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Lattice dynamics in perovskites for green energy applications
A theoretical perspective

PetteR RosandeR
Department of Physics

Chalmers University of Technology

Abstract
Electrolyzers and fuel cells are used in green energy applications, electrolyzers split wa-
ter to produce hydrogen, which can then be used in fuel cells to produce energy. Oxide
perovskites have shown favorable properties for applications in this area, e.g., as elec-
trolyte and cathode material in fuel cells and electrolyzers. The important property is
the conductivity of protons, which depends sensitively on the hydrogen concentration
and mobility. The concentration depends on the efficiency of the hydration reaction,
which is the primary way to incorporate protons in perovskites. An example of an ex-
cellent proton conductor is acceptor doped BaZrO3. Hence, some of the most crucial
material properties derive from defect properties. This thesis also explore the halide
perovskites CsPbBr3, which have proven to be auspicious for photovoltaics. Insights
into phase stability, phase transitions and the underlying dynamics in these materials
are crucial. Thus, the understanding of microscopic properties is the cornerstone of
this thesis.

In the present thesis, density functional theory is utilized to obtain training data for
construction of potentials. The potentials that have been used are either force con-
stant potentials or neural network potentials. The potential are then used to run lattice
dynamics. To vastly extend the total simulation time or simply decrease the computa-
tional time, graphical processing units are also employed. Furthermore, defect models
are applied to understand reaction kinetics.

More specifically, the vibrational defect thermodynamics of BaZrO3 was examined
within the harmonic approximation. We also elaborate on the soft antiferrodistortive
phonon mode found in this material using self-consistent phonons and molecular dy-
namics. This soft mode, should ultimately be the deciding factor for which structure
BaZrO3 exhibit at low temperatures. Similarmethodswere also employed to investigate
phonon dynamics in the very anharmonic perovskite, CsPbBr3. These type of insights
can, e.g., further guide the development of new materials by fine-tuning of properties.

Keywords: oxides, perovskites, defects, lattice dynamics, force constants, density func-
tional theory, thermodynamic modelling
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1
Introduction

In the past years, the performance of computers has increased immensely. Moreover,
the ability to work collaboratively on software packages, has improved considerably
with the increased connectivity. This has led to fewer, but faster and more advanced
computer codes. Owing to this, the material science community has been able to run
previously prohibitively expensive atomic scale simulations, for large systems and long
time scales. This has furthered the possibility to use computers to search for, and opti-
mize, material properties in all sorts of applications. These computer simulations have
also made it possible to give deeper insights into experimental observations.

The solution of the Schrödinger equation, which describes the dynamics of systems
on the atomic scale, scales extremely poorly with system size. The scaling problem
can, e.g., be solved with Density functional theory (DFT), which have made it possible
to use computers to solve the Schrödinger equation for larger systems but the small-
est. However, in reformulating the Schrödinger equation, we have to pay a price, the
electron-electron interaction introduces difficulties that can only be solved approxi-
mately. Despite this shortcoming, DFT has proven to be invaluable to materials sci-
ence and has accelerated the search for optimal materials. For example, DFT allows for
calculation of many properties on the atomic scale, such as total energies and atomic
forces. Calculating the forces and energies allows for structure relaxation, i.e., low en-
ergy structures can be found, and e.g., reaction energies can be calculated using the
total energy. However, despite the increased computational power, and the finesse
of DFT, some simulations can still be prohibitively expensive when many degrees of
freedom (DOF)s need to be considered. There are ways around this issue, one possibil-
ity is to use surrogate models that are trained with input from DFT. Such models can,
e.g., be cluster expansion (CE)s, neural network potentials or force constant potential
(FCP)s. These methods can then be used to examine the configurational and vibrational
DOFs. We have used these types of methods to study the lattice dynamics in the proton
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Chapter 1. Introduction

conducting perovskite, BaZrO3 (BZO), and the solar cell material, CsPbBr3.
This thesis will provide an introduction to examples of proton conductive materials,

more precisely the perovskite structure. Then a basic introduction to thermodynamics
of points defects will be given. Following this will be a brief overview of how fuel
cells and electrolyzers work. Lastly, the computational methods used to study these
materials are outlined. This includes the basics of DFT and a discussion on how the
electron-electron interaction is treated on different levels of DFT. Following this will be
an introduction to how the nuclei system is treated and how the anharmonicity impacts
the system and how it can be dealt with. Lastly, different regression and regularization
methods are introduced.
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2
The perovskite structure

The Prussian mineralogist Gustav Rose discovered a mineral [4] which was given the
name Perovskite, after the Russian mineralogist Count Lev Perovskiy. The discovery
was originally of calcium titanate (CaTiO3), however, many more materials exhibit the
same structure, which now is known as the perovskite structure. The chemical formula
is ABX3, where A and B often are cations and X an anion. The B cation is 6-fold coor-
dinated with the X anion (octahedron) while the A cation is 12-fold coordinated with
the X anion (cuboctahedron). Fig. 2.1 shows the 6-fold coordination of the B cation
together with the box of A cations surrounding it. The common representation of the
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Γ
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Δ T

Σ Z

sΛ

Figure 2.1: The ideal cubic perovskite structure together with the Brillouin zone, which shows
the high symmetry points and the paths between them.
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Chapter 2. The perovskite structure

cubic perovskite is,
⎧⎪
⎨
⎪⎩

𝐴 ∼ (0, 0, 0)𝑎0
𝐵 ∼ (0.5, 0.5, 0.5)𝑎0
𝑋 ∼ {(0.5, 0.5, 0)𝑎0}

(2.1)

where 𝑎0 is the lattice constant and {} indicates cyclic permutation. The unit cell of
the reciprocal lattice of the cubic structure, with its high symmetry points and paths
between the high symmetry points, is shown in Figure 2.1.

There exist a vast number of perovskites owing to the extensive possible paring of
the A and B site ions. However, the possible paring of the A and B ions for ionic
perovskites is restricted by the charge neutrality condition, which is that the oxidation
numbers must sum to zero. For an oxygen perovskite, we have three possible parings
of oxidation state for the A and B ions, namely, 1:5, 2:4 and 3:3. Substitutional defects
on the A and B sites give a large pool of possible materials, one such class of materials
is the high-entropy perovskite oxides [5, 6]. Another class of trending materials is the
hybrid perovskites, where the X atom is occupied by a halide anion, e.g., Br. The A site
can be occupied by e.g., Cs, but also molecules such as formamidinium and lastly, the
B site is a bivalent metal cation such as Pb. These class of materials are relevant in, e.g.,
solar cells, photodetectors or nanolasers [7–10].

Thanks to the vast number of materials, the perovskite structure has shown numer-
ous of novel properties, such as, triple conduction of electrons, protons, and oxygens
[11], proton conductivity [12], piezoelectricity [13], multiferroicity [14], dielectricity
[15] and magnetocalorimetry [16].

