
thesis for the degree of doctor of philosophy

On Falsification of Large-Scale Cyber-Physical
Systems

Johan Lidén Eddeland

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2022

On Falsification of Large-Scale Cyber-Physical Systems

Johan Lidén Eddeland
ISBN 978-91-7905-750-3

© 2022 Johan Lidén Eddeland
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5216
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Printed by Chalmers Reproservice
Gothenburg, Sweden, November 2022

To Hanna, Vidar, Sixten, and Signe

Abstract
In the development of modern Cyber-Physical Systems, Model-Based Test-
ing of the closed-loop system is an approach for finding potential faults and
increasing quality of developed products. Testing is done on many differ-
ent abstraction levels, and for large-scale industrial systems, there are several
challenges. Executing tests on the systems can be time-consuming and large
numbers of complex specifications need to be thoroughly tested, while many
of the popular academic benchmarks do not necessarily reflect on this com-
plexity.

This thesis proposes new methods for analyzing and generating test cases
as a means for being more certain that proper testing has been performed on
the system under test. For analysis, the proposed approach can automatically
find out how much of the physical parts of the system that the test suite has
executed.

For test case generation, an approach to find errors is optimization-based
falsification. This thesis attempts to close the gap between academia and in-
dustry by applying falsification techniques to real-world models from Volvo
Car Corporation and adapting the falsification procedure where it has short-
comings for certain classes of systems. Specifically, the main contributions
of this thesis are (i) a method for automatically transforming a signal-based
specification into a formal specification allowing an optimization-based falsifi-
cation approach, (ii) a new collection of specifications inspired by large-scale
specifications from industry, (iii) an algorithm to perform optimization-based
falsification for such a large set of specifications, and (iv) a new type of cover-
age criterion for Cyber-Physical Systems that can help to assess when testing
can be concluded.

The proposed methods have been evaluated for both academic benchmark
examples and real-world industrial models. One of the main conclusions is
that the proposed additions and changes to the analysis and generation of
tests can be useful, given that one has enough information about the system
under test. The methods presented in this thesis have been applied to real-
world models in a way that allows for higher-quality products by finding more
faults in early phases of development.

Keywords: Testing, Simulation-Based Verification, Formal Requirements,
Falsification, Optimization, Test Coverage, Cyber-Physical Systems.

i

List of Publications
This thesis is based on the following publications. Note that the papers are
not presented in chronological order; instead, the order is chosen so as to make
the research as easy as possible to understand for the reader.

[A] Johan Lidén Eddeland, Koen Claessen, Nicholas Smallbone, Zahra
Ramezani, Sajed Miremadi, Knut Åkesson, “Enhancing Temporal Logic Fal-
sification with Specification Transformation and Valued Booleans”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 12, pp. 5247-5260, 2020.

[B] Johan Lidén Eddeland, Knut Åkesson, “Evaluating Optimization Solvers
and Robust Semantics for Simulation-Based Falsification”. ARCH20. 7th In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems (ARCH20), July, 2020 - Online.

[C] Johan Lidén Eddeland, Alexandre Donzé, Sajed Miremadi, Knut Åkesson,
“Industrial Temporal Logic Specifications for Falsification of Cyber-Physical
Systems”. ARCH20. 7th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20), July 12, 2020 - Online.

[D] Johan Lidén Eddeland, Alexandre Donzé, Knut Åkesson, “Multi-Re-
quirement Testing Using Focused Falsification”. Submitted for possible jour-
nal publication. This is an extended version of the paper Multi-Requirement
Testing Using Focused Falsification accepted to and presented at HSCC 2022:
ACM International Conference on Hybrid Systems: Computation and Control.

[E] Johan Eddeland, Javier Gil Cepeda, Rick Fransen, Sajed Miremadi,
Martin Fabian, Knut Åkesson, “Automated Mode Coverage Analysis for Cyber-
Physical Systems Using Hybrid Automata”. The 20th World Congress of the
International Federation of Automatic Control, July, 2017 - Toulouse, France.

iii

Specification of my contribution to the included publications:

[A] I implemented the specification transformer and implemented it on the
Volvo models for discussion in Section 5.5 in the paper. I implemented the
additive semantics in MATLAB and chose the benchmarks models and spec-
ifications that were included in the evaluation. I also ran all the experiments
in the paper. The co-authors aided in defining the theoretical framework of
specification transformation, e.g., using SignalTables and FormulaTables to
represent the specifications. I wrote the manuscript with valuable input from
all co-authors.

[B] I designed the experiments with the help of the co-author. I performed all
experiments and summarized the results in the table and cactus plot presented
in the paper. I wrote the manuscript with input from discussions with the
co-author.

[C] I created all requirements with inspiration from requirements at Volvo
Cars, and I tuned the parameters as described. I ran all the simulations needed
to produce the statistics presented in the paper, and I wrote the manuscript
with helpful input from all co-authors.

[D] I designed and implemented the MRF and Corners-UR algorithms together
with the co-authors. I ran the experiments and generated the data presented
in the tables. The theoretical background and discussion was a results of many
meetings and discussion together with the co-authors. I wrote the manuscript
in collaboration with all of the co-authors.

[E] I defined the main coverage criterion and co-implemented the algorithm
for calculating the mode coverage for existing simulations of the dog clutch. I
also wrote the manuscript. The co-authors co-implemented the algorithm for
calculating mode coverage, implemented visualization of the dog clutch (such
as in Figure 6 of the paper), and aided in formulation of the manuscript.

iv

Other publications by the author, not included in this thesis, are:

[F] Johan Eddeland, Sajed Miremadi, Martin Fabian, Knut Åkesson, “Ob-
jective Functions for Falsification of Signal Temporal Logic Properties in
Cyber-Physical Systems”. 13th Conference on Automation Science and Engi-
neering (CASE) Xi’an, China, Aug. 2017.

[G] Koen Claessen, Nicholas Smallbone, Johan Eddeland, Zahra Ramezani,
Knut Åkesson, “Using Valued Booleans to Find Simpler Counterexamples
in Random Testing of Cyber-Physical Systems”. 14th IFAC Workshop on
Discrete Event Systems (WODES) Sorrento Coast, Italy, May 2018.

[H] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra Ramezani,
Knut Åkesson, Sajed Miremadi, “Applying Valued Booleans in Testing of
Cyber-Physical Systems”. 2018 IEEE Workshop on Monitoring and Testing
of Cyber-Physical Systems (MT-CPS) Porto, Portugal, Apr. 2018.

[I] Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Åkesson, “Multiple Objective Functions for Falsification of Cyber-Physical
Systems”. 15th IFAC Workshop on Discrete Event Systems (WODES) Online,
Nov. 2020.

v

Acknowledgments
So many people have helped me during my years as a Ph.D. student, both
professionally and personally, that it is probably impossible to mention every-
one. I will do my best, and I am humbled by being given the opportunity to
perform research in this project on such an interesting subject (which I did
not know anything about beforehand).

First of all, I want to thank my academic supervisor Knut Åkesson and my
industrial supervisor Sajed Miremadi for your continuous support and encour-
agement during the entire project. Even though you have busy schedules, you
always had time for discussing interesting problems with me, and you guided
me through both the academic challenges and the more hands-on problems
which I could not solve myself. Thanks to both of you, I will always have fond
memories of my daily work as a Ph.D. student!

I would also like to thank my co-supervisor Martin Fabian. Whenever I
needed help with the final details of writing papers, you always stood up
to the challenge of meticulously finding every single word with any kind of
mistake. Maybe not the help I deserved, but the help I needed, both back
then and now when I look back on what I learned about writing and the
scientific process.

I am very grateful to Alexandre Donzé for all the help and support during
the recent years. You became a mentor to me after all my initial inquiries
about Breach and STL, and I am very lucky to have had you with all your
expertise become such as big part of the research project.

I would also like to express my gratitude towards Koen Claessen and Nicholas
Smallbone for your engaging discussions and contributions to the work I have
done. I will never understand how you can get so much done in such a little
time, but I am thankful for it!

I also want to thank all my managers at Volvo, especially my first manager
Isak Öberg who provided vital support at the start of my time as a Ph.D.
student when I wasn’t entirely sure how to handle the difficulty of it all. Many
thanks also to Sajed, Marcus, Martin, Aboozar, and Carol for helping me out
with support and carrying the burden of administration so that I didn’t have
to.

vii

I also want to acknowledge the support from my colleagues at Volvo. The
team spirit of Team MM with Andreas, Ulf, Ulrika, and Niklas always cheered
me up when I needed it, and Eduard and Carl are long-term team members
I’ve always been inspired by. Fredrik helped me with hardware, and Ellen,
Nithin, and Tiberiu helped me with software whenever I needed their input.
In addition to this, I got help and useful comments from many other colleagues
who I don’t have the space to mention here.

I am grateful for the support from all my Chalmers colleagues in the Au-
tomation group as well, especially from Zahra for the tight cooperation in
producing interesting research in the same research field. Interesting meet-
ings and discussions with Constantin and Yuvaraj also helped with gain a
wider knowledge of related fields of research.

I also want to thank my favorite teacher of all time, Tenzing, for the in-
spiration during and after physics classes in grades 7–9. Thanks to you I
understood more about both what I wanted to do myself, but also about how
to inspire and educate others.

Finally, I want to express my sincere gratitude toward my closest family.
My parents always supported me in everything I did since I was young. My
brothers felt more like a burden than anything else for the first 15 years of my
life, but looking back I can see how they helped me become who I am today.
I would never have been able to finish this Ph.D. without the never-ending
love and support from my wife, Hanna. No matter how bad of a day I can
have at work, coming home to you, Vidar, Sixten, and Signe always makes me
appreciate our wonderful life together. I love you and our fantastic family!

This work has been performed with support from the Swedish Governmental
Agency for Innovation Systems (VINNOVA) project TESTRON 2015-04893
and from the Swedish Research Council (VR) project SyTeC 2016-06204. This
support is gratefully acknowledged.

viii

Acronyms

CI: Continuous Integration

CPS: Cyber-Physical System

HIL: Hardware-in-the-Loop

LTL: Linear Temporal Logic

MIL: Model-in-the-Loop

MBT: Model-Based Testing

MC/DC: Modified Condition/Decision Coverage

MTL: Metric Temporal Logic

SIL: Software-in-the-Loop

SMT: Satisfiability Modulo Theories

STL: Signal Temporal Logic

SUT: System Under Test

ix

Contents

Abstract i

List of Papers iii

Acknowledgements vii

Acronyms ix

I Overview 1

1 Introduction 3
1.1 Testing in industry . 6

Levels of testing . 7
Continuous integration . 8

1.2 Research questions . 10
1.3 Methodology . 12

Method . 14
Analysis . 15
Limitations of the methodology 16

1.4 Thesis outline . 16

xi

2 Testing of Cyber-Physical Systems 17
2.1 Cyber-Physical Systems . 17

Requirements of CPSs . 18
2.2 Formal verification versus testing 21
2.3 Coverage criteria . 21

Coverage criteria for Cyber-Physical Systems 23
2.4 Random testing . 26
2.5 Falsification . 27
2.6 Reinforcement Learning for falsification 28

3 Optimization-based Falsification of Cyber-Physical Systems 29
3.1 Discrete-time signals . 29
3.2 Signal temporal logic . 30

Robust satisfaction of STL formulas 31
Extensions of STL . 32

3.3 Optimization . 33
3.4 Optimization-based Falsification 34

Input generators . 36
Quantitative evaluation . 37
Parameter optimizer . 37
Falsification in practice . 37

3.5 Falsification example . 38
3.6 Optimization approaches and solvers 41

Uniform Random sampling . 41
Corner sampling . 41
Simulated Annealing . 42
SNOBFIT . 43
CMA-ES . 44
The Nelder-Mead Simplex method 44
Bayesian Optimization . 46
TuRBO . 47
minBO . 48

3.7 Large-scale falsification . 50
Size and complexity of the system under test 51
Large number of specifications 53
Expression of the specifications 53

xii

4 Summary of included papers and Contributions 55
4.1 Paper A . 57
4.2 Paper B . 58
4.3 Paper C . 59
4.4 Paper D . 60
4.5 Paper E . 61
4.6 Contributions . 62

5 Concluding Remarks and Future Work 67
5.1 Future work . 69

References 71

II Papers 83

A Enhancing Temporal Logic Falsification with Specification Trans-
formation and Valued Booleans A1
1 Introduction . A3

1.1 Related work . A4
1.2 Contributions . A5

2 Signal Temporal Logic and Falsification A6
2.1 Discrete-time signals . A6
2.2 Signal Temporal Logic A7
2.3 Falsification . A7

3 Signal-Based Specifications . A9
3.1 STL specifications in a signal-based framework A10
3.2 Signal-based specifications expressed in STL A11
3.3 Recursive loops in specifications A14
3.4 When semantics do not match A17

4 Valued Booleans . A18
4.1 Max semantics . A20
4.2 Additive semantics . A21
4.3 Properties for reasoning about Valued Booleans A23
4.4 Other properties of VBools A26

5 Results and Discussion . A28
5.1 Automatic Transmission Benchmark A30

xiii

5.2 Abstract Fuel Control Benchmark A30
5.3 Third Order ∆− Σ Modulator A32
5.4 Static Switched System A33
5.5 Transforming Volvo requirements to STL A33
5.6 Discussion . A34

6 Conclusions . A35
6.1 Future work . A36

References . A37

B Evaluating Optimization Solvers and Robust Semantics for Simulation-
Based Falsification B1
1 Introduction . B3
2 Preliminaries . B3

2.1 Discrete-time signals . B3
2.2 Signal Temporal Logic B4
2.3 Robust semantics for STL B4

3 Experimental setup and results B6
3.1 Optimization solvers . B7
3.2 Models and input generation B7
3.3 Results . B8
3.4 Discussion . B9

4 Conclusions . B12
References . B13

C Industrial Temporal Logic Specifications for Falsification of Cyber-
Physical Systems C1
1 Introduction . C3
2 Requirement Models . C4

2.1 Signal Temporal Logic C4
2.2 Simple requirement model example C5
2.3 Requirement models in the benchmark C7

3 Instance Tuning Method and Organization C7
3.1 Parameter instances . C8
3.2 Instance tuning method C9

4 Preliminary Results . C10
5 Conclusions . C10
References . C12

xiv

D Multi-Requirement Testing Using Focused Falsification D1
1 Introduction . D3

1.1 Related work . D5
1.2 Contributions . D6

2 Preliminaries . D7
2.1 Signal Traces . D7
2.2 Signal Temporal Logic D8
2.3 Falsification . D9
2.4 Quantitative semantics for STL D10

3 Multi-Requirement Testing . D12
3.1 Baseline Algorithm: Corners and Random Search D14
3.2 Focused Multi-requirement Falsification D15
3.3 Sensitive Parameters Selection D16
3.4 Structural Sensitivity Analysis D17
3.5 MRF algorithm . D20

4 Results . D24
4.1 Experimental setup . D24
4.2 Results and discussion of MRF D26
4.3 Sensitivity analysis . D29

5 Conclusion and future work . D30
References . D33

E Automated Mode Coverage Analysis for Cyber-Physical Systems
Using Hybrid Automata E1
1 Introduction . E3
2 Hybrid Automata and the MC/DC Criterion E5
3 Hybrid Automata . E8
4 Coverage Criterion . E9

4.1 Mode coverage . E10
4.2 Comparison to other coverage definitions E11

5 Automotive use case . E12
5.1 Introduction of the model E12
5.2 Generating the modes E13
5.3 Characteristics of generated modes E15
5.4 Coverage results . E16

6 Conclusions . E17
References . E18

xv

Part I

Overview

1

CHAPTER 1

Introduction

When we as humans create something, it is usually a process of trial and error.
“Rome was not built in a day” is a proverbial saying that can suggest both
that great things take a long time to finish, but perhaps also that there will
be mistakes made along the way. Developing software is no exception, which
means that we need to systematize how to catch faults so that they do not
exist in the final product.

This thesis tackles the problem of testing software. Specifically, techniques
to increase the level of automation in the testing of Cyber-Physical Systems
(CPSs) [1], to find bugs or faults without creating much additional work effort
for the engineers designing the system. A CPS is, as the name suggests, a
system that consists of both cyber and physical components – meaning that
there is some software interacting with actual physical components. Some
examples of CPSs are cars, industrial robots, and advanced medical devices.
A CPS is considered a hybrid system in the sense that it contains both discrete
and continuous elements.

