let val new_input = !Repl.nextString in
16: (* if there is new input: parse the input and recurse *)
17: case parse new_input of
18: Inl msg =>
19: repl (parse, new_types, new_conf, new_env, report_error msg, "")
20: | Inr new_decs =>
21: repl (parse, new_types, new_conf, new_env, new_decs, new_input)
22: end

Figure 4.4. CakeML code (in CakeML syntax) implementing the main loop of
the new REPL.

As can be seen on line 3 in Figure 4.4, check_and_tweak will be applied
to the decs. We can also see that the types argument (the state of the type
inferencer) and input_str are also passed to check_and_tweak. This check_-
and_tweak function will run the type inferencer on the given decs. If the
type inferencer rejects them, then an error message is returned. If the type
inferencer accepts decs, then the check_and_tweak function will return a
tweaked version of the original declarations. For this example, the tweaked
declarations are approximately the following. (In reality, the second line uses
more specialised functions.)

let x = [1] @ [2];;
let _ = print ("x" ^ pp_list pp_int x ^ ": int list\n");;
let _ = (!Repl.readNextString)();;

Here the �rst line is, in this case, exactly the user’s input; the second line
causes the computed value to be printed to stdout; and, the third line runs
a user-settable function for reading the next input. In the general case, the
check_and_tweak function also adds de�nitions of pp-functions to the given
declarations.

Once these adjusted declarations, called safe_decs on line 5, have been
generated, the repl function hands them over to eval, which runs them. Run-
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ning these declarations can result in one of three outcomes: the compiler might
not be able to compile them (linking error or similar); the evaluation might
have caused a top-level exception, which eval catches and returns as e on
line 10; or, if all goes well, the evaluation will return a new declaration-level
semantic environment new_env and a new compiler con�guration new_conf
on line 12.

From line 12, the repl function continues by reading a few references that
the execution of !Repl.readNextString is to have assigned new values to; a
true in !Repl.isEOF indicates that there is no new input; if input exists, then
the new input is in !Repl.nextString. In the case of new input, the parser is
called on the content of !Repl.nextString and the loop begins from the top
again.

The loop starts o� by evaluating the declarations that correspond to the
concrete syntax for let _ = (!Repl.readNextString)();;. The initial value
of this Repl.readNextString reference is a function that returns the content
of a user-modi�able start-up �le candle_boot.ml. This �le is supposed to
install an appropriate new function in Repl.readNextString, which includes
a user-con�gurable parser for ‘...‘-terms, and support for special �le loading
directives.

One can argue that some aspects of the implementation of the repl function
seem peculiar, e.g., that the call to !Repl.readNextString is always appended
to the declarations sent to eval. Our design of repl is arrange this way in
order to collect all state changing code into the execution of eval, since such a
design makes the safety proof simpler.

4.4.3 Proving safety of the REPL

As mentioned above, we need to prove that the REPL is safe to execute. More
speci�cally, that semantics_prog cannot give the REPL program the Fail be-
haviour.

The conventional way to prove safety of a CakeML program is via type
inference: if the type inferencer accepts a program, then the program is typeable
and, by type soundness, we know that the program is safe, i.e., does not have
Fail behaviour. Unfortunately, we cannot take this route because the Eval
primitive, in its current form, does not �t with CakeML’s type system, since
static typing information is not enough to show that the Eval won’t get stuck
when run. As a result, we prove safety of the REPL via an interactive proof.

We prove the following safety theorem for the REPL program called repl_source_prog.
Theorem 3. The REPL program does not have Fail behaviour.
` has_repl_flag (tl cl) ∧ basis_init_ok cl fs ⇒

Fail /∈ semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog

The most challenging aspect of the proof of Theorem 3 is that it requires
bringing together results from di�erent parts of the CakeML ecosystem. For-
tunately, all proofs to do with type inference could quite cleanly be separated
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# let T_DEF = new_basic_definition `T = ((\p:bool. p) = (\p:bool. p))`;;
val T_DEF = |- T <=> (\p. p) = (\p. p): thm
# let th1 = SYM T_DEF

and th2 = REFL `\p:bool. p`;;
val th1 = |- (\p. p) = (\p. p) <=> T: thm
val th2 = |- (\p. p) = (\p. p): thm
# let TRUTH = EQ_MP th1 th2;;
val TRUTH = |- T: thm

Figure 4.5. Sample interaction with the Candle REPL in the OCaml syntax of
HOL Light.

from the proofs about stepping through the operational semantics. It is worth
noting that the REPL implementation uses the type inferencer to establish
safety of the user-provided code, which means that the user can unfortunately
not currently mention the Eval primitive because Eval is not typeable.

We also prove the following syntactic property about the REPL program in
order to meet the assumptions of the Candle soundness theorem, Theorem 2.

Theorem 4. The REPL program has candle_code as a pre�x and satis�es
every safe_dec.

` ∃ prog . repl_source_prog = candle_code ++ prog ∧ every safe_dec prog

This theorem is proved by rewriting and evaluation. It is used in Section 4.5.

4.4.4 A REPL with a parser for HOL Light-style OCaml

syntax

The sharp-eyed reader might have noticed that the CakeML code of Figure 4.4
does not use the OCaml syntax that HOL Light users expect. Instead it uses
the standard way to write CakeML code, i.e., in syntax that is aligned with
Standard ML. In order to make the user experience as close as possible to that
of HOL Light, we have equipped the Candle REPL with a parser for HOL Light’s
version of OCaml syntax. Figure 4.5 shows a snippet of an interaction with
the Candle REPL, where one can see a glimpse of OCaml-style concrete syntax
supported by Candle. Figure 4.5 also shows our quote �lter in action: it processes
the quoted terms ‘...‘ correctly.

4.5 Proving soundness for the machine-code im-

plementation

In this section, we apply the compiler to the source-level REPL implementation
of Candle, and transport the safety and soundness proofs down to the level of
the machine code that runs when the Candle prover is used.
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We evaluate the CakeML compiler on the repl_source_prog program inside
HOL4 in order to arrive at the concrete machine_code implementation of the
REPL by proof in the logic. The resulting theorem is the following.

Theorem 5. The CakeML compiler produces machine_code when applied to
repl_source_prog.

` compile init_conf repl_source_prog = Some (machine_code,ro_data,result_conf)

We use the CakeML compiler’s correctness theorem to transport correct-
ness properties down to the level of machine code. Theorem 6 below is
an instantiated version of the relevant CakeML compiler correctness theo-
rem. In this theorem, we collect a bunch of assumptions into a constant
repl_ready_to_run cl fs ms which, among other things, requires that the gener-
ated machine_code is installed in memory in machine state ms and the program
counter of ms points at the start of the code.