2.1 Phases of the perovskite structure
Few perovskites exhibit the ideal cubic structure, most unit cells are instead distorted to
e.g., orthorhombic, tetragonal or trigonal cells. Goldschmidt derived an empirical for-
mula for determining if the perovskite would exhibit the cubic structure or not, which
is referred to as the Goldschmidt tolerance factor [17]. Assuming that the perovskites
are mostly ionic, we can model the ions as hard spheres. We can then derive the ratio
of how well different ionic radii [18] match along different axis of the crystal. Measur-
ing the lattice constant along the B-X axis gives a lattice constant of 𝑎 = 2(𝑅𝐵 + 𝑅𝑋),
whereas measuring along the A-X axis gives 𝑎 = √2(𝑅𝐴 + 𝑅𝑋). The tolerance factor
is then given as the fraction of the lattice constants along different crystal axis,

𝑡 = 𝑅𝐴 + 𝑅𝑋

√2(𝑅𝐵 + 𝑅𝑋)
.

The closer the tolerance factor is to 1 the more likely it is that the structure will exhibit
the ideal cubic structure. However, it is important to remember that it should serve as

4



2.2. Barium Zirconate

Figure 2.2: A schematic representation of the tilting of the oxygen octahedra. The distortion is
exaggerated for visualization purposes.

a guide rather than a rule.
Perovskites with a tolerance factor larger than 1 are usually distorted to a tetragonal

or hexagonal lattice, the B ion is too small, and the lattice will develop polar distortions,
such as in BaTiO3 [19]. On the other hand, a smaller tolerance factor indicates that the
A ion is too small and can’t effectively bind with all neighboring oxygen ions. The
structure commonly distorts to an orthorhombic cell, e.g., CaTiO3, CdTiO3 [20] and
BaCeO3 (BCO) [21].

2.2 Barium Zirconate
A good candidate to preserve the cubic symmetry all the way down to 0K is BaZrO3
BZO, as the tolerance factor is close to 1 (∼ 1.01). However, depending on the approx-
imation used in the first principle calculations, a symmetry lowering phase appears as
an imaginary frequency at the R-point of the reciprocal lattice. The competing structure
for BZO is the antiferrodistortive (AFD) structure, where the oxygen octahedra [ZrO6]
is rotated. Successive cells are rotated in opposite direction (out of phase). Fig. 2.2
depicts the distortion. This distortion has been shown to be strongly related to the
Goldschmidt tolerance factor [22]. However, it is still debated whether BZO is cubic all
the way down to 0K [23–31].

Experimental sintering of BZO is difficult because of its high melting temperature
and long soaking times [32]. BZO is therefore commonly studied using powder sam-
ples [23, 26, 33]. For example, Akbarzadeh et al. [23] studied BZO using x-ray and
neutron diffraction on a powder sample together with Monte Carlo simulations using
an effective Hamiltonian. They found that the structure remained cubic all the way
down to at least 2 K. Moreover, Perrichon et al. [26] found that the cubic phase can

5



Chapter 2. The perovskite structure

be ascribed down to at least 3 K using neutron powder diffraction. They measured
the dynamical structure factor at the R-point at different temperatures and revealed a
weak frequency dependence with temperature, which agreed well with the theoretical
calculation. Furthermore, they studied the stability of the cubic structure with first
principles calculations and found that the predicted ground state depended on the ap-
proximation used, which can also be noted from several other first principles studies
[27–30]. They also found that the instability correlates strongly with the lattice spac-
ing, and the cubic structure is stabilized by a large cell size. Yang et al. studied BZO at
room temperature and high pressure, they found that BZO undergoes a phase transi-
tion from cubic to tetragonal under high pressure which corroborates the correlation of
the lattice parameter and stability of the cubic structure. Furthermore, Toulouse et al.
[31] investigated the Raman spectrum. This spectrum should be completely silent for
the cubic perovskite, however, in this case it exhibited peaks. They attributed a major-
ity of the contributions to the Raman spectrum to overtones. In principle, the Raman
spectrum should probe the Γ point, however overtones can still obey the selection rules
in two phonons process where the momentum of the two phonons has opposite sign
but equal amplitude. They conclude that locally tilted nanodomains are not supported
by the Raman spectrum.

On the other hand, Giannici et al. [24] conducted x-ray diffraction and Raman spec-
troscopy on BZO and Y doped BZO, they found that the undoped sample’s x-ray diffrac-
tion pattern was consistent with a cubic perovskite. However, the Raman spectrum
exhibited peaks. They assigned these peaks to local symmetry reduction due to local
tilting of the oxygen octahedra. Similarly, Levin et al. [25] observed evidence for a
local symmetry reduction as well. They studied BZO using transmission electron mi-
croscope and observed a weak but yet discrete spot around the R-point (1/2ℎ𝑘𝑙). The spot
appeared below 80K and therefore suggests that there exist nanodomains of octahedral
rotated cells below this temperature.

2.3 Barium Ferrite
The ground state structure of BaFeO3 (BFO) is not extensively studied experimentally.
However, there exist some experimental studies on the manufacturing of BFO both in
bulk and as epitaxial thin films. The bulk manufacturing found numerous of phases
depending on the conditions during the fabrication, e.g., ambient, heating temperature
and duration of heating is important [34, 35]. Hayashi [36] synthesized the cubic struc-
ture of BFO by low temperature oxidation of BaFeO2.5 and found from neutron diffrac-
tion that it remained cubic down to at least 8 K. Alternatively, the cubic structure can
be stabilized by doping with, e.g., Ce on the Ba site [37]. Epitaxial BFO thin films grown
on BaTiO3 exhibited a pseudo cubic structure that was nonconductive and weakly fer-
romagnetic. However, this nonconductivity and weakly ferromagnetism seem to be

6



2.3. Barium Ferrite

Figure 2.3: A schematic representation of the Jahn-Teller mode. The distortion is exaggerated
for visualization purposes.

related to the oxygen content, and therefore the valency of the iron. After annealing
in oxygen, the films became conductive and ferromagnetic [38]. Matsui et al. found
similar results [39].
Computationally, Rahman et al. [40] found that BFO has a ferromagnetic ground state

structure for all approximations they tested. They also found that strained structures
can transform from ferromagnetic to ferrimagnetic and with even larger strains to anti-
ferromagnetic. Cherair et al. [41] did an exhaustive first principle study of BFO where
they investigated the potential energy surface (PES) for a few modes using different
approximations. They found that the Jahn-Teller (JT) distortion minimizes the total en-
ergy, however, the difference in energy depends strongly on the value of U used in the
DFT+U method (see Chapter 5). Larger U values tend to stabilize the cubic structure.
Furthermore, they qualitatively concluded that the JT structure could be introduced by
epitaxial strain. They also found that the exchange interaction from Hartree-Fock (see
Chapter 5) tends to localize the electrons on the iron atom since the magnetic moments
of the iron increases, this is inline with what larger U values produce as well. Finally,
Hoedl et al. [42], found that the ground state structure of BFO is the JT structure, see
Fig. 2.3, for DFT + U with U = 4 eV.
The JT effect is a geometrical distortion of the atoms associated with a magnetic elec-

tronic ground state. This distortion was first discussed by Hermann Jahn and Edward
Teller, who used symmetry arguments to show that any nonlinear molecule with a spa-
tially degenerate electronic ground state will be unstable and distort in such a way that
the states will lift its degeneracy [43]. This type of distortion is common in solid state
metal complexes, with high spin configurations such as 𝑑4(𝑡3

