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A PDE Model Simplification Framework for All-Solid-State Batteries

Yang Li, Torsten Wik, Yicun Huang, and Changfu Zou

Abstract— All-solid-state batteries (ASSBs) have attracted
immense attention due to their superior thermal stability,
improved power and energy densities, and prolonged cycle life.
Their practical applications require accurate and computation-
ally efficient models for the design and implementation of many
onboard management algorithms, so that the safety, health,
and cycling performance of ASSBs can be optimized under a
wide range of operating conditions. A control-oriented modeling
framework is thus established in this work by systematically
simplifying a partial differential equation (PDE) based model of
the ASSBs developed from underlying electrochemical princi-
ples. Compared to the original PDE model, the reduced-order
models obtained with the proposed framework demonstrates
high fidelity at significantly improved computational efficiency.

I. INTRODUCTION

All-solid-state batteries (ASSBs) have received increasing
research attention in the last decade to overcome the prob-
lems plagued by conventional lithium-ion (Li-ion) batteries
regarding safety and longevity [1]. In ASSBs, the organic
liquid or polymer electrolytes in conventional Li-ion batter-
ies are replaced with new types of electrolytes in a solid
form. The solid electrolytes are non-flammable and highly
thermally resistive, which prevents the problems of internal
short circuit and electrolyte leakage. In addition, the solid-
state electrolytes may also have better compatibility with Li
metal anodes by providing a mechanical barrier to dendrite
formation [2]. Also, the better adaptability to high-voltage
cathode materials and Li metal anodes will greatly increase
the energy density. When the technology has matured, such
batteries are believed to get the merits of longer life, ensured
safety, higher power and energy densities, and they are
also believed to allow more flexible packing, making them
suitable for more applications [3].

Although there have been significant material and struc-
tural breakthroughs in ASSBs, the battery system requires
to be properly monitored and controlled during practical
operation to fulfill the expectation of its longevity and high
performance. Specifically, the information on internal battery
states can be used for establishing charging/discharging
strategies to balance the requirements of high safety, long
service life, and fast load response. A suitable ASSB model
with high fidelity and low computational burden is essential
for online model-based management algorithms. A general
and simple approach to battery modeling is to use equiv-
alent circuit models. These have the advantage of ready-
to-use implementations in well-accepted circuit simulation
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and control system design software packages. Conventionally
obtained from system identification, the parametric values of
such empirical models need to be adjusted regularly to fit the
measurement data at different operating points. However, this
approach to battery modeling has limited applicability for
wider operating ranges and long-term battery performance
prediction under the ever-changing system dynamics. Neither
can degradation and internal safety be properly addressed due
to the lack of insights regarding electrochemical dynamics.

For these reasons, much research has recently been devot-
ed to investigating physics-based models with the capability
of describing the internal electrochemical behaviors of ASS-
Bs. Most of the existing methods have been established for
conventional Li-ion batteries [4]–[6]. However, there have
also been some initial attempts to mathematically model
the dynamics of an ASSB. For example, Becker et al. [7]
presented a model for ASSBs that takes into account the de-
tailed ion transport in the solid solutions of crystalline metal
oxides. Danilov et al. [8] developed an isothermal ASSB
model that considers the imperfect dissociation of the ions in
the electrolyte. This model consists of two partial differential
equations (PDEs) that describe the diffusion processes in the
solid electrolyte and in the positive electrode, respectively.
The model in [8] has recently been improved and validated
in [9] by considering the concentration-dependent diffusion
coefficient. A battery state estimation method has been
developed recently based on this model [10], where the PDEs
are solved using the finite difference method. Resulting from
the discretization, an ordinary differential equation (ODE)
based battery model of high dimensionality was obtained.
Because of the high order, the model is expensive to solve,
which hinders the implementation of the designed estimator
in many online applications. Model reduction methodologies
have therefore recently been investigated for ASSBs, for con-
trol system design and implementation. For example, in [11],
a PDE ASSB model was reduced using a combination of
Padé approximation and polynomial profile approximation,
and the computational burden was effectively reduced with
high fidelity, allowing online operation [12]. However, the
method fails to consider various practical limitations that can
considerably reduce the applicability at high current rates,
including the concentration-dependent diffusion and ionic
migration behavior in the positive electrode.