Theorem 6. If the source-level program repl_source_prog does not have Fail be-
haviour, then any machine-code level execution starting from a repl_ready_to_run
machine state ms can only produce behaviours that are contained in the set
of source-level behaviours (extended with the possibility of early exits due to
hitting resource limits, extend_with_resource_limit).

` Fail /∈ semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog ∧
repl_ready_to_run cl fs ms ⇒
machine_sem (basis_�i cl fs) ms ⊆
extend_with_resource_limit

(semantics_prog (init_eval_state_for cl fs) init_env repl_source_prog)

We will not go into details of extend_with_resource_limit, but only note that it
is trivial to prove the following interaction between events_of and extend_with_resource_limit.

` e ∈ events_of res1 ∧ res1 ∈ sem1 ∧ sem1 ⊆ extend_with_resource_limit sem2 ⇒
∃ res2. e ∈ events_of res2 ∧ res2 ∈ sem2

We now have all of the parts required to prove a soundness theorem for
Candle that relates the level of machine code to the ok_event from Section 4.3.

Theorem7. Any behaviour res of a machine execution from a repl_ready_to_run
machine state ms will not Fail, and any event e in res will always satisfy
ok_event.

` res ∈ machine_sem (basis_�i cl fs) ms ∧ repl_ready_to_run cl fs ms ⇒
res 6= Fail ∧ ∀ e. e ∈ events_of res ⇒ ok_event e

The proof of this theorem is a simple combination of the source-level
soundness theorem (Theorem 2), the two theorems about the source-level REPL
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program (Theorems 3 and 4), and the instantiated compiler correctness theorem
(Theorem 6).

The theorem above states that any program built inside the Candle REPL
can only ever export statements that are true according to the inference rules
of higher-order logic.

4.6 Porting HOL Light scripts to Candle

Candle aims to be a veri�ed clone of HOL Light. While the previous sections
have focused on the veri�ed part of the system, it is important to note that
there is much more to HOL Light than the kernel and the basic setup of the
REPL. In this section, we describe our e�orts to port HOL Light’s standard
library to Candle.

At the time of writing, our porting e�orts are still work in progress. Candle
runs the majority of the scripts HOL Light executes at startup, as well as many
proof scripts in the 100 and Library directories. Figure 4.6 shows a side-by-side
comparison of the Candle and HOL Light REPLs.

The rest of this section describes the changes and additions we make when
porting HOL Lights scripts to Candle.

4.6.1 Changes necessary in HOL Light scripts

With our new parser, the CakeML language supports most, but not all, of the
language features HOL Light expects of its compiler. Here are the adaptations
that we have made to the original HOL Light sources in order to make them
compatible with Candle:

• The OCaml stdlib and CakeML’s basis library uses di�erent naming
conventions. The e�ect of this on our e�orts is mostly mitigated by
HOL Light’s own ‘standard library’ implementation lib.ml. However,
some functions are present in both CakeML and OCaml (e.g. String.sub)
but with di�erent type signatures or semantics. In such cases, we replace
OCaml names with the corresponding CakeML name.

• HOL Light makes use of OCaml’s polymorphic comparison operator
(Pervasives.compare). Where possible, we have replaced all such code
with concretely typed comparison operators (e.g., Int.compare for inte-
gers).

• HOL Light makes use of OCaml’s polymorphic hash function Hashtbl.hash
which maps arbitrary data to the integers. We don’t have anything of
the sort, and have to rewrite or remove this code.

• CakeML’s type system imposes a value restriction. This is mostly a
nuisance, but some code has to be re-structured as a consequence.
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# g `!(x:A) y z. (x = y)
/\ (y = z) ==> (x = z)`;;

1 subgoal (1 total)

`!x y z. x = y /\ y = z ==> x = z`

val it = (): unit
# e (REPEAT STRIP_TAC);;
1 subgoal (1 total)

0 [`x = y`]
1 [`y = z`]

`x = z`

val it = (): unit
# e (PURE_ASM_REWRITE_TAC []);;
1 subgoal (1 total)

0 [`x = y`]
1 [`y = z`]

`z = z`

val it = (): unit
# e REFL_TAC;;
No subgoals

val it = (): unit

# g `!(x:A) y z. (x = y)
/\ (y = z) ==> (x = z)`;;

val it : goalstack = 1 subgoal (1 total)

`!x y z. x = y /\ y = z ==> x = z`

# e (REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [`x = y`]
1 [`y = z`]

`x = z`

# e (PURE_ASM_REWRITE_TAC []);;
val it : goalstack = 1 subgoal (1 total)

0 [`x = y`]
1 [`y = z`]

`z = z`

# e REFL_TAC;;
val it : goalstack = No subgoals

Figure 4.6. Side-by-side comparison of an interactive tactic proof in Candle
(left) and HOL Light (right). Here g sets up a new proof goal and e applies a
given tactic to the top goal.

• Our parser does not deal with let rec forms without explicit arguments.
We have to give fresh arguments to such de�nitions manually.

• At present, CakeML does not support open or include. We have to
manually bring values into scope.

• A few �les in the HOL Light basis make use of OCaml’s record syntax.
CakeML does not support record types at present. We omit these �les in
our current builds, but must either implement record types in CakeML
or rework these �les in order to include them.

• All special pragmas recognisable by the OCaml REPL (e.g. for installing
pretty-printers) are removed. The CakeML REPL has a di�erent way of
dealing with pretty printers.

84



• We have made minor changes throughout HOL Light �les: hol.ml,
system.ml, and lib.ml.

4.6.2 Additional scripts

Here are the additions required for our REPL to be able to support HOL Light:

• Added �le: candle_pretty.ml (Replacement for Format)
We implement a functional pretty printer from a tree of pretty-printer
tokens to a tree of string lists. We build an imperative interface on top
of the functional printer, modelled after (a small subset of) the interface
provided by the Format module. (250 loc.)

• Added �le: candle_nums.ml (Replacement for Num)
The Num library integrates both arbitrary precision integers and arbitrary
precision rational numbers in one type. All integers in CakeML are arbi-
trary precision, and CakeML has a library for rational number arithmetic.
We build a small wrapper around the CakeML integers and rationals, and
provide the interface which HOL Light expects. (285 loc.)

• Added �le: candle_boot.ml (REPL code)
We build a read-eval-print loop (REPL) on top of the functionality pro-
vided by the CakeML compiler (see Section 4.4). The REPL splits user
input into chunks separated by ;;-tokens at the top-level. It supports
multi-line editing, and con�gurable quote substitution, and a mechanism
for �le loading that can deal with recursive load calls.

• Added �le: candle_kernel.ml (essentially the same as open Kernel)
Our current workaround for CakeML’s lack of support for open, as in
open Kernel.