2𝑔𝑒1
𝑔) occupations. In BFO

the distortion is driven by the covalency of the Fe-O bond. A schematic representation
of the orbital occupations is given in Figure 2.4. The 𝑒𝑔 orbitals are the ones pointing
directly towards the ligands (oxygens). For this specific paring of the electrons, there

7



Chapter 2. The perovskite structure
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Figure 2.4: A schematic representation of the electron paring of the iron atom in a high spin
𝑡3
2𝑔𝑒1

𝑔 state. The iron atom is located in the origin and the oxygens are located along the Cartesian
axes.

will be a larger concentration of electrons in the xy plane. The larger concentration
of electrons within the xy plane leads to a repulsive interaction between the oxygen
and iron which elongates the Fe-O bond. This elongation reduces the energy of the
𝑑𝑥2−𝑦2 orbital and lifts the degeneracy of the orbitals. The lowering of the energy in the
𝑑𝑥2−𝑦2 orbital is what drives the distortion. In response to this elongation the oxygen’s
along the z direction contracts slight, due to reduced electrostatic repulsion (elasticity).
One can also imagine that the electron instead was situated in the 𝑑𝑧2 which would
lead to an elongation along that bond and a contraction in the xy plane using the same
arguments. An excellent discussion on the JT effect can be found in Ref. [44].
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3
Thermodynamics of point defects

Point defects are impurities in an otherwise pristine material. Formation of defects is
mostly driven by the increased entropy of the system, and can drastically change the
properties of a material. Therefore, controlling the types of defects that are formed can
lead to new technological advances [45].
Defects can be intrinsic, that is, the defect involves the atomic species of the host

lattice. The defect can also be extrinsic, which involves atomic types that are not native
to the host lattice. Examples of point defects are vacancies, self-interstitals, interstitials
and substitutional defects. Kröger-Vink notation is typically used to denote these types
of defects. This convention describes the effective electronic charge and lattice position
of the considered defect. The notation looks as follows, AB

C, where the letter, A, denotes
the defect, a vacancy will have the symbol v, for example. The B is the effective charge
which can be x, • or ′ for a neutral, positive, or negative effective charge, respectively.
The effective charge is defined as the difference in the charge between the site when it
is occupied by the defect compared to the host atom. Lastly, the C denotes the position
in the host lattice, e.g., an interstitial will be denoted by an i.

An example is, vO , which is an oxygen vacancy that has an effective charge of +2.
Y′
Zr is a substitutional defect where an yttrium is situated on a zirconium site with an

effective charge of -1. Hi is a proton interstitial, which, in this work, will typically be
denoted OHO since the proton is very strongly bound to the oxygen. Lastly, O×

O is and
oxygen situated on its regular lattice site with an effective charge of 0. The formation
of point defects is governed by thermodynamics, for which the relevant equations and
concepts for this thesis will be presented in this chapter.

9



Chapter 3. Thermodynamics of point defects

3.1 Point defect formation
Gibbs free energy dictate what defects are formed, it is defined as,

𝐺(𝑇 , 𝑃 ) = 𝑈 − 𝑇 𝑆 + 𝑃 𝑉 ,

where 𝑈 = ⟨𝐸⟩ is the internal energy, 𝑆 = −𝑘𝐵 ⟨ln(𝑝)⟩ is the entropy, where 𝑝 is the
probability of a state being occupied, 𝑃 and 𝑉 are the pressure and volume respectively.
⟨𝐴⟩ defines an average of the observable 𝐴,

⟨𝐴⟩ = ∑
𝑖

𝑝𝑖𝐴𝑖.

The equilibrium number of point defects is then found by calculating the change in
free energy upon defect formation,

Δ𝐺(𝑇 , 𝑃 ) = Δ𝐻 − 𝑇 Δ𝑆, (3.1)

where 𝐻 is the enthalpy, 𝐻 = 𝑈 + 𝑃 𝑉 . Considering all DOF, configurational, elec-
tronic and vibrational in the free energy simultaneously is, however, computationally
intractable. Fortunately, the relevant timescales for the DOF are considerably different.
This allows us to coarse-grain the problem, i.e., the DOF can be treated independently of
each other. Assuming that the difference in electronic entropy is negligible, we arrive
at,

Δ𝑆 = Δ𝑆conf + Δ𝑆vib.

Furthermore, if the defects are non-interacting, the Free energy difference, Eq. (3.1),
simplifies to,

Δ𝐺 = 𝑛Δ𝐺𝑓
def − 𝑇 Δ𝑆conf. (3.2)

where 𝑛 is the number of defects, Δ𝐺𝑓
def is the formation energy of an isolated defect and

Δ𝑆conf is the configurational formation entropy. Moreover, since we have assumed that
the defects are non-interacting, the probability of all the states should be equal, i.e., 𝑝 =
Ω−1, where Ω is the number of microstates, denoted multiplicity. This approximation
leads to a simpler expression for the configurational entropy given as,

Δ𝑆conf = 𝑘𝐵 lnΩ. (3.3)

The multiplicity is given by the binomial coefficient, i.e., we want to place n defects on
𝑁 possible sites,

Ω = (
𝑁
𝑛 ). (3.4)

10



3.2. Chemical reactions

This is slightly modified in the case of, e.g., interstitial defects that have an internal
DOF, such as a rotation. For example, the proton in BZO (OHO), is free to rotate in a
plane with 𝑚 = 4 distinct positions [46]. This leads to an extra factor in the multiplicity,

Ω = 𝑚𝑛
(

𝑁
𝑛 ). (3.5)

Using Stirling’s approximation in Eq. (3.3), allows us to derive an equilibrium concen-
tration. This concentration is found by minimizing Eq. (3.2) w.r.t to 𝑛, i.e.,

𝑑
𝑑𝑛Δ𝐺 = Δ𝐺𝑓

def + 𝑘𝐵𝑇 ln(
𝑛

𝑚(𝑁 − 𝑛)) = 0. (3.6)

This leads to the following relation,

𝑥eq =
𝑚exp(−Δ𝐺𝑓

def
𝑘𝐵𝑇 )

𝑚exp(−Δ𝐺𝑓
def

𝑘𝐵𝑇 ) + 1
,

where 𝑥 = 𝑛/𝑁 . In the dilute limit, (𝑥 ≪ 1), this simplifies to,

𝑥eq = 𝑚exp
(

−
Δ𝐺𝑓

def
𝑘𝐵𝑇 )

,

where the free energy difference, is given as,

Δ𝐺𝑓
def = Δ𝐸el + Δ𝐹vib + ∑

𝑖
Δ𝑛𝑖𝜇𝑖 + 𝑞𝜇𝑒 + 𝑃 Δ𝑉def. (3.7)

Here, the electronic and vibrational energy have been separated with the same argu-
ment as for the entropy. This means that, Δ𝐸el is the electronic defect formation en-
ergy, Δ𝐹vib is the vibrational free energy of formation and Δ𝑉def is the defect formation
volume. Further, Δ𝑛𝑖 is the number of removed/added atomic species and 𝜇𝑖 is the cor-
responding chemical potential. Lastly, q is the effective charge of the defect and 𝜇𝑒 is
the Fermi energy.

