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Every year more than a million lives are cut short

due to traffic accidents. However, most traffic accidents are

caused by human error and if these causes can be removed,

many lives could be saved. Autonomous vehicles (AVs)

will never be as tired or distracted as humans are and are

expected to lead to a significantly safer traffic environment.

Before AVs can be used by the public and enable a safer

future, it needs to be shown that they are as safe as they

should be. As a result, we need evidence that AVs have fewer

accidents than human drivers in real traffic. This evidence

is not simple to obtain since humans are, on average

good drivers, and fatalities may occur less often than once

every 100 million kilometers. Driving this distance to show

the absence of accidents before every release does not scale

well.

This thesis presents multiple approaches to creating this evidence more efficiently. The first method

uses computer simulations of the actual vehicle to provide safety evidence of the software before it is

used in an actual vehicle. Simulation efforts are also focused on the areas where it is believed to be

closest to failure, which makes it more efficient. The result is a precise estimate of how often the AV

software will fail and the specific scenarios where it will happen.

A second method is evaluating the safety of AVs in real traffic. It evaluates situations that were close

to being accidents and uses them to estimate the frequency of actual accidents. The method makes

it possible to show that the AVs are safe without experiencing any real accidents. In addition, the

second method is also used to form a predictive safety monitor for a fleet of AVs. The results show

that the predictive monitor significantly reduces the risk of deploying unsafe AVs.
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Abstract
Automated vehicles (AVs) are expected to bring safer and more convenient transport in the
future. Consequently, before introducing AVs at scale to the general public, the required
levels of safety should be shown with evidence. However, statistical evidence generated by
brute force testing using safety drivers in real traffic does not scale well. Therefore, more
efficient methods are needed to evaluate if an AV exhibits acceptable levels of risk.

This thesis studies the use of two methods to evaluate the AV’s safety performance
efficiently. Both methods are based on assessing near-collision using threat metrics to
estimate the frequency of actual collisions. The first method, called subset simulation,
is here used to search the scenario parameter space in a simulation environment to estimate
the probability of collision for an AV under development. More specifically, this thesis
explores how the choice of threat metric, used to guide the search, affects the precision of
the failure rate estimation. The result shows significant differences between the metrics and
that some provide precise and accurate estimates.

The second method is based on Extreme Value Theory (EVT), which is used to model
the behavior of rare events. In this thesis, near-collision scenarios are identified using threat
metrics and then extrapolated to estimate the frequency of actual collisions. The collision
frequency estimates from different types of threat metrics are assessed when used with EVT
for AV safety validation. Results show that a metric relating to the point where a collision
is unavoidable works best and provides credible estimates.

In addition, this thesis proposes how EVT and threat metrics can be used as a proac-
tive safety monitor for AVs deployed in real traffic. The concept is evaluated in a fictive
development case and compared to a reactive approach of counting the actual events. It is
found that the risk exposure of releasing a non-safe function can be significantly reduced
by applying the proposed EVT monitor.

Keywords: Automotive, automated driving systems, automated vehicles, extreme value
theory, performance evaluation, simulation, validation, verification.
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CHAPTER 1

Introduction

Automated vehicles are expected to bring significant benefits to the traffic environment.
The National Highway Traffic Safety Administration (NHTSA), [1], have shown that human
factors are the cause of over 90% of traffic accidents. With the human removed from the
equation, significantly reducing the number of casualties in traffic is possible. In addition,
it enables the driver to do something else with the time in the vehicle, like reading an
exciting book or thesis. Furthermore, the vehicles could also drive without passengers to
allow relocation and delivery of goods. Currently, there is a lot of effort put into developing
automated vehicles. Many actors promise to have vehicles with a higher level of autonomy
available right now or during the coming years, e.g. [2]–[5].

The driver of an automated vehicle is put out of the loop and cannot be used as a fallback
when things go wrong. Consequently, there will be very high dependability requirements
connected to the safety of the vehicle and its functions. Moreover, it has to be understood
what safe behavior means to know these requirements in practice. The vehicle must handle
traffic laws, everyday driving, and rare road hazards that are hard to foresee. Then there
must be a strategy to validate that the vehicle has reached the required level of safety. A
considerable effort across many different domains has to be made to solve this problem,
e.g., Safety Engineering, Legal, Testing, Security, and Computing Hardware [6].

1.1 Driving Automation
Advanced Driver Assistance Systems (ADAS) aims to support the driver by automating
some mode of control in the vehicle. However, the driver is still responsible and has the
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Chapter 1 Introduction

possibility to override the function. The ADAS system also often has limited capabilities
when it comes to more extreme maneuvers. Therefore, the driver must monitor the system
for failures and act as a fallback. The basic type of assistance system relieves the driver of
one specific driving task. These are referred to as Level 1 automation according to the SAE
J3016 standard [7]. An overview of the different levels of automation can be seen in Figure
1.1. The first two levels are considered ADAS, while levels three and above are referred to
as an Automated Driving System (ADS).

SAE Level Name
Sustained 
Control of 

Steering and 
Acceleration

Object and Event 
Detection and 

Response

Fallback
Responsible

Operational 
Design Domain 

(ODD)

1 Driver Assistance Driver
and System Driver Driver n/a

2 Partial 
Automation System Driver Driver Limited

3 Conditional
Automation System System Driver Limited

4 High Automation System System System Limited

5 Full Automation System System System Unlimited

Figure 1.1: Illustration of the five levels of automation from the SAE J3016 stan-
dard. The columns highlight where the responsibility lies within dif-
ferent areas for the respective level.

An example of a Level 1 system is Adaptive Cruise Control (ACC), which controls the
acceleration and braking to maintain a set gap to the vehicle in front. If ACC is combined
with Lane Keeping Assistance (LKA) into one function controlling acceleration, decelera-
tion, and steering, it becomes a Level 2 system. There are systems of this type in production,
e.g., Mercedes’ Drive Pilot, Tesla’s Autopilot, and Volvo’s Pilot Assist. In these systems,
the driver still needs to monitor the system and the environment. A detailed description of
ACC, LKA, and other ADAS systems can be found in [8].