4.7 Related work

In this section, we describe related work in the area of veri�cation of interactive
theorem provers and their logics. We observe that Candle seems to be the
�rst veri�ed interactive theorem prover that combines: an expressive hosted
logic (higher-order logic), an interactive implementation, and an end-to-end
soundness theorem that reaches down to the machine code that executes the
prover implementation.

4.7.1 Higher-order logic

Harrison [33] formalised a version of the HOL Light logic (omitting its de�ni-
tional mechanisms) as well as its set-theoretic semantics, in HOL Light itself.
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The actual artefact being veri�ed is a shallow-embedded implementation of
HOL Light, shown to be sound with respect to the semantics. Two consistency
results are proved: HOL without the axiom of in�nity is shown consistent in
HOL; and HOL is shown consistent in HOL extended with a larger universe
of sets. However, the scope of veri�cation does not extend past the shallow
embedding; there is no formal connection between it and the actual system,
which runs on interpreted OCaml and its C runtime.

Our work rests heavily on the work by Kumar et al. [41]. They build
on Harrison’s work and expand it along several dimensions; they formalise
the de�nitional mechanisms omitted by Harrison [33] using contexts, and
contribute a sequent calculus which is proven sound with respect to the HOL
semantics. A shallow-embedded implementation is shown to re�ne the proof
calculus. Notably, this shallow embedding can be extracted to machine code
using the CakeML ecosystem, establishing a formal connection between the
model-theoretic semantics and the machine code executing the kernel functions.

Gengelbach and Åman Pohjola [54, 24] further extend the work by Kumar
et al. [41], adding support for ad-hoc overloading of constant de�nitions. This
sort of mechanism is used by e.g. Isabelle/HOL to let one logical constant
receive di�erent meanings depending on what concrete types the variables in
its type signature are instantiated to. At the time of writing, work on a veri�ed
cyclicity checker, which is required to ensure the soundness of instantiations
of overloaded constants, has recently been completed [23]. We see no reason
that our work should not build on their kernel implementation in the future.

Nipkow and Roßkopf [52] have formalised the meta-logic of Isabelle, as well
as its proof-terms, and a proof checker for its proof terms. The meta-logic is used
in Isabelle to de�ne its many object logics. They formalise a proof calculus (but
not a semantics) for the meta-logic in Isabelle/HOL, and implement and verify
the correctness of a proof-checker for Isabelle proof-terms. Using Isabelle’s
(unveri�ed) code extraction, they are able to obtain an executable checker in
Standard ML. This checker can be used to check real proofs of Isabelle theorems
within Isabelle, but relies on an unveri�ed translation from Isabelle’s actual
proof structures into the proof-terms used by the checker. In addition, one must
trust the Poly/ML compiler and its C++ runtime, which hosts both Isabelle and
the checker artefact.

4.7.2 First-order logic

The most comprehensive ITP veri�cation result prior to ours is Milawa by Davis
and Myreen [18]. Milawa implements a quanti�er-free fragment of �rst-order
logic with recursive functions in the spirit of Nqthm and ACL2. It can execute
on top of the veri�ed Jitawa [49] Lisp runtime, and is proven sound with respect
to a formal semantics. By verifying and implementing both the prover and
its runtime within HOL4, the authors are able to obtain a soundness theorem
which shows the soundness of the machine code that executes the Milawa
system at runtime. The scope of Milawa’s veri�cation is similarly far-reaching
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to ours. However, it implements a fragment of �rst-order logic with functions,
which is simpler than HOL, and relies on a Lisp runtime which is considerably
less complex than the ML compilers used by LCF-style systems. An interesting
feature of Milawa is its ability to bootstrap itself by successively performing
conservative extensions of its own proof checker; no LCF-style system can
accomplish this as far as we know.

MetaMath Zero by Carneiro [16] is a proof checker for a many-sorted
�rst-order logic. Its logic is intended to act as a host for other object logics.
A bootstrapping e�ort is ongoing; the proof rules of MetaMath Zero have
been formalised within MetaMath Zero itself, as well as a model of the x86-
64 ISA [15]. However, there is no formal connection between the formalised
proof rules and any machine code re�nement of said rules: the current checker
implementation is unveri�ed. As it lacks a formal semantics, veri�cation is
limited to correctness of the proof calculus, leaving out soundness. Compared
to our system, MetaMath Zero is very low-level; its logic is simpler, and it o�ers
no interactivity or proof automation, and cannot be extended at runtime. In
return, one does not have to trust nor verify a complex programming language
implementation. Still, the language appears practical enough to host itself and
a ISA artefact [15]. Because it lacks interactivity, users do not interact directly
with MetaMath Zero. Instead, they see a higher-level (unveri�ed) ITP-like
system called MM1, which produces proofs that are checked by MetaMath
Zero; a design somewhat similar in spirit to that of LCF-style systems.

4.7.3 Dependent type theory

Barras [10] formalised the Calculus of Constructions (CC), a simpler version of
the Calculus of Inductive Constructions (CIC) which is the type theory used by
Coq. Barras’ formalisation is done in the same spirit as Harrison’s work [33],
by de�ning a set-theoretic model of the calculus, and proving its soundness
wholly inside Coq itself.

Sozeau et al. [59] present a formalisation as well as a proven-correct e�cient
type checker implementation for a substantial part of CIC. Their work continues
the tradition of Harrison [33], Kumar et al. [41] and Barras [10], by formalising
the meta-theory of Coq in Coq. The fragment of CIC under consideration omits
modules and template polymorphism. An OCaml version of the veri�ed type
checker can be obtained using the unveri�ed Coq extraction mechanism. Due to
faults in the implementation of Coq’s code extraction, Sozeau et al. implement
and verify their own extraction mechanism, which can be used to obtain an
executable checker. However, the formal veri�cation of the extraction is done
against an untyped λ-calculus, and not the actual OCaml language.

Anand and Rahli [7] have formalised the proof calculus and semantics of
Nuprl in Coq, and proved soundness of the Calculus. They do not provide
a veri�ed program which implements the calculus, but their plan is extract
a veri�ed implementation from the formalisation of their calculus, and to
implement and verify a type checker for a large part of Nuprl.
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4.8 Summary

The result of our e�orts is an interactive theorem prover called Candle that:

1. has been proved to be sound down to the machine code that runs it (the
binary is guaranteed to only output facts that are sound w.r.t. the rules
of higher-order logic);

2. o�ers a user experience that we have made as similar as possible to that
of HOL Light (Candle supports the same syntax and interactive proof
manager as HOL Light).

To the best of our knowledge, Candle is the most complete and comprehensive
veri�ed LCF-style interactive theorem prover to date.