In the present investigation, we propose a reduced-order
modeling framework for ASSBs. Model simplification is
systematically conducted using partial fraction expansion
and moment matching, and the effect of concentration-
dependent diffusion is addressed. The simplified models are
benchmarked with a high-fidelity PDE model that has been
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Fig. 1. Schematic of an ASSB cell during discharging.

experimentally validated under various current rates in the
literature [13], and the results show the superiority of the
proposed method to existing ones.

II. OVERVIEW OF A PDE MODEL OF ASSBS

This section presents an overview of a high-fidelity PDE
model of the ASSBs under investigation [13]. The purpose
is to provide fundamental background of the model structure
and relevant equations for the development of the model
simplification framework in latter sections.

A. System Description

The schematic of the one-dimensional model of a typical
ASSB cell is shown in Fig. 1. The cell is divided into three
physical domains along the horizontal axis, including porous
positive electrode (e.g., LiCoO2), negative electrode (e.g.,
metallic Li foil), and the solid electrolyte in between. The
inner and the outer physical boundaries of the positive elec-
trode domain are denoted by y = 0 and y = Lp, respectively,
where Lp is the width of the positive electrode. The two
boundaries of the solid electrolyte domain are denoted by
x = 0 and x = Le, respectively, with Le being the width
of the solid electrolyte. The Li concentration in the negative
electrode is assumed to be a constant. This is different from
conventional Li-ion batteries in which the porous electrodes
are immersed in liquid or polymer electrolyte. The Li species
will transport from the negative electrode to the positive
electrode via the solid electrolyte by means of diffusion and
migration during the discharge process, and a reverse process
occurs when the battery is being charged.

B. Diffusion in the Solid Electrolyte

In the solid electrolyte, the mobile Li ions exist in equi-
librium with the immobile Li ions. The immobile Li ions
undergo an ionization reaction to generate the mobile Li ions
and uncompensated negative charges (n−) during the charge
process, and a reverse reaction occurs during discharging.
Under the electroneutrality condition and by ignoring the
charge carrier generation effects, the diffusion and migration
of the mobile Li ions can be described by

∂ce(x, t)

∂t
= Deff

e

∂2ce(x, t)

∂x2
(1a)

where ce is the concentration of the mobile Li ions in
the solid electrolyte, Deff

e := 2D+
e D

−
e /(D

+
e + D−

e ) is the

effective binary diffusion coefficient in the electrolyte, D+
e

and D−
e are the diffusion coefficients of the mobile Li ions

and the uncompensated negative charges in the electrolyte,
respectively. According to [13], the electrolyte concentrations
do not vary significantly during cycling, and thus D+

e and
D−

e are considered constant. The boundary and the initial
conditions of (1) are given by

D+
e

∂ce(x, t)

∂x

∣∣∣∣
x=0

= D+
e

∂ce(x, t)

∂x

∣∣∣∣
x=Le

=
iapp(t)

2F
(1b)

ce(x, t = 0) = ce0 = δc0 (1c)

where F is the Faraday constant and iapp is the applied cur-
rent density defined as positive during charging. In addition,
ce0 and c0 represent the initial concentration of the mobile
Li ions and the total Li ions in the electrolyte, respectively,
and δ is the fraction of Li ions in the mobile states under
the equilibrium condition.

C. Mass-Transfer Overpotential of the Solid Electrolyte

Electromigration and diffusion in the solid electrolyte
induce the mass-transfer overpotential ηmt

e expressed by

ηmt
e (t) =

RT

F
ln

(
ce(Le, t)

ce(0, t)

)
−
∫ Le

0

Ee(x, t)dx (2)

where R is the universal gas constant, T is the cell temper-
ature, and Ee is the electric field in the electrolyte, i.e.,

Ee(x, t) =
RT

F

1

ce(x, t)
×[

−iapp(t)

2FD+
e

+
D+

e −D−
e

D+
e +D−

e

(
∂ce(x, t)

∂x
−
iapp(t)

2FD+
e

)]
.