3.2 Chemical reactions
For a general reaction,

𝑛𝐴𝐴 + 𝑛𝐵𝐵 ⇌ 𝑛𝑐𝐶 + 𝑛𝐷𝐷,
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Chapter 3. Thermodynamics of point defects

we can derive an equilibrium concentration similarly to the defect reaction. First, note
that the chemical potential describes the Gibbs free energy associated with a removal
or addition of an atom from a reference state, that is,

𝜇𝑖 = (
𝜕𝐺
𝜕𝑛 )𝑇 ,𝑃

,

which is given as (Cf. Eq. (3.6)),

𝜇𝑖 = 𝜇0
𝑖 + 𝑘𝐵𝑇 ln (𝑐𝑖).

Further, for an equilibrium, we know that the chemical potential of the product and
reactant should be equal, i.e.,

𝑛𝐴𝜇𝐴 + 𝑛𝐵𝜇𝐵 = 𝑛𝑐𝜇𝐶 + 𝑛𝐷𝜇𝐷.

After some rearrangements, we find that the equilibrium concentrations will be given
by,

𝑐𝑛𝐶
𝐶 𝑐𝑛𝐷

𝐷
𝑐𝑛𝐴

𝐴 𝑐𝑛𝐵
𝐵

= exp(− Δ𝐺∘

𝑘𝐵𝑇 ) ,

where Δ𝐺∘ = 𝑛𝑐𝜇∘
𝑐 + 𝑛𝐷𝜇∘

𝐷 − 𝑛𝐴𝜇∘
𝐴 − 𝑛𝐵𝜇∘

𝐵 .
The hydration reaction, which has almost exclusively been studied throughout this

thesis, is the dissociative filling of a vacancy by a hydroxide group and the protonation
of a regular oxygen site,

H2O + OX
O + vO ⇌ 2OHO. (3.8)

This leads to an equilibrium equation given by,

𝐾(𝑇 ) = [OHO]2

[vO ][O×
O]𝑝H2O

= 42exp(− Δ𝐺∘

𝑘𝐵𝑇 ) ,

where K(T) is the equilibrium constant and [A] is the concentration of A. Here, the
chemical potential of steam has been used, which is given by,

𝜇H2O(𝑇 , 𝑝H2O) = 𝜇∘
H2O + 𝑘𝐵𝑇 ln(

𝑝H2O

𝑝∘ ),

and thus, 𝑝H2O, is the partial pressure of steam and 𝑝∘ is the reference pressure. The
term 42 stems from the internal rotational DOF of the proton Eq. (3.5). This term can
be incorporated into Δ𝐺∘ by moving it into the exponential. This would then rescale
the vibrational entropy as,

Δ𝑆app = Δ𝑆vib + 2𝑘𝐵 ln 4.
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3.2. Chemical reactions

In experiments, the mass change under a wet condition can be recorded and, together
with the site restriction, the equilibrium constant can be plotted as a function of tem-
perature in a van’t Hoff plot. The hydration enthalpy and entropy will then be given
by the slope and intercept, respectively, in the van’t Hoff plot. This gives us a direct
comparison between experiments and theory.

Evidently, the hydration reaction, Eq. (3.8), requires oxygen vacancies to be present
in thematerial. Due to the increased configurational entropy of the systemwith defects,
some oxygen vacancies will natively be present. However, it is also possible to engineer
the material in such a way that more oxygen vacancies will be present. In, for example
BZO, this can be done by acceptor doping. One of the most promising acceptor dopant
for BZO is yttrium, which is incorporated on the B site [47, 48]. Incorporation of yttrium
and oxygen vacancies can, e.g., be done by the following reaction,

Y2O3 + 2Zr×
Zr + O×

O ⇌ 2 YZr + vO + 2ZrO2,

as done in [49]. However, B site doping, such as yttrium doping, is associated with
defect trapping, where, e.g., the proton becomes strongly bound to the oxygen close to
an yttrium [12, 50]. This trapping can either inhibit or promote hydration, depending
on the ration between proton and vacancy trapping [51]. This trapping can also inhibit
proton mobility and may lead to lower performing devices, such as for the fuel cells,
which is discussed in Chapter 4. Therefore, A site doping has also been explored by
first principle calculations in [52] which suggests that A site doping could reduce the
degree of proton trapping, however, experimental investigations of A site doping are
scarce.
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4
Electrolyzers and fuel cells

Fuel cells and electrolyzer are important for the sustainability of our society. Some au-
thors have regarded “sustainability” as a meaningless word due to its many definitions
[53]. Nevertheless, if we consider that the meaning of the word is similar to that of
sustainable development, it is apparent what problems this thesis aims to help solve.
Sustainable development was defined in the Brundtland report, 1987 [54], “Sustainable
development seeks to meet the needs and aspirations of the present without compro-
mising the ability to meet those of the future…”. We may thus conclude that we need
a new era of energy production since the burning of fossil fuels has severe impact on
both the current, and future generations [55–57]. The hydrogen economy may very
well be part of the solution [58, 59].

Therefore, this thesis applies the computational methods mentioned in Chapter 1
to study proton conducting electrolytes and mixed conducting cathodes. The possible
applications of these materials is in, e.g., fuel cells and electrolyzers. Electrolyzers pro-
duce hydrogen and oxygen gas by splitting water using electricity, while the fuel cells
run the process in reverse, producing electricity and water by consuming hydrogen and
oxygen gas.

The hydrogen produced by the electrolyzer can be stored in a multitude of ways, e.g.,
by liquifying or pressurizing it. The advantage of storing energy in an intermediate
form such as hydrogen gas is that the energy can be used much later [59]. Electrolyzers
can thus be used in combination with, e.g., solar, wind or hydro energy to store the
excess electricity as hydrogen when the demand is low. The hydrogen can then later
be used in fuel cells to produce energy when the demand is higher.

There exist a few different types of cells, e.g., polymer electrolyte membranes (PEM),
protonic ceramic fuel cell (PCFC) and solid oxide fuel cell (SOFC). However, the mate-
rials that have been studied in this thesis are used in the PCFC, but some materials can
also be used in the SOFC.The PCFC conducts protons, while the SOFC conduct oxygen
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Chapter 4. Electrolyzers and fuel cells

External load

H2

H2O

H+

e-

TPB

O2 + 4e-

        2O2-

Anode Electrolyte Cathode

O2

O2- + 2H+

        H2O

H2 
2H++ 2e-

Figure 4.1: Operation of a protonic ceramic fuel cell

ions through the electrolyte. Furthermore, the anode and cathode side is catalytically
active, meaning that, e.g., on the anode side hydrogen is able to bind to the surface and
then dissociate. There are benefits, and drawbacks, with both types of cells. For ex-
ample, the large migration barrier of the oxygen in the SOFCs requires high operating
temperatures, (800∘C-1000∘C). This leads to long start up and shutdown times, but also
to thermal and chemical stress, which shortens the lifespan of the device. However, the
high operating temperature of the SOFC offer a greater fuel flexibility, as the reduced
oxygen can form a large variety of oxides on the anode side [60]. For an overview of
the SOFC see, e.g., Ref. [61]. The operating temperature for the PCFCs is 400∘C-700∘C
which is significantly lower. Another benefit of the PCFC is that the water is formed
on the cathode side, i.e., the product does not dilute the fuel. See e.g., Ref. [62, 63] for
more information on the PCFC.