Unsupervised Automated Driving
By moving to Level 3 and higher, the driver’s responsibility to monitor is removed, resulting
in an unsupervised ADS. Consequently, it allows the driver to do other things while the
car is driving. As a first step, the system could be limited to special conditions such as
weather, traffic, and roadway characteristics. These types of operating conditions, which an
ADS is specifically designed to function under, form an Operational Design Domain (ODD)
[7]. An example of an ADS with a limited ODD is an Automated Lane Keeping System
(ALKS), which is a system that takes over the driving task at speeds below 60 km/h [9].
The system then controls the lateral and longitudinal movements of the vehicle for these
low-speed scenarios without any input from the driver. When the vehicle is about to exit
the function’s scope, it hands back the control to the driver. If the driver does not take

4



1.1 Driving Automation

over, the system needs to have a backup plan that it can execute to put the vehicle in a
safe state. In the ALKS regulation, this is called Minimum Risk Manoeuvre (MRM) and
consists of braking the vehicle to a standstill in the lane and activating the hazard lights.
The ODD can be expanded to increase the system’s capability and include more driving
scenarios. Ultimately, the vehicle can be driven autonomously without a driver present,
Level 4, and in all situations and conditions, Level 5.

Implication for System Design
In the case of an ADAS function such as ACC, the scope is limited. The function should
keep a distance to a preceding vehicle, and if there is no vehicle in front, the system should
act as regular cruise control, keeping a set speed. This function can be designed with a
single radar sensor, measuring the position and speed of possible preceding vehicles. Out of
the potential objects detected, a target vehicle has to be selected. Based on that, an action
is taken to keep the set distance to that vehicle.

Suppose that a similar function with the same capabilities is to be developed, but now
as an unsupervised function. The driver is no longer responsible for monitoring and is
unavailable as a fallback option. Consequently, there would be much higher requirements
on perception to detect all possible objects around the vehicle. That is because there is
no longer a driver that monitors the road and can intervene if an object is missed. As a
result, additional sensors for redundancy could be needed, which has to be handled by the
perception layer. The higher requirements will also affect decision-making on interpreting
the situation correctly and choosing the right target to follow. Ultimately, there will also be
a requirement on vehicle control that guarantees the execution of a braking maneuver. The
guarantee is needed for the decision-making to plan a safety margin to the target vehicle and
be able to handle other possible events. To fulfill these requirements, adding a redundant
braking system might be necessary.

When the function’s scope expands towards unsupervised automated driving and a com-
plete ODD, the function needs to handle many more situations than the ACC case. As a
result, the environment that the system should be designed to act in will be much more
complex. The implication for the perception block is that there will be high requirements to
detect objects all around the vehicle and at long distances. Therefore, many more sensors
must be added to give a full surrounding view of the environment. There will also be a
need for redundant sensors in many places to reach the high level of robustness.

For decision-making, there will be many more scenarios that should be correctly inter-
preted and complex traffic scenarios with many different participants, which behavior needs
to be predicted. There also needs to be decisions on multiple levels taking care of strategic
and operational planning with logic determining what is currently the most important to
reach the target safely.

For vehicle control, the scope now also includes steering, which probably needs to be
redundant to guarantee high enough availability. In addition, the range of actions that
should be possible to actuate has increased to include a large variety of highly dynamic
maneuvers. The result is a highly complex system with very tough safety requirements that
must be handled by every part of the system.
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1.2 Safe System Design
To develop a complex system such as an ADS, one needs to define what needs to be devel-
oped, how it will be implemented, and ensure that the system is doing what it is supposed
to. This process falls under an area called systems engineering, which deals with designing
and managing this type of complex system [10].

The process usually contains the steps of refining requirements, functional allocation, and
physical implementation. In addition, each of these steps has to be verified and validated
against the top-level requirements. In the automotive industry, the process follows a frame-
work called the V-model [11], which is also a part of the ISO 26262 standard for functional
safety [12]. In this standard, safety goals are defined, forming the vehicle level safety re-
quirements that should be met to ensure a safe function. For an ADS, the safety goals
might be more general to cover all situations, but that leads to more abstract formulations
that are more difficult to verify [13].

To ensure safe behavior of the system, possible failures have to be detected and mitigated.
These failures include both hardware- and software-related faults, and it needs to be shown
that these are sufficiently rare events. For an ADS, it is also vital to ensure that the nominal
performance of the system is good enough to ensure a safe operation. Hence, the system
must be designed to be safe when everything is working as intended.

Nominal Safety Performance
With the emergence of systems that take more control over the vehicle, new safety-related
problems arise that the standard ISO 26262 does not address. ISO 26262 includes possible
hardware or software failures that may lead to safety-critical situations. However, it does
not explicitly describe how to handle the potential safety issues when there is no fault. With
the emergence of ADAS and ADS, this will become more common.

The reason for this is that the nominal safety performance of the function may be inade-
quate to ensure safe operation. A function could, for example, be designed so that the host
should always keep a minimum distance to the preceding vehicle. However, this distance
could be insufficient in some situations to drive safely. Another critical area is the sensor
performance, which includes, for example, technological limitations. Specifically, a vision
sensor could be trained on a data set that does not contain a particular type of object and
therefore fails to classify it. The same problem exists for actuators, where technical limita-
tions prevent the vehicle from carrying out specific control requests safely. Unfortunately,
the ISO 26262 standard does not explicitly describe extracting and verifying this type of
requirement.

Due to the lack of addressing these issues, the standard ISO 21448 named Safety Of
The Intended Functionality (SOTIF) [14] has emerged. The standard handles requirements
based on functional insufficiencies of the system. These insufficiencies includes previously
mentioned performance limitations or specifications that could lead to hazards. The stan-
dard also introduces the term acceptance criterion:

Definition 1 (Acceptance criterion): Criterion representing the absence of an unrea-
sonable level of risk.

For example, at the complete vehicle level, a criterion could be to have fewer accidents
than once every million hours. In addition, a validation target is defined to provide evidence
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that the acceptance criterion is fulfilled.
Definition 2 (Validation target): Value to argue that the acceptance criterion (Defini-

tion 1) is met.
For example, a validation target could be to let the system run with safety drivers for

3 million hours without accidents. Consequently, it is possible to show with 95 percent
confidence that the criterion is met by assuming accidents are Poisson distributed [15].
These two standards should ensure that enough is done to ensure that an ADS system is
safe before it is released.