Future work All of the proofs about the Candle prover have been completed,
but some practical challenges remain before Candle can be considered a drop-in
replacement for HOL Light. Most importantly, we need to port the remainder
of the HOL Light base libraries.
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Chapter 5

Fast, Veri�ed Computation for Candle

Oskar Abrahamsson and Magnus O. Myreen

Abstract. This paper describes how we have added an e�cient function for
computation to the kernel of the Candle interactive theorem prover. Candle
is a CakeML port of HOL Light which we have, in prior work, proved sound
w.r.t. the inference rules of the higher-order logic. This paper extends the
original implementation and soundness proof with a new kernel function for
fast computation. Experiments show that the new computation function is able
to speed up certain evaluation proofs by several orders of magnitude.

Technical report, 2022.
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5.1 Introduction

Interactive theorem provers (ITPs) include facilities for computing within the
hosted logic. To illustrate what we mean by such a feature, consider the
following function, sum, which sums a list of natural numbers:

sum xs = if xs = [] then 0 else hd xs + sum (tl xs)

A facility for computing within the logic can be used to automatically produce
theorems such as the following, where sum [5; 9; 1] was given as input, and
the following equation is the output, showing that the input reduces to 15:

` sum [5; 9; 1] = 15 (5.1)

The ability to compute such equations in ITPs is essential for use of veri�ed
decision procedures, for proving ground cases in proofs, and for running a
parser, pretty printer or even compiler inside the logic for a smaller TCB.

Higher-order logic (HOL) does not have a primitive rule for (or notion
of) computation. Instead, HOL ITPs such as HOL Light [34], HOL4 [57], and
Isabelle/HOL [51] implement computation as a derived rule using rewriting,
which in turn is a derived rule implemented outside their trusted kernels. As a
result, computation is slow in these systems.

To understand why computation is so sluggish in HOL ITPs, it is worth
noting that the primitive steps taken for the computation of Example (5.1) are
numerous:

• At each step, rewriting has to match the subterm that is to be reduced next
(according to a call-by-value order) against each pattern it knows (the
left-hand side of the de�nitions of sum, hd, tl, if-then-else and more); when
a match is found, it needs to instantiate the equation whose left-hand-side
matched, and then reconstruct the surrounding term.

• Computation over natural numbers is far from constant-time, since 5, 9
and 1 are syntactic sugar for numerals built using the constructors Bit0,
Bit1 and 0. For example, 5 = Bit1 (Bit0 (Bit1 0)). Deriving equations de-
scribing the evaluation of simple operations such as + requires rewriting
with lemmas such as these:

Bit1 m + Bit0 n = Bit1 (m + n)
Bit1 m + Bit1 n = Bit0 (Suc (m + n))
Suc (Bit0 n) = Bit1 n
Suc (Bit1 n) = Bit0 (Suc n)
. . .

HOL ITPs employ such laborious methods for computation in order to keep
their soundness critical kernel as small as possible: the small size and simplicity
of the kernel is key to the soundness argument.
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This paper is about how we have added a fast function for computation to
the Candle HOL ITP1. Candle has a di�erent soundness argument that allows
it to move away from being simple in order to be trustworthy: Candle has
been proved (in HOL4) to be sound w.r.t. a formal semantics of higher-order
logic [2].

With this new function for computation, proving equations via computation
is cheap. For the sum example:

• The input term is traversed once, and is converted to a datatype better
suited for fast computation. In this representation, each occurrence of
sum, hd, tl, etc. can be expanded directly without pattern-matching.

• The representation makes use of host-language integers, so that the
expression 5 + (9 + (1 + 0)) can be computed using three native
addition operations.

• Once the computation is complete, the result is converted back to a HOL
term and an equation similar to (5.1) is returned to the user.

Our function for computation works on a �rst-order, untyped, monomor-
phic subset of higher-order logic. Our implementation interprets terms of this
subset using a call-by-value strategy while utilizing host-language (CakeML)
features such as arbitrary precision integer arithmetic.

In our experiments, we observe speed gains of several orders of magni-
tude when comparing our new compute function against in-logic computation
implementations used by other HOL ITPs (Sec. 5.8).

Contributions

We make the following contributions:

• We implement a fast interpreter for terms as a user-accessible primitive
in the Candle kernel. The implementation allows users to supply code
equations dictating how user-de�ned (recursive) functions are to be
interpreted.

• The new primitive has been proven correct with respect to the inference
rules of higher-order logic, and has been fully integrated into the existing
end-to-end soundness proof of the Candle ITP.

• Our compute function is, in our experiments, signi�cantly faster than
the equivalent runs of in-logic compute facilities provided by other HOL
ITPs.

1Kernel functions are analogous to inference rules in HOL implementations.
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Notation: = and =c, ` and `c, etc.
This paper contains syntax at multiple, potentially confusing levels. The Candle
logic is formalized inside the HOL4 logic. Symbols that exist in both logics
are su�xed by a subscript c in its Candle version; as an example, = denotes
equality in the HOL4 logic, and =c denotes equality in the embedded Candle
logic. Likewise, a theorem in HOL4 is pre�xed by `, while a Candle theorem is
pre�xed by `c.

Source code and proofs

Our sources are at code.cakeml.org/candle/prover/compute, and the Candle
project is hosted at cakeml.org/candle.

5.2 Approach

This section describes the approach we have taken to add a new function for
computation to Candle.

First, we introduce a new computation friendly internal representation
(IR) for expressions that we want to do computation on. On entry to the new
compute primitive, the given input term is translated into this new IR. We use
an IR that is separate from the syntax of HOL (theorems, terms and types), since
the datatypes used by HOL ITPs are badly suited for e�cient computation.

We perform computation on the terms of our IR via interpretation. On
termination, this interpretation arrives at a return value. This return value is
translated to a HOL term r . The new compute primitive returns, to the user,
a theorem stating that the input term is equal to the result of computation r .
This series of steps is illustrated by the solid arrows in Figure 5.1.

The new compute primitive is a user-accessible function in the Candle
kernel and must therefore be proved to be sound, i.e., every theorem it returns
must follow by the primitive inference rules of higher-order logic (HOL).

We prove the correctness of our computation function by showing that
there is some way of using the inference rules of HOL to mimic the operations
of the interpreter. Our use of the inference rules is essentially the same as
building a proof by rewriting in the logic of Candle.

The connection established by the existentially quanti�ed proof is illustrated
by the dashed arrow in Figure 5.1. All reasoning about the interpreter (the
lower horizontal arrow) must be wrt. the view of the interpreter provided
by the translations to and from the IR (the vertical arrows). Nearly all of our
theorems are stated in terms of the arrow upwards, i.e. from IR to HOL.

