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Abstract

One of the main concerns in fusion research is to understand the
anomalously high transport in magnetically confined plasmas. In re-
cent years, substantial progress in the understanding of transport in
terms of drift waves in fusion plasmas has been achieved. It is at
present an important issue to investigate the stability of drift waves
in realistic toroidal geometries.

Among the drift wave candidates for explaining the anomalous
transport are the toroidal ηi-modes (ηi = Ln/LTi or ITG driven
modes) in the core and the resistive ηi-modes and the resistive bal-
looning modes in the edge.

The effects of plasma shaping on magneto-hydrodynamic (MHD)
modes have been thoroughly studied. However, the effects of plasma
shaping on the drift waves are not well known. Empirically it is found
that the overall effects of elongation on the energy confinement time
is favorable with τE ∝ κ0.5.

In this thesis, the ηi-mode and the resistive edge mode stability in a
non-circular tokamak geometry are studied. In particular, the effects
of elongation and Shafranov shift are studied. In the core plasma
a destabilization of the ηi-mode with increasing elongation is found
whereas a stabilization is found in the edge region (or rather for peaked
density profiles).

Moreover, a comparison of the ηi growth rates in the tokamak and
stellarator equilibria is made. The growth rates for the tokamak and
stellarator cases are comparable whereas the modulus of the real fre-
quency is substantially larger in the stellarator. In addition, a stronger
stabilization of the ITG mode growth is found for large εn(= Ln/R)
in the stellarator case.

Finally, an analytical estimation of zonal flow generation including
effects of elongation is presented. The results suggest that a strong
excitation of zonal flows is obtained for peaked density profiles and
close to marginal stability..

However, in order draw more detailed conclusions of the effects
of elongation on the global confinement time, a more extensive study
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using predictive transport simulations, which treats the edge and core
transport processes self-consistently will be needed.

Descriptors: fusion plasmas, drift waves, instabilities, toroidal geometry
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I Introduction

In the near future the world total energy demand will increase tremendously
as the population will grow and the developing countries become more in-
dustrialized. At the 1997 Kyoto climate conference, it was agreed that the
world wide emission of the green house gases should be reduced to only 5
percent above the 1990 figures in the near future. If these conditions are to
be met, additional energy sources friendly to the environment are needed.
This need will be further increased since the traditional energy sources, oil
and other fossil fuels1, will soon become much more scarce and obviously
more expensive. The viable alternatives are the renewables2 and the nuclear
energy sources.

Nuclear fusion is nowadays among the probable sources of energy for the
centuries to come. The fusion reactions of interest in a future reactor are

D +D → He3 + n + 3.27MeV (1)

D +D → T +H + 4.05MeV (2)

D + T → He4 + n + 17.58MeV (3)

where D is deuterium, He is helium, n is a neutron, T is tritium and H is
hydrogen. The first two reactions are of almost equal probability.

From an environmental point of view, the D−D reactions are preferable,
since deuterium is stable and is available in nature as one part in 6700 of the
hydrogen in sea water. The deuterium in one liter of sea water could con-
tribute with as much energy as approximately 300 liters of gasoline. Tritium
on the other hand is not generally found in nature since its half life is 12.4
years and it thus must be manufactured or bred in the reactor. However, the
D−D reactions are much more difficult to obtain than the D− T reactions
and need a higher burning temperature.3

In this thesis only thermonuclear fusion is considered. Then thermal
energy is to be distributed among the reacting particles allowing them to
overcome the Coulomb barrier and the inevitable losses. It is sufficient if
only a few percent of the particles participate in the reactions, since the
energy released in each reaction is large.

1Coal may be an exception to this but coal has a more deep negative impact on the
environment than the others.

2Solar, wind and biomass
3Around 100 keV in D − D operation compared to 10 keV in D − T operation.
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In thermonuclear fusion it is convenient to confine the plasma4 by a mag-
netic field. The condition of ignition for a fusion plasma is often expressed
in the triple product as

nTiτE ≥ 5 · 1021m−3keV s (4)

where n is the particle density, Ti is the ion temperature and τE is the energy
confinement time.

The uncharged particles are not confined in the magnetic field and will
eventually hit the vessel wall. This makes a possible source of tritium fuel,
since the inside of the vessel wall may be covered with a lithium blanket that
together with the high energy neutrons will produce tritium:

Li6 + n → T +He4 + 4.8MeV (5)

Li7 + n → T +He4 + n− 2.5MeV. (6)

To be able to confine the particles along the magnetic field it is preferable
to have closed magnetic field lines, usually bent into a torus. The geometry
of the magnetic flux surfaces are determined by balancing the magnetic pres-
sure and the plasma pressure (more often recognized as the Grad-Shafranov
equation in the 2-dim case).

It is important to note that the magnetically confined plasma is not in
thermodynamic equilibrium. Hence there are a many sources of free energy
that can drive instabilities. The sources of free energy (∇n, ∇T etc) may
cause unstable modes (modes with growth γ ≥ 0) that can destroy the equi-
librium and result in a plasma disruption or turbulence that cause transport
phenomena.

The instabilities are often divided into macroscopic (stability) and micro-
scopic (transport) instabilities. The instabilities associated with macroscopic
stability problems are called magneto-hydrodynamic (MHD) instabilities [1];
they may cause severe plasma disruptions on a very short time scale (10−6s).