(3)

D. Concentration-Dependent Diffusion in the Positive Elec-
trode

Assuming the rate of phase transition has ignorable im-
pacts on system performance, the diffusion of the Li ions in
the positive electrode is governed by

∂cp(y, t)

∂t
=

∂

∂y

(
Deff

p

∂cp(y, t)

∂y

)
(4a)

with the boundary and initial conditions

D+
p

∂cp(y, t)

∂y

∣∣∣∣
y=0

= −D−
p

∂cp(y, t)

∂y

∣∣∣∣
y=Lp

=
iapp(t)

2F
(4b)

cp(y, t = 0) = cp0 (4c)

where cp is the concentration of the Li ions in the positive
electrode, Deff

p := 2D+
p D

−
p /(D

+
p + D−

p ) is the effective
binary diffusion coefficient in the positive electrode, and
D+

p and D−
p are the diffusion coefficients of the Li ions

and the electrons in the positive electrode, respectively. In
contrast to D+

e and D−
e , both D+

p and D−
p are considered

concentration-dependent, according to D+
p (cp) = fD+(cp)

and D−
p (cp) = fD−(cp).



The state-of-charge (SOC) of the ASSB is determined by
the volumed-average Li-ion concentration cavg

p , i.e.,

SOC(t) =
c100%
p − cavg

p (t)
c100%
p − c0%

p

=
c100%
p − 1

Lp

∫ Lp

0
cp(y, t)dy

c100%
p − c0%

p
(5)

where c100%
p and c0%

p are the Li-ion concentrations corre-
sponding to SOC = 100% and SOC = 0%, respectively.

E. Equilibrium Potential and Mass-Transfer Overpotential
of the Positive Electrode

The Li-ion concentrations cp(0, t) and cp(Lp, t) at the two
boundaries of the positive electrode are in the interest of the
investigation. This is because the thermodynamic equilibrium
potential U eq and the overpotential ηmt

p due to the mass
transfer in the electrode are solely determined by cp(0, t)
and cp(Lp, t), i.e.,

U eq(t) = h1(cp(0, t)) (6)

ηmt
p (t) =

RT

F
ln

(
cp(Lp, t)

cp(0, t)

)
−
∫ Lp

0

Ep(y, t)dy (7)

where the electric field Ep is similar to Ee, as given in (3),
and h1(·) is a nonlinear function determined by the materials
of the positive electrode.

F. Charge-Transfer Overpotentials and Terminal Voltage

The intercalation/de-intercalation reaction kinetics are de-
scribed by the Butler-Volmer equation. The charge-transfer
coefficients for both electrodes can be considered to be
0.5 [13], which gives the following expressions of the charge-
transfer overpotential for both electrodes

ηct
p (t) =

2RT

F
sinh−1

(
iapp(t)

2i0,p(t)

)
(8a)

ηct
n(t) = −2RT

F
sinh−1

(
iapp(t)

2i0,n

)
(8b)

where i0 represents the average exchange current density of
the intercalation defined under equilibrium conditions, i.e.,

i0,p(t) = Fk0,p

√
ce0c

avg
p (t)(cmax

p − cavg
p (t)) (9a)

i0,n = Fk0,n
√
ce0c

avg
n (9b)

where cmax
p is the theoretical maximum concentration in the

positive electrode and cavg
n is the average concentration of

the negative electrode.
The ASSB voltage is the sum of the equilibrium potential

of the positive electrode and the overpotentials, i.e.,

Vbat(t) = U eq(t) + ηmt
p (t) + ηmt

e (t) + ηct
p (t)− ηct

n(t). (10)

III. A MODEL ORDER REDUCTION FRAMEWORK

A. Simplified Solid-Electrolyte Diffusion Equation

First, we notice the general form of the Laplace transform
of the solution to (1a) is

ce(x, s) = A sinh
(√
sx/α

)
+B cosh

(√
sx/α

)
(11)

where A and B are two coefficients and α =
√
Deff

e . The
gradient of (11) is

∂ce(x, s)

∂x
=
A
√
s

α
cosh

(√
sx

α

)
+
B
√
s

α
sinh

(√
sx

α

)
(12)

Next, defining t+e := D+
e /(D

+
e +D−

e ) as the transference
number of the electrolyte and t−e = 1 − t+e , the boundary
conditions (1b) can be rewritten in the complex frequency
domain by

Deff
e

∂ce(x, s)

∂x

∣∣∣∣
x=0

= Deff
e

∂ce(x, s)

∂x

∣∣∣∣
x=Le

=
t−e
F
iapp(s).