There is also a section in SOTIF that deals with the operation phase. Since the envi-
ronment constantly evolves during the system’s lifetime, its safety has to be continuously
monitored. It could also be that some assumptions are not valid or new functional in-
sufficiencies are discovered. However, the standard does not explicitly suggest how this
monitoring should be performed efficiently and safely.

1.3 Problem Formulation
The challenge of assuring safety for an ADS has given rise to the following questions: How
to efficiently show that the acceptance criterion is met? How to monitor the safety of the
system and make sure that the residual risk is acceptable? The first question addresses
finding evidence that the acceptance criterion is met, i.e., a validation target and ensuring
that the ADS is safe before it is released. It should also be possible to efficiently generate
the evidence and avoid driving the 3 million hours needed in the example mentioned earlier.
By addressing the second question, we can ensure that the system is safe after it is released
and potentially catch any excessive residual risk as soon as possible.

1.4 Delimitation
This thesis considers only safety validation on the vehicle level. The acceptance criterion
addressed in the problem formulation is in the form of a quantitative risk level of an ADS
responsible for the driving task. It is here assumed that a verified ADS function already
exists. The acceptance criterion is in this thesis delimited only to consider the situation
of collision with other vehicles on the road. Data based on human drivers have been used
to validate the method since no complete ADS is available for testing. For the simulation
studies, the ADS implemented is an ACC function with emergency braking capability to
have a transparent and simple function to illustrate the methods.

1.5 Contributions
This thesis presents two methods for accelerated failure frequency estimations of automated
vehicles. The first method is called Subset Simulation (SuS) and is applied in a simulation
environment, see Paper A. The second method uses Extreme Value Theory (EVT) and can
be applied both in simulation and at the complete vehicle level, see Paper B, C, D and
E. Common for both methods is that a metric of the closeness to a collision with another
vehicle is required. In this thesis, different types of metrics are evaluated using the two
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methods with both simulated and recorded vehicle data, see Paper A, B, D and E. In
addition, specific aspects concerning the metrics, such as multiple probable outcomes, see
Paper F, and prediction, see Paper E, are also investigated.

The EVT method also generates confidence intervals that consider the uncertainty of
the extrapolation, which can be used for safety validation purposes. Using data gathered
from human drivers, the method is validated by comparing the results with data from crash
statistics, see Paper C and D. The confidence interval can also be used to do statistical
testing, see Paper E, where sequential statistical testing is used to create a safety monitor.
Several methods for automatically applying the EVT model to the data have been evaluated
in Paper D with further considerations related to conservative estimations in Paper E.

1.6 Outline
This thesis comprises two parts where Part I acts as an introduction to what is presented
in Part II. In Part II, there are six scientific papers, which are the base of the thesis. Part
I provides background information and puts the appended papers into context with the
following structure. In Chapter 1, the setting of the thesis is introduced by first describing an
unsupervised ADS. It is then explained what it takes to design this system to perform safely.
This background is followed by a formulation of the problem that this thesis addresses and
what delimitations have been made. Next, Chapter 2 describes different types of verification
and validation methods. Chapter 3 provides an introduction to EVT and explains how it
can be applied to traffic safety. This is followed in Chapter 4 by an introduction to the SuS
method and how it can be used together with an ADS. In Chapter 5, the papers included in
Part II are briefly summarized, and in Chapter 6, the thesis is concluded with suggestions
for further research.
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CHAPTER 2

Verification and Validation Methods

Chapter 1 describes how the complexity and increased responsibility of an ADS make it
more difficult to ensure safety. There is a need to create evidence from verification and
validation that the system does not impose unnecessary risk. The evidence can consist of
both qualitative and quantitative arguments based on different models and assumptions.
Qualitative methods aim to show that the system can handle a specific set or scope of
scenarios. On the other hand, quantitative methods aim to measure the system’s safety
performance in a given environment.

This thesis considers two methods to address the presented research questions. The first
approach is a simulation-based method called Subset Simulation (SuS), which is explained
in more detail in Chapter 4. SuS is a method that can efficiently estimate a failure frequency
and provide quantitative evidence during the development phase of a system. The second
approach is based on Extreme Value Theory (EVT), a statistical method used to model
rare events. EVT and how it can be used is explained in more detail in Chapter 3.

This chapter presents a selection of verification and validation approaches and describes
their respective strengths and weaknesses. It is also argued why the selected methods for
this thesis are chosen and what role the other approaches could serve in a safety case.

2.1 Simulation
Using simulation for verification aims to test the system in closed loop based on computer-
generated inputs. Some parts of the system and the environment are modeled as close to the
real experience as possible. One type of simulation is Model-In-the-Loop (MIL), where the
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whole system is a model. This type of simulation is used early in the development process
before the actual code has been developed and can save time and cost before putting the
code in a vehicle [16]. Another type of simulation is called Software-In-the-Loop (SIL),
which uses the actual system implementation in the simulation. The results from SIL can
then be compared to the MIL to see that the software is implemented according to the
model. Examples of implementations of MIL and SIL can be found in [17]–[19]. In both
these simulation types, virtually generated scenarios are used as input to the system. The
scenarios can be created from the specifications to provide qualitative evidence but also
based on experiences in real traffic for a quantitative approach, as seen in [20].

Generating these scenarios is an essential part of simulation and consists of two steps
[21]. Firstly, the test space has to be modeled by, for example, observing real traffic and
characterizing the scenarios. Secondly, the test space must be sampled by some principle to
extract scenarios that the ADS should experience. The sampling can be done statistically,
where one tries to find quantitative evidence that the failure rate is sufficiently low. However,
with the low failure frequencies required by an ADS, more efficient sampling techniques such
as important sampling [22]–[24] or SuS [25] might be needed.

Simulation has the benefit of being able to perform tests of scenarios much faster than
in the real world. It can also test variations of scenarios that have not yet been seen. For
this to be possible, validated models of the system and the environment are needed. In this
thesis, the SuS method is chosen for its ability to provide quantitative evidence from much
fewer simulations than a pure Monte Carlo approach.