Overview

The development of our new compute primitive for Candle was staged into
increasingly complex versions.
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sum [5; 9; 1] 15

App "sum" [N 5; N 9; N 1] N 15

rewriting

HOL term to IR

interpreter

IR to HOL term

Figure 5.1. Diagram illustrating the approach we take to embedding logical
terms into compute expressions and evaluating them using an interpreter.

1. Version 1 (Sec. 5.3) was a proof-of-concept Candle function for computing
the result of additions of concrete natural numbers. This function was
implemented as a conversion2 in the Candle kernel that given a term
m +c n computes the result of the addition r , and returns a theorem
`c m +c n =c r to the user. Internally, the implementation makes use
of the arbitrary precision integer arithmetic of the host language, i.e.
CakeML. The purpose of Version 1 was to establish the concepts needed
for this work rather than producing something that is actually useful
from a user’s point of view.

2. Version 2 (Sec. 5.4) improved on Version 1 by replacing the type of natural
numbers by a datatype for binary trees with natural numbers at the leaves,
and by supporting structured control-�ow (if-then-else), projections (fst,
snd) and the usual arithmetic operations. This version supports nesting
of expressions.

3. Version 3 (Sec. 5.5) extended Version 2 with support for user-supplied code
equations for user-de�ned constants. The code equations are allowed
to be recursive and thus the interpreter had to support recursion. This
extension also brought with it variables: from Version 3 and on, all
interpreters are able to interpret input terms containing variables.

4. Version 4 (Sec. 5.6) replaced the naive interpreter with one that is designed
to evaluate with less overhead. This version usesO(1) operations to look
up to code equations and uses environments rather than substitutions
for variable bindings. This is the version we perform benchmarks on
(Sec. 5.8).

5. The �nal Version 5 (Sec. 5.7) is, at the time of writing, left as future work.
In Version 5, our intention is to split the compute function into stages so
that users can initialize and feed in code equations separately from calls
to the main compute function. This should make repeated calls to the
compute facility faster.

2A conversion is a proof procedure that takes a term t as input and proves a theorem ` t = t ′

for some interesting t ′.
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At the time of writing, Version 4 (Sec. 5.6) is integrated into the existing
Candle implementation and end-to-end soundness proof.

5.3 Adding Natural Numbers (Version 1)

In this section, we describe how we implemented and veri�ed a function for
computing addition on natural numbers in the Candle kernel. This is the �rst
step towards a proven-correct function for computation. The approach can be
reused to produce computation functions for other kinds of binary operations
(multiplication, subtraction, division, etc.) on natural numbers, and it can
be used to build evaluators for arithmetic inside more general expressions
(Sec. 5.4).

Input and output

In Version 1, the user can input terms such as 3 +c 5 or 100 +c 0, i.e., terms
consisting of one addition applied to two concrete numbers. The numbers are
shown here as 3, 5, 100, 0, even though they are actually terms in a binary
representation based on the constant 0c, and the functions Bit0 and Bit1 in the
Candle logic.

The output is a theorem equating the input with a concrete natural number.
For the examples above, the function returns the following equations. The
subscript c is used below to highlight that these are theorems in the Candle
logic.

c̀ 3 +c 5 =c 8 or c̀ 100 +c 0 =c 100

The results 8 and 100 are computed using addition outside the logic. The
challenge is to show that the same computation can be derived from the equa-
tions de�ning +c (in Candle) using the primitive inference rules of the Candle
logic.

Key soundness lemma

In order to prove the soundness of Version 1 (required for its inclusion in
the Candle kernel), we need to prove the following theorem, which states: if
the arithmetic operations are de�ned as expected (num_thy_ok) in the current
Candle theory Γ, then the addition (+c) of the binary representations (mk_num)
of two natural numbers m and n is equal (=c) to the binary representation of
(m + n), where + is HOL4 addition.

` num_thy_ok Γ ⇒
Γ c̀ mk_num m +c mk_num n =c

mk_num (m + n)
(5.2)

To understand the theorem statement above, let us look at the de�nitions
of mk_num and num_thy_ok. The function mk_num converts a HOL4 natural
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number into the corresponding Candle natural number in binary representation:

mk_num n =
if n = 0 then 0c
else if even n then Bit0 (mk_num (n div 2))
else Bit1 (mk_num (n div 2))

The de�nition of num_thy_ok asserts that various characterizing equations
hold for the Candle constants +c, Bit0 and Bit1 (the complete de�nition is not
shown below). Here m and n are natural number typed variables in Candle’s
logic:

num_thy_ok Γ =
Γ `c 0c +c n =c n ∧
Γ `c Suc m +c n =c Suc (m +c n) ∧
Γ `c Bit0 n =c n +c n ∧
Γ `c Bit1 n =c Suc (n +c n) ∧ . . .

We use num_thy_ok as an assumption in Theorem (5.2), since the compu-
tation function is part of the Candle kernel, which does not include these
de�nitions when the prover starts from its initial state (and thus the user might
de�ne them di�erently).

A closer look at num_thy_ok reveals that +c is characterized by its simple
Suc-based equations and Bit1 is characterized in terms of Suc and +c. As a
result, a direct proof of Theorem (5.2) would be awkward at best.

To keep the proof of Theorem (5.2) as neat as possible, we de�ned the
expansion of a HOL number into a tower of Suc applications to 0c:

mk_suc n =
if n = 0 then 0c
else Suc (mk_suc (n − 1))

and split the proof of Theorem (5.2) into two lemmas. The �rst lemma is a
mk_suc variant of Theorem (5.2):

` num_thy_ok Γ ⇒
Γ c̀ mk_suc m +c mk_suc n =c

mk_suc (m + n)
(5.3)

and the second lemma =c-equates mk_num with mk_suc:

` num_thy_ok Γ ⇒
Γ c̀ mk_num n =c mk_suc n

(5.4)

The proof of Theorem (5.3) was done by induction on m , and involved
manually constructing the c̀-derivation that connects the two sides of =c in
Theorem (5.3). The proof of Theorem (5.4) is a complete induction on n and
uses Theorem (5.3) when +c is encountered. Finally, the proof of Theorem (5.2)
is a manually constructed c̀-derivation that uses the Theorems (5.4) and (5.3),
and symmetry of =c.
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From Candle terms to natural numbers

The development described above is in terms of functions (mk_num, mk_suc)
that map HOL4 natural numbers into Candle terms, but the implementation also
converts in the opposite direction: on initialization, the computation function
converts the given input term into its internal representation (see the leftmost
arrow in Figure 5.1).