(13)
Using (12) and (13), one can solve for the coefficients A

and B, both of which are proportional to the current density
iapp. Substituting the resulting expressions of A and B into
(11) yields the transfer function between ce and iapp:

ce(x, s)

iapp(s)
= − t−e τe

2FLe

1
1
2

√
τes

sinh
((

2x
Le
− 1
)
· 12
√
τes
)

cosh
(
1
2

√
τes
)

(14)
where τe = L2

e/D
eff
e is the time constant of the electrolyte

diffusion process.
Note that (14) has an anti-symmetrical property about the

middle point x = Le/2 of the solid-electrolyte domain. As
seen in (2), we are particularly interested in the electrolyte
concentrations at the domain boundaries. Hence, denoting
csurf
e (t) := ce(Le, t) and using (14), the following transcen-

dental transfer function at x = Le can be obtained,

csurf
e (s)

iapp(s)
= − t−e τe

2FLe
Ge(s) (15)

where

Ge(s) =
tanh

(
1
2

√
τes
)

1
2

√
τes

(16)

For the purpose of control system design, a low-order
rational transfer function describing a practically realizable
system is needed. Since all singularities of Ge(s) are of
first order, corresponding to poles on the negative real axis,
and can therefore be approximated by a series of first order
transfer functions, i.e.,

Ge(s) ≈ Pe(s) =

Ne∑
i=1

be,i
τes+ ae,i

(17)

where Ne is the order of the approximation and ae,i and be,i
are the PFE coefficients for the electrolyte diffusion equation.
With this approximation, (17) can be realized as

dc̃e,i(t)

dt
= −ae,i

τe
c̃e,i(t)−

be,it
−
e

2FLe
iapp(t) ∀i ∈ Ne (18a)

csurf
e (t) = ce0 +

Ne∑
i=1

c̃e,i(t) (18b)

where Ne = {1, 2, · · · , Ne}.
To determine the 2Ne PFE coefficients ae,i and be,i,

i ∈ Ne, moment matching (MM) is adopted here [14].
Specifically, we set Pe(0) = Ge(0) and do the same for the



first (2Ne − 1) derivatives of Pe(0) = Ge(0) for s = 0,
establishing 2Ne equations that uniquely determines the
values of all coefficients ae,i and be,i. The results up to
Ne = 3 are provided in Table I.

TABLE I
PFE COEFFICIENTS FOR THE ELECTROLYTE DIFFUSION EQUATION

ae,1 be,1 ae,2 be,2 ae,3 be,3
Ne = 1 12 12 – – – –
Ne = 2 9.88 8.02 170.12 31.98 – –
Ne = 3 9.87 8 91.23 9.01 738.9 66.99

B. Simplified Positive Electrode Diffusion Equation Under
Constant Diffusion Coefficients

Similar to the solid electrolyte, the boundary conditions
of the diffusion equation (4) of the positive electrode can be
rewritten as

Deff
p

∂cp(y, t)

∂y

∣∣∣∣
y=0

=
t−p
∣∣
y=0

F
iapp(t) (19a)

Deff
p

∂cp(y, t)

∂y

∣∣∣∣
y=Lp

= −
t+p
∣∣
y=Lp

F
iapp(t) (19b)

where t+p := D+
p /(D

+
p +D−

p ) is the transference number of
the positive electrode and t−p = 1− t+p .

Note that D+
p , D−

p , Deff
p , t+p , and t−p are all concentration-

dependent and nonuniform in the positive electrode domain.
This fact makes the derivation of the transfer function
between the electrode concentration and the current difficult
due to the complex nonlinear dependence of the parameters
on the concentration. Here, we assume the values of these
parameters are equal and constant at the two boundaries,
e.g., D+

p

∣∣
y=0

= D+
p

∣∣
y=Lp

, D−
p

∣∣
y=0

= D−
p

∣∣
y=Lp

, etc. Next,
based on a similar procedure as presented in Section III-A, a
transcendental transfer function for (4) can be obtained, i.e.,

cp(y, s)

iapp(s)
= − 1

FLps
− τp
FLp

× 1
√
τps

cosh
(

(1− y
Lp

)
√
τps
)

sinh
(√
τps
) − 1

τps

−
t+p τp

2FLp

1
1
2

√
τps

sinh
((

2y
Lp
− 1
)

1
2

√
τps
)

cosh
(
1
2

√
τps
) (20)

where τp = L2
p/D

eff
p is the time constant for the diffusion

process in the positive electrode. According to (6) and (7),
the positions of interests are the boundaries y = 0 and y =
Lp. Unlike the electrolyte equation, there is no a general
symmetrical relationship in the positive electrode domain,
and thus the transfer functions for these two positions have to
be approximated individually. The procedures are described
as follows.