To efficiently develop modern CPSs, a common design paradigm is to use
models. A model in this case is a mathematical description of the inner work-
ings of the CPS, and the model can be defined for different levels of abstrac-

3

Chapter 1 Introduction

tion. For example, a simple model of a car could define how a point mass
accelerates forward as a function of how hard the driver pushes the gas pedal.
However, a more detailed model could take into account the friction between
the car tires and the road, the weight of the passengers in the car, the weather
and air resistance around the car, and many other characteristics that deter-
mine how the car moves. Performing testing on models is naturally called
Model-Based Testing (MBT) [2], and there are many methods to apply MBT
to CPSs [3]–[6].

MBT typically involves much automatic testing and is becoming more and
more useful as the software size in cars is increasing rapidly, which means that
relying too much on manual testing does not scale well enough time-wise to
be viable for the future. For example, Figure 1.1 shows the historical down-
loadable software size in certain Volvo cars. This motivates the introduction
of more automated testing as a complement to manual testing that is usually
already in place in the development of modern CPSs.

’

1998 2002 2006 2011 2015 20200

0.5

1

1.5

·104

S80
1.5MB

XC90
5MB

S80
11MB

V60
118MB

XC90
917MB

XC40
15GB

Year

M
eg

ab
yt

es

Figure 1.1: A bar chart of the downloadable software size in certain Volvo car
models during the years 1998 - 2020.

To test the components that are being developed, one must define what
needs to be tested. This is done by defining a specification1, i.e., the desired
behavior of the system. A specification can be written in natural language,

1Note that in this thesis, the terms specification and requirement are used interchangeably.
In the appended papers, it is also the case that both terms indicate the same concept.

4

e.g. “The car’s velocity should be lower than 150 km/h”, or in some more
mathematical way, e.g. “v < 150”. The output of the system given a certain
input, a test case, can then be evaluated against the specification to see if the
test case has passed or failed.

An important and difficult question is how to create new test cases for
the System Under Test (SUT). Generating a test case for a model of a CPS
typically means coming up with inputs to a simulation of the closed-loop
system including both software and the simulated physical components of the
system. In the end, the tests are created to find faults if they exist in the
system. Testing can never prove the absence of faults in the system, but there
are different approaches to guide the generation to this end. One approach is
to consider code coverage of the software being tested.

As an example, consider the pseudo-code below.
if a then

x = x+ 1
else

x = x− 1
end if

If one wants full statement coverage of the given code, all statements need
to be executed, meaning that a needs to take on both values true and false.
There are many notions of coverage [7] other than statement coverage, for ex-
ample, branch coverage and decision coverage, but the main idea of a coverage
criterion is to give a number indicating how much of the code that has been
tested.

Another approach to generating new test cases is via falsification of CPSs.
The goal of falsification is to find a counterexample where a given specification
does not hold. It is common for the specification to be expressed in a formal
language like Metric Temporal Logic [8] or Signal Temporal Logic [9], [10]
(STL), where one can measure how “far” a specification is from being falsified
by a test case. Whenever falsification is mentioned in this thesis, it refers
to the method of finding counterexamples to temporal logic specifications of
CPSs [11].

In short, this thesis distinguishes between testing, falsification, and op-
timization-based falsification as different levels of ensuring software quality
where more exhaustive methods like model checking are not applicable. The
relations between the different levels are shown in Figure 1.2.

5

Chapter 1 Introduction

Testing

Falsification

Optimization-based falsification

Figure 1.2: An overview of how testing, falsification and optimization-based fal-
sification are related. Optimization-based falsification is a subset of
falsification, which itself is a subset of the broader area of testing.
This thesis focuses mainly on optimization-based falsification.

No matter which test method is considered, it is clear that testing attracts
many practitioners from both academia as well as industry. It is however also
clear, as in most research areas, that methods developed in academic contexts
are not always found in industry. In other words, there is a discrepancy in
methods developed by researchers and methods used in industry. This thesis
attempts to diminish this discrepancy by adapting academic methods to be
suitable for industrial models as well as academic ones.

1.1 Testing in industry
Testing in an industrial context often becomes difficult because of the sheer
scale of software development. When several hundred engineers work together
to develop (a part of) a CPS, for example, a component in a car, there are
typically different levels of testing performed. It is also common to introduce
different automatic methods for faster and more reliable software development.
One of these methods is Continuous Integration (CI) [12], which is detailed
later in this section.

When testing in industry, the SUT can have different characteristics as
well. For some systems, we can have access to the source code, while for some
systems, the only thing available for tests are pre-compiled binary files. In the
latter case, there is no choice but to consider the system a black box, where
we can only access input and output values. This also means that in general,

6

1.1 Testing in industry

to be able to apply new testing methods to industrial systems, the methods
need to be able to handle systems that are completely or partially black-box.

Levels of testing
As part of a Model-Based Design approach, the testing levels can include, but
are not limited to:

• Model-in-the-Loop (MIL): The software component(s) to be tested
are modeled and simulated (meaning that no explicit code is written,
rather the software components are created using a modeling language,
for example, Modelica [13] or Simulink [14]). The plant, i.e., the physical
part of the system that the software interacts with, is also simulated.

• Software-in-the-Loop (SIL): The modeled software (or controller) is
code-generated, and then this generated code is tested against a simu-
lated plant.

• Hardware-in-the-Loop (HIL): Some component(s) of the actual hard-
ware are used in the testing, while some parts of the plant are still
simulated.

The final stage of testing is to physically test the entire system, for example
by driving the finished car and trying to evaluate whether all the requirements
on the system are fulfilled. The earlier testing phases presented here are the
ones that are cheapest and easiest to scale. For MIL and SIL testing, since
everything is simulated, the only limiting factor in creating and evaluating
new test cases is computational power. For HIL testing, since there is an
actual hardware component interacting with the software, the testing needs
to be performed in real-time, typically also with additional safety measures
since parts could potentially catch fire or be part of similar hazards.

In this thesis, the main focus is on testing environments where the whole
system is simulated, e.g. MIL and SIL testing. It should still be noted that
all different testing environments are vital for complete testing of the CPS,
as MIL and SIL testing for example cannot capture any hardware problems.
Similarly, for a car, certain aspects can only be tested by actually driving the
car and not in HIL testing.

There is also another aspect of testing in the software development process.
When a software component is created, typically the software developer will

7

Chapter 1 Introduction

create unit tests to assert that the component works as expected by itself.
When several software components are created, the next step is for them to
be connected as part of the functionality of the system. Now testing needs
to be performed to validate that the interface and interaction between the
components work as expected – this is called integration testing. When all
different parts of the final system are connected, the final testing stage is
called system testing. Figure 1.3 shows how MIL, HIL, and SIL testing can
be related to unit, integration, and system testing in an interpretation of the
V model of software development [15].

Implementation

Unit
tests

Integration
tests

System
tests

Software
architecture

Software
requirements

System
requirements

MIL

SIL

HIL

Design
Ve

rifi
ca

tio
n

Figure 1.3: An illustration of how MIL, SIL, and HIL testing can be related to
unit, integration, and system testing in the V model of software de-
velopment. Even though each of the testing levels comes sequentially
in the testing process, there is not a 1:1 correspondence between (for
example) MIL/Unit, SIL/Integration, or HIL/System.

Continuous integration
A common way to incorporate testing in industry is to use Continuous Inte-
gration (CI) [12]. CI is the practice of automatically integrating changes of
developed code often, to frequently find smaller faults rather than having to
fix large faults with many potentially complex causes at larger time intervals.
An overview of a typical CI workflow is shown in Figure 1.4.

8

1.1 Testing in industry

Developer Code
repository

Pre-build
tests

Post-build
tests

Commit to code
repository

Automatically trigger
CI process

Run automated
pre-build tests

Pass?

Build new version
of product

Receive build fail
notification

Run automated
post-build tests

Pass?
Receive

automated test fail
notification

Merge to
master

Yes

No

No

Yes

Figure 1.4: A flowchart including typical elements of continuous integration (CI).
When a developer pushes their code, the code needs to be built and
pass both unit tests and other automated tests before being pushed to
the master branch. If the code does not build, or if it fails any tests, the
developer will be notified and needs to change the code before trying
to push again. In the context of this figure, pre-build tests could be
unit tests, while post-build tests could be integration tests.

9

Chapter 1 Introduction

A sketch of the desired effect of CI, in terms of time spent finding and
correcting faults in the developed software, can be seen in Figure 1.5. It
is clear that in the ideal case, it is easier to find faults when there are few
of them and there are not many different versions of the software to check
against. However, implementing CI also requires the writing of automated
tests and a general change in the way of working (compared to not using CI).
As this thesis is focused on automated testing, it can be seen as part of making
a CI chain work.

Delivery Delivery Delivery
Time

Te
ch

ni
ca

ld
eb

t

Traditional
Continuous Integration

Figure 1.5: A sketch of intended technical debt over time using traditional devel-
opment methods versus continuous integration. Committing the devel-
oped code with a high frequency typically also means that the faults
are easier to find and less time-consuming to fix.

1.2 Research questions
The goal of the research performed leading up to this thesis can be sum-
marized in four research questions, all connected to Model-Based Testing of
Cyber-Physical Systems. The research questions did not originally all exist as
they are presented here, they were rather developed and matured during the

10

1.2 Research questions

progress of the performed research. As such, the research questions are not
in any sort of “chronological” order; instead, they are presented in a way that
arguably makes them easiest to understand in relation to each other.

Research Question 1. How can specifications expressed in industrial mod-
eling tools be used for optimization-based falsification of Cyber-Physical Sys-
tems?

One piece of this puzzle is attempted to be solved in Paper A. The main
issue is that tools for falsification require specifications written in formal logic,
but engineers in industry typically do not have the expertise necessary to
write correct specifications in these frameworks. The solution of automatically
transforming specifications from Simulink into logic specifications is one of the
main contributions of this thesis.

Research Question 2. How can the optimization-based falsification process
be changed to require fewer simulations when considering a single requirement,
in the context of large-scale industrial systems?

As the research area of optimization-based testing is quite close to industrial
applications, the practical aspects are deemed important. Paper B presents
comparisons between using different optimization problem solvers and quan-
titative semantics for STL to better understand how falsification can be im-
proved for real-world systems.

Research Question 3. How can the optimization-based falsification process
be changed to require fewer simulations when considering multiple require-
ments at once?

This question is the basis for Paper D, where we present an algorithm
for Multi-Requirement Falsification. An evaluation of the industry-inspired
specification benchmark from Paper C illustrates the differences between the
classical single-requirement and the new multi-requirement approaches. This
adjustment of the falsification process to consider many requirements at once,
together with global sensitivity analysis to provide engineers insight into large
systems by use of STL robustness values, is a further step towards bringing
academic methods to industrial models.

Finally, when there is a set of generated test cases (no matter the method),
there is a need to know how to evaluate them concisely, without losing too

11

Chapter 1 Introduction

much information about the test cases themselves. These thoughts are sum-
marized in the final research question.

Research Question 4. How can we evaluate how well testing of Cyber-
Physical Systems fulfills structural coverage criteria, and how can we then use
these criteria to assess when testing is considered finished?

Paper E tackles this question. More specifically, a new kind of coverage
criterion is presented which is defined based on the dynamical equations of
the CPS model. This novel mode coverage is calculated both for a simple illus-
trating example, as well as for a use case (a model at Volvo Car Corporation).
The conclusion is that a mostly automatic approach can be used to analyze
how thoroughly the physical behavior of the model has been tested.

The paper makes it clear that both code coverage and mode coverage can be
useful, but for different purposes. Code coverage (MC/DC) is typically used
as a minimum requirement for evaluating whether a test suite (a collection
of test cases) has exercised the SUT enough. As such, MC/DC is given as a
percentage, and testers seldom reflect over why a certain degree of MC/DC
is fulfilled or not fulfilled. On the other hand, mode coverage is more to be
used as a basis for further analysis, especially when the mode coverage is not
100%, since the testers then should investigate the physical behaviors in the
modes that are never visited by the test suite. In this way, mode coverage
typically requires more work from a tester after the automatic analysis has
been performed, in contrast to the established MC/DC code coverage criterion
that is just used as a check that the test suite fulfills some basic properties.

1.3 Methodology
The purpose of the research presented in this thesis is to create a further un-
derstanding of the testing problem for Cyber-Physical Systems. The research
has been experimental, as is common for research in this area, where the
basis for evaluation of the research typically consists of different mathemati-
cal models of systems (benchmark models). The aim was to address the more
practical research problems, which is especially clear in the formulations of re-
search questions 2 and 3. An overview of the research methodology is shown
in Figure 1.6. This also corresponds closely to suggested research models in
systems engineering [16], where it is clear that industrial research originates

12

1.3 Methodology

from an industrial problem and then evolves towards both an industrial goal
and academically viable research.

Research idea

Demonstrator

Product
& Use

Industrial
maturity

Figure 1.6: An overview of the research methodology used in this thesis. A re-
search challenge is combined with an industrial need to produce a re-
search idea. After some research has been performed, a demonstrator
illustrates how to bridge the gap between academia and industry. Fi-
nally, the research can result in a product that may be used in real
industrial applications as the project grows more mature.

As the research area of testing CPSs is tightly connected to applications,
it has been an important goal to conduct research that applies to large-scale
systems and not only smaller, simpler systems. While smaller systems have
the merit that they are typically easier to analyze and present, the potential
negative effect is that they do not always correspond very well to actual sys-
tems found in industry. With this in mind, one of the motivations for the
conducted research has been to work with methods that scale well for indus-
trial systems, but also to present the results in such ways that the issues of
large-scale systems are clearly shown by the use of smaller examples.

Even though most of the results are applied to either previously available

13

Chapter 1 Introduction

smaller benchmark models or proprietary models that we cannot disclose de-
tails of, we have also presented new specification models inspired by industrial
examples that allows for the greater research community to develop methods
more relevant to industrial use cases. While we cannot discuss exactly how the
specification benchmark in Paper C was procured, it is obvious that the com-
plexity and number of specifications presented give a novel way of evaluating
specification-related algorithms.

The research questions were deliberately designed throughout the project.
In the same way that the problems themselves were designed based on the need
at Volvo Car Corporation, so were also the research questions posed based on
how the industrial solutions could positively affect the research community.

Method
To be able to carry out meaningful research, the academic state-of-the-art was
investigated in an extensive literature review. In the research area of testing
of CPSs, there are many works that present tools, algorithms, and extensions
to previous works that increase testing capabilities using new approaches.
The decision to first focus on coverage, the subject of Paper E, was due to a
need to analyze a set of test cases for a model already existing at Volvo Car
Corporation. The model in question was also included in the paper as a case
study.

Similarly, the reason for choosing falsification of CPSs as a method to fur-
ther develop and adapt for industrial models was that there was a need from
the industrial perspective to automatically generate new test cases for mod-
els present at Volvo Car Corporation. When the falsification approach was
applied to several models, we noticed shortcomings of parts of the procedure,
which led to subsequent research, and which also led to papers A, B, C, and D.

For all the papers appended to this thesis, the goal of tables and figures with
results have always been to illustrate as many aspects of the treated problem
as possible. In Paper E, the experiments were performed using OpenMod-
elica [17] and the programming language Python, with test cases previously
created by TestWeaver [18]. The experiments in all remaining papers were
performed using MATLAB [19].

From the research project’s point of view, the models to be tested at Volvo
Car Corporation were chosen beforehand, as they are the models being de-
veloped at the particular part of the organization where the research takes

14

1.3 Methodology

place. However, for the academic evaluation of research results, the bench-
mark models had to be chosen somehow. Since there at the start of the project
was no concrete set of benchmarks used by the whole research community, sev-
eral different models were picked from different publications in the field. The
benchmark models used for evaluation in the appended papers have appeared
in several different papers. As for the smaller examples in the appended pa-
pers, they were created to highlight the contribution of the paper as clearly
as possible, to hopefully make the paper easy to read and understand.

The structure of the results presented in the papers, such as the tables of
falsification rates and cactus plots over optimization solver performance, were
typically chosen with respect to how other papers in the field typically present
their results. As an example, it is common to present falsification rates and
the number of simulations (sometimes with both mean and median values),
but not as common to include, e.g., measures for statistical significance and
hypothesis tests. It would be possible, at least theoretically, to improve the
statistical significance of the presented results, e.g., by having more repeti-
tions of the experiments or by generating more examples (like automatically
generated STL formulas to falsify). However, generating more repetitions
of the experiments was usually too time-consuming, and automatically gen-
erating more STL formulas would go against the goal of the thesis to keep
experiments and evaluations as relevant as possible to large-scale industrial
systems.

Analysis

As all research aims to be reproducible, that has also been our main goal
in the content presented in the appended papers. However, since several of
the use cases presented in the papers (particularly the dog clutch model in
Paper E, and the Volvo models discussed in Paper A) are proprietary, exact
reproducibility is impossible and the scientific integrity of the author has to
be trusted. In the cases where there is a use case from Volvo Car Corporation
included, there is also a simplified example included to motivate the reasons
for the approach presented in the specific paper.