One of the most important issues in present fusion research is to under-
stand transport in tokamaks [2] - [3], since there is a large discrepancy
between the experimentally measured and the predicted neoclassical diffu-
sion coefficients. The neoclassical transport theory [4] - [6] predicts that

4The term plasma comes from the Greek word πλασµα which means something like
molded or fabricated. The term plasma was introduced into physics to describe the positive
column in a glow discharge tube, by Langmuir 1928.
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the diffusion coefficient drops as the temperature increases to values of ther-
monuclear fusion

D ∝ ε−3/2q2ρ2
Lν ∝ ρ2

Lν ∝ T−1/2 (7)

where ρL is the Larmor radius, ν is the collision frequency, q is the safety
factor, ε = r/R where r is the minor radius and R is the major radius.
However, it is found that in the direction perpendicular to the magnetic field
lines the neoclassical theory fails to give good estimates

χexp
i

χneo
i

∼ 3 − 10 (8)

χexp
e

χneo
e

∼ 102 (9)

Dexp
e

Dneo
e

∼ 102 (10)

where χi is the ion heat diffusivity, χe is the electron heat diffusivity and De

is the particle diffusivity.
The unexpectedly large transport observed in experiments and the theo-

retically predicted χneo
j (j = i, e) and Dneo

e is referred to as the anomalous,
i.e. non classical transport.

The dominant transport mechanism in tokamak plasmas seems to be due
to the �E × �B convection although the possibility of transport due to mag-
netic perturbations cannot be ruled out [7]. Since temperature and density

perturbations in general may be independent, �E × �B convection can lead to
both conductive (∝ ∇T ) and convective (∝ ∇n) energy transport.

The fluctuating fields are assumed to originate from micro instabilities
in the plasma. The instabilities are driven by the free energy released be-
cause the magnetically confined plasma is most often not in thermodynamic
equilibrium. As these instabilities grow they produce micro-turbulence with
large electrical fields that tend to cause convective transport and if the electric
field is random this becomes a usual diffusive process. In order to understand
anomalous transport we need to estimate the diffusion coefficients.

A renormalization procedure gives [8], γ = γlinear − k2D (k is the wave
number), where an integration over the diffusive particle orbits is performed.
The system will reach a state were the non-linearities have saturated the
total growth, giving D = γlinear/k

2. Another way to achieve an estimate
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of the saturation level, is to balance the linear growth with the dominant
non-linear term, employing the equation

∂n

∂t
≈ �vE · ∇n (11)

and setting ∂
∂t

→ γ we obtain γ = �vE · �k or eφ
Te

= γ
ω�

1
kxLn

. This leads to

D =
γ3/k2

ω2
r + γ2

(12)

which reduces to D ≈ γ/k2 for strong turbulence [9] - [12]. The modes with
small values of the eigenfrequency ωr tend to contribute with the largest
transport. The modes with high real frequency tend to mainly make the
particles oscillate. This last result (Eq. 12) may also be derived from the non-
Markovian Fokker-Planck equation [13]. From these estimations it is clear
that it is of great importance to find means of suppressing the linear growth
rates. The estimated anomalous diffusion coefficients have a temperature
dependency completely different from the classical diffusion coefficients, with

D ∝ γ

k2
⊥
∝ ω�

k2
⊥
∝ ρ2

Lcs
Ln

1

k⊥ρL
∝ T 3/2 (13)

where ω� is the drift frequency, cs is the sound speed and Ln is the den-
sity scale length. It is assumed that the turbulent correlation length scales
with the gyro-radius (Gyro-Bohm scaling) in order to take k⊥ρL as a free
parameter.

The anomalous transport coefficients in general depend on the dynamic
variables and their gradients. A typical property is that the transport co-
efficients increase with the gradients up to a certain limit after which they
decrease with the gradient.

There are situations where the pressure gradient rapidly increases in cer-
tain zones compared to the surrounding regions, leading to a large reduction
in the transport coefficient5 within the region with increased pressure gradi-
ent [14] - [15]. This is an indication that the turbulence induced transport
is reduced. It is here natural to use the term transport barrier.6 Even if the

5The transport coefficient may even be decreased to the neoclassical level.
6C.f. H-mode. [19]
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barrier width is only a few percent of the minor radius the energy confinement
time may be increased by a factor of two or more.

The stabilization of turbulence may be the origin of transport barrier
formation. Among the stabilizing mechanisms proposed are high and low
magnetic shear7 [14], [16] - [18] and velocity shear.8

The rest of this introduction is meant to clarify and explain some con-
cepts and methods used in the Papers A to F. In Sec. 2 the ion-temperature-
gradient driven modes and the resistive edge modes are discussed; in addition
some properties of the ballooning mode formalism are reviewed. Sec. 3 con-
tains a discussion of the analytical equilibrium model and geometry used in
Papers A to C and F. In Sec. 4 the stellarator configuration and some differ-
ences between stellarators and tokamaks are discussed. Sec. 5 is dedicated to
the concept of zonal flows and some of the consequences and the analytical
methods for studying and estimating zonal flow excitation. In Sec. 6 a short
summary of all appended papers is presented.

7High magnetic shear tends to stabilize certain modes while low magnetic shear tends
to reduce the curvature drive and to separate the neighboring rational surfaces hence
reducing the mode coupling effects.

8Velocity shear may tear turbulent eddies apart resulting in a reduction in their size
and correlation length.
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II The ion-temperature-gradient driven modes

and the resistive edge modes

Drift waves are low frequency phenomena with short wavelengths and the
drift wave ordering is defined through

k‖vti << ω� ∼ ω << k‖vte (14)

and

k⊥ρ ≤ 1. (15)

There are two main ways to model drift waves, either by kinetic theory or by
fluid theory. Intermediate to these are the advanced fluid models that are de-
rived from the kinetic models. In kinetic theory a plasma is described by the
distribution function fj (t, �r, �v) (j refers to the particle species), representing
the particle density in phase space (�r, �v). The time evolution is governed
by the Boltzmann or Vlasov equations. In thermal equilibrium the velocity
distribution is Maxwellian and if the distribution function is only allowed to
change due to collisions the distribution function will approach a Maxwellian,
regardless of the initial conditions and the collision term. For certain pur-
poses it may not always be necessary to retain the detailed description of
kinetic theory and we may instead use the macroscopic fluid description.