At the solid-solid interface (y = 0), denoting csurf
p (t) :=

cp(0, t), one can obtain the transfer function

csurf
p (s)

iapp(s)
= − 1

FLps
−
τ surf
p

FLp
Gsurf

p (s) (21)

where

Gsurf
p (s) =

 1√
τ surf
p s

1

tanh
(√

τ surf
p s

) − 1

τ surf
p s


−
t+p
2

tanh
(

1
2

√
τ surf
p s

)
1
2

√
τ surf
p s

(22)

and τ surf
p = τp|y=0 is the time constant at the left boundary

of the positive electrode domain.
The first term on the RHS of (21) contributes to the change

of bulk concentration in the positive electrode. The second
term on the RHS of (21) is associated with the overpotentials
caused by the nonuniform distribution of the concentration
along the y-direction. We adopt a similar PFE method
as described in Section III-A to reduce the transcendental
transfer function Gsurf

p (s) to a rational form

Gsurf
p (s) ≈

Np1∑
i=1

bp1,i
τ surf
p s+ ap1,i

+
t+p
2

Np2∑
i=1

bp2,i
τ surf
p s+ ap2,i

(23)

which can readily be realized as a state-space model with a
diagonal system matrix, e.g.,

dcavg
p (t)

dt
= − 1

FLp
iapp(t) (24a)

dc̃p1,i(t)

dt
= −ap1,i

τ surf
p

c̃p1,i(t)−
bp1,i
FLp

iapp(t) ∀i ∈ Np1

(24b)

dc̃p2,i(t)

dt
= −ap2,i

τ surf
p

c̃p2,i(t)−
t+p
2

bp2,i
FLp

iapp(t) ∀i ∈ Np2

(24c)

csurf
p (t) = cavg

p (t) +

Np1∑
i=1

c̃p1,i(t) +

Np2∑
i=1

c̃p2,i(t) (24d)

where Np1 = {1, · · · , Np1} and Np2 = {1, · · · , Np2}.
At the other boundary, y = Lp, a platinum (Pt) current col-

lector is usually attached, and we denote cPt
p (t) := cp(Lp, t).

Similarly, the corresponding approximated transfer function
can be derived

cPt
p (s)

iapp(s)
:=

cp(Lp, s)

iapp(s)
= − 1

FLps
−

τPt
p

FLp
GPt

p (s) (25)

where

GPt
p (s) =

 1√
τPt
p s

1

sinh
(√

τPt
p s
) − 1

τPt
p s


+
t+p
2

tanh
(

1
2

√
τPt
p s
)

1
2

√
τPt
p s

≈
Np3∑
i=1

bp3,i
τPt
p s+ ap3,i

+
t+p
2

Np4∑
i=1

bp4,i
τPt
p s+ ap4,i

(26)

and τPt
p = τp|y=Lp

is the time constant at the right boundary
of the positive electrode.



The corresponding realization is

dc̃p3,i(t)

dt
= −ap3,i

τPt
p

c̃p3,i(t)−
bp3,i
FLp

iapp(t) ∀i ∈ Np3

(27a)

dc̃p4,i(t)

dt
= −ap4,i

τPt
p

c̃p4,i(t)−
t+p
2

bp4,i
FLp

iapp(t) ∀i ∈ Np4

(27b)

cPt
p (t) = cavg

p (t) +

Np3∑
i=1

c̃p3,i(t) +

Np4∑
i=1

c̃p4,i(t) (27c)

where Np3 = {1, · · · , Np3} and Np4 = {1, · · · , Np4}.
Applying the MM method once more, the PFE coefficients

can be obtained. The PFE coefficients ap1,i, bp1,i, ap3,i, and
bp3,i up to Np1 = 3 and Np3 = 3 are given in Table II.
Note that by comparing (22) and (26) with (16), we have
ap2,i = ap4,i = ae,i and bp2,i = −bp4,i = −be,i.