Fig. 4.1 shows the operation of the PCFC, the anode splits hydrogen into protons and
electrons, the electron is then carried through an external load while the protons are
conducted through the electrolyte. The cathode absorbs the oxygen gas on the surface
and the electrons reduces the oxygen and reacts with the protons to form water. The
cathode can either be a mixed conductor, conducting both protons and electrons and
in some cases even oxygen as well, or simply a proton conductor. The benefits of the
cathode material being a mixed conductor is that the reactive zone is extended from
the triple phase boundary (TPB), which is marked in Fig. 4.1, to the whole surface
of the cathode. Amezawa et al. [64] investigated the importance of the reactive zone
experimentally. They found that the triple phase boundary was the dominant reactive
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site in the low temperature range. However, for higher temperatures, the double phase
boundary became dominant.

Barium zirconate and cerate has proven to be a good proton conductor [65, 66], how-
ever, the sintering of the material is difficult, and the stability is an issue [67, 68]. Good
performing and durable PCFCs has recently been manufactured [69, 70] using doped
barium cerate. We studied the vibrational hydration entropy and enthalpy of barium
zirconate in PAPER I.
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5
Electronic structure theory

The Schrödinger equation describes the dynamics of systems on the atomic scale. It
gives physical insight into both the structural and chemical properties of materials.
However, solving it for even the smallest system is a formidable task. The time-independent
Schrödinger equation is usually written in a deceptively easy form,

ℋ Ψ𝑛(R, x) = ℰ𝑛Ψ𝑛(R, x).

where Ψ𝑛(R, x) is the wave function, R encodes the nuclear positions and x describes
the spin, 𝜎, and position, r, of the electrons, ℰ𝑛 is the energy of the system. The Hamil-
tonian ℋ includes a description of all interactions that are taken into account. It is
conveniently written in atomic units, where the mass and charge of the electron to-
gether with ℏ and 4𝜋𝜖0 is set to 1. In the absence of any external fields it reads,

ℋ = − ∑
𝑖

∇2
𝑖

2 + 1
2 ∑

𝑖≠𝑗

1
|r𝑖 − r𝑗| − ∑

𝑘
∑

𝑖

𝑍𝑘
|R𝑘 − r𝑖|

− ∑
𝑘

∇2
𝑘

2𝑚𝑘
+ 1

2 ∑
𝑘≠𝑛

𝑍𝑘𝑍𝑛
|R𝑘 − R𝑛| ,

where 𝑚𝑘 and 𝑍𝑘 is the mass and charge of the kth nucleus. The first and fourth
term is the kinetic energy of the electronic and nuclear system, the other terms are
the Coulomb interactions, for example, the second term is the repulsion between the
electrons which presents most of the difficulty. This equation is separated into two
decoupled equations by assuming that the electronic system reacts instantaneously to
any change in the ionic system due to the much smaller mass of the electrons. This is
what is known as the Born-Oppenheimer approximation [71] and leads to the following

19



Chapter 5. Electronic structure theory

Hamiltonian for the electronic system,

ℋel = − ∑
𝑖

∇2
𝑖

2 + 1
2 ∑

𝑖≠𝑗

1
|r𝑖 − r𝑗| − ∑

𝑘
∑

𝑖

𝑍𝑘
|R𝑘 − r𝑖|

, (5.1)

where the ionic position is fixed and represents an external potential. The ionic system
is treated in Chapter 6. This equation is still only possible to solve for the smallest sys-
tems, since the size of the Hamiltonian grows factorially with the number of electrons
[72]. Thus, further simplifications are needed.

5.1 The Hohenberg-Kohn theorem
Hohenberg and Kohn [73] recognized that the ground state density of the Hamiltonian
in Eq. (5.1) is uniquely defined by the external potential. Therefore, they concluded that
we may work with the electron density instead of the wave function, which means that
the problem has been reduced to a problem of three coordinates. The corresponding
energy functional is then given by,

ℰ𝐻𝐾 = ⟨Ψ[𝑛(r)]|ℋel|Ψ[𝑛(r)]⟩

= 𝑇 [𝑛(r)] + 𝑉 [𝑛(r)] + ∫ dr 𝑛(r)𝑉ext(r).
(5.2)

The kinetic energy functional, 𝑇 [𝑛(r)], and electron Coulomb interaction, 𝑉 [𝑛(r)], are
system independent. Therefore, in principle, they could be determined once and then
be applied to all systems. However, the exact functional form is still unknown. For-
tunately, the variational principle tells us that the density that minimizes the energy
functional in Eq. (5.2) is the true ground state density. This minimization is constrained
by the normalization of the electron density,

∫ dr 𝑛(r) = 𝑁

where 𝑁 is the total number of electrons. Hohnberg and Kohn only proved that we
may work with the density to find the ground state energy. However, they provided no
computational strategy on how to solve the minimization problem.

Hohnberg and Kohn were not the only ones who proposed that one could work with
a density functional, previous work by, e.g., Thomas [74], Fermi [75] and Dirac [76]
explored the possibility of using the electron density as a fundamental variable.

5.2 The Kohn-Sham formulation
Fortunately, Kohn and Sham provided an algorithmic scheme on how to solve the min-
imization problem. The idea behind the Kohn-Sham computational scheme [77] is that
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5.2. The Kohn-Sham formulation

an effective potential in a non-interacting auxiliary system can be used to mimicking
the interacting system. That is, they sought an effective potential, 𝑉eff(𝑟), that repre-
sents the interactive system such that a single particle equation,

[−1
2∇2 + 𝑉eff(𝑟)] 𝜓𝑛(𝑟) = 𝜀𝑛𝜓𝑛(𝑟), (5.3)

can be solved instead. The corresponding energy functional for this non-interacting
auxiliary system is then,

ℰ𝑠[𝑛(r)] = 𝑇𝑠[𝑛(r)] + ∫ dr 𝑉eff(r)𝑛(r). (5.4)

Another key insight that Kohn and Sham had was to rewrite the energy functional in
Eq. (5.2) as,

ℰ[𝑛(r)] = 𝑇𝑠[𝑛(r)] + 1
2 ∫ dr′ 𝑛(r)𝑛(r′)

|r − r′| + ℰ𝑥𝑐[𝑛(r)] + ∫ dr 𝑉ext(r)𝑛(r), (5.5)

where the kinetic energy of the non-interacting system, 𝑇𝑠[𝑛(r)], and the Hartree term
have been added and subtracted. The exchange correlation (XC) energy functional,
ℰ𝑥𝑐[𝑛(r)], has also been introduced which is defined as,

ℰ𝑥𝑐[𝑛(r)] = 𝑇 [𝑛(r)] − 𝑇𝑠[𝑛(r)] + 𝑉 [𝑛(r)] − 1
2 ∫

𝑛(r)𝑛(r′)
|r − r′| drdr′. (5.6)

The functional derivative of this energy is denoted, 𝑉𝑥𝑐[𝑛(r)], and referred to as the XC
potential. The effective potential is now found by calculating the functional derivative
of the energy functionals and comparing the results, the derivatives are given by

𝛿ℰ𝑠[𝑛(r)]
𝛿𝑛(r) = 𝛿𝑇𝑠[𝑛(r)]

𝛿𝑛(r) + 𝑉eff(r)

𝛿ℰ[𝑛(r)]
𝛿𝑛(r) = 𝛿𝑇𝑠[𝑛(r)]

𝛿𝑛(r) + 𝑉ext(r) + 𝑉𝑥𝑐[𝑛(r)] + ∫
𝑛(r′)

|r − r′|dr
′.