2.2 Statistical Methods
To capture the stochastic behavior of the system due to the uncertainty in, e.g., sensor infor-
mation and prediction models, one can use statistical verification methods. For estimating
the frequency of failures, the system is often modeled as a Poisson process for the number
of failures during a specific time. A confidence interval can be created to verify that the
failure rate is lower than the requirement. This method is the basis for the proven-in-use
argument in ISO 26262 [12]. It is also an option for a quantitative validation target for the
acceptance criterion in the SOTIF standard [14]. An automated driving function has very
tough requirements on failure rates, which leads to a large amount of driving data being
needed for verification [26]. To get a representative sample of the driving, a real-world user
profile is used as in [17], [27], where statistical methods are used to verify that the false
positive rate is sufficiently low. A similar approach could be taken to verify false negatives
for sensor detection in the case of missed objects. However, that would require a dependable
reference sensor system or similar for comparison.

Statistical methods can also be used to monitor events in the real world by applying
sequential testing [28], [29]. For instance, it has been applied for a long time in the medical
field to monitor the testing of new treatments [30], [31]. Significant parameters are observed
to be within a specific limit, and if that is not the case, the trial is stopped. Statistical
monitoring has also more recently been applied to monitor parameters or safety indicators
during run-time in the aviation industry [32], [33].

The main strength of statistical methods is the possibility of having high validity by
testing the function in its natural environment. However, a drawback is that this requires a
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large amount of data for each new system version that needs to be verified. To address the
issue, this thesis explores an EVT approach to get quantitative safety evidence from less
amount of data.

2.3 Directed Testing
For testing the performance of ADAS, directed testing on test tracks has been used in [17],
[27]. In directed testing, several scenarios based on real-world driving situations are tested.
The tests are also done in several different weather and light conditions and variations of
similar cases. A benefit of using directed testing is that the whole system, from sensors to
actuators, is used as it is implemented. It is also possible to repeatedly test rare challenging
scenarios, which is impossible in real traffic.

It is hard to recreate variations of situations realistically with directed testing at a test
track. The worst-case scenarios are often tested when using directed testing on a test track
for verification. An example of how worst-case scenarios can be defined for a collision
avoidance system is found in [34]. It is in those situations where a system error is most
likely and based on the results, it can be argued that the system can handle less challenging
scenarios as well. However, for an automated vehicle, it is not evident in many situations
what is the worst-case situation and how to argue that all other cases are handled.

This method is very effective in testing the system against extreme scenarios, which are
often hard to experience in field tests. However, it is often difficult to define a complete
set of test cases covering the ODD. In the case of providing evidence that the acceptance
criterion is fulfilled, directed testing can be a complement to quantitative evidence. As an
example, there might be corner cases that the ADS should be able to handle, but they are
too rare to show up often enough in a quantitative method.

2.4 Formal Methods
Formal methods use mathematical models to verify that the system fulfills the require-
ments. They can be used in the entire development process, from requirements engineering
to implementation [35]. In [36], formal methods are investigated in the scope of tactical
planners, where they provide evidence that safe decisions are always made. At the imple-
mentation level, the software is connected to mathematical contracts between input and
program variables. With these mathematical models present, the code can also be auto-
matically generated. This method has been applied to verify the safety of ADAS and ADS,
see e.g. [37]–[39].

The main benefit of these methods is that it is powerful to prove that requirements are
always fulfilled mathematically. The drawback is that validated mathematical models of
every part of the system are needed. There are, however, methods of automatically learning
these models by observing an implemented software [40]. Moreover, formal methods could
also complement quantitative methods to provide evidence on sub-parts of the system that it
performs according to specification [41]. In [42], formal methods are used in the verification
of decision and control logic. In particular, it is shown in a structured approach how that
can be used as evidence in the safety argumentation for an ADS.
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CHAPTER 3

Extreme Value Theory

Extreme Value Theory (EVT) is an area of statistics focusing on rare rather than frequent
events. The theory was first applied in civil engineering to understand better the require-
ments for what structures need to be able to handle over a long period [43]. It provided
a framework to describe the magnitude of expected forces based on historical data. The
framework of EVT contains a set of models that enable the usage of observed levels of data
and extrapolate that into estimates of unobserved levels. It has previously been used in,
e.g., engineering, finance, and risk management [44]–[46].

3.1 Block Maxima
The statistical behavior modeled in the classical extreme value theory is the maximum, Mn,
of a sequence of independent random variables.

Mn = max{X1, ..., Xn} (3.1)

These measurements, X1, .., Xn, could, for example, be a continuous stream of values, as
visualized in Figure 4.1. The value Mn is the maximum of these values during a particular
time. Therefore, the method is often referred to as the Block Maxima (BM) method.

If the cumulative distribution F of the maximum values in each block is known, it could
be used to estimate the frequency of rare events. In practice, the distribution F is unknown
but can be approximated to a set of models based only on extreme data [43]. It is similar
to the normal approximation of sample means using the central limit theorem. The set
of models can be represented by the Generalized Extreme Value (GEV) distribution, as
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1 2 3 4 5 6 7 8 9 10

Figure 3.1: This figure illustrates how the block maxima values are selected from
a continuous stream of values, shown as blue dots. The selected max-
imum values of each block are highlighted with a red ring. Adapted
from [47]

illustrated in Figure 3.2.
The distribution consists of the three parameters location (µ), shape (ξ) and scale (σ)

with the following probability density function:

f(x|ξ, σ, µ) =
1
σ

exp
(

− (1 + ξ
(x − µ)

σ
)− 1

ξ
)

(1 + ξ
(x − µ)

σ
)−1− 1

ξ . (3.2)

If data is collected for multiple blocks, a series of maxima, Mn,1, ..., Mn,m, can be used to
fit a GEV distribution. Then the probability that a yearly maximum exceeds a value xp

can be found using the inverse cumulative distribution function:

p = 1 − F (xp). (3.3)