TABLE II
PFE COEFFICIENTS FOR THE POSITIVE ELECTRODE DIFFUSION

EQUATION

ap1,1 bp1,1 ap1,2 bp1,2 ap1,3 bp1,3
Np1 = 1 15 5 – – – –
Np1 = 2 9.94 2.07 95.06 11.93 – –
Np1 = 3 9.87 2 41.98 2.6 326.15 22.4

ap3,1 bp3,1 ap3,2 bp3,2 ap3,3 bp3,3
Np3 = 1 8.57 –1.43 – – – –
Np3 = 2 9.9 –2.026 30.50 1.163 – –
Np3 = 3 9.87 –2 41.2 2.68 59.08 –1.718

C. Simplified Positive Electrode Diffusion Equation Under
Concentration-Dependent Diffusion Coefficients

Note that the results obtained in Section III-B are only
valid under the assumptions of uniform and constant pa-
rameters. However, in practice the nonuniformity and the
dependence on concentration can be significant, especially
under high-rate charging/discharging conditions, the results
based on the approximate transfer equation (20) can lead
to a considerable accumulated error over time. Here, we
introduce a factor λ to correct the time constant τ surf

p in (24),
i.e.,

τ surf*
p = λτ surf

p =

(
D+

p

∣∣
y=0

D+
p

∣∣
y=Lp

)k

τ surf
p (28)

where k is a correction coefficient tuned by trial-and-error.
It can be seen that λ equals 1 either when the diffusion
coefficients are uniform along the y direction, or when k = 0.

D. Simplified Mass-Transfer Overpotentials

Equations (2) and (7) share the same form and they contain
integrals. Thus, it is not straightforward to solve them by
standard ODE solvers, and a specific numerical integration
method should be used [11], which increases the complexity
of the model. To avoid this, we derive and use the following

simplified expressions of the mass-transfer overpotentials,
given by

ηmt
e (t) =

2RTt−e
F

ln

(
csurf
e (t)

2ce0 − csurf
e (t)

)
+ iapp(t)Ravg

e

:=h2(csurf
e (t)) + iapp(t)Ravg

e (29)

ηmt
p (t) =

2RTt−p
F

ln

(
cPt
p (t)

csurf
p (t)

)
+ iapp(t)Ravg

p

:=h3(csurf
p (t), cPt

p (t)) + iapp(t)Ravg
p (30)

where Ravg
e = Le/[(D

+
e +D−

e )
(

F 2

RT

)
ce0] and Ravg

p =

Lp/[
(
D+

p +D−
p

) (
F 2

RT

)
cavg
p ] are the volume-averaged area

specific resistances for the electrolyte and the positive elec-
trode, respectively. In both of the above equations, the two
terms on the RHS are associated with ionic diffusion and
ionic migration, respectively. The detail of the derivation
procedure is given in Appendix.

IV. ILLUSTRATIVE EXAMPLES

The PDE model (1)–(10) of ASSBs has been experi-
mentally validated in previous works, e.g. [8], [13]. Hence,
this PDE-based model will be used as a benchmark for
verification of the proposed ROM. The benchmark was
simulated using the FVM, which is similar to the method
described in [15] and both the electrolyte and the electrode
domains were spatially discretized into 100 control volumes
for high-fidelity simulation. All the models, including the
benchmark and the developed PFE ROMs, were implemented
in MATLAB R2016b, discretized in the time domain with
a sample time of 1 s. The correction coefficient in (28)
of the proposed model is set to k = 0.31 by trial-and-
error. The parameters correspond to an ASSB cell with a
capacity of 0.7 mAh, and the active material of the positive
electrode is LiCoO2. For this electrode, three nonlinear
functions, including the equilibrium potential curve h1(·) in
(6) and two diffusion coefficient curves (fD+(·) and fD−(·)
) are required for simulation and they are fitted using the
experimental results from [13] (See Fig. 2).

Fig. 3 shows a comparison of the results from different
models, including the benchmark PDE model, the proposed
PFE model with and without the correction, as well as a
ROM in [11], for a 1C constant current discharge. In [11],
Padé approximation is applied to the diffusion equations,
polynomial approximation is applied for the migration e-
quations, and the diffusion coefficients are all considered
constant. The simulated cells were initially fully charged
at 4.2 V and discharge was stopped at 3.0 V. It can be
observed in Fig. 3 that the proposed PFE model compares
favorably to that of the PDE model implementation. As
seen in Fig. 3(d), the reduction in diffusion coefficient is
precisely captured, and this results in accurate prediction of
the voltage, surface concentration, as well as the migration
overpotential in Fig. 3(a) to Fig. 3(c). On the contrary, when
there is no correction (i.e, k = 0), there is an accumulated
error in the diffusion coefficient, and the faster drop at the
end of discharge leads to a considerable prediction error for
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Fig. 3. Simulation results under 1C constant current discharge profile. (a)
Voltage. (b) Surface concentration at y = 0. (c) Mass-transfer diffusion
overpotential in the positive electrode. (d) Diffusion coefficient.