15

Chapter 1 Introduction

Limitations of the methodology
Choosing methods that are relevant for industrial problems might not result
in the research that is the most appealing from a theoretical point of view,
however, it is still interesting for the research area in question since the field is
in its nature close to application. Choosing falsification as a means of assuring
correct behavior of simulations of CPSs has the drawback that falsification and
testing never guarantees the absence of faults. However, falsification is still
widely accepted as a reasonable strategy for quality assurance since it scales
well for complex systems.

1.4 Thesis outline
The thesis is divided into two parts. In the first part, an overview is presented
to give the reader the understanding needed for the papers appended in the
second part.

Chapter 2 contains a brief overview of why to perform testing for the
software that is part of CPSs. There are also presentations of coverage criteria
(needed for understanding Paper E) and random testing (needed for Paper A).

Chapter 3 is about optimization-based falsification of CPSs. In this chap-
ter, the falsification process is detailed, including a definition of Signal Tem-
poral Logic for discrete-time signals. These definitions are useful for under-
standing papers A, B, C, and D.

Chapter 4 summarizes the content of the appended papers as well as the
contributions of the thesis.

Chapter 5 contains a conclusion of the work presented in the thesis and
an outlook on the future work to be done.

16

CHAPTER 2

Testing of Cyber-Physical Systems

This chapter gives a short insight into what testing is, and the different kinds
of testing that are related to this thesis. Section 2.1 presents details on Cyber-
Physical Systems and the requirements of such systems. In Section 2.2, there
is a brief discussion about why testing is a reasonable approach to assert-
ing the wanted behavior of CPSs. Section 2.3 discusses coverage criteria for
testing and how these are used in industry. In Section 2.4, random testing
is presented, and in Section 2.5 the falsification problem is introduced. Fi-
nally, in Section 2.6 there is a discussion on the alternative approach of using
Reinforcement Learning for falsification.

2.1 Cyber-Physical Systems
Cyber-Physical Systems are systems that interact with the physical environ-
ment through the use of sensors (for acquiring information) and actuators (for
affecting the physical surroundings) [20]. The main differences from mecha-
tronic systems are that a CPS can be connected to and communicate with
other CPSs, and a CPS consists of several different integrated subsystems [21].
As systems get larger and more complex, a CPS can be seen as part of the

17

Chapter 2 Testing of Cyber-Physical Systems

transition chain going from first a mechatronic system, then to a CPS, and
then to a cloud-based system. As an example from the automotive domain, a
drivetrain for a vehicle is considered a mechatronic system, while an entire car
is considered to be a CPS. In the typical block diagram of a feedback system,
as seen in Figure 2.1, this thesis considers testing all parts of the system. This
includes the plant, so while the software in the controller is part of the system
under test, the testing in the thesis can also be used to find, e.g., errors in
how the plant is modeled in a simulated environment.

Controller Plant

Disturbances

u

Measurements

r e y

−

ym

Figure 2.1: A block diagram of a typical feedback system. In this thesis, the entire
system is considered as the system under test, meaning that we do not
only consider the software as the goal system of the testing activities
presented, but also the plant to be controlled.

Requirements of CPSs
CPSs are typically safety-critical, meaning that a failure in the operation of
the system can result in serious damage or injury. Therefore, there is much
focus in research to make sure that CPSs conform to safety requirements1 [22].
However, it is not trivial to formulate the requirements to be put on CPSs.

As an extended example, consider a hypothetical requirement on a specific
CPS, namely a car. This is to help illustrate the kind of requirements that
could exist in industry and therefore also inspire the transformation approach
used in Paper A. However, as real industrial requirements are proprietary,

1Note that requirement and specification typically refers to the same thing. However, the
word requirement is typically used in industrial contexts, and the word specification is
typically used to denote more formal or mathematical objects in academic contexts.

18

2.1 Cyber-Physical Systems

only a discussion on hypothetical requirements can be included in this thesis.
Consider therefore that we have the following requirement for the car:

Requirement 1. The car should be comfortable to drive.

This requirement is very abstract. On one hand, many would be able to
evaluate whether or not this requirement holds after driving the car for a
few hours. On the other hand, it is unclear how to formally specify this
requirement, and specifically, it is impossible to test that parts of the system,
e.g. certain software, fulfills its part of the requirement.

To make the requirement testable, it needs to be broken down into sub-
requirements. Of course, a requirement like the one presented can be inter-
preted in many different ways and will be considered fulfilled in different ways
depending on who is asking. Now, different attempts at breaking the require-
ment down into sub-requirements will be performed; an overview of how the
different requirements relate to each other is shown in Figure 2.2. The first
refinement follows in Requirement 2:

Req. 1

Req. 2.1 Req. 2.2

Req. 3.1 Req. 3.2

Req. 2.3

Req. 4

Figure 2.2: A tree describing how different sub-requirements are related. Each
node is a refinement of its parent.

Requirement 2. To be considered comfortable (and therefore fulfill Require-
ment 1), the car should fulfill all of the following:

2.1 The car seats should be ergonomic;

2.2 The inside of the car should reach a comfortable temperature quickly
after starting, and

19

Chapter 2 Testing of Cyber-Physical Systems

2.3 When the driver presses down the accelerator pedal, the car should re-
spond quickly.

It should be clear that Requirement 2 is for most people not enough to
describe that a car is comfortable, but this analysis is limited to the three sub-
requirements presented, to keep the example short enough for presentation.
The refinement will continue only for the requirements that can be considered
control-related, as those are the ones that could be used as specifications in
a simulation-based testing environment where finding faults in the control
system is the main goal (such as the testing environment used in most of this
thesis).

Requirement 2.1 is not control-related; it is rather an issue to solve with the
hardware of the car. However, in a modern car, both Requirement 2.2 and
Requirement 2.3 are likely control-related. For them to be testable, they need
to be more clearly defined, so that a simulation environment can somehow
evaluate whether the requirement has been fulfilled or not. Another level of
refinement is applied, which results in requirements 3 and 4.

Requirement 3. When the car starts,

3.1 The inside of the car should reach 21◦C within 2 minutes, and

3.2 The inside temperature of the car should never reach above 23◦C.

Requirement 4. To feel like the car responds quickly to desired acceleration if
the angle of the accelerator pedal is larger than or equal to 70◦ and the current
speed is lower than or equal to 200 km/h, the gear must be shifted correctly
within 0.5 seconds and then the maximum acceleration force must be felt by
the driver within another 2 seconds. Otherwise, if the angle of the accelerator
pedal is lower than 70◦ or the current speed is higher than 200 km/h, the
behavior of acceleration is defined by another requirement.

The requirements can be refined even further, but the main point of the
refinement process has been shown: the further a requirement is refined, the
clearer it is which signals of the system that must be included to evaluate
the requirement. It is also typical that to check whether a requirement has
been fulfilled by a specific test case, a set of prerequisites have to be fulfilled.
These prerequisites correspond to different entries in the tables of formulas
discussed in the transformation of specifications in Paper A. For example, for

20

2.2 Formal verification versus testing

Requirement 4, one precondition would be that the angle of the accelerator
pedal is larger than or equal to 70◦ and that the current speed is lower than
or equal to 200 km/h.

2.2 Formal verification versus testing
Formal verification includes approaches such as model checking [23], [24] and
deductive verification [25], [26] to verify correctness of models. If there is an
error with regards to a specification in the model, these methods will find
them and provide counterexamples to the specification. If there are no errors,
the methods provide formal proof of correctness for the specification. While
this sounds appealing, formal verification techniques have limitations and are
not possible to use for general industrial CPSs. In fact, the general problem
of verifying properties for hybrid systems, i.e., systems with both discrete
and continuous dynamics, is undecidable [27]. This means that it has been
proven that in the general case, no algorithm can decide whether a certain
property for a hybrid system holds or does not hold. In addition to this, while
formal verification methods are very useful for models without the limitations
discussed here, there are several other obstacles to overcome [28] for model
checking to be viable in industry (the most notable being a lack of experience
in industry in formalizing the models and specifications to be checked).

With this in mind, we turn to testing instead. Testing is non-exhaustive,
meaning that no matter how long we test, we can not prove the absence of
faults, but testing can still raise confidence in the correctness of the final
product. Testing is scalable and usable for complex industrial-sized systems,
making it suitable for the research presented in this thesis which is close to
application.

2.3 Coverage criteria
Testing the inner structure of the SUT is called white-box testing while testing
the system behaviors without considering the inner workings of the SUT is
called black-box testing. If the scope is to perform white-box testing, one may
be interested in looking at different code coverage criteria for evaluating if the
test cases have tested the system appropriately or not. For examples of some
common coverage criteria [7], consider the simple example below.

21

Chapter 2 Testing of Cyber-Physical Systems

1: if (a and b) or c then
2: x = x+ 1
3: else
4: x = x− 1
5: end if
To fulfill statement coverage, every statement needs to be executed by the

test suite. To fulfill branch coverage, every branch of the program needs to be
executed. In this case, there are two branches; the “if” branch (row 2) and
the “else” branch (row 4), which means that “(a and b) or c” has to evaluate
to true at least once and false at least once in the test suite.

Fulfilling decision coverage is sometimes defined as fulfilling branch cov-
erage, and sometimes as making sure that every point of entry and exit in
the program has been invoked at least once as well as that every decision in
the program has taken all possible outcomes at least once [7]. A decision is
a Boolean expression composed of conditions and zero or more Boolean op-
erators, whereas a condition is a Boolean expression containing no Boolean
operators. In the given example, “(a and b) or c” and “a and b” are decisions,
while “a”, “b” and “c” are conditions.

Another coverage criterion that covers more than the ones mentioned above
is Modified Condition/Decision Coverage (MC/DC). MC/DC is especially in-
teresting because it is used widely in industry to validate test suites, and
because MC/DC is highly recommended for ASIL D (the highest classifica-
tion of Automotive Safety Integrity Level) in ISO 26262 [29]. MC/DC requires
all of the following:

1. Every point of entry and exit in the program has been invoked at least
once.

2. Every condition in a decision in the program has taken all possible out-
comes at least once.

3. Every decision in the program has taken all possible outcomes at least
once.

4. Each condition in a decision has been shown to independently affect
that decision’s outcome. A condition is shown to independently affect
a decision’s outcome by varying just that condition while holding fixed
all other conditions.

22

2.3 Coverage criteria

Below is a short analysis of what is needed to fulfill each of the points of
MC/DC for the given code example.

1. To fulfill the first point, branches of the if -statement need to be exited,
meaning that “(a and b) or c” needs to evaluate to true at least once,
and false at least once.

2. To fulfill the second point, each condition (a, b, and c) must be true at
least once, and false at least once.

3. To fulfill the third point, it is enough for this example to fulfill the same
things as the first point since there is only one decision present.

4. To fulfill the fourth point is the trickiest. Consider the two cases below

a = true, b = true, c = true

a = false, b = false, c = false

These inputs fulfill the first three points, but they do not fulfill the fourth
point. The reason is that for both of these cases, none of the conditions a,
b, or c independently affect the decision’s outcome. Instead, an example
of cases required to fulfill MC/DC is shown below (where conditions in
bold can be shown to independently affect the decision’s outcome by
keeping the other conditions fixed).

a = true, b = true, c = false

a = false, b = true, c = false

a = true, b = false, c = false

a = false, b = false, c = true

Coverage criteria for Cyber-Physical Systems
In the realm of testing Cyber-Physical Systems, different kinds of coverage
criteria have also been considered to improve the testing procedure. Several of
these coverage notions relate to the continuous state variables in the systems.
One approach [30] uses a discretized version of dispersion, where dispersion
is a notion of coverage for continuous state spaces that measures the largest
empty range of a point set based on a set of grid points with a fixed size.

23

Chapter 2 Testing of Cyber-Physical Systems

An illustration of the discretized version is shown in Figure 2.3, where the
coverage c of the point set P is calculated as

c(P) = 1
δ

ng∑
j=1

min(dj , δ)
ng

, (2.1)

where ng is the number of points, dj is the minimum distance from grid point
j to the set P , and δ is the grid spacing.

Figure 2.3: An illustration of the discretized version of dispersion, a coverage mea-
sure for continuous state spaces. The state space is divided into a 3x3
grid. The coverage measure is the average of the smallest distances
from each grid point to the closest point in the point set. Here, the
smallest such distances are shown as dashed arrows.

Another notion of coverage is the star discrepancy [31], which measures
how well-filled a set of points is. In [31], this is applied to the values of the
continuous state variables in a test suite for the SUT, and the test generation
algorithm presented uses star discrepancy as a guide to find new input values
for the SUT. To define the star discrepancy, we first define the local discrepancy
as follows. Let P be a set of k points inside B = [l1, L1] × . . . × [ln, Ln].
Here, l1, . . . , ln are lower limits and L1, . . . , Ln are upper limits, i.e., B is a
hyperrectangle in n dimensions. Let J be the set of all sub-boxes J of the form
J =

∏n
i=1[li, βi] with βi ∈ [li, Li]. In other words, J is the set of all possible

sub-boxes with the lower corner fixed in the lower corner of the hyperrectangle
B. The local discrepancy of the point set P with respect to the sub-box J is

24

2.3 Coverage criteria

defined as

D(P, J) =
∣∣∣∣A(P, J)

k
− vol(J)

vol(B)

∣∣∣∣ , (2.2)

where A(P, J) is the number of points of P that are inside J , and vol(J) is
the volume of the box J . The star discrepancy of the point set P with respect
to the box B is then defined as

D∗(P,B) = sup
J∈J

D(P, J). (2.3)

The star discrepancy is a number 0 < D∗(P,B) ≤ 1, where a small value
means that the points in P are well equidistributed over B. In other words, one
way to use the star discrepancy in test generation of CPSs is to try to minimize
D∗(P,B) over the continuous state space to make sure that the generated test
inputs are evenly spread inside their respective ranges. A two-dimensional
illustration of a sub-box J = [l1, β1]× [l2, β2] in the box B = [l1, L1]× [l2, L2]
is shown in Figure 2.4 [31].

(l1, l2)

B

J

(β1, β2)

(L1, L2)

Figure 2.4: An illustration of the notation used in the definition of the star dis-
crepancy. The sub-box J = [l1, β1] × [l2, β2] lies in the box B =
[l1, L1] × [l2, L2]. This figure is taken from [31].

In [32], the authors present several coverage metrics to be used as evaluation
of a requirements-driven falsification tool. The proposed coverage metrics
typically include information about the discrete states of the hybrid SUT,
such as the time spent in each unique mode of the system.

25

Chapter 2 Testing of Cyber-Physical Systems

2.4 Random testing

A testing technique relevant to this thesis is random testing (or randomized
testing; the terms will be used interchangeably in this thesis). In random
testing, the user supplies the testing tool with properties that need to be
tested, and generators that define how the inputs to a program can be cre-
ated [33] (at least for user-defined types where the testing tool cannot know
how to generate data otherwise). Some different random testing techniques
are fuzz testing [34], where faulty inputs are sent into a program to test its
security, and concolic testing [35], where random inputs are combined with
symbolic execution to easier find very specific path conditions leading to bugs
in programs.

As an example of random testing, consider the following (faulty) implemen-
tation of a function to calculate the absolute value of a number.

function abs(x)
if x > 0 then

return x

else
return x ▷ Should be −x

end if
end function
Depending on the tool and the type defined for x, one might need to define

a generator for x. For example, one alternative is that x should be any signed
integer, and another is that x should be a double in the range [−100, 100].
For the sake of this example, we choose the second alternative as the input
generator for x. A reasonable specification to test against for the absolute
value could for example be ∀x x ≥ 0. Many test cases can be generated
automatically, where the input of each test case is a random number according
to the specified generator. Since approximately 50% of the generated input
would fail the specification, the bug in the code would be found easily with
random testing.

For the given example, the input is simply a random number, but input
generation can easily be generalized to support e.g. random testing of simu-
lated CPSs. For example, consider a model of a car, where the input defines
how much to accelerate (a percentage of the full acceleration in the range
[0, 100]). The input generator would then need to create a time-indexed vec-

26

2.5 Falsification

tor, where for each time the input has a value in [0, 100]. Note, however, that
it is probably not reasonable to simply generate a new random value for each
time instance, independent of neighboring values, as this would be an unre-
alistic scenario (nobody could push and release their foot on the accelerator
pedal tens of times per second). To circumvent this, one could do one of the
following (or a combination of both):

• Make sure that the input generator only generates smooth curves, e.g.,
by generating an appropriate start value and then randomly selecting
a second derivative, which is then integrated twice to provide the final
input (making sure that the twice integrated values are in the interval
[0, 100]).