Only the advanced fluid models will be considered in this thesis. The fluid
models are widely used since they are relatively simple to handle analytically
and numerically as compared with the kinetic models. The main reason
why the advanced fluid models are needed is that non-linear gyro-kinetic
simulations still too time consuming to be run at transport time scale. Thus
we need advanced fluid models to be able to run transport codes with first
principles transport models. In different regions or in different parameter
regimes of a tokamak plasma discharge, different physical phenomena become
important. Hence it is important to identify the relevant physical phenomena
in each region of interest.

Predictive transport code implementations [20] - [22] of the Chalmers
drift wave model has been successful in reproducing experimental results
such as the DIII-D electron heat pinch [23], the JET dimensionless scaling
experiments [22], [24] and JET high performance discharges [25].
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In this work I will concentrate on two different classes of modes; the first
class is the ion-temperature-gradient (ITG) driven modes or ηi-modes [26]
- [37] (ηi = Ln/LTi

) (See Papers B, C, D, E and F) and the second class
is the resistive edge modes (resistive ηi-mode and resistive ballooning mode,
See Papers A and C) [37] - [42] since these modes are two of the main
candidates for explaining the anomalous transport in the tokamak core and
the edge region, respectively.

The ITG driven instability was first studied in the slab model as a modi-
fied ion acoustic wave [26]. In Ref. [27] this work was extended to nonuniform
equilibrium density and retaining effects of magnetic shear while taking into
account of ion kinetic effects. The toroidal branch of the ηi-mode was first
investigated in [28] using the fluid description and the correct threshold for
onset of instability in ηi was first found in [29] using kinetic theory. The
toroidal ηi-mode is a Rayleigh-Taylor type of instability localized in the bad
curvature region of the tokamak (the outside of the tokamak). It has a length
scale intermediate between the MHD modes and the usual drift waves.

The edge fluctuations in present fusion plasmas are known to be large
and are also related to the anomalous transport [30]. Many modes have
been studied in order to explain these fluctuations. In Ref. [38] the resistive
edge modes were investigated, in particular the resistive ballooning mode was
shown to be a robust instability and thus it appeared reasonable that this
mode can explain the growth of transport coefficients with minor radius in
the edge region where ηi-modes and trapped electron modes cannot [39].

Since the magnetic field only confines particles in the perpendicular plane,
the system is bent into a torus to take care of the third dimension. Toroidal
effects are thus very fundamental. The toroidicity tends to localize the modes
in the bad curvature region of the tokamak. These modes are called Balloon-
ing modes. The localization in the bad curvature region imposes a finite k‖
which, however still fulfills k‖ << k⊥. The toroidal effects give a coupling
between modes with different poloidal mode number m thus m is no longer
a good “quantum number”. The ballooning modes have been studied earlier
in MHD [43] - [45].

For high mode number n, the long parallel wavelength and the short
perpendicular wavelength decouples. However, this is in conflict with the
periodicity requirement. When the mode number n is high, modes at different
rational surfaces overlap and radially extended modes develop.
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Using the ballooning mode formalism a general form of the eigenvalue
equation which applies to several different types of modes is derived

∂2Ψ

∂χ2
+ f (χ)Ψ = 0 (16)

where Ψ is a generalized potential and χ is a generalized variable. For bal-
looning modes χ is the extended poloidal coordinate and in slab geometry χ
is a Cartesian variable. The explicit form and interpretation of f (χ) in this
equation varies with the type of mode considered. In the slab geometry k‖
is just a number (may be function of �x) whereas in the ballooning represen-
tation it is an operator. Furthermore, for ballooning modes this operator is
the source of the second derivative in Eq. 16. The original physical prob-
lem is now reduced to solving the eigenvalue equation Eq. 16, which is very
similar to solving the problem of a particle in a potential well in quantum
mechanics. If the potential f (χ) is formed in a well the modes are able to
grow whereas if the potential is formed as an anti well the free energy that
drives the instabilities disperse out and no modes can grow.

The acquired solutions (which are not the physical solutions) are not in
general periodic but the physical solution and 2π-periodicity requirement
could be recovered from a super position of the quasi-mode solutions. It can
now be shown that the transformed problem gives the same eigenvalues as
the original problem.

The eigenvalue problem in general has to be solved using numerical meth-
ods. One of the most widely used is the shooting technique were some bound-
ary values are set (e.g. Ψ (0) = 1,Ψ′ (0) = 0) and iterated until the condition
Ψ (χ) → 0 as χ → ∞ is obtained. In the strong ballooning limit the eigen-
functions are well localized and the small χ approximation is valid. It is
found that f (χ) ≈ Ã − B̃χ2 (Re B̃1/2 > 1 for well localized modes) and
the eigenvalue equation becomes the well known Weber equation with the
solutions

Ψn = Hn

(
χB̃1/4

)
e−

1
2
B̃1/2χ2

(17)

where Hn is the nth order Hermite polynomial. In this study, only the
even modes are considered, since the even modes are expected to be more
important for tokamak confinement than the odd modes.
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In the expression of the mode growth it is observed that there is a thresh-
old ηi value for onset of instability (p. 132 in [37]). Using a 2d model the
growth rate can be written as

γ =
ω�

√
εn/τ

1 + k2ρ2

√
ηi − ηith (18)

where εn = 2Ln/LB and Ln, LB are the density, magnetic field scale length,
respectively. The remaining parameters are τ = Ti/Te and the finite Larmor
radius (FLR) parameter k2ρ2 ≈ 0.1 for the fastest growing mode. It is found
that the stability threshold is

ηith ≈ 2.72Ln/LB (19)

for large εn, τ = 1 and k2ρ2 → 0. This stability condition can be written

LTi
≥ 0.367LB (20)

which is in good agreement with the kinetic result LTi
≥ 0.35LB.