When implementing this model on a data set, the choice of block size can significantly
impact the result. Choosing a too small block size leads to bias in the estimation due to the
poor approximation of the limit theorem. On the other hand, a large block size will instead
lead to few maxima and thereby a sizable estimate variance. Another critical aspect of
choosing the block size is that maxima must be equally distributed. Therefore, if seasonal
differences exist in the measured variable, each block must have the same conditions. Using
block maxima could mean that a large part of the available data is wasted, and it is especially
true if many of the extreme events occur in the same block.
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Figure 3.2: This figure illustrates how the GEV distribution is fitted to data. The
probability density function for the distribution is shown as the solid
red line. The values on the x-axis represent the maximum measurement
from each block. Adapted from [47]

3.2 Peak Over Threshold

Peak Over Threshold (POT) is another method that avoids the blocking and only models
the most extreme events that exceed some threshold, u, which is visualized in Figure 3.3.
The k values that are exceeding the threshold, xi : xi > u, are called exceedances and are
labeled x(1), ..., x(k).

These values then belong to a distribution family called the Generalized Pareto (GP)
distribution, as shown in Figure 3.4. The GP distribution consists of similar parameters as
the GEV distribution, with shape (ξ), scale (σ), and threshold (u), and it has the following
probability density function:

f(x|ξ, σ, u) =
1
σ

(
1 + ξ

x − u

σ

)−(1/ξ+1)
. (3.4)

To avoid bias or high variance in the estimation, the threshold, u, is chosen as low as
possible while still having a satisfying fit to the model [43]. The selection is often made by
manually inspecting the shape parameter for different choices of thresholds. As long as the
shape parameter is constant, the estimation is stable, indicating a good model fit. However,
finding a suitable threshold in practice can be difficult and often relies on experience.

The probability that a specific value is exceeded can be calculated similarly to the block
maxima method. Suppose that ζu = Pr{X > u}, then the probability, p, that the value xp

is exceeded is:

p = ζu (1 − F (xp)) . (3.5)
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1 2 3 4 5 6 7 8 9 10

Figure 3.3: This figure illustrates how the exceedances are selected from the stream
of values. The selected peak values that exceed the threshold are high-
lighted with a red circle. The threshold is represented with a horizontal
yellow line. Adapted from [47]

3.3 Return Level
The probability, p, that is received for a certain value, xp, can be used to find the average
period between events that exceed this value. In EVT, this time is called the return period,
and the corresponding value is called the return level. Given a probability, the return period,
tp, can be found using the following formula:

tp =
ttot

np
, (3.6)

where ttot is the total time of data gathering and n is the number of blocks for the BM
method or the total number of measurements for the POT method.

When the return level is plotted against different return periods, the result can be seen
in Figure 3.5. Confidence intervals of these estimates that consider the uncertainty of more
extreme return levels that have not yet occurred can also be constructed.

If one is interested in how often a particular value is exceeded, the answer would be the
corresponding return period. For example, that could be interesting in evaluating a certain
height’s effectiveness for a seawall. The return period would then correspond to how often
the barrier is expected to be flooded.

3.4 Application to Vehicle Safety
Extreme value methods can estimate the frequency of events that have not yet occurred by
extrapolating from the models fitted to the rare data that has been recorded. Examples
of how EVT has been applied in the automotive safety setting can be found in [48]–[55].
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Figure 3.4: This figure illustrates how the GP distribution is fitted to all values
exceeding a certain threshold. The threshold is represented by the
dashed yellow line, and the probability density function by the solid
red line. Adapted from [47]

For vehicle safety related to ADAS and ADS, it is reasonable to assume that there will be
a lot of data available about how the system performs. The data could also be generated
continuously to create a stream of values that can be used for EVT. In that case, it is better
to use the POT method than the BM method since that would enable more data to be used
[43]. For this to be possible, there is a need for a metric that reflects the closeness to an
accident. The metric also needs a definite value where a collision happens or is unavoidable.

Such metrics have been developed in the active safety area for avoiding, for example,
rear-end collisions with an auto-braking system. These metrics are called threat assessment
metrics since they are used to decide if the situation is threatening enough for the collision
avoidance system to activate. The main differences between the presented threat assessment
methods are the model used for the host vehicle, the objects around it, and how their future
actions and motions are predicted [56].

Deterministic Threat Metrics
Generally, a vehicle can avoid a collision in many different ways, for example, by steering,
braking, or accelerating, and there are a lot of combinations of these actions. Therefore,
threat assessment is often simplified for computational reasons. Deterministic threat met-
rics assume a given model, which offers one prediction that results in one specific value of
the threat for a given time instant. These predictions are often made for one of the vehicle’s
possible actions at a time. Below is a description of some common deterministic threat
assessment methods.

One of the most straightforward metrics is the distance to an obstacle ahead in the host’s
path. This metric is called headway, pHW , and for a straight road, it is equal to the distance
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Figure 3.5: The figure illustrates how EVT can estimate the value that is expected
to be exceeded once in a specific return period. The solid green line
represents the most likely estimate, while the red dashed lines corre-
spond to this estimate’s confidence interval. The blue dots correspond
to the measurements used to fit the EVT model, plotted along the es-
timate to indicate how well the model fits the data. Adapted from [47]

between the host bumper and the rear of the obstacle [56]. In the case of a curved road, it
is the distance traveled along the middle of the road to reach the object. This metric can
also be expressed in time headway (THW), tHW , which is the time it takes for the host to
reach the object’s position. If the host’s acceleration is zero, then:

tHW =
pHW

v0,host
, (3.7)

where v0,host is the initial speed of the host vehicle. A variant of this metric is the post-
encroachment time (PET), commonly used in a retrospective analysis of conflict scenarios
[57]. The PET metric is defined as the time between the obstacle leaving a conflict area and
the ego vehicle entering the same area. In the case of the ego vehicle following the obstacle
in the same lane, the PET is identical to THW.