• Generate purely random values for each time, but shrink the generated
test case when a failure is found. Shrinking keeps simplifying the input
of the test case as long as it keeps failing the specification, which could
result in a physically reasonable input after the shrinking process finishes
(for details, see [36]).

To summarize, random testing is a form of software testing that can be
proficient at finding certain kinds of bugs in code, given that the testing
problem is set up properly. If each test is executed quickly, it is intuitive
that performing random testing can be a smart way to cover many different
test scenarios. However, if a test is expensive to execute, e.g., if it requires
simulating a complex dynamical system, one could also hypothesize that it is
important to minimize the total number of tests generated. In other words, to
automatically generate test cases for Cyber-Physical Systems might require
several other considerations as well – something that is covered in more detail
in Chapter 3.

2.5 Falsification
Falsification is a testing method where the goal is to find a counterexample
to a specification of a system, given that we have access to the input-output
behavior of the system. Thus, falsification is a black-box method that can be
formulated as follows.

27

Chapter 2 Testing of Cyber-Physical Systems

• Given: a system model S, and a specification φ.

• Results for falsification: a counterexample that falsifies the specifica-
tion, φ, if found in the falsification process.

While Chapter 3 contains detailed information about optimization-based
falsification techniques, the main content of this thesis, there are also other ap-
proaches for falsifying specifications for CPSs – such as Reinforcement Learn-
ing.

2.6 Reinforcement Learning for falsification
An increasingly popular approach is falsification of temporal logic specifica-
tions for CPSs using Reinforcement Learning [37] and Deep Reinforcement
Learning [38], [39]. Reinforcement Learning trains an agent based on inter-
actions with the environment, in this case via actions sent to stimulate the
CPS under test. At each decision step, the agent applies an action defined
by its policy, and the environment responds by updating the state of the sys-
tem and supplying a reward to the agent based on the action. While the
reward is immediate for each action applied by the agent, the value function
describes the expected sum of discounted future rewards that an agent can
achieve from a certain state while following its policy. The agent’s goal is to
maximize the value function by optimizing its policy, and the environment is
typically modeled as a finite Markov Decision Process [37] – a kind of process
that satisfies the Markov Property, meaning that the probability of moving
into a specific new state is only influenced by the current state and the agent’s
current action, i.e., it is conditionally independent on all previous actions and
states.

Recent works have shown good falsification results both when generating
inputs and rewards interactively during simulation [40], and when generating
the entire input to a simulation beforehand and evaluating the reward after the
entire simulation concludes [41]. The latter approach generalizes the concept
of adaptive stress testing [42], where the goal is to learn an adversarial policy
which causes the system to not fulfill its specifications.

While this chapter briefly introduces some basic concepts of the general
testing problem for CPSs, Chapter 3 takes a deep dive into the core subject
of this thesis: optimization-based falsification of CPSs.

28

CHAPTER 3

Optimization-based Falsification of Cyber-Physical
Systems

This chapter starts with a presentation of Cyber-Physical Systems in gen-
eral and continues with the basics of optimization-based falsification of CPSs.
Optimization-based falsification of CPSs is the main subject of Papers A, C, B,
and D. Included in this presentation is the definition of discrete-time signals,
Signal Temporal Logic (STL), and the robust satisfaction of STL formulas.
The falsification loop is summarized and explained in further detail with the
aid of a simple example. Finally, optimization heuristics and solvers are pre-
sented in further detail, and then there is a discussion on further important
aspects of applying optimization-based falsification to large-scale systems.

3.1 Discrete-time signals
Falsification relies on the monitoring of signals with respect to specifications
written in temporal logic. As such, falsification in literature is usually defined
in relation to continuous signals [10]. However, in Paper A, there is an exten-
sive discussion about the semantics of logic for discrete-time signals. Since the

29

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

research in this thesis considers simulations of CPSs, we naturally deal with
discrete signals, which is why the discrete-time presentation is chosen in both
Paper A and this chapter. It is possible but not trivial to generalize these
definitions to continuous time [43], [44].
Definition 1. A discrete-time signal x[k] is a function x : I → R from a
finite subset of I ⊂ Z to R, where k ∈ I. The set I indexes the time instants
of the signal, and the signal takes on continuous values at each of those time
instants.

3.2 Signal temporal logic
Signal Temporal Logic (STL) [9] was originally introduced as an extension of
Metric Temporal Logic (MTL) [8] with real-valued signals, while MTL itself
is an extension of Linear Temporal Logic (LTL) [45]. The additions of STL
compared to LTL consist of real-valued signals and dense time (as opposed to
Boolean expressions and modalities). LTL was originally designed for formal
verification of software by encoding formulas of what should hold for the
systems that should be verified.

The grammar of STL formulas is defined here as

φ ::= µ | ¬µ | φ ∧ ψ | φ ∨ ψ | □[a,b]φ | ♢[a,b]φ | φ U[a,b]ψ,

where µ is a predicate, and φ and ψ are STL formulas. µ is decided by the
sign of a function of an underlying signal x, meaning that µ ≡ µ(x[k]) > 0.

Similarly to [46] and Papers A–D , the validity of a formula φ with respect
to the discrete-time signal x at time instant k is defined as

(x, k) |= µ ⇔ µ(x[k]) > 0
(x, k) |= ¬µ ⇔ ¬((x, k) |= µ)
(x, k) |= φ ∧ ψ ⇔ (x, k) |= φ ∧ (x, k) |= ψ

(x, k) |= φ ∨ ψ ⇔ (x, k) |= φ ∨ (x, k) |= ψ

(x, k) |= □[a,b]φ ⇔ ∀k′ ∈ [k + a, k + b], (x, k′) |= φ

(x, k) |= ♢[a,b]φ ⇔ ∃k′ ∈ [k + a, k + b], (x, k′) |= φ

(x, k) |= φ U[a,b]ψ ⇔ ∃k′ ∈ [k + a, k + b] (x, k′) |= ψ

∧ ∀k′′ ∈ [k, k′), (x, k′′) |= φ

30

3.2 Signal temporal logic

Table 3.1 contains examples to clarify how the different operators behave.

Table 3.1: Examples of different STL operators.
Symbol Meaning Example
¬ Logical NOT ¬(x > 0)
∧ Logical AND (x > 0) ∧ (x < 10)
∨ Logical OR (x < 0) ∨ (x > 10)

□[a,b] Timed always □[0,5](x > 20)
♢[a,b] Timed eventually ♢[0,4](x = 5)
U[a,b] Timed until (x = 1) U[0,5] (y > 10)

The interpretation of the examples is shown in Table 3.2.

Table 3.2: How to interpret the examples from Table 3.1.
¬(x > 0): x is not greater than 0.

(x > 0) ∧ (x < 10): x is between 0 and 10.
(x < 0) ∨ (x > 10): x is less than 0 or greater than 10.

□[0,5](x > 20): For all times between and including 0 and 5,
x is greater than 20.

♢[0,4](x = 5): Between and including times 0 and 4, there is
at least one time when x is equal to 5.

(x = 1) U[0,5] (y > 10): For some time k′ between and including 0
and 5, y is larger than 10. For all times before
this time, i.e., for times between 0 and k′

(including 0 but not k′), x is equal to 1.

Robust satisfaction of STL formulas
One of the main focus areas of STL formulas is their quantitative seman-
tics [44] (or robustness/robust semantics) and the efficient monitoring of such
semantics [47]. An extension to this is the ability for online monitoring of
STL formulas [48], which for example enables the evaluation of specification
fulfillment for partial traces of simulated systems.

The robustness of an STL specification is informally how “far away” the
specification is from being falsified. The robustness ρ is a real-valued function,

31

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

whose sign indicates if the corresponding specification φ is satisfied or not
(negative means non-satisfied, positive means satisfied). ρ(φ, x, k) is a function
of a specification φ, a signal x (potentially a vector), and a time k at which
the robustness is evaluated. The robustness is defined similarly to [46]:

ρ(µ, x, k) = µ(x[k]) (3.1)
ρ(¬µ, x, k) = − µ(x[k])) (3.2)
ρ(φ ∧ ψ, x, k) = min(ρ(φ, x, k), ρ(ψ, x, k)) (3.3)
ρ(φ ∨ ψ, x, k) = max(ρ(φ, x, k), ρ(ψ, x, k)) (3.4)
ρ(□[a,b]φ, x, k) = min

k′∈[k+a,k+b]
ρ(φ, x, k′) (3.5)

ρ(♢[a,b]φ, x, k) = max
k′∈[k+a,k+b]

ρ(φ, x, k′) (3.6)

ρ(φ U[a,b]ψ, x, k) = max
k′∈[k+a,k+b]

(min(ρ(ψ, x, k′), (3.7)

min
k′′∈[k,k′]

ρ(φ, x, k′′)))

Some examples follow. For the specification φ1 = (x[k] > 3), µ(x[k]) is
defined as x[k] − 3 and the robustness at time 0 is ρ(φ1, x, 0) = x[0] − 3.
Consider two simulations with resulting signals x1, x2 that satisfy φ1 at time
0, and let us say that x1[0] = 5 and x2[0] = 15. Intuitively, x1[0] is closer to
not satisfying the specification and thus should have a lower robustness value.
Indeed, the robustness value of x1 is 2 and the robustness value of x2 is 12.

For the specification φ2 = ♢[a,b](x > 5), the robustness at time 0 is
ρ(φ2, x, 0) = maxk′∈[a,b](x[k′]−5). For this eventually operator, the robustness
is the maximum of the robustness of its inner formula. It is always the case
that the robustness of a specification with respect to a specific signal and time
is a scalar.

Extensions of STL
While this thesis is focused on properties that actually can be expressed using
STL, it should be noted that some properties need other formalisms to be
expressed. For example, STL* [49] includes an additional freezing operator
which makes it possible to specify damped oscillations in a signal, Time-
Frequency Logic (TFL) [50] can be used to specify frequency-domain proper-

32

3.3 Optimization

ties in addition to time-domain, and hyperproperties [51] are properties that
require two or more execution traces to be evaluated.

A modified version of STL, avSTL [52], has been proposed, which introduces
time-averaged temporal operators in place of □ and ♢. These time-averaged
operators yield a different robustness value than the standard quantitative
semantics, which is shown to be preferential in certain systems and specifi-
cations with an application to falsification. In a somewhat similar fashion,
another change to the quantitative semantics of STL is “edit distance” [53],
which is a metric that measures the distance in both time and space of an
STL specification. In a related publication [54], the authors note that the
monitoring of STL formulas can be considered as filtering over the signals in
the specifications, both for the qualitative and quantitative semantics.

Writing formal specifications is a difficult task [55]. To alleviate the process
of using formal specifications, approaches in earlier works have included tools
that make it easier to write specifications [56], tools to automatically detect
faulty specifications [57], as well as defining template specifications that make
it easier for inexperienced testers to formulate the specifications [58].

To summarize, STL formulas can be used to specify desired behaviors of
CPSs, and the robustness of STL formulas is used to give a measure of how
much fulfilled or not a specification is (quantitatively), rather than just mea-
suring whether it is fulfilled or not (qualitatively). One possible use of this
robustness is to order a set of test cases based on how close they are to not
fulfilling the specification. This naturally leads us to falsification, which is
covered in the next section.

3.3 Optimization
The aim is to formulate falsification as an optimization problem, where the
goal is to minimize the STL robustness value to find counterexamples. While
falsification and optimization are not strictly equivalent – the only goal of
falsification is a counterexample, while an optimization formulation aims to
keep making a counterexample fail “as much as possible” according to some
measure – a suitable general optimization problem can be formulated as

33

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

min
x

f(x) (3.8)

s.t. x ∈ [l, u],

where f is the measure of how far the specification is from being falsified
(typically the robustness of an STL specification), and x are the decision
variables of the optimization problem, i.e., x is a vector. The decision variables
are bounded according to

[l, u] := {x ∈ Rn | li ≤ ai ≤ ui, i = 1, . . . , n},

where l, u ∈ Rn and li < ui for i = 1, . . . , n, and n is the number of
dimensions in the optimization problem, i.e., x ∈ Rn. However, it is not clear
from this general formulation how the decision variables are related to the
input signals of the SUT, or how those input signals are related to the signals
used in the STL specification which f measures the robustness of. Those
details are shown below in Section 3.4, but there are a few other things to
take note of before going into more details on the optimization formulation
for falsification.

First, we assume that the SUT is black-box, i.e., that we observe outputs
for a given input (for example through simulation), but we cannot access the
inner workings of the SUT. Specifically, we assume we have no access to any
derivatives of the outputs with regards to the inputs, so there is no option
but to use gradient-free methods to solve the optimization problem [59], [60].
Secondly, we assume that the decision variables in x have lower and upper
bounds, which also means that the allowed search space is a hyperrectan-
gle. There are approaches to include more general constraints on the decision
variables [61], [62], but this is not trivial and not considered further.

3.4 Optimization-based Falsification
This section considers optimization-based falsification of CPSs as the method
to generate new test cases. The reason STL is introduced in Section 3.2 is
that the robustness of STL formulas is used as the objective function for the
optimization. An overview of the falsification procedure is shown in Figure 3.1.

34

3.4 Optimization-based Falsification

Generator

Simulator

Quantitative
evaluation

ρ < 0?

Stop

Parameter
optimizer

No

Input signal
parameters x

Parameter initial
guess x

Input u[k]

Output S[k]

Objective function
value ρ

Specification φ

Yes

Figure 3.1: A overview of the optimization-based falsification procedure.

35

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

The Generator takes the input parametrization to generate an input to the
SUT. The Simulator generates a simulation trace, which is used together with
the requirement φ to evaluate the robustness function for the simulation. The
robustness function ρ is evaluated to see whether the specification is falsified or
not. If not falsified, new parameters are sampled and the process is repeated.
The different parts of this procedure are now presented in more detail.

Falsification can, as stated earlier, be formulated as a minimization problem.
The problem is non-linear and thus hard to solve. To be more specific, the
objective function is non-linear, which can be seen from how the robustness
is defined in (3.1)–(3.7) The constraints, originating from the domain of the
parameters, are linear. The falsification is performed in the following way [63].

The space of permissible input signals is parametrized by n input parameters
x = (x1, . . . , xn) that take values from a set Pu. The actual input u[k] is
created using a generator function g such that u[k] = g(v(x))[k], where v(x) ∈
Pu is a valuation of the parameter vector x. The output signal is calculated
using the black-box system S.

The optimization problem is now formulated as

minimize
v(x)∈Pu

ρ(φ, S(g(v(x))), 0)

s.t. x ∈ [l, u],
(3.9)

where the initial guess is called vi(x). Formulating the optimization problem
enables the use of general-purpose optimization solvers, which is the main way
falsification has been carried out in this research project.

Input generators

The question is how to define suitable x that parametrize the inputs to the
system S. This requires expert knowledge of the system and is not something
that can be easily solved in general, since there can be complicated dynamics
in S and, for industrial systems, unknown assumptions on the inputs. For the
optimization problem, it is preferable to use as few parameters as possible, as
each parameter increases the dimension of the search space. However, if there
are too few parameters, the inputs generated might not be expressive enough,
and therefore the falsification procedure can miss reasonable test cases that
would falsify the specification.

36

3.4 Optimization-based Falsification

Quantitative evaluation
The standard robustness function ρ presented in (3.1)–(3.7) is the one used
by most available falsification tools. As a negative robustness value means
that the specification is falsified, the termination criterion is simply that the
robustness is negative.

In Paper A and Paper D, alternative quantitative semantics are discussed.
These make the falsification procedure end up with different results than if the
standard “max” STL quantitative semantics are used, however, for all quan-
titative semantics the robustness is positive when the specification is fulfilled,
and negative when the specification is not fulfilled. It is not possible to decide
which quantitative semantics are better to use in general, as the performance
depends on both the specification and the system. This is discussed in more
detail in Paper A and Paper B.

Parameter optimizer
There has been much research on how to best select new parameter values
in the attempt to generate simulations that give lower robustness values and
therefore will be closer to falsifying the specification. Specifically for opti-
mizing parameters in falsification, there are publications about Ant Colony
Optimization [64], Simulated Annealing [11], a Line Search method [65], and
Local Stochastic Tabu search [66], among others. The common denominator
for these algorithms is that they do not require a gradient for optimization,
which is essential if the SUT is considered black-box. However, there are
also approaches to use gradients in the optimization, for example as in [67].
This is not something considered in this thesis as the systems considered are
black-box and of considerable size.

Falsification in practice
To evaluate different forms of falsification against each other, different bench-
marks [68], [69] of specifications and systems are typically used. Recently,
a set of standardized benchmarks has been proposed as part of an annual
friendly workshop competition in falsification [70].