The ability to recover the stable regime of ηi-modes for large εn can con-
veniently be taken as a definition of an advanced fluid model [37].

In Papers A and C the resistive edge modes are investigated. In the core,
the plasma is often assumed to be collisionless whereas at the edge the colli-
sionless modes are not able to describe the continued growth of the transport
coefficients with minor radius. At the edge the electrons are influenced by
collisions whereas effects of trapping seem not to be important. This suggests
that the resistive modes are an important source of the turbulence. The role
of the resistive edge modes in the (L−H) confinement phase transition has
been thoroughly studied in recent years.

The two fluid model used in this thesis for the resistive ballooning mode
(RBM) consists of the reduced Braghinskii equations for the electrons and
an advanced fluid model for the ions. In the derived eigenmode equation, it
is found that the spectrum of the resistive instability is very broad.

A way to visualize the RBM is to neglect the temperature effects in the
electrostatic limit. Then in Eqs. 1 and 2 of Paper C it is found in a convenient
normalization that

νJ‖ = ik‖ (n− φ) (21)

ωk2
⊥ = k‖J‖ − ωDn (22)
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where n is the ion density, φ is the electrostatic potential, J‖ is the parallel
current density, ν is the collisionality, k‖, k⊥ are the parallel and perpendic-
ular length scales respectively and ωD is the magnetic drift frequency. This
leads to a phase shift relation relation for n and φ

n =
k2
‖ − iνωk2

⊥

k2
‖ + iνωD

φ (23)

Here the term in the numerator multiplied by ν is producing the collisional
drift wave instability by causing a lagging phase shift between n and φ. This
disturbance is driven by the background density gradient. If the curvature
is unfavorable (e.g. on the outside of the tokamak) then the ωD term in the
denominator also tends to produce a destabilizing phase shift. The maxi-
mum value of ωD is found at the outside midplane of the toroidal tokamak
configuration and the mode “balloons” at this location.

In the large collisionality limit the RBM growth is weakly depending on
the collisionality and asymptotically attains an ideal MHD type of response9

γ0 = (2c2s/RLn)
1/2

. This is a result of the limit νei → ∞ (D‖e = 0) in Eq. 15a
in Paper A, retaining the ideal interchange mode dispersion relation modified
by finite effects of ηi and εn.

For short wavelengths an analytical approximation in Eq. 15a in Paper
A, leads to

γ̃3 ∝ (2s+ 1) ν̃ei (24)

where s is the magnetic shear and νei is the electron-ion collision frequency.
This is the usual resistive ballooning mode and the growth rate is propor-
tional to ν

1/3
ei .

Using the same analytical approximation for long wavelengths it is found
that the growth rate of the RBM is proportional to the collision frequency
(γ ∝ νei) [38].

9The collisionality is so large that it prevents the electrons from moving along the field
lines.
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III The tokamak equilibrium and geometry

An important problem that arises when investigating the effects of different
magnetic field geometries on drift waves is the choice of equilibrium model.
In most fusion reactors of interest we assume that the magnetic field lines lie
in nested toroidal flux surfaces; this is not at all certain in 3d stellarators.
The flux surfaces are toroidal surfaces with constant pressure, �B · ∇P = 0.

There are two kind of flux surfaces: (1) those where we have closed mag-
netic field lines (rational surface) and (2) those where the field lines are dense
in the flux surface (ergodic surface). Before considering parameter regimes
where drift waves are important we have to make sure that the plasma is
MHD stable. This means that an equilibrium described by the stationary
MHD equations �J× �B = ∇p, ∇× �B = �J and ∇· �B = 0 must be stable against
MHD perturbations. The first of these three equations describes pressure bal-
ance and the other are two of Maxwell’s equations. In the tokamak case it is
most often assumed that we have a two dimensional azimuthally symmetric
configuration and the pressure balance is described by the Grad-Shafranov
equation

∆�ψ = −R2 dp

dψ
− F

dF

dψ
(25)

where ∆� = h2
ξ∇ · h−2

ξ ∇, ξ is the “toroidal coordinate”, hξ = |∂�r
∂ξ
|, ψ is the

flux surface label, F is associated with the current and p is the pressure
whereas in the stellarator case we have to solve the full 3d problem. The
Grad-Shafranov equation could either be solved numerically or by analytical
approximations. A problem using the numerically computed equilibria is that
it may be difficult to keep some parameters constant while varying others.
On the other hand analytically computed equilibria are almost always based
on expansions in inverse aspect ratio ε = a/R which may be quite large.

The analytically computed equilibrium, however, allows for controlled
variation of the parameters that specify the equilibrium without recomputing
it; this means, that it provides a model for investigating incorporated physical
effects to the drift wave models.