The headway metric relates to the exposure to a hazardous situation, i.e., how sensitive
the host vehicle is to sudden events. However, the metric does not predict the future motions
of the object, which becomes a problem if there is a high relative speed. A metric that
handles this is the time to collision (TTC), tT T C . It is often assumed that the acceleration
of the host and the object is constant [56]. With that assumption, the tT T C is found by
solving:

0 = px,0 + vx,0tT T C +
ax,0t2

T T C

2
, (3.8)

where px,0, vx,0 and ax,0 are the initial relative position, velocity, and acceleration, respec-
tively. The correct tT T C is the lowest positive solution found. This metric is directly related
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to the point of a collision. There are also metrics such as required longitudinal acceleration,
ax, reflecting how much effort is needed to avoid a collision. The required acceleration can
also be combined with the braking capacity and create a ratio of the needed braking to
avoid a collision, called Brake Threat Number (BTN) [58]. With the assumption of con-
stant acceleration for both the host vehicle and the object, the required acceleration can be
found by solving the following system of equations:{

0 = vx,0 + axt,

0 = px,0 + vx,0t + axt2

2 .
(3.9)

There is a difference between the metrics presented here in what aspect they relate to a pos-
sible threatening situation. The metric of TTC reflects the closeness in time of a predicted
collision. Time headway does not predict a crash but instead relates to an obstacle-free
distance, to some extent a conservative metric of the closeness to a collision. These metrics
are the same in the case of a standstill object or an object that stops instantly. The re-
quired acceleration metric is different from the other two metrics since it does not relate to
a collision event. Instead, it measures the action needed to avoid a collision and hence the
closeness to the point where a collision is practically unavoidable. Required acceleration,
therefore, gives an earlier indication of when a crash is happening compared to the other
two metrics. A variant of the TTC metric that addresses this issue is the time to maneu-
ver (TTM) or time to brake (TTB) metric [57]. These metrics relate to this point of an
unavoidable collision with time as a unit.

Advanced Threat Metrics
The mentioned threat assessment methods can also be extended to include more detailed
models for the actuation of actions, such as braking, to make them more realistic. The simple
models presented here only consider one target at a time, which sometimes underestimates
the threat since other objects might block some paths. Including multiple objects in the
threat assessment can mitigate this at the cost of increased complexity. There are also a lot
of uncertainties in state measurement and prediction. The uncertainties can be countered by
introducing safety margins in the deterministic models or using stochastic models instead.

Stochastic models of uncertainties can give a more realistic measurement of the current
risk. The models can include both measurement uncertainties and consider multiple future
trajectories. Furthermore, stochastic models can be applied to the metrics presented in
Section 3.4. For TTC, that would mean that the result will be a distribution of values
instead of a single one, as seen in [56]. In addition, stochastic models can also estimate the
probability of collision for each given instance, as shown in [59], [60]. By creating stochastic
models of the future paths, it is possible to calculate the risk that an object will occupy
the same place as the ego vehicle at the same time in the future. We can see this in,
e.g., [61], where uncertainties of the measurements are modeled together with the other
traffic participants. Then stochastic reachable sets can be used to predict the probability
of collision for a particular path of the ego vehicle.
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CHAPTER 4

Subset Simulation

Subset Simulation (SuS) is a method used to estimate very low frequencies and, therefore,
expensive to sample uniformly. The technique has been applied to estimate very low failure
frequencies in engineering systems such as building constructions, mechanical components,
and automated vehicles [25], [62], [63]. The principle behind the method is to iteratively
explore a parameter space and direct the simulations toward where it is believed to be
closest to having a failure or an incident. The parameters resulting in simulations closest
to a failure are chosen as a subset in each iteration. The selected scenarios are then used
as the starting point for exploring in the next iteration. Consequently, there is a need for a
metric that guides the search toward failure. This metric should measure the closeness to
failure to rank them and determine if a failure has occurred.

4.1 Performance Metrics
A performance evaluation function is needed to guide the search of SuS and evaluate which
parameter values result in simulations closer to failure. This function is defined as g(θ)
and is used to create a Limit-State Function (LSF). The LSF is designed so that a lower
value is closer to a failure, and a value below zero is considered a failure. Therefore, the
performance function, g(θ), needs to represent the closeness to a failure and have a clearly
defined limit where a failure has occurred. The function is transformed to match the LSF
requirement of decreasing values toward its zero failure limit. For each iteration of SuS, an
intermediate failure region is defined as:

LSF (θ) ≤ y∗, (4.1)
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where y∗ is defined as the value that makes a certain share, p0, of simulations fulfill this
inequality.

4.2 Sampling
In the first iteration of SuS, a Monte Carlo sampling of the parameter space is performed.
Next, the samples resulting in simulations closer to a failure are selected to form an in-
termediate failure region. Finally, Markov Chain Monte Carlo simulations are performed
based on the selected samples. The result is new samples that further explore the parameter
space, and a new intermediate failure region can be formed.

F0 F1 F2 F

Figure 4.1: Illustration of the first two iterations of the SuS. A new intermediate
failure region is created for each iteration, and MCMC sampling is used
to generate new samples in that region. Each time, the simulations get
closer to the failure region (F), and when enough samples end up in
that region, the process is stopped.

This process is repeated until a significant share of the samples are actual failures. The
result is a chain of intermediate failure regions (F1 ⊃ F2 · · · ⊃ Fn) that can be used to
calculate the probability of failure:

P r(F ) = P r

(
n⋂

i=1

Fi

)
=

n∏
i=1

P r(Fi|Fi−1). (4.2)

The idea behind SuS is to make these intermediate probabilities large enough so that it is
relatively easy to sample [64]. As a result, the original problem of sampling a low probability
is transformed into a chain of larger conditional probabilities.
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4.3 Application to Vehicle Safety

The MCMC sampling at each level i uses the states from θi−1 that end up in Fi as
the starting point for a Markov chain. From that starting state a candidate state θ̃ is
generated from a given PDF φn(θ|Fi). If the θ̃ generates an LSF-value that is lower than
the intermediate limit, y∗

i , and thereby makes θ̃ ∈ Fi, the candidate is selected as the next
state (θk+1 = θ̃). Otherwise, the current state θk is used as the next state θk+1. This is
continued for each starting state to create multiple chains of states that, in the end, result
in N new states in level i (θi).

Subset Simulation Algorithm
Here is a description of the subset simulation algorithm as described in [62].