Over the last few years, more and more tools have been introduced in
the research area of falsification. The two biggest tools S-TaLiRo [71] and
Breach [72] have been joined by many others. ARIsTEO [73] is a toolbox

37

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

developed on top of S-TaLiRo, which is designed to target compute-intensive
CPS models by using surrogate models to give faster execution of black-box
testing. FalCAuN [74] is a tool that uses black-box checking [75], a method
combining active automata learning and model checking, to test Simulink
models. The tool falsify [76] uses a deep reinforcement learning algorithm
as a grey-box method to falsify safety properties of systems. FalStar [77]
uses an adaptive Las-Vegas tree search to generate inputs online during the
test. ForeSee [78] uses a new robustness definition called QB-Robustness
in an attempt to tackle the scale problems of STL specifications, where sig-
nals of different scales can mask each other’s robustness values, which in turn
makes the specification more difficult to falsify. zlscheck uses automatic
differentiation to calculate gradients of the robustness with respect to input
parameters, to falsify properties for programs written in Zélus. The Stochastic
Optimization with Adaptive Restart (SOAR) framework [79] has been applied
to the falsification problem [80], and can quantify the robustness uncertainty
of generated tests even when no falsifications are found.

An application of falsification is parameter mining of temporal requirements
from closed-loop models [63], where one can automatically find out which
specifications a system fulfills, given template specifications of a certain form.
Other recent modifications to the falsification procedure include falsification
of systems with machine learning components [81], time staging [82], which
splits the input generation into temporal parts, and specific procedures for
better falsification of request-response specifications [83], [84]. Another way
to generalize the falsification problem is to put the falsification in an outer
loop where different parametrizations of the input signals are considered [85].
This is an approach that could be useful in the case when there is limited
knowledge of how the inputs to the SUT typically look.

3.5 Falsification example
In this section, an example of a simplified falsification procedure is presented,
the aim of which is to show more details about how the input generators and
robustness functions work.

The model used for falsification in this example is a model of the automatic
transmission system of a vehicle [68], and it is also used for evaluation purposes
in Papers A, B, and D. The model has two inputs; the first input is the throttle

38

3.5 Falsification example

Table 3.3: Summary of input parameters and robustness value for the three traces
in the example presented in this section.

Trace Input 1 parameters Input 2 parameters Robustness ρ
1 1 30.4 69.4 0 58.2 100 26.9 249 451.2 369.2 1717.9
2 63.1 0 0 100 100 36.9 60.2 206.5 318.4 22.8 1263.6
3 0 0 0 33 57.1 100 44.8 500 357.8 0 -103.9

of the vehicle, which has a value in the range [0, 100] at all times, and the
second input is the brake of the vehicle, which has a value in the range [0, 500]
at all times. For the throttle, the input generator uses seven control points
distributed evenly in time. Between these control points, each of which lies
in the interval [0, 100], the throttle values are interpolated using a standard
MATLAB function.

An example of three generated input scenarios is shown in Figure 3.2.
The specification to be falsified is φ = ♢[0,20](ω ≥ 2000), and can be inter-

preted in natural language as the engine speed reaches 2000 RPM within 20
seconds. In Figure 3.2, the specification is indicated in the bottom figure with
a green box in such a way that a trace of the RPM has to enter the box to
fulfill the specification. The robustness function of the specification, using the
standard robustness function ρ, is

ρ(φ, x, 0) = maxk′∈[0,20](ω[k′]− 2000). (3.10)

In other words, the robustness of each trace is the difference between the
maximum value of ω and 2000, in the first 20 seconds only. Table 3.3 shows
the information that is available to the optimization solver during falsifica-
tion, namely the input parameters and the resulting robustness value ρ from
simulating the system with the input generated from the given parameters.

For the first trace, the maximum value of the engine speed in the first
20 seconds is 3717.9 at time 14.4 seconds, which gives ρ = 1717.6. For the
second trace, the maximum value is 3263.6 at time 20 seconds, which gives
ρ = 1263.6 – this is considered closer to falsification than the first trace.
Finally, the third trace has a maximum value of 1896.1 at time 20 seconds,
which gives ρ = −103.9. Negative robustness indicates that the specification
has been falsified, and the given trace is a counterexample of the specification.

39

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

0 5 10 15 20 25 30 35 400

20

40

60

80

100

Time (s)

Input 1: Accelerator

Trace 1
Trace 2
Trace 3

0 5 10 15 20 25 30 35 40

0

200

400

Time (s)

Input 2: Brake

Trace 1
Trace 2
Trace 3

0 5 10 15 20 25 30 35 400

1,000

2,000

3,000

4,000

5,000

Time (s)

Output: RPM

Trace 1: ρ = 1717.9
Trace 2: ρ = 1263.6
Trace 3: ρ = -103.9

Figure 3.2: An example of three generated input scenarios for falsification of an
automatic transmission system of a vehicle. The top figure shows input
1, which is parametrized by 7 control points spread evenly in time. The
middle figure shows input 2, which is parametrized by 3 control points
spread evenly in time. The bottom figure shows the resulting simulated
RPM values for the three traces, and it also indicates a ”green box”
which a trace must enter to fulfill the specification under test.

40

3.6 Optimization approaches and solvers

3.6 Optimization approaches and solvers
As mentioned earlier, much research has been performed to determine which
gradient-free optimization solvers are efficient to use for the falsification prob-
lem in select public benchmark models. This section gives further details on
the solvers and heuristics used in the appended papers in order for the reader
to get an increased understanding of the methods evaluated in the research
leading up to this thesis.

Uniform Random sampling

Uniform Random sampling is a simple way of generating parameter values to
constitute a test for the SUT. Each parameter xi ∈ x is independently sampled
from a uniform random distribution, which means that each value in the
interval li ≤ xi ≤ ui has an equal probability of being sampled. Formulated
another way, each parameter ai ∈ x is sampled from the distribution which
has the probability density function

fUR(xi) =
{

1
ui−li , for li ≤ xi ≤ ui
0, for xi < li or xi > ui.

(3.11)

Uniform Random sampling has been used as the standard baseline case
to compare optimization solver performance against in the falsification re-
search community. Findings in appended papers do however point to the fact
that many public benchmark examples can be falsified using corner sampling,
which is detailed next.

Corner sampling

In corner sampling, a corner constitutes a point which is a corner in the
hyperrectangle that defines the allowed space of the input parameters x. In
other words, a corner sample is a parameter xcorner such that xi = li or
xi = ui ∀xi ∈ xcorner. Corner sampling is used throughout the different
optimization solver comparisons in the appended papers, and specifically, in
Paper D, we propose a combination of corner sampling and uniform random
sampling as a new baseline to compare optimization solver performance.

41

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

Simulated Annealing
A Simulated Annealing solver is used for comparing optimization solver per-
formance in Papers A and B. Simulated Annealing is inspired by annealing
in metallurgy, where a material is heated and cooled in a controlled process
to affect the properties of the material. The solver is explained with the
pseudo-code in Algorithm 1 – the original solver was a part of the S-TaLiRo
toolbox [71], but the version included in Papers A and B is altered slightly [85].

Algorithm 1 Simulated Annealing algorithm
1: function SimulatedAnnealing(Parameter space [l, u], robustness func-

tion f)
2: Generate initial x ∈ [l, u]
3: while f(x) ≥ 0 do
4: x′ ← ProposalScheme(x)
5: α← e−β(f(x′)−f(x))

6: r ← UniformRandomReal(0, 1)
7: if r ≤ α then
8: x← x′

9: end if
10: end while
11: end function

In line 2, the algorithm first generates an initial sample at random, then
the robustness is calculated by simulating the system for the input based on
the sample’s input parameters. Whenever a negative robustness value is en-
countered, the algorithm terminates and returns the corresponding counterex-
ample. In line 4, a new parameter vector is sampled according to a proposal
scheme based on a normal distribution centered around the current point in
the parameter space. The robustness is calculated for this new parameter
sample and compared to the existing (best) robustness value, and based on
this comparison, line 5 calculates the ratio α as a function of another param-
eter β. Line 6 samples a uniform random number in [0, 1] and compares it to
α to figure out whether the new parameter signal is accepted or rejected.

Note that if the new robustness value is lower than the previous one, α > 1
and the new parameter sample is guaranteed to be accepted. Even if the new
robustness value is higher than the previous, i.e. a worse sample is encoun-
tered, there is a non-zero probability of accepting it anyway. It should also be

42

3.6 Optimization approaches and solvers

noted that β is typically updated during execution to allow the algorithm to
escape local minima.

SNOBFIT
Stable Noisy Optimization by Branch and Fit, or SNOBFIT [86], is a solver
used for comparisons in Papers B and D. It was chosen for evaluation in these
papers as it had shown good performance in a review of derivative-free op-
timization algorithms [87]. SNOBFIT builds local models around generated
parameter points to find new parameter points corresponding to lower ro-
bustness values. The algorithm generates parameter values belonging to five
different classes:

• Class 1 contains at most one point, which is determined from a local
quadratic model around the best point.

• Class 2 contains points which are guesses for an approximate local mini-
mizer around a local point. A local point in this context is a point where
the function value is significantly smaller than the function value of its
nearest neighbors.

• Class 3 contains points generated in a similar way to those in Class 2,
but from the non-local points instead.

• Class 4 represents the most global aspect of the algorithm by containing
points in unexplored regions. These points are generated in large sub-
boxes of the current partition of the input space.

• Class 5 contains points that are produced only if the desired number of
points in Classes 1-4 cannot be generated. The points in Class 5 are
generated in a way to maximize the coverage of the input space.

SNOBFIT has shown good performance in the experiments performed in
the appended papers, especially in cases where limited robustness information
is available from the system. For example, the specification □(¬(fail = 1))
for the Boolean signal fail has no valuable robustness information, since it is
either true or false and we cannot infer any distance to failure without knowing
more about the system where the fail signal is generated. The reason why
SNOBFIT performs well even in such scenarios is that it tends to sample more

43

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

points towards the extreme points of each input parameter’s allowed range,
i.e., points of Class 5 are more likely to be towards the corners. As mentioned
earlier, corner points have been observed to give good falsification results in
general for many available public benchmark models.

CMA-ES
Covariance Matrix Adaptation Evolution Strategy, or CMA-ES [88], is used
in the comparison between optimization solvers in Paper B. The solver adapts
the covariance matrix of a multi-variate normal search distribution to make
a population of points converge to the global optimum. On a high level, the
CMA-ES algorithm consists of the following points, which are repeated until
a stopping criterion is met:

1. Sample a new population of search points from a multivariate normal
distribution.

2. Select and recombine a new mean µ of the search distribution as a
weighted average of some of the selected points from the sampled points.

3. An evolution path is created, which is a sequence of successive steps that
is used to update the covariance matrix.

4. The step size of the evolution path is controlled using a number of aux-
iliary parameters.

5. The covariance matrix is updated using the evolution path (called the
rank-one update) and the recombined new mean (called the rank-µ up-
date).

The Nelder-Mead Simplex method
The Nelder-Mead Simplex method [89] is used in the comparison between op-
timization solvers in Paper B. It uses simplexes (a generalization of a triangle
to arbitrary dimensions) to search for the minimum of the objective function
starting from n + 1 initial samples for an n-dimensional optimization prob-
lem. The algorithm is presented in Algorithm 2, where we assume we start
with a (randomly sampled) simplex in n dimensions consisting of the points

44

3.6 Optimization approaches and solvers

Algorithm 2 The Nelder-Mead Simplex method
1: function NelderMead(Parameter space [l, u], robustness function f)
2: while Stopping criterion not fulfilled do
3: Arrange f(x1) ≤ . . . ≤ f(xn+1) ▷ Ordering
4: Calculate the centroid xo of all points except xn+1
5: xr = xo + α(xo − xn+1) ▷ Reflection
6: if f(x1) ≤ f(xr) < f(xn) then
7: xn+1 ← xr
8: else if f(xr) < f(x1) then
9: xe = xo + γ(xr − xo) ▷ Expansion

10: if f(xe) < f(xr) then
11: xn+1 ← xe
12: else
13: xn+1 ← xr
14: end if
15: else
16: if f(xr) < f(xn+1) then
17: xoc = xo + ρ(xr − xo) ▷ Outside contraction
18: if f(aoc) < f(xr) then
19: xn+1 ← xoc
20: else
21: xi = x1 + σ(xi − x1), i = 2, 3, . . . , n+ 1 ▷ Shrinking
22: end if
23: else
24: xic = xo + ρ(xn+1 − xo) ▷ Inside contraction
25: if f(xic) < f(xn+1) then
26: xn+1 ← xic
27: else
28: xi = x1 + σ(xi − x1), i = 2, 3, . . . , n+ 1 ▷ Shrinking
29: end if
30: end if
31: end if
32: end while
33: end function

45

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

x1, . . . ,xn+1. Each iteration attempts to find a new simplex by replacing the
vertex with the worst objective function value with a new point.

The algorithm generates the new point in different ways depending on the
value of the objective function at the new point. The different ways to gen-
erate new points are reflection, expansion, contraction, and shrinking. The
algorithm assumes α > 0 (reflection parameter), γ > 1 (expansion parameter),
0 < ρ ≤ 0.5 (contraction parameter), and 0 < σ < 1 (shrinking parameter).

An illustration of these ways to generate new points, inspired by [90], is
shown in Figure 3.3.

x1
x2

x3

x1
x2

x3

xr

x1
x2

x3

xe

xr

Ordering Reflection Expansion

Contr action Shrinking

x1
x2

x ic

x3

x1 x2

x3

xoc

Figure 3.3: Illustration in two dimensions of different ways to generate new points
in the Nelder-Mead Simplex method.

Bayesian Optimization
Bayesian Optimization [91] is an optimization method that builds probabilis-
tic models (usually Gaussian Processes) of the function to be minimized. The
models are used to choose between exploration, i.e., when to sample points to
minimize uncertainty in unexplored regions of the input space, and exploita-
tion, i.e., when to sample points where the predicted model function values are

46

3.6 Optimization approaches and solvers

high. A high-level overview of Bayesian optimization is shown in Algorithm 3.

Algorithm 3 Bayesian Optimization
1: function BayesianOptimization(Parameter space [l, u], black-box

function f)
2: Generate initial input samples, xk, k = 1, . . . , N
3: Calculate objective function values, f(xk), k = 1, . . . , N
4: Store data Dk = {(x1, f(x1)), . . . , (xk, f(xk))}
5: for i = 1,2,. . . do ▷ Repeat until stopping criterion met
6: Select point xn+1 by optimizing an acquisition function α

xi+1 = arg max
x

α(x;Di)

7: Calculate objective function value f(xi+1)
8: Augment data Di+1 = {Di, (xi+1, f(xi+1)}
9: Update statistical model

10: end for
11: end function

The acquisition function α is what helps decide between exploration and ex-
ploitation, which means that it is a vital part of the algorithm. As such, there
have been many acquisition functions proposed in the research of Bayesian
Optimization; some of the most common ones are called Thompson sam-
pling, probability of improvement, expected improvement, and upper confi-
dence bounds.

The first Bayesian Optimization method aimed at high-dimensional input
spaces was REMBO [92], and this method was adapted to be used for falsifi-
cation as well [93]. However, it requires potentially complex user input, which
is why the comparison to Bayesian Optimization in Paper D was performed
using the TuRBo algorithm [94] instead. TuRBo has been noted as efficient
in a similar context before [95], [96].

TuRBO
Trust region Bayesian optimization algorithm, or TuRBO [94], is a Bayesian
Optimization method that is used as part of the Multi-Requirements Falsifi-
cation in Paper D. The algorithm is specifically designed for problems with

47

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

many dimensions by using a sequence of local optimization runs inside inde-
pendent probabilistic models to avoid overexploitation of the search space.
It simultaneously keeps track of several different trust regions, each of which
is a hyperrectangle in the search space. By using Thompson Sampling, the
algorithm draws samples from the union of all trust regions and then solves
the local optimization problem from which each sample was drawn.

minBO

Minimum Bayesian Optimization, or minBO [97], is a Bayesian Optimization
algorithm designed for falsification of conjunctive requirements for CPSs, i.e.,
requirements of the form φ := φ1∧φ2∧ . . .∧φn – note here that n in this con-
text refers to the number of conjunctive requirements, not the number of di-
mensions. While such a requirement could be falsified directly using the stan-
dard robustness function ρ(φ, x, k) = mini=1,...,n ρ(φi, x, k), minBO instead
keeps a Gaussian Process model of each conjunctive component φ1, . . . , φn.
An overview of minBO is shown in Algorithm 4.