A well known and widely used analytical equilibrium is the generalized
s−α equilibrium [46] - [49] where it is possible to characterize approximated
local equilibria using nine parameters; s (global magnetic shear), α (pressure
gradient), A (aspect ratio), κ (elongation), δ (triangularity), q (safety factor),
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and the variation of κ, δ andR with the flux surface. The computed equilibria
are supposed to be stable for large enough time scales compared to the time
scale of the drift waves. In paper [49], a quantitative agreement between
numerical and analytical equilibria was found. Moreover, in a recent paper it
was shown that the ηi-mode growth rate obtained with the analytical and the
numerical equilibrium were in qualitative agreement [50] using a restriction
to the equilibrium model used in [49].

Effects of plasma shaping has been studied thoroughly on the MHD
modes; however, it is not at all well known how the properties of the drift
waves change with plasma shaping. In particular, empirically it is found
that elongation has a favorable effect on the energy confinement time τE ∝
κ0.5 [51]. However, in recent preliminary studies strong and opposing effects
of elongation on heat diffusivities in L-mode and H-mode, respectively, were
found [52]. The effects of plasma shaping on drift wave stability has been
studied before for the ηi-mode [53] - [55] and for the trapped electron mode
[56] - [57].

In the physical model a change in the magnetic field geometry enter
through the parallel and perpendicular mode numbers and the magnetic drift
frequency, k‖, k⊥ and ωD respectively. In modeling the magnetic flux surfaces
it is common to use the Riemann metric tensor gij [58] - [59] defined as

ds2 = grrdr
2 + gθθdθ

2 + 2grθdrdθ + gφφdφ
2

= gijdx
idxj (26)

where grr, gθθ, grθ, gφφ are the relevant components of the metric tensor that
defines the geometry. The inverse of the metric tensor is easily obtained from
the relation gijg

jk = δki , where δki is the Kronecker delta

grr =
gθθ

grrgθθ − g2
rθ

(27)

gθθ =
grr

grrgθθ − g2
rθ

(28)

grθ = gθr = − grθ
grrgθθ − g2

rθ

. (29)

We would now like to calculate ωD ∝ �k · e‖×
(
e‖ · ∇

)
e‖, defining e‖ =

�B
B

and

the B-field as �B = Bθθ̂ +Bφφ̂. Defining ∇ as

∇ = ∇r∂r + ∇θ∂θ + ∇φ∂φ (30)
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we obtain the parallel derivative (this is also the parallel structure operator
k‖ = e‖ · ∇)

e‖ · ∇ =
Bφ

Bhφ
∂φ +

Bθ

Bhθ
∂θ. (31)

Observe that there is no φ-dependence in any of the quantities gθθ, gφφ or in
Bθ, Bφ. This allows us to obtain

(
e‖ · ∇

)
e‖ =

1

B2

(
B2

φ

h2
φ

Γj
φφej +

BθBφ

hθ

(
∂θh

−1
θ eθ + h−1

θ Γj
θθej + ∂θh

−1
φ eφ

+
(
h−1
θ + h−1

φ

)
Γj
θφej

)
+
Bθ

h2
θ

∂θBθeθ +
Bθ

hθhφ
∂θBφeφ

)

+ ‖ terms. (32)

Here we have used the fact that Γj
θφ = Γj

φθ = 0, (j = r, θ) neglecting the
terms that are parallel to B because they will vanish when the cross product
is calculated

e‖ ×
(
e‖ · ∇

)
e‖ =

J

B3

(
B3

φ

h3
φ

(
eθΓr

φφ − erΓθ
φφ
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BθB

2
φ
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θhφ
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−
BθB
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φ

hθhφ
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−1
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(
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(
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φ erBθΓ

φ
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θ ∂θBθe
r
)

+
B2

θ

h2
θ

(
−h−1

θ BφΓ
r
φφe

φ + h−1
φ ∂θBφe

r
))

. (33)

We determine k⊥ using the WKB approximation k⊥ through the relation

∇⊥f ≈ ik⊥f (34)

where f is as usual in the eikonal description

f = f̃e−in(
∫

ν(r,θ)dθ−φ). (35)
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Finally employing relation (26) yields

k⊥ = n (∇r∂rq̃ + ∇θ∂θq̃ −∇φ) . (36)

The next step is to calculate k⊥ · �vD,

�k⊥ · e‖ ×
(
e‖ · ∇

)
e‖ =

J

B3
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B3

φ

h3
φ

(
grθ

q

r
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+
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(
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φ − grθq∂θBφh
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. (37)

Now it is tedious but straight forward to calculate explicit expressions for
k‖, k⊥, ωD. In the usual circular axisymmetric case these expressions become
for k⊥, ωD

ωD

ω�
≈ εn (cosθ + sθsinθ) (38)

k2
⊥ ≈ k2

θ

(
1 + s2θ2

)
(39)

The main advantage of using the analytical method is that it is easy to
interpret the effects from different kinds of plasma cross sections on k‖, k⊥, ωD
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(e.g. from elongation, Shafranov shift, triangularity etc). A second advantage
is that it is easy to implement these effects into a an eigenvalue code.
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IV Stellarators

Stellarators are 3D magnetic field configurations where the magnetic fields are
generated by external coils. There is no need for a toroidal current in contrast
to the tokamak configuration during operation. However, in experiments a
toroidal current is often present for ohmic heating purposes. Stellarators
may be the most flexible configuration from a physics point of view but
there are often large forces on the external coils that act alternatingly inward
and outward making extrapolations to higher fields and larger experiments
unattractive. There are ways of constructing the windings to reduce this
problem of large forces on the helical coils, however.

Most of the modern stellarators (e.g. Wendelstein 7-X [60], Quasi Poloidal
Stellarator [61]) are optimized to minimize the neoclassical transport and
therefore it is important to investigate the properties of anomalous trans-
port in present stellarators. In the Quasi Poloidal hybrid Stellarator (QPS)
experiment a confinement optimization is made for low plasma aspect ratio
(R̄/ā ≈ 2.6) under the criterion of low neoclassical transport levels so that
significant transport reduction is reached if enhanced confinement regimes
are accessible.