From these two equations it is easily seen that it is possible to map the auxiliary non-
interacting system to the interacting system by setting

𝑉eff(r) = 𝑉ext(r) + 𝑉𝑥𝑐[𝑛(r)] + ∫
𝑛(r′)

|r − r′|dr
′. (5.7)

The last thing to note is that the energy functional of the auxiliary non-interacting
system is not the same as the interacting system. Inserting Eq. (5.7) into Eq. (5.4) and
matching with Eq. (5.5) we can see that we need to subtract half of the Hartree energy,
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Chapter 5. Electronic structure theory

and add the XC energy and subtract the integral involving the XC potential which yields
the total energy as,

𝐸 =
𝑁

∑
𝑘=1

𝜀𝑛 − 1
2 ∫

𝑛(r)𝑛(r′)
|r − r′| d𝑟dr′ + ℰ𝑥𝑐[𝑛(r)] − ∫ dr 𝑉𝑥𝑐[𝑛(r)]𝑛(r), (5.8)

where the sum is over occupied Kohn-Shamorbitals. Hence, themany body Schrödinger
equation has been transformed into a non-interacting single particle equation with an
effective potential. However, we have paid a price in doing so, the effective potential
depends on the density, which in turn depends on the single particle states. Therefore,
we have to solve the equations self-consistently. The solution is as follows, make an
initial guess of the density, calculate the effective potential Eq. (5.7) and then solve
the non-interacting equation Eq. (5.3). The non-interacting equation provides us with
a new set of wave functions, and from these wave functions we can calculate a new
density,

𝑛(r) =
𝑁

∑
𝑛=1

|𝜓𝑛(r)|2. (5.9)

Now that we have a new density, we can repeat the process until the difference in en-
ergy, Eq. (5.8), between two successive iteration is sufficiently small. For the interested
reader, excellent reviews of the DFT framework are outlined in [78–80].
Lastly, it is important to note that we moved all of our ignorance about the electron-

electron interaction and the kinetic energy into one term, the XC functional, which we
need an approximation for.

5.3 Local density approximation
In the previous section, we outlined how Kohn and Sham wrote down the fundamen-
tals of solving the Schrödinger equation in the Born-Oppenheimer approximation. We
wrote down the equations that can be used to find the ground state energy and density.
However, we still have to find an approximation of the XC energy. The first devised XC
energy functional, given in Eq. (5.6), is the Local Density Approximation (LDA) which
assumes that the density varies slowly such that we may approximate the potential as
local, i.e., it depends only on the density at r. However, note that the true potential
will be non-local and not only depend on the density at r but also on all other points r′.
This approximation leads to the XC energy as

ℰ𝑥𝑐[𝑛] = ∫ 𝜖𝑥𝑐[𝑛(r)]𝑛(r)dr.

where 𝜖𝑥𝑐 is the XC energy per particle of the homogeneous system with density 𝑛(r).
Even with this approximation, no analytical form of 𝜖𝑥𝑐 is known. However, 𝜖𝑥𝑐 can be
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5.4. Generalized gradient approximation

separated into an exchange and correlation term. The exchange term is straight forward
to derive, see e.g., [72]. As the name suggests, the interaction involves the exchange
of two electrons, which leads to a lowering of the energy. The reduction in energy
is rooted in the antisymmetrization of the wave function, which is a materialization
of the Pauli exclusion principle. The antisymmetrization keeps electrons with parallel
spin apart. Therefore, the effect of the exchange term can be though of as every spin up
(spin down) electron having a small bubble of deficient spin up (spin down) that follows
the electron around, this effect is called the exchange hole. The lowering of the energy
can thus be interpreted as the interaction of the electron with the positive exchange
hole surrounding it [81].

However, in the exchange energy, all other interactions have been ignored. These
interactions are collectively called correlation. The correlation energy also lowers the
energy, and one can think of a correlation hole similarly to the exchange hole. In addition
to keeping electrons of the same spin apart, the correlation hole keeps electrons of an-
tiparallel spins apart as well. It is evident that the correlation is much more important
for antiparallel spins than for parallel spins, which are mostly covered by the exchange
energy. Analytic expression for the correlation energy can be calculated at low and
high density limits [82–84], but there exist no analytical form in between the two lim-
its. For typical solids, the correlation energy is much smaller than the exchange energy,
however, as the density decreases the correlation energy becomes more important and
even dominates for very low densities.

Different parametrizations of the XC energy have been suggested based on the de-
rived exchange and correlation energy. However, most of them are founded on the
diffusion Monte Carlo calculations by Ceperley and Alder [85], which are numerically
exact. Moreover, a neat detail of the diffusion Monte Carlo simulations is that they
include the kinetic energy, which there exist no analytic expression for, except for a
few limited cases, such as the free electron gas. Finally, despite the simplicity of LDA
very accurate results have been obtained in, e.g., metallic systems where the density
does not vary rapidly. The expressions for the XC energy is readily available in, e.g.,
Ref. [72].

5.4 Generalized gradient approximation
A natural extension to the LDA is to include derivatives of the density, which should
better account for the density variations found in real materials. This family of func-
tionals is termed, Generalized gradient approximation (GGA).The exchange correlation
energy is then written as,

ℰ𝑥𝑐[𝑛] = ∫ 𝑓[𝑛(r), ∇𝑛(r)]dr.
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Unintuativley, inclusion of the gradient initially made the results worse. However, in-
clusions of constraints such as, e.g., sum rules and known features about the exchange
and correlation hole resulted in satisfactory functionals. One such functional and prob-
ably the most widely used in materials science is the PBE functional parametrized by
Perdew, Burke and Ernzerhof [86].

The GGAs can also be parametrized by empirical fitting to known experimental re-
sults. However, this leads to poor transferability, and it is not obvious that the exper-
imental results are reproduced due to the correct physics. An excellent discussion on
the empirical vs constrained parametrization can be found in Ref. [87].