1. Generate N samples {θ
(k)
0 : k = 1, ..., N} from the PDF φn(θ)

2. Order the samples after the corresponding LSF value {LSF (θ(k)
0 ) : k = 1, ..., N} in

ascending order and find y∗
1 as the p0-percentile.

3. Set F1 = {θ ∈ Rn : LSF (θ) ≤ y∗
1}

4. Set j = 1 and repeat while y∗
j > 0

a) Start from the NS samples where θ
(k)
j−1 ∈ Fi where NS = p0N .

b) For each θ of the NS samples, generate 1
p0

− 1 new states of a Markov chain
from the PDF φn(θ|Fi) using MCMC sampling and let the resulting N states
be θj .

c) Set Fj+1 = {θ ∈ Rn : LSF (θ) ≤ y∗
j+1} where y∗

j+1 is the p0-percentile of the
ascending LSF-values.

d) Set j = j + 1

5. Count the number of failures (Nf ) of the last level where θj−1 ∈ F

6. Calculate the failure probability P̂f = pj−1
0

Nf

N

4.3 Application to Vehicle Safety
The SuS method requires a metric for closeness to failure similar to what is needed for EVT.
Therefore, the metrics presented in Section 3.4 can be used for vehicle safety estimations.
The difference to EVT is that it is more the ordering of the scenarios that are important
than the specific value of the metric. The same scenarios will be selected regardless of the
associated metric value, while for EVT, the values affect the shape of the distribution. How-
ever, it still applies that different scenario types using the same metric must be comparable
in values. Otherwise, the SuS will be biased toward specific scenarios, and some parts of
the parameter space will not be explored as much.
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CHAPTER 5

Summary of included papers

This chapter provides a summary of the included papers. The included papers provides
methods for accelerated testing of an ADS safety performance, both before and after release
of the system. Paper A covers a method used during the development phase to validate
the safety in simulation. The following papers B, C and D covers a method for statistical
safety validation at vehicle level to be used before the release of an ADS software. Paper
E introduces a monitor that is used after the launch of the system, which aborts operation
if the safety performance is not according to expectations. Lastly, Paper F explores a
probabilistic threat metric that can be applied in the previous methods in a more general
context.

5.1 Paper A
Daniel Åsljung, C. Zandén, J. Fredriksson, M. K. Vakilzadeh
On Automated Vehicle Collision Risk Estimation using Threat Metrics in Subset
Simulation
Published in IEEE International Intelligent Transportation Systems Conference (ITSC),
2021, pp. 58-63, Indianapolis, IN, USA.
©2021 IEEE DOI: 10.1109/ITSC48978.2021.9564695 .

The Subset Simulation (SuS) method uses a metric to guide the simulations toward
failure. Such a metric needs to relate correctly to the closeness of failure between different
scenarios. Therefore, it is necessary to investigate how the choice of metric affects the failure
rate estimates and how critical this choice is. In Paper A, a selection of different threat
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metrics is evaluated. The SuS is applied for an ACC function faced with simulated cut-in
scenarios. All metrics gave results relatively close to the actual failure rate, and metrics
relating to a state where failure could not be avoided proved a little better. This result is
in line with previous results for EVT in Paper D and B. The thesis author was responsible
for the problem formulation, implementation, analysis, and writing the paper.

5.2 Paper B
Daniel Åsljung, J. Nilsson, J. Fredriksson
Comparing Collision Threat Measures for Verification of Autonomous Vehicles using
Extreme Value Theory
Published in 9th IFAC Symposium on Intelligent Autonomous Vehicles,
2016, pp. 57-62, Leipzig, Germany.
©2016 IFAC DOI: 10.1016/J.IFACOL.2016.07.709 .

As described in Chapter 3, there is a need for a measure that reflects the closeness
to a collision to use EVT to estimate the collision frequency. The measure needs to be
able to continuously show the closeness to a collision and be comparable between different
situations. This paper investigates how different threat measures affect the inferences drawn
from EVT. Two different types of threat measures are compared and a subset of a larger
field test is used as input data, where the vehicles are driven by humans. The results
show a clear difference between the two types, especially when looking at the estimated
collision frequency. The measure that reflects the closeness to the point where a collision
is unavoidable looks much more promising. The thesis author was responsible for the
implementation, analysis, and writing the paper.

5.3 Paper C
Daniel Åsljung, J. Nilsson, J. Fredriksson
Validation of Collision Frequency Estimation Using Extreme Value Theory
Published in IEEE 20th International Conference on Intelligent Transportation Sys-
tems (ITSC),
2017, pp. 1-6, Yokohama, Japan.
©2017 IEEE DOI: 10.1109/ITSC.2017.8317596 .

In Paper B it was shown that one type of metric showed greater promise of being able to
estimate the collision frequency using EVT. In order to be used as a validation method for
safety requirements, as described in Chapter 2, the method needs to be shown to correctly
estimate the collision frequency. To address this, the metric that was more promising is
investigated more in this paper. To validate the correctness of the estimation using EVT,
it is compared to an estimate from crash statistics. For the comparison to be valid, the
data used for the EVT estimate is from a larger field test made up of 250 000 km driven
by humans. The results confirmed the initial conclusions from Paper B that this metric
gives credible results. It was also found that the EVT model could be fitted in two different
ways resulting in some differences in the inferences drawn. By fitting the model to a few of
the most extreme events, the drivers’ performance was significantly better than the average
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human. The conclusion is that this is what can be expected from data based on trained test
drivers. The thesis author was responsible for the implementation, analysis, and writing
the paper.

5.4 Paper D
Daniel Åsljung, J. Nilsson, J. Fredriksson
Using Extreme Value Theory for Vehicle Level Safety Validation and Implications
for Autonomous Vehicles
Published in IEEE Transactions on Intelligent Vehicles,
vol. 2, no. 4, pp. 288-297, Dec. 2017.
©2017 IEEE DOI: 10.1109/TIV.2017.2768219 .