We use the following function, dest_num, to extract a natural number from
a Candle term. This function traverses terms, and recognizes the function
symbols used in Candle’s binary representation of natural numbers:

dest_num tm =
case tm of
| 0c ⇒ Some 0
| Bit0 r ⇒ option_map (λn. 2 × n) (dest_num r)
| Bit1 r ⇒ option_map (λn. 2 × n + 1) (dest_num r)
| _ ⇒ None

One should read the application Bitb bs as a natural number in binary with
least signi�cant bit b and other bits bs .

The correctness of dest_num is captured by the following theorem, which
states that =c is preserved when moving from Candle terms to natural numbers
in HOL4, and back:

` num_thy_ok Γ ∧
dest_num t = Some t ′ ⇒
Γ c̀ mk_num t ′ =c t

(5.5)

Version 1 of the computation function also has a function for taking apart a
Candle term with a top-level addition +c:

dest_add tm =
case tm of
| (x +c y) ⇒ Some (x ,y)
| _ ⇒ None

Equipped with the functions dest_num and dest_add, and the Theorems (5.2)
and (5.5), it is easy to prove the following soundness result. This theorem
states: if a term t can be taken apart using dest_add and dest_num, then the
term constructed by mk_num and the HOL4 addition, +, can be used as the
right-hand side of an equation that is c̀-derivable.

` num_thy_ok Γ ⇒
dest_add t = Some (x ,y) ∧
dest_num x = Some m ∧
dest_num y = Some n ⇒
Γ c̀ t =c mk_num (m + n)

(5.6)

This theorem can be used as the blueprint for an implementation that uses
dest_add, dest_num and mk_num.
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Checking num_thy_ok

Note that Theorem (5.6) assumes num_thy_ok, which requires certain equations
to be true in the current theory Γ. To be sound, an implementation of our
computation function must check that this assumption holds.

We deal with this issue in a pragmatic manner, by requiring that the user
provides a list of theorems corresponding to the equations of num_thy_ok on
each invocation of our computation function. This approach makes num_thy_ok
easy to establish, but causes extra overhead on each call to the computation
function. Subsequent versions will remove this overhead (Sec. 5.7).

Soundness of CakeML implementation

Throughout this section, we have treated functions in the logic of HOL4 as if
they were the implementation of the Candle kernel. We do this because the ac-
tual CakeML implementation of the Candle kernel is automatically synthesized
from these functions in the HOL4 logic.

Updating the entire Candle soundness proof for the addition of Version 1
of the compute function was straightforward, once Theorem (5.6) was proved
and the code for checking num_thy_ok was veri�ed.

5.4 Compute Expressions (Version 2)

This section describes Version 2, which generalizes the very limited Version 1.
While Version 1 only computed addition of natural numbers, Version 2 can
compute the value of any term that �ts in a subset of Candle terms that we
call compute expressions. Compute expressions operate over a Lisp-inspired
datatype which we call compute values; in Candle, this type is called cval.

Even though this second version might at �rst seem signi�cantly more
complicated than the �rst, it is merely a further development of Version 1.
The approach is the same: the soundness theorems we prove are very similar
looking. Technically, the most signi�cant change is the introduction of a
datatype, cexp, that is the internal representation of all valid input terms, i.e.,
compute expressions.

Compute values

To the Candle user, the following cval datatype is important, since all terms
supplied to the new compute function must be of this type. The cval datatype
is a Lisp-inspired binary tree with natural numbers (num) at the leaves:

cval = Pairc cval cval
| Numc num
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Compute expressions

The other important datatype is cexp, which is the internal representation that
user input is translated into:

cexp = Pair cexp cexp
| Num num
| If cexp cexp cexp
| Uop uop cexp
| Binop binop cexp cexp

uop = Fst | Snd | IsPair

binop = Add | Sub | Mul | Div | Mod | Less | Eq

The cexp datatype is extended for Version 3, in Section 5.5.

Input terms

On start up, the compute function maps the given term into the cexp type. For
example, given this term as input:

cifc (Numc 1) (Numc 2) (fstc (Pairc (Numc 3) (Numc 4)))

the function will create this cexp expression:

If (Num 1) (Num 2) (Uop Fst (Pair (Num 3) (Num 4)))

This mapping assumes that certain functions in the Candle logic (e.g. fstc)
correspond to certain constructs in the cexp datatype (e.g. Uop Fst). Note
that there is nothing strange about this: in Version 1, we assumed that +c

corresponds to addition. We formalize the assumptions about fstc, etc., next.

Context assumption: cexp_thy_ok

Just as in Version 1, Version 2 also has an assumption on the current theory
context. In Version 1, the assumption num_thy_ok ensured that the Candle
de�nition of +c satis�ed the relevant characterizing equations. For Version 2,
this assumption was extended to cover characterizing equations for all names
that the conversion from user input to cexp recognizes: cifc, fstc, etc.

These characterizing equations �x a semantics for the Candle functions
that correspond to constructs of the cexp type. For simplicity, all of the Candle
functions take inputs of type cval and produce outputs of type cval.

Our implementation makes no attempt at ensuring that functions are applied
to sensible inputs. Consequently, it is perfectly possible to write strange terms
in this syntax, such as fstc (Numc 3), or addc (Numc 3) (Pairc p q). We resolve
such cases in a systematic way:

• Operations that expect numbers as input treat Pairc values as Numc 0.
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• Operations that expect a pair as input return Numc 0 when applied to
Numc values.

This treatment of the primitives can be seen in the assumption, called
cexp_thy_ok, that we make about the context for Version 2. Below, x and y are
variables in the Candle logic with type cval. The lines specifying addc are:

cexp_thy_ok Γ =
. . . ∧
Γ `c addc (Numc m) (Numc n) =c Numc (m +c n) ∧
Γ `c addc (Pairc x y) (Numc n) =c Numc n ∧
Γ `c addc (Numc m) (Pairc x y) =c Numc m ∧ . . .

The lines specifying fstc are:

Γ `c fstc (Pairc x y) =c x ∧
Γ `c fstc (Numc n) =c Numc 0c ∧ . . .

The following characteristic equations for cifc illustrate that we treat Numc 0c
as false and all other values as true:

Γ `c cifc (Numc 0c) x y =c y ∧
Γ `c cifc (Numc (Suc n)) x y =c x ∧
Γ `c cifc (Pairc x’ y’) x y =c x ∧ . . .

Comparison primitives return Numc 1 for true.

Soundness

The following theorem summarizes the operations and soundness of Version 2.
If a term t can be successfully converted (using dest_term) into a compute
expression cexp, then t is equal to a Candle term created (using mk_term)
from the result of evaluating cexp using a straightforward evaluation function
(cexp_eval):

` cexp_thy_ok Γ ⇒
dest_term t = Some cexp ⇒
Γ c̀ t =c mk_term (cexp_eval cexp)

(5.7)

Note the similarity between the Theorems (5.6) and (5.7). Where Theo-
rem (5.6) uses +, Theorem (5.7) calls cexp_eval. The evaluation function cexp_eval
is de�ned to traverse the cexp bottom-up in the most obvious manner, respecting
the evaluation rules set by the characterizing equations of cexp_thy_ok.