5.5 DFT + U
TheHartree term introduced in the exchange correlation functional, Eq. (5.6), is unphys-
ical in a sense, the electron interacts with a density which itself is a part of. In theory,
this interaction should be completely corrected for if we had a complete description
of the XC functional. However, since we only have approximations of it, we are left
with an issue, the electron interacts with itself. The self interaction, leads to an over-
delocalization of the electrons. Corrections to the self interaction can, e.g., improve
the predicted band gaps [88]. But, despite the improved band gap with self interaction
corrections, it has been argued that the band gap problem would not be solved even
with an exact XC description. Rather, one would have to go beyond DFT to solve the
problem [89]. The band gap problem is thoroughly discussed in, e.g., Ref. [90].

One way of treating the over-delocalization issue known to LDA and the GGAs is
DFT + U. The method stems from the Hubbard model, which is an approximate model
that is used to describe the phase transition from metal to insulator of a solid-state
system. The model Hamiltonian is written as,

ℋ = −𝑡 ∑
⟨𝐴𝐵⟩,𝜎

(𝑐†
𝐴𝜎𝑐𝐵𝜎 + 𝑐†

𝐵𝜎𝑐𝐴𝜎) + 𝑈 ∑
𝑖

𝑐†
𝑖↑𝑐𝑖↑𝑐†

𝑖↓𝑐𝑖↓

where the first term is the hopping of the electrons between sites, ⟨𝐴𝐵⟩ indicates that
it is a sum over nearest neighbor pairs A and B. The second part represent the electron-
electron repulsion and is important for strongly correlated materials, i.e., there is an
associated cost of placing electrons on the same site. The transfer, or hopping integral,
t, is related to the crystal potential and kinetic energy as,

𝑡 = ∫ dr 𝜓∗
𝐴(r) [− 1

2𝑚∇2 + 𝑉 (r)] 𝜓𝐵(r).

Incorporating this formalism in DFT then gives the energy functional as [91],

ℰ = ℰDFT + 𝑈eff
2 ∑𝜎

𝑇 𝑟(𝜌𝜎) − 𝑇 𝑟(𝜌𝜎𝜌𝜎),
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where 𝜌𝜎 is the atomic orbital occupation matrix. In the solid-state community the oc-
cupation matrix is commonly calculated by projecting the plane waves onto a localized
basis set [92]. The interaction will force the orbital to either be fully occupied or fully
unoccupied.
A significant benefit of theDFT +U formalism is that it does not significantly increase

the computational time. However, the model is not transferable between systems since
the U parameter is system dependent. That is, there is no “universal” way of determin-
ing a U parameter that should be suitable for all materials. However, there are ways of
determining it theoretically for a specific system, see e.g., Ref. [92, 93]. For an excellent
in depth review of the DFT + U approach, see, e.g., Ref. [92].

5.6 Hybrid functionals
A more system independent way of treating the known over-delocalization of the elec-
trons in DFT is to incorporate exact exchange [94]. The idea is that, if we incorporate
some exact exchange energy from the Hartree-Fock theory, we can correct for the over-
delocalization of e.g., LDA or the GGAs. The exact exchange energy is given by [95],

ℰHF
𝑥 = ∑

𝑎𝑏
𝑓𝑎𝑓𝑏 ∫ d3r′ d3r

𝜓∗
𝑎 (r)𝜓∗

𝑏 (r)𝜓𝑏(r′)𝜓𝑎(r′)
|r − r′| (5.10)

where 𝑓𝑎 and 𝑓𝑏 is the occupation of orbital a and b. The energy functional that is used
in, e.g., PBE0 [94], which is a hybrid functional is then defined as,

ℰ = 1
4ℰHF

𝑥 + 3
4ℰPBE

𝑥 + ℰPBE
𝑐 .

The fraction of mixing, 1/4, of the exact exchange has been determined theoretically.
The orbital dependence in Eq. (5.10) leads to a significant increase in computational
time. To reduce the computational time for extended systems but still maintain good
accuracy, it has been suggested that the Coulomb kernel can be separated into a long
range and short range part. One such functional is HSE06 [96] where the Coulomb
kernel is separated in the following way,

1
|r − r′| = erf(𝜇|r − r′|)

|r − r′| + erfc(𝜇|r − r′|)
|r − r′| ,

𝜇 controls the screening, and is given by 0.2 for HSE06. The first term is then the short
range part , and the second term is the long range part. The energy functional is then
given as,

ℰ = 1
4ℰHF,SR

𝑥 + 3
4ℰPBE,SR

𝑥 + ℰPBE,LR
𝑥 + ℰPBE

𝑐 .
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Chapter 5. Electronic structure theory

5.7 Basis functions and pseudopotentials
In practice, the wave functions in the Kohn-Sham equation Eq. (5.3) can be found by
solving the equation on a grid. However, for extended systems such as the systems
in this thesis, this method would be computational impractical. Instead, a basis set is
introduced such that the wave functions can be represented as,

Ψ𝑖(𝑟) = ∑
𝑗

𝑐𝑖𝑗𝜙𝑗 ,

where 𝜙𝑗 can be chosen in a few different ways. The introduction of the basis functions
maps a continuous problem into a problem of linear algebra. Therefore, the problem
reduces to finding the expansion coefficients 𝑐𝑖𝑗 . The choice of basis function depends
on the problem, a natural choice for extended periodic systems is, e.g., plane waves,

Ψ𝑖,k(𝑟) = ∑
G

𝑐𝑖,k(G) exp (𝑖r ⋅ (k + G)) ,

where the periodicity is implicitly implied. Planewaves form a complete basis, however,
for practical calculation we have to truncate the expansion at some point. This is done
via the kinetic energy, 1/2|k+G|2 < 𝐸cut, such that all plane waves fulfilling the criteria
are included. It is thus straight forward to increase the size of the basis set and thus
increase the accuracy of the calculation.

Unfortunately, the orthogonality requirement of the wave functions leads to rapid
oscillations in the core region of the valance electrons. Consequentially, the kinetic
energy of the valance electrons will be large, and by necessity a sizable 𝐸cut has to be
chosen. A computational tractable way to handle the rapid oscillations is to introduce
a pseudopotential [97]. The idea is to construct a pseudowave function where the rapid
oscillations of the valance states in the core region has been removed. Moreover, by
construction, these pseudowave functions ensures that the valance states remain or-
thogonal to the core states. Furthermore, given that the pseudopotential is carefully
constructed, the correct energy eigenvalues should be obtained.

Exactly how the pseudopotential is constructed varies. For example, how many
states that are treated as core states and how large the core radius is can vary depending
on the application. Usually, a few different potentials are constructed, and the user de-
cided which potential to use based on the accuracy required. The only necessity is that
the pseudopotential should be constructed such that the pseudowave function coincides
with the true wave functions outside the core region. Therefore, a few different imple-
mentations of pseudopotentials have been proposed such as norm-conserving, ultrasoft
and projector augmented wave (PAW) potentials [98–100]. The PAWmethod allows us
to reconstruct the true wave function in the core region, and this is also the formalism
together with plane waves that has been employed in all the DFT calculations in this
thesis.
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6
Vibrational motion

In this chapter, we will discuss the atomic motion, the motion of the nuclei. The Hamil-
tonian is given by,

ℋ = ∑
𝑖

P2
𝑖

2𝑚𝑖
+ 𝑉 (… ,R𝑖, …) (6.1)

where P𝑖 is the momentum, 𝑚𝑖 the mass and R𝑖 the position coordinate of atom 𝑖. It is
convenient to write the atomic positions as,

R𝑖 = R0
𝑖 + u𝑖, (6.2)

where R0
𝑖 is the equilibrium position and u𝑖 the displacement from the equilibrium

position.