Here, hi(x) is the robustness associated to the ith conjunctive component
φi. The algorithm first samples b0 locations in a Latin Hypercube sample, a
sampling technique that helps ensure that the set of sampled numbers is rep-
resentable of the real variability. After this, each iteration of minBO includes
n inner BO iteration where GPs are estimated for each of the conjunctive
components. Each sample is used to build up every GP so that there are n
models

(
ĥi(x), ŝ2

i (x)
)

. To find out the next location to be sampled, the Ex-
pected Improvement (EI) is maximized for each component; the EI is defined
here as

EIi(x) =

E

[
max

(
[y∗ − ĥi(x)]Φ

(
y∗ − ĥi(x)
ŝi(x)

)
+ ŝi(x)ϕ

(
y∗ − ĥi(x)
ŝi(x)

)
, 0
)]

, (3.12)

where Φ is the Cumulative Distribution Function (CDF) and ϕ is the Prob-
ability Density Function (PDF) of the normal distribution. The next point
to be sampled is chosen as the point with the highest EI from all of the n
models, and the next iteration starts with re-estimating the GPs.

48

3.6 Optimization approaches and solvers

Algorithm 4 minBO: Minimum Bayesian Optimization [97]

1: function minBO(Domain X ∈ Rd, n components {h1(x), . . . , hn(x), ob-
jective function f(x) = min(h1(x), . . . , hn(x)), initialization budget b0,
total budget T)

2: Create initializing Latin Hypercube design xtrain with b0 locations
from X,xtrain ∈ Rb0×d

3: Sample xtrain over the n composite functions, set yitrain = hi(xtrain)
for i = 1, . . . , n

4: Set t← b0
5: while t < T do
6: for i = 1, . . . , n do
7: Estimate a GP using the training data

{
xtrain,yitrain

}
, result-

ing in
(
ĥi(x), ŝ2

i (x)
)

for all x ∈ X
8: xiEI ← arg maxx∈XEIi(x)
9: end for

10: x∗
EI ← arg maxi=1,...,n xiEI , append x∗

EI to xtrain
11: Sample and append hi(x∗

EI) to yitrain, for i = 1, . . . , n
12: t← t+ 1
13: end while
14: end function
15: return Best observed location and value x∗

minBO, f(x∗
minBO)

49

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

3.7 Large-scale falsification
To apply testing to large-scale systems, such as the ones at Volvo Car Cor-
poration considered in several of the appended papers, one must make mod-
ifications to the problem formulation and how the problem is solved. The
following list specifies some characteristics of the testing problem that rele-
vant tools should handle to be applied to industrial models. The list is based
on experiences from the models at Volvo Car Corporation that have been the
main subject of the research project.

1. The models can be fully or partially black-box, meaning that we do not
have access to all source code in the SUT. For example, code developed
by third parties can be included as pre-compiled binaries, so tools that
rely on analyzing, e.g., controller code in the model will not work in the
general case.

2. The models are of considerable size. As an example, the Volvo models
discussed in Paper A include 19846 and 18294 blocks, respectively (a
block is a basic modeling construct of Simulink [14]). This means that
manual analysis of the test results is likely too complex to be carried
out by, e.g., a single engineer.

3. The models can take a long time to simulate. In this context, a sim-
ulation time of the order of one minute is considered long (compared
to several of the public benchmark examples which take fractions of a
second to be simulated).

4. There can be a lot of specifications defined for the models. For example,
the models in Paper A have 58 and 36 specifications, respectively.

5. The specifications are typically not defined in STL, or any other similar
logic language that is typically used in falsification. The reason why
we want to use STL is that the quantitative semantics of STL act as a
natural objective function for an optimization problem formualtion.

The rest of the chapter is dedicated to further discussion on these issues, as
well as what has been done during this research project to be able to apply
the falsification tool Breach [72] to different models at Volvo Car Corporation.

50

3.7 Large-scale falsification

Size and complexity of the system under test

Because the models considered are either fully or partially black-box, the
problem formulation in this thesis only assumes that we can supply inputs
to the system, simulate it, and then observe its outputs. This fact, coupled
with the fact that the models take a long time to simulate, means that the
optimization formulation of the falsification problem requires a gradient-free
solver that is efficient with respect to the number of simulations needed to find
a counter-example. To find the most suitable approach relative to these issues,
several of the papers appended to this thesis include different optimization
solvers when evaluating falsification performance.

Another aspect of the system complexity is that there is typically a large
number of input and output signals, where many of them are discrete, e.g.,
Boolean signals or enumerations. Robustness of temporal logic specifications
is in its nature continuous, meaning that the more discrete signals there are
in the specification, the less likely are we to get meaningful robustness values
to use during the optimization.

As an example, the robustness of the specification φ1 := (x > 10) has an
intuitive meaning when x is a continuous signal: the robustness ρ is x − 10
and will vary continuously in value similar to how x does. However, if x is for
example an enumeration, we cannot possibly know whether the enumeration
value 11 is closer to 10 than 12. This means that in practice, ρ can only ever
achieve two possible values for the robustness when x is discrete-valued: a
specific positive value when the specification is fulfilled, and a specific negative
value when it is not (these values can be chosen arbitrarily).

One way to work around the problem that certain specifications do not nec-
essarily have detailed robustness is to instead consider temporal vicinity of the
robustness. As an example, if we consider the specification φ2 := ♢[0,5](x >
10) with x discrete-valued, falsification of φ2 would mean finding a simulation
where x is always 10 or lower for the first 5 seconds of simulation. Assume we
have two simulations with resulting values of x as shown in Figure 3.4. Even
though both of the simulations have x varying between values 9 and 11, the
difference in duration at value 9 could suggest that the second simulation is
closer to falsifying φ2.

A generalization of this idea is included in Paper A with additive semantics
for Valued Booleans. Where the standard (or max) semantics for the robust-
ness of temporal logic specifications would give the same robustness value for

51

Chapter 3 Optimization-based Falsification of Cyber-Physical Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

8

9

10

11

12

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

8

9

10

11

12

x

Figure 3.4: An example of two simulations including the discrete-valued signal x.
Note that even though both simulations have x varying between 9 and
11, they are not the same and intuitively one could consider the lower
graph to be closer to falsifying the specification φ2 := ♢[0, 5](x > 10).

52

3.7 Large-scale falsification

both simulations in the example, additive semantics would give different values
based on how long the specifications are fulfilled and not fulfilled, respectively.

Large number of specifications
The falsification problem is usually defined as in Section 3.4, i.e., the goal is
to falsify one specification for a given system. However, when there are many
specifications for the system, one can imagine that there might exist a more
efficient procedure than falsifying each specification one by one. This is the
exact idea behind the Multi-Requirement Falsification algorithm presented in
Paper D, where all specifications of the system under test are considered for
falsification at the same time.

One limiting factor of publicly available benchmarks is that they typically
do not contain as many specifications as the systems observed at Volvo. To
alleviate this issue, Paper C presents a benchmark of specifications inspired
by industrial systems.

Expression of the specifications
It is a well-known fact that it is difficult to write formal specifications, even for
experts [55], [56]. For complex industrial systems, one typically has to break
down high-level requirements stated in natural language to get specifications
that can be evaluated against simulation traces.

There have been many approaches [98]–[100] to directly translate natural
language requirements into, e.g., temporal logic specifications. In the indus-
trial models considered in this thesis, however, the specifications have already
been stated in other forms than just natural language. For example, Paper A
introduces a method for generating Signal Temporal Logic specifications from
requirements implemented directly in Simulink, which enabled falsification for
several Volvo models even though the requirements were not in the correct
format for falsification to start with.

53

CHAPTER 4

Summary of included papers and Contributions

This chapter briefly summarizes the appended papers. Like in the earlier list
of papers, the papers are not presented in chronological order; instead, the
order is chosen to make the contributions as easy as possible to understand
for the reader. Figure 4.1 illustrates how the papers relate to each other.

Paper A includes specification transformation and a discussion on the ap-
plication of Valued Booleans for Cyber-Physical Systems (CPSs). Valued
Booleans (vBools) are defined and applied in an evaluation of different opti-
mization solvers and quantitative semantics in Paper B, while the specifica-
tion transformation framework is used to produce the industrial benchmark of
STL specifications in Paper C. Paper D introduces Multi-Requirement Falsifi-
cation, which is evaluated on the benchmark problems presented in Paper C,
and which uses solver and semantics inspired by the results in Paper B. Pa-
per E is not strictly related to the other papers; instead, it discusses mode
coverage and how this can be used to conclude whether generated test suites
have tested the System Under Test (SUT) thoroughly or not.

55

Chapter 4 Summary of included papers and Contributions

Paper A
Spec transformation

Valued booleans

Paper B
Solvers and semantics

Paper C
Industrial specifications

Paper D
Multi-requirement

falsification

Paper E
Mode coverage

Figure 4.1: Illustration of the relations between the appended papers. An arrow
originating from a paper means that an idea or concept from that paper
was used in some way in the target paper.

56

4.1 Paper A

4.1 Paper A
J. Lidén Eddeland, K. Claessen, N. Smallbone, Z. Ramezani, S. Mire-
madi and K. Åkesson
Enhancing Temporal Logic Falsification with Specification Transforma-
tion and Valued Booleans
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 5247-5260, 2020.
©IEEE DOI: 10.1109/TCAD.2020.2966480

This paper has two main parts. The first part is about automatic transfor-
mation from a signal-based framework, in this case Simulink, into STL specifi-
cations. This makes it possible for engineers without knowledge of STL to use
a tool for optimization-based falsification, and the transformed specifications
contain more information compared to a specification written directly in STL.
The most notable challenges in transforming specifications in a signal-based
context into STL specifications are shown below.

1. The signal-based framework does not differentiate between signals and
formulas.

2. There might be recursive loops in the specifications.

3. We cannot prove that the transformation is correct due to the non-
standard semantics of Simulink.

At the end of the paper, some statistics of STL formulas a presented – these
94 formulas have been automatically transformed from the signal-based spec-
ifications at Volvo Cars.

The second part of the paper discusses the framework of vBools, which has
been defined in earlier works, and is used in the falsification framework to
allow the definition of different objective functions (most notably using the
max semantics and additive semantics). A comparison of different objective
functions (or robustness semantics) is shown for several benchmark examples:
an automatic transmission model, an abstract fuel control model, and a third-
order ∆ − Σ modulator model. The conclusion is that which semantics will
perform best during falsification is heavily dependent on both the system and
the specification.

57

Chapter 4 Summary of included papers and Contributions

4.2 Paper B
J. Lidén Eddeland, S. Miremadi and K. Åkesson
Evaluating Optimization Solvers and Robust Semantics for Simulation-
Based Falsification
7th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), 2020

This paper evaluates the difference of certain optimization solvers and Sig-
nal Temporal Logic robust semantics for falsification of Cyber-Physical Sys-
tems. There are four optimization solvers included in the paper: Simulated
Annealing, SNOBFIT, CMA-ES, and Nelder-Mead. These are also compared
to a baseline algorithm that performs Uniform Random sampling of the in-
put parameters in the falsification problem. The falsification performance is
evaluated for each solver using three different robust semantics: max seman-
tics, additive semantics, and constant semantics. Using constant semantics is
equivalent to using only Boolean semantics.

The conclusion is that the falsification performance of a certain solver-
semantics combination is dependent on both the system and the specifica-
tion, but it is clear that using robust semantics overall gives stronger results
than using the constant semantics, i.e., only using Boolean satisfaction in-
formation in the optimization solver. The performance of using the constant
semantics is dependent on specific solver heuristics, but it is still the overall
worst-performing semantics.

58

4.3 Paper C

4.3 Paper C
J. Lidén Eddeland, A. Donzé, S. Miremadi and K. Åkesson
Industrial Temporal Logic Specifications for Falsification of Cyber-Phys-
ical Systems
7th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), 2020

In this paper, a new benchmark of Signal Temporal Logic specifications
is proposed. The specifications included in the benchmark are complex and
have a structure inspired by actual industrial use cases at Volvo Car Corpora-
tion, and the specifications are intended to be used for falsification of Cyber-
Physical Systems. The complexity comes from having a large number of STL
operators (up to 1562) and a high temporal depth, i.e., total depth of nested
temporal operators (up to 5). Since the original specifications are proprietary,
the specifications in the paper are modified and obfuscated by designing them
for the Automatic Transmission model, a Simulink model commonly used for
benchmarking purposes in the falsification research community.

The specification benchmark is a publicly available Git repository that can
be continuously updated with new features and/or new specifications over
time. The paper details how different specification parameters were tuned –
different parameter tunings drastically affect how easy the specifications are
to falsify. Two different sets of parameter tuning, one base and one hard, are
presented. Using a simple combination of corner samples and uniform random
samples, the falsification rates over 1100 simulations range from 4.1% to 34.2%
for the base parameter set and 0% to 0.36% for the hard parameter set. The
paper also shows detailed statistics over all 17 included specifications, includ-
ing the number of operators (ranging from 7 to 1562) and average monitoring
time by Breach (ranging from 0.027s to 2.60s).

59

Chapter 4 Summary of included papers and Contributions

4.4 Paper D

J. Lidén Eddeland, A. Donzé and K. Åkesson
Multi-Requirement Testing Using Focused Falsification
Submitted for possible journal publication, 2022.
This is an extended version of the paper Multi-Requirement Testing
Using Focused Falsification accepted to and presented at HSCC 2022:
ACM International Conference on Hybrid Systems: Computation and
Control.

This paper presents a new problem formulation for falsification of Cyber-
Physical Systems that considers a large set of requirements instead of just
one specification to be falsified for the SUT. The problem formulation is cho-
sen based on experiences from industrial models at Volvo Car Corporation,
where each model typically has a large number of requirements that should
be monitored.

Two algorithms are presented to solve the modified falsification problem:
a baseline algorithm that uses corner sampling as well as uniform random
sampling, and a three-phase algorithm called Multi-Requirement Falsification
(MRF) which uses corner sampling, sensitivity analysis, and focused falsifica-
tion as its main parts. A corner is a point in the input parameter space where
each parameter has taken either its minimum or its maximum value. The sec-
ond phase of MRF uses one-factor global sensitivity analysis to approximate
which input parameters affect the robustness values of which specifications.
In the third phase of MRF, one specification at a time is selected to be focused
on in a separate falsification problem, wherein only the parameters that show
sensitivity are included in the optimization problem formulation.

It is concluded that the baseline corners-random algorithm is a strong con-
tender since increasing the number of requirements does not affect its perfor-
mance negatively, but overall the proposed Multi-Requirement Falsification
algorithm is better at falsifying difficult requirements. Also, it is noted that
the sensitivity analysis for robustness values of STL specifications in itself has
been useful for large-scale systems at Volvo Car Corporation, where an illus-
tration of the analysis results can give a good overview of how different parts
of the SUT affect each other.

60

4.5 Paper E

4.5 Paper E
J. Eddeland, J.G. Cepeda, R. Fransen, S. Miremadi, M. Fabian and
K. Åkesson
Automated Mode Coverage Analysis for Cyber-Physical Systems Using
Hybrid Automata
The 20th World Congress of the International Federation of Automatic
Control, 2017, Toulouse, France

This paper presents a new coverage criterion, mode coverage, for testing of
Cyber-Physical Systems. Mode coverage is defined based on the modes of the
hybrid automaton that the SUT can be modeled as. The paper also shows how
to automatically acquire the modes of the hybrid automaton, given code in
an acausal modeling language. This procedure relies on Satisfiability Modulo
Theories (SMT) analysis, which is used to automatically find the constraints
on variables that are logically possible to fulfill.

An analysis of the mode coverage is shown for a use case of a model of
a dog clutch from Volvo Car Corporation, where it can be seen that mode
coverage provides the new information that some specific physical properties
of the system had not been tested at all. The mode coverage is evaluated over
175 test cases, where 25 of the test cases are created manually by engineers,
and the remaining 150 test cases are created automatically using the testing
software Testweaver. The entire test suite has a mode coverage of 87.5%,
covering 7/8 modes in total, where the manual tests on their own have 75%
mode coverage and the automatic tests have 50% mode coverage.

61

Chapter 4 Summary of included papers and Contributions

4.6 Contributions
The main focus of the research in this thesis is the practical implementation
of testing in industry. The field of testing CPSs is itself naturally close to
application, but there is a need to come up with new methods that scale
well enough to make them usable in complex systems. The contributions are
directly connected to the research questions as follows.

Research Question 1. How can specifications expressed in industrial mod-
eling tools be used for optimization-based falsification of Cyber-Physical Sys-
tems?

Contribution 1: a method for automatic transformation of specifications
from Simulink into Signal Temporal Logic, which makes it possible to use
optimization-based falsification in applications where the testers modeling the
specifications have no knowledge of STL or formal specifications.