The work presented in this thesis aims to extend the earlier work done
on drift waves in simplified magnetic field configurations or with a simplified
drift wave model [62] - [69]. There is some recent work done using the gyro
kinetic model [70] - [72]. In Ref. [62] it was shown that in addition to the
toroidally localized modes there are wells that may cause helical localization
as well. In most of the recent papers [65] - [68] more general stellarator
equilibria are used; however, simplified physical models are employed. The
iδ model (non adiabatic electrons) artificially achieves a phase shift in the
n and φ perturbations is employed. In specifying the instability mechanism
(e.g. dissipative trapped electrons) an approximate model value of δ can be
found. As for the tokamak, a ballooning mode structure is often assumed
even in the stellarator case. This greatly simplifies the equations but may
lead to problems. For low shear equilibria the distance between the resonant
surfaces are large so that the coupling of the Fourier modes may be too weak;
see Ref. [73] and a discussion thereof in Ref. [69] where it was reported that
most of the important mode properties are found using the ballooning mode
formalism in the l = 2 straight stellarator.

In this thesis only the flux coordinate system named Boozer-Grad [58],
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[74] - [78] coordinates will be discussed. The Boozer-Grad coordinates are
characterized by choosing the third Clebsch coordinate in a special way and
the coordinate labels will be termed as (s, θ, ξ), where s = 2πψ/ψp is the
normalized flux (radial) coordinate and θ, ξ are the generalized poloidal and
toroidal angles, respectively. The magnetic field can be written in the form

�B =
ψ̇

J
(eθ + qeξ) (40)

where ej and ψ̇ = dψ/ds are basis vectors and

J = �es · �eθ × �eξ =
R̄ψ̇

B2
(Bθ + qBξ) . (41)

In this coordinate system the geometry dependent terms can be written
in the Ballooning representation as

ωDi
= ωDi

(s, α, ξ) =
B0R̄

B2
�k⊥ ·

(
�B × (κ+ ∇ lnB)

)
(42)

�k⊥ = �k⊥ (s, α, ξ; θk) =
ā

q

(
∇ξ − q∇θ −

(
ξ − ξ0
q

− θk

)
dq

dψ
∇ψ

)
.(43)

The last expressions can be approximated to Eqs 38 and 39 in Chapter III
for a circular tokamak equilibrium.

In Ref. [64] it was reported that the radial localization width (and the
micro turbulence level) in stellarators is to a large part influenced by the
local magnetic shear and not the global magnetic shear as in the case for
a tokamak, and thus the largest difference between tokamak configurations
and stellarator configurations is that the local properties of the confining
magnetic fields are significantly different. The local magnetic shear (sL),
the geodesic curvature (κG), the normal curvature (κN) and the variation of

the magnetic field along the field line ( �B) are important quantities when the
drift wave stability is considered. When the tokamak configuration is studied
most often the global magnetic shear (s) is treated which is the flux surface
averaged local magnetic shear. It is possible to write the local magnetic shear
as a linear combination of the global shear and a residual shear (sR)

sL = s+ sR (44)
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where the flux surface average of the residual shear vanishes. The normal
and geodesic curvature are in Boozer coordinates

κN = �κ · ∇s
|∇s| (45)

κG = �κ ·
(

∇s
|∇s| × e‖

)
(46)

�κ =
(
e‖ · ∇

)
e‖ (47)

where s is the normalized flux (radial) coordinate and e‖ is a unit vector
along the magnetic field. The regions of favorable and unfavorable curvature
are determined by the signs of the normal and geodesic curvature, however,
if the normal curvature is positive it is favorable. The effect of the geodesic
curvature has to be determined from case to case.
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V Zonal flows

The concept of zonal flow [79] - [81] is borrowed from geophysical fluid
dynamics [82] - [83] where a flow in the direction of changing longitude within
a given band of latitudes is called a zonal flow (it is constant in arbitrarily thin
zones). Zonal flows in this work are low frequency, poloidally and azimuthally
symmetric potential perturbations with small radial scale (i.e. kθ = 0, k‖ = 0
and k⊥ finite). The zonal flows are essentially a limiting case of the more
general notion of a “convective cell” [84] - [85]. It is instructive to show the

difference in the �k spectrum of zonal flows and ordinary turbulence.

Turbulence vs zonal flow spectrum

k
x

k
y

Turbulence 

 Zonal flow 

Figure: Turbulence versus zonal flow spectrum. The straight lines are kx = 0
and ky = 0 whereas the elliptical lines are contours of typical �k spectrum
values of turbulence and zonal flows, respectively.
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Zonal flows are generated non-linearly by drift waves by the way of modu-
lations in the radial flux of vorticity or the charge separation current. These
flows are, effectively, sheared �E × �B0 flow layers which strain and distort
the drift waves they co-exist with. There are a number of suggested damp-
ing mechanisms for zonal flows, two of the most important are the ion-ion
collisions and the interference of Kelvin-Helmholtz instabilities that destroys
zonal flows. The generation of zonal flows has recently been the subject
of many scientific papers both analytically [86] - [94] and in computer
simulations using gyrokinetic [95] - [97] and advanced fluid models [98]
- [100] since they are expected to play an important role in the reduction
of transport and turbulence found in in enhanced regimes of present fusion
experiments [86], [95].