the knee point as seen in Fig. 3(a): The end of discharge
is 283 s earlier than the benchmark PDE model. The ROM
based on the method from [11] exhibits even larger errors
due to its ignorance of the effect of ionic migration in the
positive electrode, i.e., the migration overpotential ηmt

p in (30)
is set to zero in [11].

Fig. 4 shows similar comparisons as given in Fig. 3,
except that a 4C constant current discharge rate was applied.
In this instance, the voltage error increases for all ROMs.
Nevertheless, the performance of the proposed model still
compares favorably to the PDE model, as the overall RMSE
is only 0.18%. Indeed, at a higher current rate, the simulated
error increases, while the accuracy of the corrected PFE
model is still much improved than both the uncorrected PFE
model and the ROM in [11].

Fig. 5 compares the PFE methods of different orders with
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Fig. 4. Simulation results under 4C constant current discharge profile. (a)
Voltage. (b) Surface concentration at y = 0. (c) Mass-transfer diffusion
overpotential in the positive electrode. (d) Diffusion coefficient.
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in the first 100 s.

the FVM method for the electrolyte diffusion equation under
a modified Federal Urban Driving Schedule (FUDS) with
the current magnitude being 4C. Clearly, the accuracy of the
electrolyte can be improved by increasing the system order.
In this case, it requires a fifth-order approximation to achieve
high accuracy based on the proposed algorithm.

V. CONCLUSIONS

In this work, a model simplification framework is estab-
lished to reduce a physics-based PDE model of ASSBs to an
ODE model. The specific contributions include: 1) a generic
method for ASSB model simplification for control system
design; 2) Important nonlinear phenomena under high rate
operation, including the concentration-dependent diffusion
and the ionic migration processes in the positive electrode,
are properly addressed. The derived reduced-order models
can readily be implemented for online battery management
functionalities such as state estimation, parameter identifica-
tion, and optimal control.



APPENDIX

First, we rewrite the governing equation (3) of the electric
field Ee in electrolyte as

∂Φe(x, t)

∂x
= −Ee(x, t) =

1

κeff
e (x, t)

iapp +
∂Ue(x, t)

∂x
(31)

where Φe is the electrolyte potential, Ue is a voltage term,
and κeff

e represents the local conductivity in the solid elec-
trolyte. Ue and κeff

e are given by

Ue(x, t) =
RT (1− 2t+e )

F
ln

(
ce(x, t)

ce0

)
(32)

κeff
e (x, t) =

(
D+

e +D−
e

)( F 2

RT

)
ce(x, t) (33)

where t+e = D+
e /(D

+
e +D−

e ) is the transference number.
Evaluating the integral of (31) over [0, Le], we have

−
∫ Le

0

Ee(x, t)dx = Φe(Le, t)− Φe(0, t)

= iapp(t)

∫ Le

0

1

κeff
e (x, t)

dx+ Ue(Le, t)− Ue(0, t). (34)

Substituting (34) into (2) yields

ηmt
e (t) =

RT

F
ln

(
ce(Le, t)

ce(0, t)

)
+ iapp(t)

∫ Le

0

(
1

κeff
e (x, t)

)
dx+

+ Ue(Le, t)− Ue(0, t). (35)

Next, we define the volume-averaged electrolyte resistance

Ravg
e :=

∫ Le

0

(
1

κeff
e (x, t)

)
dx ≈ Le

κ̄eff
e

(36)

where κ̄eff
e := (D+

e +D−
e )
(

F 2

RT

)
ce0 is the approximated

volume-averaged electrolyte conductivity.
Finally, substituting (36) and (32) into (35), and consider-

ing t−e = 1− t+e , ce(Le, t) = csurf
e (t), and ce(0, t) = 2ce0 −

csurf
e (t), the expression of the mass-transfer overpotential (29)

is obtained. Based on a similar procedure, (30) can be derived
from (7) for the positive electrode.
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