CakeML code and integration

The functions dest_term, cexp_eval and mk_term are the main workhorses of
the implementation of Version 2. Corresponding CakeML implementations
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are synthesized from these functions. The de�nition of the evaluator function
cexp_eval uses arithmetic operations (+, −, ×, div, mod, <, =) over the nat-
ural numbers. Such arithmetic operations translate into arbitrary precision
arithmetic operations in CakeML.

Updating the Candle proofs for Version 2 was a straightforward exercise,
given the prior integration of Version 1.

5.5 Recursion and user-supplied code equations

(Version 3)

Version 3 of our compute function for Candle adds support for (mutually)
recursive user-de�ned functions. The user supplies function de�nitions in the
form of code equations.

Code equations

In our setting, a code equation for a user-de�ned constant c is a Candle theorem
of the form:

c̀ c v1 . . . vn = e

where each variable vi has type cval and the expression e has type cval. Further-
more, the free variables of e must be a subset of {v1 , . . . , vn}. Note that any
user-de�ned constants, including c, are allowed to appear in e in fully applied
form.

Updated compute expressions

We updated the cexp datatype to allow variables (Var), applications of user-
supplied constants (App), and at the same time we added let-expressions (Let):

cexp = Pair cexp cexp
| Num num
| Var string
| App string (cexp list)
| Let string cexp cexp
| If cexp cexp cexp
| Uop uop cexp
| Binop binop cexp cexp

Variables are present to capture the values bound by the left-hand sides of code
equations and by let-expressions.

The interpreter for Version 3 of our compute function uses a substitution-
driven semantics, and it stores code equations in a list that is indexed by function
names. This style of semantics maps well to the Candle logic’s substitution
primitive, thus simplifying veri�cation, but at a price:
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• At each let-expression or function application, the entire body of the
let-expression or the code equation corresponding to the function may
be traversed an additional time, to substitute out variables.

• At each function application, the code equation corresponding to the
function name is found using linear search, making the interpreter less
e�cient as more code equations are used.

We address these shortcomings in Version 4 of our compute function, in Sec-
tion 5.6.

Soundness

The following theorem is the essential part of the soundness argument for
Version 3. The user supplies the Version 3 compute function with: a list of
theorems that allows it to establish cexp_thy_ok, a list eqs of code equations,
and a term t to evaluate. Every theorem in eqs must be a Candle theorem ( c̀).
De�nitions defs are extracted from the given code equations eqs . A compute
expression cexp is extracted from the given input term w.r.t. the available
de�nitions defs . An interpreter, interpret, is run on the cexp, and its execution
is parameterized by defs and a clock which is initialized to a large number
init_ck. If the interpreter returns a result res , i.e. Some res , then an equation
between the input term t and mk_term res can be returned to the user.

` cexp_thy_ok Γ ⇒
(∀eq . mem eq eqs ⇒ Γ c̀ eq) ∧
dest_eqs eqs = Some defs ∧
dest_tm defs t = Some cexp ∧
interpret init_ck defs cexp = Some res ⇒
Γ c̀ t =c mk_term res

(5.8)

There are a few subtleties hidden in this theorem that we will comment on
next.

First, the statement of Theorem 5.8 includes an assumption that the user-
provided code equations eqs are theorems in the context Γ. The user is not
in any way obliged to prove this: the fact that they can supply the compute
primitive with a list of theorems means that they are valid in Candle’s context
at that point. Candle’s soundness result allows us to discharge this assumption
where Theorem 5.8 is used.

Second, the functions dest_eqs and dest_term perform sanity checks on
their inputs. For example, dest_eqs checks that all right-hand sides in the
equations eqs mention only constants for which there are code equations in
eqs .

Third, the interpret function, which is used for the actual computation, takes
a clock (sometimes called fuel parameter) in order to guarantee termination.
This clock is not strictly necessary, but made it easier to use the existing CakeML
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code synthesis tools. The clock is decremented by interpret on each function
application (i.e. App). If the clock is exhausted, interpret returns None.

CakeML code

As with previous versions, the CakeML implementation of the computation
function is synthesized from the HOL4 functions. For e�ciency purposes, the
generated CakeML code for interpret avoids returning an option and instead
signals running out of clock using an ML exception. We note that it is very
unlikely that a user has the patience to wait for a timeout since the value of
init_ck is very large (maximum smallnum).

Integration

Updating the Candle proofs for Version 3 required more work than Versions 1
and 2, since we had to verify the correctness of the sanity checks performed on
the user-provided list of code equations.

5.6 E�cient interpreter (Version 4)

For Version 4, we replaced the interpreter function, interpret, with compilation
to a di�erent datatype for which we have a faster interpreter.

The new datatype for representing programs is called ce. It uses de Bruijn
indexing for local variables, and represents function names as indices into a
vector of function bodies. Vector lookups are executed in constant time.

ce = Const num
| Var num
| Let ce ce
| If ce ce ce
| Monop (cval→ cval) ce
| Binop (cval→ cval→ cval) ce ce
| App num (ce list)

Rather than representing primitive functions by names, the ce datatype rep-
resents primitive functions as (shallowly embedded) function values that can
immediately be applied to the result of evaluating the argument expressions.

The interpreter for the ce datatype addresses the two main shortcomings of
Version 3. First, it drops the substitution semantics in favor of de Bruijn variables
and an explicit environment, so that variable substitution can be deferred until
(and if) the value bound to a variable is needed. Second, all function names
are replaced by an index into a vector which stores all user-provided code
equations.
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When updating Version 3 to Version 4, we simply replaced the following
line in the implementation:

interpret init_ck defs cexp

with the line below, which calls the compilers compile_all and compile (these
translate cexp into ce, turning variables and function names into indices) and
then runs exec, which interprets the program represented in terms of ce:

exec init_ck [] (compile_all defs) (compile defs [] cexp)

Updating the proofs for Version 4 was a routine exercise in proving the
correctness of the compilers compile_all and compile. In this proof, compiler
correctness is an equality: the new line computes exactly the same result as
the line that it replaced (under some assumptions that are easily established in
the surrounding proof). The adjustments required in the existing proofs were
minimal.

5.7 Staged set up (Version 5)

At the time of writing, Version 5 is not yet implemented. However, the plan is to
reduce the overhead of calling the compute function. In Versions 1–4, the user
has had to provide the compute function with all of the necessary theorems
at each invocation. This makes their implementation simple and stateless, but
leads to duplication of work across several calls. In the stateless version, the
characteristic equations need to be checked (i.e., establishing cexp_thy_ok) and
the user-supplied code equations must be compiled, on each call to the compute
primitive.