Unlike the drift waves (kθ �= 0) which cause anomalous transport and
are often considered having Boltzmann distributed electrons, the zonal flows
(kθ = 0) have ñe/n0 ∝ k2

⊥ρ
2
seφ̃/Te. The proper electron density response is

usually written as

ñe

n0
=

e

Te
(φ− 〈φ〉) (48)

where 〈φ〉 is the flux surface average of φ. If this electron response is not
used streamer like (radially elongated) structures form and grow indefinitely,
and the turbulence never saturates [100].

It is found in recent non-linear collisionless gyrokinetic simulations that
there is significant non-linear upshift (Dimits shift) in the effective critical
gradient (R/LT i) needed for onset of turbulence. This upshift is caused by an
undamped component of zonal flow [96] and may be reduced or removed by
introducing collisionality that slowly damp the zonal flows [101]. In analytical
estimations of zonal flow excitation a resonance is found close to marginal
stability which is consistent with the non-linear simulations [94].

There are several methods for estimating the effects of zonal flows on
turbulence analytically, among them are the wave kinetic approach [89], [102]
- [106], the parametric instability method where a pump wave and sidebands
generate the zonal flow [90], [93], [107] - [110] and the reductive perturbation
method [94], [111] - [113]. To achieve a better understanding of these
flows it is beneficial to proceed with a short instructive “calculation” closely
following Ref. [105] where zonal flows appear in close connection with the
wave kinetic approach. Consider a drift wave packet propagating radially in
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an region of random zonal flow layers. Assume that that the zonal flows are,
quasistationary, slowly varying in comparison with the drift waves (ωZF <<

ωDW ). When the drift wave packet meets the zonal flow layers the zonal
flow will increase the drift wave 〈k2

r〉, since the zonal flows change the radial
structure. Now, the drift wave frequency

ωDW ≈ ω�e

1 + k2
⊥ρ

2
s

(49)

will decrease and since the drift wave action density

N (k) =
W (k)

ωk
(50)

is conserved (since we have assumed a quasi-stationarity case) the drift wave
energy will decrease. The total energy of the drift wave and zonal flow system
is conserved

WDW +WZF = constant. (51)

The zonal flow energy will increase which is suggestive of an instability and
the initial perturbation will increase.

In the parametric instability method the fluctuations (electrostatic) are
assumed to be coherent and composed of a single n (n �= 0, toroidal mode
number) drift wave φDW and a zonal flow mode φZF . There are two sidebands
φ+ and φ− produced by the modulation in the radial envelope due to φZF

with frequency ωZF and wavenumber kZF .

φDW = φ0 + φ+ + φ− + c.c (52)

Here c.c is the complex conjugate of the previous terms and φ0 is the pump
wave. This is a four wave coupling process with φ0, φ+, φ− and φZF , where
φ0 is considered to be linearly unstable whereas φ+ and φ− are considered
linearly stable [90].

In the reductive perturbation method it is assumed that all fields may be
expanded as a power series e.g.

f =
∑
p

εpf p (53)

f p =
∑
l

f p
l (r, ξ, τ) exp il

(
k‖z + kθθ − ωt

)
(54)
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where the variables may be taken as ξ = ε (y − ut), u is the phase velocity
and τ = εt2 where is a small parameter. This expansion is now inserted into
the governing equations and then the equations are solved order by order.
The linear dispersion relation is obtained to order ε, the group velocity to
order ε2 and zonal flow amplitude to order ε3. The zonal flow (l = o) is
obtained due to self interaction of the drift wave (l = 1). There is no need
for the side bands in this case since the variation in ξ is slow.

In this thesis only the wave kinetic approach is employed.
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VI Summary of papers

VI.1 Paper A

In Paper A the influence of the ion-temperature fluctuations on the the resis-
tive ballooning mode stability in the strong ballooning limit is investigated.
The model used to describe these modes is a two fluid model derived from
the Braghinskii equations as a model for the electrons and an advanced fluid
model for the ions. The derived eigenvalue equation is solved analytically
assuming a specific form of the eigenmode, arriving at an algebraic disper-
sion relation. The algebraic dispersion relation is solved numerically using a
standard root finding algorithm.

Comparison with earlier numerical simulations [42] shows that the ana-
lytical approach gives reasonable agreement for the mode growth. It is also
shown that the ion-temperature fluctuations have a strong impact on the
resistive mode. In particular, it is found that the mode is stabilized by FLR
already at ηi ≥ 3.

However, more work is needed to quantify and compare the FLR stabi-
lization of the mode with the stabilization due to sheared rotation.

VI.2 Paper B

The work in paper B is based on an advanced fluid model for the ions as in
Paper A whereas the electrons are assumed to be Boltzmann distributed. The
ion-temperature-gradient (ITG) driven mode stability properties are studied
in a generalized s − α model that allows for non-circular cross section. An
eigenvalue equation is derived and is solved numerically using a standard
shooting technique. In particular, the paper investigates the effects of elon-
gation (κ) and Shafranov shift on the ITG mode. Approximate results are
also calculated in the strong ballooning limit.

The effects of non-circular cross section enter mainly in the magnetic drift
frequency; however, the FLR parameter and the parallel wavenumber are also
modified. The effect of elongation is two-fold: (1) it is stabilizing for small
εn and (2) it is destabilizing in a region of parameter space with large εn.
However, for sufficiently large elongation a stabilization is eventually found.
The influence of Shafranov shift is rather weak but tends to be stabilizing.