The analysis of different types of threat metrics made in Paper B was done on a limited
amount of data, making the results preliminary. In Paper C it was shown that depending on
what threshold is used for the EVT model, the inferences drawn could differ. As described
in Chapter 3, this process is often performed manually by visual inspection. To efficiently
use EVT for validation of safety requirements, this has to be done automatically. In Paper
D, the same more extensive field test as in Paper C is used to verify the result received from
Paper B. The result from this larger field test is very similar to what was found in Paper B,
which further strengthens the conclusion that a metric that reflects the closeness to a point
where a collision is unavoidable is the better choice. The Paper also includes an evaluation
of three different methods of automatically choosing a threshold for the EVT model. All
methods choose a probable threshold for both metrics, suggesting that the whole process
can be automatically performed. The thesis author was responsible for the implementation,
analysis, and writing the paper.

5.5 Paper E
Daniel Åsljung, C. Zandén, J. Fredriksson
A Risk Reducing Fleet Monitor for Automated Vehicles Based on Extreme Value
Theory
Submitted for publication in IEEE Transactions on Intelligent Transportation Sys-
tems.

The methods presented in Papers A,B,C & D aims to give evidence of a safe system before
launch. However, even if the result is positive with high confidence, there is a residual risk
that the system is not performing according to the safety target. It is therefore suggested
to monitor the safety of the system after launch. However, a statistical monitor based
on observing potential failures poses critical consequences if the system is not performing
well enough. We do not want to see a lot of accidents before a sub-performing system is
stopped. In Paper E, the strength of EVT shown in Paper D is used to create a safety
monitor with predictive abilities. The result from a simulation study, similar to what is
used in Paper A, shows a significant risk reduction compared to just observing failures.
The risk reduction is achieved by stopping functions not fulfilling the requirement much
sooner due to the predictive ability of EVT. Also, a new retrospective version of the BTN
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metric is introduced that achieves similar risk reduction as the predictive metric while being
less conservative. The thesis author was responsible for the problem formulation, concept
generation, implementation, analysis, and writing the paper.

5.6 Paper F
Daniel Åsljung, M. Westlund, J. Fredriksson
A Probabilistic Framework for Collision Probability Estimation and an Analysis of
the Discretization Precision
Published in IEEE Intelligent Vehicles Symposium (IV),
2019, pp. 52-57, Paris, France.
©2019 IEEE DOI: 10.1109/IVS.2019.8813853 .

The different types of threat measures used in Paper B, D are only considering a sin-
gle outcome of the future. Consequently, the metrics cannot account for possible future
outcomes that could be more serious. In Chapter 3, these are referred to as deterministic
threat assessment metrics in the way it treats the future as deterministic. There have also
been attempts at constructing a metric stochastic based on stochastic models. In Paper F,
a stochastic framework for calculating the probability of collision is presented. It is based
on a discrete Markov Chain model populated by the same large data set used in C and D.
The focus is on evaluating the precision in the metric and how the discretization could be
improved. The thesis author was responsible for the problem formulation, implementation,
analysis, and writing the paper.
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CHAPTER 6

Concluding Remarks and Future Work

The attached papers present two quantitative methods to validate an ADS’s safety perfor-
mance. First, SuS have been used in simulation to give statistical safety estimates during
the development. Secondly, it has been shown how EVT can validate safety on a vehicle
level by extrapolating the distribution of near-failures. Consequently, providing evidence
that an acceptance criterion is met at the launch. These methods address the first research
question by providing evidence during different parts of the development process. Lastly,
an approach to using EVT for predictive monitoring of safety after launch is also presented.
The monitor thus addresses the second research question and is shown to reduce the risk
during the operation significantly.

Common for all methods is the usage of threat metrics, or metrics of closeness to failure,
to accelerate the testing. It has been shown in the attached papers that the choice of this
metric can have significant effects on the result and the inferences drawn from them. For
example, it has been shown that a metric relating to a state where failure is unavoidable,
such as BTN, is better for extrapolation using EVT. For SuS, the same metric also showed
better results, but the difference was not as significant. The choice of metric for SuS does
not seem as critical as for EVT. A possible reason for this is that the specific value of the
metric is not crucial in SuS, just the relative order of the scenarios.

It is also found that the constant acceleration prediction in the metric results in a very
conservative estimate for the cut-in scenarios in the simulations. A metric calculated retro-
spectively without any prediction has four times fewer failures than the predictive metric.
These results highlight an essential aspect to consider when choosing a metric, and it might
differ between different situations how conservative the metric is. Another significant factor
for both methods is designing a metric that gives a non-zero threat value to cases with a
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potential risk of failure. The reason is to have an indication of being close to failure from all
causes and types of situations. By having more data points, the confidence in the estimates
using EVT can also be increased. It also reduces the risk of missing critical scenarios during
the search in SuS and getting a bias in the estimation.

The papers included in this thesis only consider collisions with other vehicles on the road.
However, the method can be applied to other types of failures by using an appropriate threat
metric. Therefore, there is a need for a metric or a group of metrics that captures a complete
set of possible failures. It is preferable to have as few metrics as possible or metrics with
comparable values to maximize the number of data points when using EVT. The same
applies to SuS to reduce the number of parallel searches needed to validate the full scope
of the function.

One paper in the thesis investigated the possibility of a probabilistic metric that could
be extended to cover different types of collisions more generally. The metric could capture
the possibility of different outcomes and more accurately reflect the closeness to a crash.
However, the explored framework requires much data about the possible behavior of other
traffic participants, especially in critical scenarios, which is not easily obtained. Compared
to the other threat metrics used in the thesis, a probabilistic framework might not be needed
to produce stable results in the presented methods. Instead, simple metrics relating to the
system’s capability could be enough to reflect the closeness of a failure for many types of
scenarios.

There are some possible future directions to expand on the results of this thesis. Firstly,
the EVT method should be applied to a more extensive field test. Consequently, it can be
shown that the failure frequency estimations are credible, and the EVT monitor performs
similarly to the simulation environment.

Secondly, it is desired to automate as much of this process as possible. For example,
threshold selection is crucial in the EVT process, and improvements should be made in
automatically evaluating different thresholds to select the appropriate one.

Lastly, new metrics that consider the severity of the failure should be evaluated. The
possibility of measuring the higher severity failures is especially important for an ADS since
the acceptance criterion for these will be of a very low frequency.
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