The specification transformation framework presented in Paper A is an ex-
ample of a method that can be used without any specific training for engineers
developing industrial models in Simulink. A limiting aspect of introducing
more formal methods in industrial settings is the fact that it is expensive to
teach engineers new tools or languages, for example, temporal logic. By au-
tomatically transforming the specifications and therefore enabling the use of
more academic tools – such as Breach, which is used extensively throughout
the papers appended in this thesis – the integration of research into industry
becomes faster.

There is still a need for maintenance of the related tools, such as the trans-
formation tool itself and its potential integration into Breach or other STL
monitoring tools. As discussed in Paper A, it is important for the quality
of generated STL specifications to in certain places have templates of combi-
nations of different temporal operators in the Simulink specifications. These
templates can help give more detailed robustness information about the spec-
ifications, even if the specifications with recursive loops in them can still be
automatically generated and used for falsification.

62

4.6 Contributions

Research Question 2. How can the optimization-based falsification process
be changed to require fewer simulations when considering a single requirement,
in the context of large-scale industrial systems?

Contribution 2: evaluation of different optimization solvers and quantita-
tive semantics for STL specifications over different public benchmark models,
which enables more discussion on how to efficiently implement falsification in
industry.

To clarify, Paper A evaluates the falsification performance for several mod-
els while varying the quantitative semantics of STL, and Paper B evaluates
falsification performance while varying both the quantitative semantics of STL
and optimization solver used in the optimization formulation of the falsifica-
tion problem. While it is difficult to segment different classes of specifications
that work better for certain quantitative semantics or optimization solvers,
the experiments indicate that there can be some structure of specifications
and systems that give certain choices better falsification performance.

Some observations from the experiments follow.

• For most public benchmark models and specifications in the falsification
research community, it seems that using quantitative semantics in an
optimization problem outperforms pure random testing, given the same
input parameterization. The opposite can only be seen for a specific
system, the Static Switched system in Paper A, which was designed to
have the gradient of the robustness point away from the area in the
parameter space where the specification is falsified.

• If a specification is designed to check, e.g., a specific drive cycle, which
could be expressed as a conjunction of sub-specifications that individ-
ually are easy to fulfill, additive quantitative semantics of STL can be
preferable to use. This is to get more detailed information about each
clause, such as the specification φ7 in Paper A.

• As seen in the experiments in Paper B, there is no specific quantitative
semantics that always performs better than the others, and there is
no specific optimization solver that always performs better than the
others. However, the results of the experiments in the paper, such as the
cactus plot in Paper B, can serve as a rule of thumb when first choosing
semantics and solver for a new specification or set of specifications to
falsify for a model.

63

Chapter 4 Summary of included papers and Contributions

Research Question 3. How can the optimization-based falsification process
be changed to require fewer simulations when considering multiple require-
ments at once?

Contribution 3: a new framework of multi-requirement falsification, which
makes it clearer how the optimization-based falsification can be applied to large-
scale systems with many requirements, and also how robustness-based global
sensitivity analysis can provide vital information in the process of testing said
systems.

Thanks to the benchmark of specifications inspired by Volvo Cars that
were published in Paper C, there is now a new way to evaluate the perfor-
mance of falsification algorithms over a large set of specifications. Using this
benchmark, the MRF algorithm presented in Paper D is evaluated against a
proposed baseline algorithm of corner and uniform random samples.

The problem formulation of multi-requirement falsification in itself is con-
sidered a contribution – we are interested, like in industry, to falsify as many
requirements as possible in the shortest possible time. In the stated formula-
tion, the specifications can be of two different classes, indicating whether the
specifications are safety-related or coverage-related.

The parts of the MRF algorithm, all aimed at reducing the number of
simulations needed when considering falsification of many requirements at
once, are listed below.

• Local predicate normalization, to reduce the effects of the well-known
masking problem in falsification.

• Structural sensitivity analysis, a new kind of sensitivity analysis that
can be used to find relations between input parameters and robustness
values of specifications.

• A method to find the relevant input parameters to include in an opti-
mization problem, given a specification to falsify.

• Heuristics for automatically choosing specifications to focus on, while
still doing random exploration of input parameters that are not consid-
ered for the focused specification.

64

4.6 Contributions

Research Question 4. How can we evaluate how well testing of Cyber-
Physical Systems fulfills structural coverage criteria, and how can we then use
these criteria to assess when testing is considered finished?

Contribution 4: definition of a new type of coverage criterion, mode cover-
age, for testing of CPSs, as well as examples of situations where said criterion
can be useful and how it compares to code coverage.

The definition of the new coverage criterion in Paper E is in itself rather in-
tuitive: how many of the modes in the hybrid automaton defining the behavior
of the CPS have been visited by the test suite? What makes the application of
this coverage definition interesting is the fact that, given an implementation
of the system in OpenModelica, the entire procedure to calculate the mode
coverage is automatically performed with the help of an SMT solver.

While the example with the dog clutch in Paper E required an extra man-
ual step of translating the existing Simscape code into OpenModelica, the
languages have similar syntax and the translation, therefore, did not require
much time. The results indicate that it can be easy to miss that even though
the test suite might fulfill other coverage criteria, e.g. the commonly used
MC/DC, automatic analysis of the mode coverage can highlight important
issues with the test suite.

65

CHAPTER 5

Concluding Remarks and Future Work

The research of this thesis focuses on improving techniques for generating
new test cases for Cyber-Physical Systems (CPSs), as well as analyzing al-
ready generated test cases. The research has been performed at Volvo Car
Corporation with a focus on implementing state-of-the-art research methods
useful for testing of the used industrial models.

Optimization-based falsification of CPSs is a growing research area that was
interesting to consider for this thesis, as the approaches presented in academic
papers are often on the verge of being applied to real industrial problems. As
such, the focus of Papers A, B, C, and D is on pieces needed in the falsification
framework for it to be properly implemented for complex and large real-world
models. The main focus of the research has concerned the definition of a
quantitative semantics for the logic formalism Signal Temporal Logic (STL),
and what the semantics could be extended with to make it more viable for
certain classes of models and systems.

Paper A and Paper B evaluate the performance of both different quanti-
tative semantics for STL, and different optimization solvers, in the context
of optimization-based falsification. No specific quantitative semantics or op-
timization solver can be the best when it comes to falsifying the benchmark

67

Chapter 5 Concluding Remarks and Future Work

problems in the evaluations. However, certain structures in the specifica-
tions and models indicate in the results that it can be important to make
an informed choice when designing a solution method to a given falsification
problem.

A framework presented in Paper A for transforming signal-based specifi-
cations into STL specifications allowed optimization-based falsification to be
performed for large-scale models at Volvo Car Corporation. This has been
key in helping optimization-based falsification become a more mature method
to use for industrial models. The signal-based specifications were also an in-
spiration for the specification benchmark in Paper C, which hopefully can be
used by by the falsification research community to create tools that can handle
larger and more complex specifications.

The Multi-Requirement Testing algorithm presented in Paper D also indi-
cates an important aspect when it comes to applying falsification methods to
industrial models. When there is a large number of complex specifications to
falsify in a limited time, it is imperative for an optimization solver to make
an informed decision about how to over time shift focus between the different
specifications. The algorithm presented, together with an algorithm based on
a combination of input parameter corner samples and random exploration,
conclude the balance in this thesis between academic value and industrial
application.

Finally, Paper E presents results for analysis of previously created test cases.
Specifically, the main contribution of the paper is a type of coverage inspired
by the physical properties of the System Under Test. The coverage criterion is
adequate for systems that are modeled in an acausal way, i.e., using equations
to describe the components of the system.

68

5.1 Future work

5.1 Future work
The work presented in this thesis can be expanded in multiple ways. Some of
the most direct and potentially interesting extensions are included below.

• While Paper A presents a framework for transforming a kind of specifi-
cations available for industrial models at the time the paper was written,
it would be useful if the transformation approach could be generalized to
other kinds of models, for example other tools and languages commonly
used in industry. To keep applying academic concepts to industrial mod-
els, the tools need to be taken into account, and to do this in a more
general way is a challenging problem.

• Further evaluations about using different optimization solvers and se-
mantics could help future algorithms automatically choose settings that
could be used for given models and specifications.

• It would be interesting to increase test generation quality by considering
the coverage criterion presented in Paper E, and possibly some similar
criterion. These kinds of criteria could also be used to reduce the size
of the test suite.

• More research could be performed on falsification in later stages of test-
ing, i.e., Hardware-in-the-Loop testing. Having actual hardware as a
part of the system under test could create difficulties for the standard
falsification approach, such as limitations on the input generation and
monitoring due to safety aspects.

• Finally, input parametrization often causes practical issues when imple-
menting falsification in an industrial setting. More research into when
different input parametrizations are efficient could help tools become
easier to use in practice by test engineers, which also would increase the
interest in the research area of optimization-based falsification.

Naturally, the future work considered affects both academic research direc-
tions as well as industrial interest in the research subject. In the end, the main
goal of my research has been to bridge the gap between academia and indus-
try, so that efficient state-of-the-art methods can be used in the development
and testing of large-scale systems.

69

References

[1] R. Baheti and H. Gill, “Cyber-Physical Systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[2] M. Utting and B. Legeard, Practical model-based testing: a tools ap-
proach. Elsevier, 2010.

[3] S. A. Asadollah, R. Inam, and H. Hansson, “A Survey on Testing for
Cyber Physical System,” in IFIP International Conference on Testing
Software and Systems, Springer, 2015, pp. 194–207.

[4] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
Guided Approaches for Verification of Automotive Powertrain Control
Systems,” in 2015 American Control Conference (ACC), IEEE, 2015,
pp. 4086–4095.

[5] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković,
and S. Sankaranarayanan, “Specification-Based Monitoring of Cyber-
Physical Systems: A Survey on Theory, Tools and Applications,” in
Lectures on Runtime Verification, Springer, 2018, pp. 135–175.

[6] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer, “A Survey
of Algorithms for Black-Box Safety Validation of Cyber-Physical Sys-
tems,” Journal of Artificial Intelligence Research, vol. 72, pp. 377–428,
2021.

[7] K. J. Hayhurst and D. S. Veerhusen, “A Practical Approach to Modi-
fied Condition/Decision Coverage,” in Digital Avionics Systems, 2001.
DASC. 20th Conference, IEEE, vol. 1, 2001, 1B2–1.

71

References

[8] R. Koymans, “Specifying Real-Time Properties with Metric Temporal
Logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[9] O. Maler and D. Nickovic, “Monitoring Temporal Properties of Contin-
uous Signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Springer, 2004, pp. 152–166.

[10] A. Donzé and O. Maler, “Robust Satisfaction of Temporal Logic Over
Real-Valued Signals.,” in FORMATS, Springer, vol. 6246, 2010, pp. 92–
106.

[11] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta,
“Probabilistic Temporal Logic Falsification of Cyber-Physical Systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 2s, p. 95, 2013.

[12] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Im-
proving Software Quality and Reducing Risk. Pearson Education, 2007.

[13] M. Tiller, Introduction to Physical Modeling with Modelica. Springer
Science & Business Media, 2001.

[14] The MathWorks, Inc., Natick, Massachusetts, Simulink R2013b, ver-
sion 0.20.2, 2017.

[15] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
Based Approaches for Verification of Embedded Control Systems: An
Overview of Traditional and Advanced Modeling, Testing, and Verifi-
cation Techniques,” IEEE Control Systems Magazine, vol. 36, no. 6,
pp. 45–64, 2016.

[16] G. Muller, “Systems Engineering Research Methods,” Procedia Com-
puter Science, vol. 16, pp. 1092–1101, 2013, Conference on Systems
Engineering Research, issn: 1877-0509.

[17] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli,
D. Broman, and A. Sandholm, “Openmodelica - A Free Open-Source
Environment for System Modeling, Simulation, and Teaching,” in 2006
IEEE Conference on Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, IEEE, 2006, pp. 1588–
1595.

72

References

[18] A. Junghanns, J. Mauss, M. Tatar, et al., “TestWeaver-A Tool for
Simulation-Based Test of Mechatronic Designs,” in 6th International
Modelica Conference, Bielefeld, March 3, Citeseer, 2008.

[19] MATLAB, 9.13.0.2049777 (R2022b). Natick, Massachusetts: The Math-
Works Inc., 2022.

[20] V. Bolbot, G. Theotokatos, L. M. Bujorianu, E. Boulougouris, and
D. Vassalos, “Vulnerabilities and Safety Assurance Methods in Cyber-
Physical Systems: A Comprehensive Review,” Reliability Engineering
& System Safety, vol. 182, pp. 179–193, 2019.

[21] P. Hehenberger, B. Vogel-Heuser, D. Bradley, B. Eynard, T. Tomiyama,
and S. Achiche, “Design, Modelling, Simulation and Integration of Cy-
ber Physical Systems: Methods and Applications,” Computers in In-
dustry, vol. 82, pp. 273–289, 2016.

[22] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-Physical Sys-
tems: The Next Computing Revolution,” in Design Automation Con-
ference, IEEE, 2010, pp. 731–736.

[23] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model Checking: Al-
gorithmic Verification and Debugging,” Communications of the ACM,
vol. 52, no. 11, pp. 74–84, 2009.

[24] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press,
2008.

[25] R. Hähnle and M. Huisman, “Deductive Software Verification: From
Pen-and-Paper Proofs to Industrial Tools,” in Computing and Software
Science, Springer, 2019, pp. 345–373.

[26] A. Platzer and J.-D. Quesel, “KeYmaera: A Hybrid Theorem Prover
for Hybrid Systems (System Description),” in International Joint Con-
ference on Automated Reasoning, Springer, 2008, pp. 171–178.

[27] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s Decid-
able About Hybrid Automata?” In Proceedings of the twenty-seventh
annual ACM symposium on Theory of computing, ACM, 1995, pp. 373–
382.

73

References

[28] M. Nyberg, D. Gurov, C. Lidström, A. Rasmusson, and J. Westman,
“Formal Verification in Automotive Industry: Enablers and Obsta-
cles,” in International Symposium on Leveraging Applications of For-
mal Methods, Springer, 2018, pp. 139–158.

[29] ISO, “ISO/DIS 26262-1 - Road Vehicles — Functional Safety — Part
1 Glossary,” Tech. Rep., 2009.

[30] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for Validat-
ing Hybrid Robotic Control Systems,” in Algorithmic Foundations of
Robotics VI, Springer, 2004, pp. 107–121.

[31] T. Dang and T. Nahhal, “Coverage-Guided Test Generation for Contin-
uous and Hybrid Systems,” Formal Methods in System Design, vol. 34,
no. 2, pp. 183–213, 2009.

[32] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G.
Fainekos, “Requirements Driven Falsification with Coverage Metrics,”
in Proceedings of the 12th International Conference on Embedded Soft-
ware, IEEE Press, 2015, pp. 31–40.

[33] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs,” ACM SIGPLAN Notices, vol. 46,
no. 4, pp. 53–64, 2011.

[34] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2018, pp. 2123–2138.

[35] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in ACM SIGPLAN Notices, ACM, vol. 40, 2005,
pp. 213–223.

[36] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing Telecoms
Software with Quviq Quickcheck,” in Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang, ACM, 2006, pp. 2–10.

[37] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT press, 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, 2013.

74

References

[39] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[40] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification
of Cyber-Physical Systems using Deep Reinforcement Learning,” in
International Symposium on Formal Methods, Springer, 2018, pp. 456–
465.

[41] X. Qin, N. Aréchiga, A. Best, and J. Deshmukh, “Automatic Testing
With Reusable Adversarial Agents,” arXiv preprint arXiv:1910.13645,
2019.

[42] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive Stress
Testing for Autonomous Vehicles,” in 2018 IEEE Intelligent Vehicles
Symposium (IV), IEEE, 2018, pp. 1–7.

[43] G. E. Fainekos and G. J. Pappas, “Robust Sampling for MITL Specifi-
cations,” in International Conference on Formal Modeling and Analysis
of Timed Systems, Springer, 2007, pp. 147–162.

[44] G. Fainekos and G. Pappas, “Robustness of Temporal Logic Specifi-
cations for Continuous-Time Signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[45] A. Pnueli, “The Temporal Logic of Programs,” in Foundations of Com-
puter Science, 1977., 18th Annual Symposium on, IEEE, 1977, pp. 46–
57.

[46] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Re-
active Synthesis from Signal Temporal Logic Specifications,” in Pro-
ceedings of the 18th international conference on hybrid systems: Com-
putation and control, ACM, 2015, pp. 239–248.