In addition, the spectrum of the unstable modes is shifted towards shorter
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wavelengths for elongated equilibria. This shift tends to reduce the trans-
port by reducing the correlation length in the plasma. The present paper
indicates that for realistic tokamak parameters the model predicts a slight
destabilization of the ηi-mode in the core where the density profiles are flat
whereas in the edge where the density profiles are peaked we expect a sta-
bilization. To characterize the total effects of elongation on the confinement
time a more elaborate transport code study is needed which treats the core
and edge transport processes self-consistently and which includes the effects
of non-circular cross sections.

VI.3 Paper C

In paper C the resistive edge modes (collisional ηi-modes and resistive bal-
looning modes (RBM)) are investigated in non-circular tokamak equilibria,
using the same physical model as in Paper A but the eigenvalue problem
is solved numerically. The geometrical effects enter in the magnetic drift
frequency (ωD) and in the perpendicular (k⊥) and the parallel (k‖) length
scales. Paper C is divided into two parts; the first part treats the collisional
ηi-mode while the second part treats the RBM.

In the first part it is found that the ηi-mode may be either stabilizing
or destabilizing by the electron-ion collisions depending on the parameters
used. It is found that the scaling of elongation is similar to that obtained for
the collisionless ηi-mode studied in paper B.

In part two the RBM is investigated and the stabilization of the RBM
with ηi as seen in Paper A is recovered and may be enhanced by increasing
elongation. For edge parameters (i.e. εn small) a favorable scaling with
elongation is expected as seen in Fig. 6.

The maximum growth rate of the RBM and the collisional ηi-modes are
of equal magnitude with kθρ ≈ 0.15 for maximum growth rate of the RBM
and kθρ ≈ 0.3 for the collisional ηi-modes.

In conclusion, the elongation scaling of the ηi- and ballooning modes seem
to be more favorable at the edge, where εn is small, than in the core. As
suggested by recent transport code simulations, the scaling originating from
the edge may be more important for determining the total effects of plasma
elongation on the energy confinement time.
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VI.4 Paper D

The reactive ITG driven mode stability in an H-1NF stellarator equilibrium
is calculated in paper D. The physical model used is the same model as in
paper B. VMEC is employed to calculate the stellarator equilibria and the
output is tranformed into the Boozer coordinate basis which is used for all
calculations. Results of numerical calculations have been presented on a field
line of reference passing through θ = ξ = 0 on the magnetic surface s = 0.4.
All the results are compared to the corresponding tokamak results reported
earlier in [36]. The main concern of this paper is to make a first attempt
to calculate the ITG mode stability for a stellarator equilibrium using the
ballooning mode formalism; however, no attempt is made to cover the vast
parameter range resulting from the various operational modes.

The critical temperature gradient needed to obtain instability is ηi ≈
2.2 which is slightly larger than the threshold found for the corresponding
tokamak; this may be due to the negative magnetic shear in the stellarator.
The effect of small and large temperature ratios is found to be stabilizing
on the modes. The parameter θk controls the magnitude of �k⊥ along the
outward normal to the flux surface. A slow variation of the growth rate
and real frequency is found when the parameter θk is varied at the magnetic
surface s = 0.4. This is found to be due to the small “global” magnetic
shear (q̇/q = −0.027) whereas at the s = 0.9 magnetic surface the shear is
significantly larger (q̇/q = −0.11) and the variation with θk is larger.

VI.5 Paper E

A comparison of the ITG mode instability for three different cases namely,
the H-1NF stellarator, a numerical circular 3d tokamak and the analytical
s−α equilibria is done in paper E. The physical model employed is the same
as in paper B. The numerical equilibria utilized are calculated with VMEC
and the output is transformed into the Boozer coordinate basis. Growth
rates and real frequencies are compared for the most localized mode which
also corresponds to the largest growth rate.

Good agreement is found between the numerical tokamak equilibrium and
the s−α model equilibrium for small and intermediate radial positions. The
growth rates for the stellarator and the tokamak are comparable whereas the
modulus of the real frequency for the stellarator is significantly larger than
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the tokamak result and this is partly explained by the stronger curvature of
the stellarator. The ηi threshold value is slightly increased and a stronger
stabilization of the modes is found for large εn (compression) in the stellarator
case which may be caused by the negative magnetic shear in the stellarator.
This is due to the fact that the negative magnetic shear in the stellarator
tends to decrease the curvature and thus the growth rate decreases. This
is displayed using the corresponding result for the analytical model with
reversed shear.

The differences in the results obtained for the stellarator and the tokamak
and the variation with the radial coordinate can all be understood in terms
of the changing curvature.

VI.6 Paper F

In this work the zonal flow growth rate in toroidal ion-temperature-gradient
(ITG) mode turbulence including the effects of elongation is studied ana-
lytically. The scaling of the zonal flow growth with plasma parameters is
examined for typical tokamak parameter values. The physical model used
for the toroidal ITG driven mode is based on the ion continuity and ion
temperature equations whereas the zonal flow evolution is described by the
vorticity equation. The present model is electrostatic and FLR effects and
electron trapping are neglected. The time evolution of the adiabatic invariant
in toroidal ITG turbulence is described by the wave-kinetic equation which
gives the coupling between the zonal flow and toroidal ITG mode perturba-
tions. An algebraic equation is derived describing the zonal flow excitation
retaining effects of elongated plasma cross sections which is solved numeri-
cally.

A resonance in the zonal flow excitation level is found close to marginal
stability, consistent with the non-linear simulation results of the Cyclone
work [105]. For peaked density profiles (small εn = 2Ln/LB), a strong exci-
tation of zonal flows with γ/γITG is found which is substantially increased
with elongation whereas for most other cases the effects of elongation are
weak. Moreover, the zonal flow excitation grows linearly with the wavenum-
ber for zero collisional damping whereas for non-zero damping the zonal flow
excitation is significantly reduced.
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