For Version 5, the plan is to allow a staged setup, since it su�ces to perform
these checks once. This version will add additional state to the Candle kernel:
user-supplied code equations that have passed checks are stored persistently,
and a Boolean reference tells the compute function whether cexp_thy_ok has
been previously established. The Candle kernel will receive new entry points
for: (1) initializing the compute primitive, i.e., establishing cexp_thy_ok and
updating the Boolean �ag; (2) installing new code equations; and (3) calling the
compute function on a given term.

5.8 Evaluation

In this section, we report on our results comparing our new compute function
to the in-logic interpreters of HOL4 and HOL Light. We tested the interpreters
on three example programs in the HOL logic:

• the factorial function,
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• enumeration of primes,

• generating and reversing a list of numbers.

The tests were carried out on a Intel i7-7700K 4.2GHz with 64Gb RAM running
Ubuntu 20.04.

Results show that our new compute function runs several orders of mag-
nitude faster than the derived rules of HOL4 and HOL Light, across all three
examples, and all input sizes tested. In fact, it was di�cult to choose input sizes
large enough for us to gather meaningful measurements from our computation
function, while keeping the runtimes of its derived counterparts within minutes.
For this reason, we added one large data point to the end of each experiment.

Factorial The �rst example is a standard, non-tail-recursive factorial function,
tested on inputs of various sizes. The results of the tests are shown in Table 5.1.

Table 5.1. Running times for evaluating fact n for di�erent values of n.

n Candle HOL4 HOL Light
256 <1 ms 2.3 s 0.6 s
512 <1 ms 4.1 s 3.5 s
1024 <1 ms 127.5 s 17.6 s
2048 11 ms 684.7 s 86.1 s
32768 0.9 s — —

Prime enumeration The second example, primes_upto, enumerates all
primes up to n and returns them as a list. We chose to implement the checks
for primality using trial division, since it is challenging to compute division
and remainder e�ciently inside the logic. The results of the tests are shown in
Table 5.2.

Table 5.2. Running times for evaluating primes_upto n for di�erent values of
n.

n Candle HOL4 HOL Light
256 <1 ms 0.5 s 1.3 s
512 <1 ms 1.6 s 5.2 s
1024 2 ms 6.3 s 20.7 s
2048 9 ms 24.2 s 83.4 s
32768 1.7 s — —

List reversal The third example performs repeated list reversals. The func-
tion rev_enum creates a list of the natural numbers [1, 2, . . . , n] and then calls
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a tail-recursive list reverse function rev on this list 1000 times. The results of
the tests are shown in Table 5.3.

Table 5.3. Average running times for evaluating rev_enum n for di�erent values
of n.

n Candle HOL4 HOL Light
256 0.02 s 1.1 s 66.2 s
512 0.03 s 2.3 s 250.8 s
1024 0.07 s 4.7 s 1005 s
2048 0.1 s 9.5 s 4203 s
32768 2.5 s — —

5.9 Related Work

In this section, we discuss related work in the area of computation in interactive
theorem provers.

HOL4 Barras implemented a fast interpreter for terms in HOL4 [9], usually
referred to as Eval. Eval implements an extended version of Crégut’s abstract
machine KN [17], and performs strong reduction of open terms, and supports
user-de�ned datatypes and pattern-matching, and rewriting using user-supplied
conversions.

Unlike our work, Eval operates directly on HOL terms. The HOL4 kernel
was modi�ed by Barras to make this as e�cient as possible: the HOL4 kernel
uses de Bruijn terms and explicit substitutions to ensure that Eval runs fast.
However, true to LCF tradition, all interpreter steps are implemented using
basic kernel inferences.

HOL Light A HOL Light port of Eval exists [58]. However, unlike HOL4,
the HOL Light kernel has not been optimized for running Eval; HOL Light
uses name-carrying terms without explicit substitutions, making this port
comparably slow.

Isabelle/HOL Isabelle/HOL supports two mechanisms for e�cient evalua-
tion, both due to Haftmann and Nipkow. A code extraction feature [30, 31]
can be used to synthesize ML and Haskell programs from closed terms, which
can then be compiled and executed e�ciently. We borrow the concept of code
equations (Sec. 5.5) from their work, but note that Isabelle’s code equations are
more general than ours.

The second option is based on normalization-by-evaluation (NBE) mech-
anism [4] and synthesizes ad-hoc ML interpreters over an untyped lambda
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calculus datatype from (possibly open) HOL terms. The ML code is compiled
and executed by an ML compiler, and the resulting values are reinterpreted as
HOL terms.

Both methods support a rich, higher-order, computable fragment of HOL.
However, both also escape the logic, make use of unveri�ed functions for syn-
thesizing functional programs, and rely on unveri�ed compilers and language
runtimes for execution.

Dependent type theories Computation is an integral part of ITPs based on
higher-order type theories, such as Coq [63], and Lean [19]. Their logics identify
terms up to normal form and must reduce terms as part of their proof checking
(i.e., type checking). Consequently, their trusted kernels must implement an
interpreter.

Coq supports proof by computation using its interpreter (accessible via
vm_compute), as well as native code extraction to OCaml (accessible via native_-
compute). Internally, Coq’s interpreter implements an extended version of the
ZAM machine used in the interactive mode of the OCaml compiler [28], but
with added support for open terms.

A formalization of the abstract machine used in the interpreter exists [28],
but the actual Coq implementation is completely unveri�ed.

First-order logic ACL2 is an ITP for a quanti�er-free �rst-order logic with
recursive, un-typed functions. It axiomatizes a purely functional fragment of
Common Lisp, which doubles as term syntax and host language for the system.
As a consequence, some terms can be compiled and executed at native speed.
However, this execution speed comes at a cost: no veri�ed Lisp compiler exists
that can host ACL2, its soundness critical code encompasses essentially the
entire theorem prover.

5.10 Conclusion

We have added a new veri�ed function for computation to the Candle ITP.
The new computation function was developed in stages through di�erent
versions. For each version, we proved the new function only produces theorems
that follow by the inference rules of HOL. In our experiments, Candle’s new
computation functionality produced performance numbers that are several
orders of magnitude faster than in-logic evaluation mechanisms provided by
mainstream HOL ITPs.

Our new compute function requires all functions that it uses to be �rst-
order functions that perform all computations using a Lisp-inspired datatype
for compute values (cval). We leave it to future work to relax this requirement.

At present, the performance numbers suggest that we do not need to go to
the trouble of replacing our interpreter-based solution with a solution that com-
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piles the given input to native machine code for extra performance. However,
future case studies might lead us to explore such options too.
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