[47] A. Donzé, T. Ferrere, and O. Maler, “Efficient Robust Monitoring for
STL,” in International Conference on Computer Aided Verification,
Springer, 2013, pp. 264–279.

[48] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust Online Monitoring of Signal Temporal Logic,” Formal
Methods in System Design, vol. 51, no. 1, pp. 5–30, 2017.

75

References

[49] L. Brim, P. Dluhoš, D. Šafránek, and T. Vejpustek, “STL*: Extending
Signal Temporal Logic with Signal-Value Freezing Operator,” Infor-
mation and computation, vol. 236, pp. 52–67, 2014.

[50] A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On Temporal Logic and Signal Processing,” in International Sympo-
sium on Automated Technology for Verification and Analysis, Springer,
2012, pp. 92–106.

[51] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
“Hyperproperties of Real-Valued Signals,” in Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Mod-
els for System Design, ser. MEMOCODE ’17, Vienna, Austria: ACM,
2017, pp. 104–113, isbn: 978-1-4503-5093-8.

[52] T. Akazaki and I. Hasuo, “Time Robustness in MTL and Expressivity
in Hybrid System Falsification,” in International Conference on Com-
puter Aided Verification, Springer, 2015, pp. 356–374.

[53] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quan-
titative Monitoring of STL with Edit Distance,” Formal methods in
system design, vol. 53, no. 1, pp. 83–112, 2018.

[54] A. Rodionova, E. Bartocci, D. Nickovic, and R. Grosu, “Temporal Logic
as Filtering,” in Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, ACM, 2016, pp. 11–20.

[55] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Metric Interval Temporal
Logic Specification Elicitation and Debugging,” in Formal Methods and
Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on, IEEE, 2015, pp. 70–79.

[56] B. Hoxha, N. Mavridis, and G. Fainekos, “VISPEC: A Graphical Tool
for Elicitation of MTL Requirements,” in Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on, IEEE,
2015, pp. 3486–3492.

[57] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Formal Requirement De-
bugging for Testing and Verification of Cyber-Physical Systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
p. 34, 2018.

76

References

[58] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito,
T. Kaga, S. Kobuna, and S. Seshia, “ST-Lib: A Library for Specifying
and Classifying Model Behaviors,” SAE Technical Paper, Tech. Rep.,
2016.

[59] S. Amaran, N. Sahinidis, B. Sharda, and S. Bury, “Simulation Opti-
mization: A Review of Algorithms and Applications,” Annals of Oper-
ations Research, vol. 240, May 2016.

[60] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization
(Springer Series in Operations Research and Financial Engineering).
Cham: Springer International Publishing, 2017.

[61] Z. Zhang, P. Arcaini, and I. Hasuo, “Constraining Cunterexamples
in Hybrid System Falsification: Penalty-Based Approaches,” in NASA
Formal Methods Symposium, Springer, 2020, pp. 401–419.

[62] Z. Zhang, P. Arcaini, and I. Hasuo, “Hybrid System Falsification Un-
der (In)equality Constraints via Search Space Transformation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 3674–3685, 2020.

[63] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining Re-
quirements from Closed-Loop Control Models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1704–1717, 2015.

[64] Y. S. R. Annapureddy and G. E. Fainekos, “Ant Colonies for Tempo-
ral Logic Falsification of Hybrid Systems,” in IECON 2010-36th An-
nual Conference on IEEE Industrial Electronics Society, IEEE, 2010,
pp. 91–96.

[65] Z. Ramezani, K. Claessen, N. Smallbone, M. Fabian, and K. Åkesson,
“Testing Cyber–Physical Systems Using a Line-Search Falsification Method,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2393–2406, 2022.

[66] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler, “Stochastic Local
Search for Falsification of Hybrid Systems,” in International Sympo-
sium on Automated Technology for Verification and Analysis, Springer,
2015, pp. 500–517.

77

References

[67] H. Abbas, A. Winn, G. Fainekos, and A. A. Julius, “Functional Gra-
dient Descent Method for Metric Temporal Logic Specifications,” in
American Control Conference (ACC), 2014, IEEE, 2014, pp. 2312–
2317.

[68] B. Hoxha, H. Abbas, and G. Fainekos, “Benchmarks for Temporal Logic
Requirements for Automotive Systems,” Proc. of Applied Verification
for Continuous and Hybrid Systems, 2014.

[69] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Pow-
ertrain Control Verification Benchmark,” in Proceedings of the 17th
international conference on Hybrid systems: computation and control,
ACM, 2014, pp. 253–262.

[70] G. Ernst, P. Arcaini, I. Bennani, A. Chandratre, A. Donzé, G. Fainekos,
G. Frehse, K. Gaaloul, J. Inoue, T. Khandait, et al., “ARCH-COMP
2021 Category Report: Falsification with Validation of Results,” EPiC
Series in Computing, vol. 80, pp. 133–152, 2021.

[71] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems,”
in International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer, 2011, pp. 254–257.

[72] A. Donzé, “Breach, a Toolbox for Verification and Parameter Synthesis
of Hybrid Systems,” in International Conference on Computer Aided
Verification, Springer, 2010, pp. 167–170.

[73] C. Menghi, S. Nejati, L. Briand, and Y. I. Parache, “Approximation-
Refinement Testing of Compute-Intensive Cyber-Physical Models: An
Approach Based on System Identification,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), IEEE, 2020,
pp. 372–384.

[74] M. Waga, “Falsification of Cyber-Physical Systems with Robustness-
Guided Black-Box Checking,” in Proceedings of the 23rd International
Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–
13.

[75] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black Box Checking,”
in Formal Methods for Protocol Engineering and Distributed Systems,
Springer, 1999, pp. 225–240.

78

References

[76] Y. Yamagata, S. Liu, T. Akazaki, Y. Duan, and J. Hao, “Falsification of
Cyber-Physical Systems Using Deep Reinforcement Learning,” IEEE
Transactions on Software Engineering, vol. 47, no. 12, pp. 2823–2840,
2020.

[77] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo, “Fast Falsification
of Hybrid Systems Using Probabilistically Adaptive Input,” in Inter-
national Conference on Quantitative Evaluation of Systems, Springer,
2019, pp. 165–181.

[78] Z. Zhang, D. Lyu, P. Arcaini, L. Ma, I. Hasuo, and J. Zhao, “Effective
Hybrid System Falsification Using Monte Carlo Tree Search Guided
by QB-Robustness,” in International Conference on Computer Aided
Verification, Springer, 2021, pp. 595–618.

[79] L. Mathesen, G. Pedrielli, S. H. Ng, and Z. B. Zabinsky, “Stochas-
tic Optimization With Adaptive Restart: A Framework for Integrated
Local and Global Learning,” Journal of Global Optimization, vol. 79,
no. 1, pp. 87–110, 2021.

[80] L. Mathesen, S. Yaghoubi, G. Pedrielli, and G. Fainekos, “Falsification
of Cyber-Physical Systems with Robustness Uncertainty Quantification
Through Stochastic Optimization with Adaptive Restart,” 2019 IEEE
15th International Conference on Automation Science and Engineering
(CASE), pp. 991–997, 2019.

[81] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional Falsification of
Cyber-Physical Systems with Machine Learning Components,” Journal
of Automated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[82] G. Ernst, I. Hasuo, Z. Zhang, and S. Sedwards, “Time-Staging En-
hancement of Hybrid System Falsification,” arXiv preprint arXiv:1803.03866,
2018.

[83] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Vacuity
Aware Falsification for MTL Request-Response Specifications,” in Pro-
ceedings of the 13th IEEE Conference on Automation Science and En-
gineering (CASE’17), 2017.

[84] T. Akazaki, “Falsification of Conditional Safety Properties for Cyber-
Physical Systems with Gaussian Process Regression,” in International
Conference on Runtime Verification, Springer, 2016, pp. 439–446.

79

References

[85] A. Aerts, B. Tong Minh, M. Reza Mousavi, and M. A. Reniers, “Tem-
poral Logic Falsification of Cyber-Physical Systems: An Input-Signal
Space Optimization Approach,” in 14th Workshop on Advances in Model
Based Testing (A-MOST), 2018.

[86] W. Huyer and A. Neumaier, “SNOBFIT-Stable Noisy Optimization
by Branch and Fit,” ACM Trans. Math. Softw., vol. 35, no. 2, pp. 9–1,
2008.

[87] L. M. Rios and N. V. Sahinidis, “Derivative-Free Optimization: A Re-
view of Algorithms and Comparison of Software Implementations,”
Journal of Global Optimization, vol. 56, no. 3, pp. 1247–1293, 2013.

[88] N. Hansen, “The CMA Evolution Strategy: A Comparing Review,” in
Towards a new evolutionary computation, Springer, 2006, pp. 75–102.

[89] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimiza-
tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[90] H. P. Gavin, “The Nelder-Mead Algorithm in Two Dimensions,” CEE
201L. Duke U, 2020.

[91] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the Human Out of the Loop: A Review of Bayesian Optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[92] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. De Feitas, “Bayesian
Optimization in a Billion Dimensions via Random Embeddings,” Jour-
nal of Artificial Intelligence Research, vol. 55, pp. 361–387, 2016.

[93] J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu,
“Testing cyber-physical systems through bayesian optimization,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 5s,
pp. 1–18, 2017.

[94] D. Eriksson, M. Pearce, J. Gardner, R. D. Turner, and M. Poloczek,
“Scalable Global Optimization via Local Bayesian Optimization,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

[95] Z. Ramezani, K. Šehic, L. Nardi, and K. Åkesson, “Falsification of
Cyber-Physical Systems using Bayesian Optimization,” arXiv preprint
arXiv:2209.06735, 2022.

[96] Z. Ramezani, “On optimization-based falsification of cyber-physical
systems,” Ph.D. dissertation, 2022.

80

References

[97] L. Mathesen, G. Pedrielli, and G. Fainekos, “Efficient Optimization-
Based Falsification of Cyber-Physical Systems With Multiple Conjunc-
tive Requirements,” in 2021 IEEE 17th International Conference on
Automation Science and Engineering (CASE), IEEE, 2021, pp. 732–
737.

[98] R. Nelken and N. Francez, “Automatic Translation of Natural Lan-
guage System Specifications Into Temporal Logic,” in International
Conference on Computer Aided Verification, Springer, 1996, pp. 360–
371.

[99] C. B. Harris and I. G. Harris, “Generating Formal Hardware Veri-
fication Properties from Natural Language Documentation,” in Pro-
ceedings of the 2015 IEEE 9th International Conference on Semantic
Computing (IEEE ICSC 2015), IEEE, 2015, pp. 49–56.

[100] J. He, E. Bartocci, D. Ničković, H. Isakovic, and R. Grosu, “From
English to Signal Temporal Logic,” arXiv preprint arXiv:2109.10294,
2021.

81

	Abstract
	List of Papers
	Acknowledgements
	Acronyms
	I Overview
	1 Introduction
	1.1 Testing in industry
	Levels of testing
	Continuous integration

	1.2 Research questions
	1.3 Methodology
	Method
	Analysis
	Limitations of the methodology

	1.4 Thesis outline

	2 Testing of Cyber-Physical Systems
	2.1 Cyber-Physical Systems
	Requirements of CPSs

	2.2 Formal verification versus testing
	2.3 Coverage criteria
	Coverage criteria for Cyber-Physical Systems

	2.4 Random testing
	2.5 Falsification
	2.6 Reinforcement Learning for falsification

	3 Optimization-based Falsification of Cyber-Physical Systems
	3.1 Discrete-time signals
	3.2 Signal temporal logic
	Robust satisfaction of STL formulas
	Extensions of STL

	3.3 Optimization
	3.4 Optimization-based Falsification
	Input generators
	Quantitative evaluation
	Parameter optimizer
	Falsification in practice

	3.5 Falsification example
	3.6 Optimization approaches and solvers
	Uniform Random sampling
	Corner sampling
	Simulated Annealing
	SNOBFIT
	CMA-ES
	The Nelder-Mead Simplex method
	Bayesian Optimization
	TuRBO
	minBO

	3.7 Large-scale falsification
	Size and complexity of the system under test
	Large number of specifications
	Expression of the specifications

	4 Summary of included papers and Contributions
	4.1 Paper A
	4.2 Paper B
	4.3 Paper C
	4.4 Paper D
	4.5 Paper E
	4.6 Contributions

	5 Concluding Remarks and Future Work
	5.1 Future work

	References

	II Papers
	A Enhancing Temporal Logic Falsification with Specification Transformation and Valued Booleans
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Signal Temporal Logic and Falsification
	2.1 Discrete-time signals
	2.2 Signal Temporal Logic
	2.3 Falsification

	3 Signal-Based Specifications
	3.1 STL specifications in a signal-based framework
	3.2 Signal-based specifications expressed in STL
	3.3 Recursive loops in specifications
	3.4 When semantics do not match

	4 Valued Booleans
	4.1 Max semantics
	4.2 Additive semantics
	4.3 Properties for reasoning about Valued Booleans
	4.4 Other properties of VBools

	5 Results and Discussion
	5.1 Automatic Transmission Benchmark
	5.2 Abstract Fuel Control Benchmark
	5.3 Third Order D - S Modulator
	5.4 Static Switched System
	5.5 Transforming Volvo requirements to STL
	5.6 Discussion

	6 Conclusions
	6.1 Future work

	References

	B Evaluating Optimization Solvers and Robust Semantics for Simulation-Based Falsification
	1 Introduction
	2 Preliminaries
	2.1 Discrete-time signals
	2.2 Signal Temporal Logic
	2.3 Robust semantics for STL

	3 Experimental setup and results
	3.1 Optimization solvers
	3.2 Models and input generation
	3.3 Results
	3.4 Discussion

	4 Conclusions
	References

	C Industrial Temporal Logic Specifications for Falsification of Cyber-Physical Systems
	1 Introduction
	2 Requirement Models
	2.1 Signal Temporal Logic
	2.2 Simple requirement model example
	2.3 Requirement models in the benchmark

	3 Instance Tuning Method and Organization
	3.1 Parameter instances
	3.2 Instance tuning method

	4 Preliminary Results
	5 Conclusions
	References

	D Multi-Requirement Testing Using Focused Falsification
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Preliminaries
	2.1 Signal Traces
	2.2 Signal Temporal Logic
	2.3 Falsification
	2.4 Quantitative semantics for STL

	3 Multi-Requirement Testing
	3.1 Baseline Algorithm: Corners and Random Search
	3.2 Focused Multi-requirement Falsification
	3.3 Sensitive Parameters Selection
	3.4 Structural Sensitivity Analysis
	3.5 MRF algorithm

	4 Results
	4.1 Experimental setup
	4.2 Results and discussion of MRF
	4.3 Sensitivity analysis

	5 Conclusion and future work
	References

	E Automated Mode Coverage Analysis for Cyber-Physical Systems Using Hybrid Automata
	1 Introduction
	2 Hybrid Automata and the MC/DC Criterion
	3 Hybrid Automata
	4 Coverage Criterion
	4.1 Mode coverage
	4.2 Comparison to other coverage definitions

	5 Automotive use case
	5.1 Introduction of the model
	5.2 Generating the modes
	5.3 Characteristics of generated modes
	5.4 Coverage results

	6 Conclusions
	References

 HistoryItem_V1
 TrimAndShift

 Range: From page 5 to page 229; only odd numbered pages
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20221108081708

 32

 D:20220310093649
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349
 Fixed
 Right
 14.1732
 0.0000

 Odd
 5
 SubDoc
 229

 CurrentAVDoc

 None
 82.2047
 Left

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 4
 229
 228
 113

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 6 to page 228; only even numbered pages
 Trim: none
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20221108081747

 32

 D:20220310093649
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349
 Fixed
 Left
 14.1732
 0.0000

 Even
 6
 SubDoc
 228

 CurrentAVDoc

 None
 82.2047
 Left

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 7
 229
 227
 112

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 2; only even numbered pages
 Trim: none
 Shift: move left by 14.17 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20221108081935

 32

 D:20220310093649
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349
 Fixed
 Left
 14.1732
 0.0000

 Even
 2
 SubDoc
 2

 CurrentAVDoc

 None
 82.2047
 Left

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 1
 229
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 2; only even numbered pages
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20221108082004

 32

 D:20220310093649
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349
 Fixed
 Right
 14.1732
 0.0000

 Even
 2
 SubDoc
 2

 CurrentAVDoc

 None
 82.2047
 Left

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 1
 229
 1
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 2; only even numbered pages
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20221108082015

 32

 D:20220310093649
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 2462
 349

 Fixed
 Right
 14.1732
 0.0000

 Even
 2
 SubDoc
 2

 CurrentAVDoc

 None
 82.2047
 Left

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 1
 229
 1
 1

 1

 HistoryList_V1
 qi2base