6.1 Force constants
The potential energy 𝑉 (… ,R𝑖, …) in Eq. (6.1) can be expanded as a Taylor series,

𝑉 = 𝑉0 + Φ𝛼
𝑖 𝑢𝛼

𝑖 + 1
2!Φ𝛼𝛽

𝑖𝑗 𝑢𝛼
𝑖 𝑢𝛽

𝑗 + 1
3!Φ𝛼𝛽𝛾

𝑖𝑗𝑘 𝑢𝛼
𝑖 𝑢𝛽

𝑗 𝑢𝛾
𝑘 + … , (6.3)

where Einstein summation applies and the Φs are referred to as force constants (FC).
Latin indices run over atomic labels and Greek letters run over Cartesian coordinates.
The first term, 𝑉0 = 𝑉0(… ,R0

𝑖 , …), is the energy at the equilibrium positions and can be
obtained from, e.g., a DFT calculation. Here, we will set this reference energy equal to
zero. Moreover, since we are expanding around the equilibrium positions, the second
term is zero by construction. The equilibrium positions may, however, correspond to
a saddle point configuration, not necessarily a minimum, but also in that case, the
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Chapter 6. Vibrational motion

second term is zero. Construction of models can then be done based on third and
higher terms. Finally, the FCs are defined as derivatives of the potential with respect
to the displacements,

Φ𝛼
𝑖 = 𝜕𝑉

𝜕𝑢𝛼
𝑖

, Φ𝛼𝛽
𝑖𝑗 = 𝜕2𝑉

𝜕𝑢𝛼
𝑖 𝜕𝑢𝛽

𝑗
, … ,

and the atomic forces 𝐹 𝛼
𝑖 can be written in terms of the FCs as,

𝐹 𝛼
𝑖 = − 𝜕𝑉

𝜕𝑢𝛼
𝑖

= −Φ𝛼𝛽
𝑖𝑗 𝑢𝛽

𝑗 − 1
2Φ𝛼𝛽𝛾

𝑖𝑗𝑘 𝑢𝛽
𝑗 𝑢𝛾

𝑘 − … . (6.4)

6.1.1 Extracting force constants
A common approach to extract the harmonic FC is to use finite displacements, the
frozen phonon method. That is, you displace one atom at the time and calculate the FC
as [101],

Φ𝛼𝛽
𝑖𝑗 = −

𝐹 𝛼
𝑖

Δ𝑢𝛽
𝑗

, (6.5)

where then Δ𝑢𝛽
𝑗 is the finite displacement of atom 𝑗 in direction 𝛽. The extension to

higher orders is straightforward, but the number of calculations needed grows quickly.
This method also becomes increasingly inefficient as the symmetry decreases or the
size of the system increases.

A more computationally tractable method is to displace all atoms in the cell and
recast equation (6.4) into a regression problem,

A𝚽 = F, (6.6)

where A is the design matrix that encodes all displacements, F are the corresponding
forces and 𝚽 is a vector of the FCs. hiphive[102] can be used to construct the regres-
sion problem, where the underlying symmetry of the system is utilized to reduce the
number of independent FCs. To minimize the number of reference calculations and
getting physical FCs, we want the regression problem (6.6) to be as well posed as pos-
sible. That is, we want the structures to be as uncorrelated as possible, and hopefully
have displacement patterns that are highly probable. In theory, the sum in Eq. (6.4)
is infinite. Fortunately, the Taylor expansion can commonly be truncated at relatively
low expansion order. Moreover, the interactions usually decay rapidly with increasing
distance and number of bodies involved. Therefore, only a limited number of FCs needs
to be considered in the regression problem.
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6.2. Harmonic approximation

6.2 Harmonic approximation
The harmonic approximation is obtained by truncating the expansion in Eq. (6.3) at the
second order term,

𝑉 = 1
2Φ𝛼𝛽

𝑖𝑗 𝑢𝛼
𝑖 𝑢𝛽

𝑗 .

The coupled dynamics of the displacements 𝑢𝛼
𝑖 can then be transformed into a set of

independent collective harmonic oscillators, often denoted normal modes, by diagonal-
ising the force constant matrix Φ𝛼𝛽

𝑖𝑗 .

6.2.1 Normal modes
We are considering crystalline solids, where the atoms are arranged in an ordered mi-
croscopic structure, forming a crystal lattice that extends in all directions. A unit cell is
introduced, containing 𝑛𝑎 atoms, which is repeated periodically in all three directions.
The dynamics of the system can then be solved in reciprocal space, q-space, by solving
the eigenvalue equation [72],

𝐷(q) eq𝜈 = 𝜔2
q𝜈 eq𝜈 , (6.7)

where 𝐷(q) is the dynamical matrix, 𝜔q𝜈 the frequency, and eq𝜈 the corresponding
eigenvector, or normal mode coordinate. The size of the dynamical matrix is 3𝑛𝑎 ×3𝑛𝑎
and the eigenvalue equation has to be solved for each q vector in the Brillouin zone,
the unit cell in reciprocal space. The index 𝜈 = 1, … , 3𝑛𝑎 is called the branch index.
More explicitly, the dynamical matrix can be written as

𝐷𝛼𝛽
𝜅𝜅′(q) = ∑

𝑙′

Φ𝛼𝛽
0𝜅;𝑙′𝜅′

√𝑚𝜅𝑚𝜅′
exp [−𝑖q ⋅ (R0

0𝜅 − R0
𝑙′𝜅′)] . (6.8)

The atomic index 𝑖 has here been decomposed as 𝑖 = (𝑙𝜅), where 𝑙 and 𝜅 are labels of
unit cells and atoms in each unit cell, respectively.

The frequencies obtained in the diagonalization of the dynamical matrix are com-
monly presented in a density of states (DoS) figure. The DoS,

𝑔(𝜔) = 1
𝑁𝑞 ∑

q𝜈
𝛿(𝜔 − 𝜔q𝜈), (6.9)

counts the number of states available at a given frequency. We have, here divided with
𝑁𝑞 , the number of q-points in the summation. This implies that 𝑔(𝜔) is normalized such
that the integration over frequency becomes 3𝑛𝑎. We can also determine the density of
states of a single atomic type,

𝑔𝐴(𝜔) = 1
𝑁𝑞 ∑

q𝜈
𝑐𝐴(q, 𝜈)𝛿(𝜔 − 𝜔q𝜈)
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Figure 6.1: Phonon dispersion for BZO using PBE. Data are shown between high symmetry
points and are derived using phonopy for a 2 × 2 × 2 and a 4 × 4 × 4 supercell, respectively.
Color assigned as (Ba, Zr, O) = (R, G, B).

where
𝑐𝐴(q, 𝜈) = ∑

𝑖∈𝐴
∑𝛼

|n̂𝑖𝛼 ⋅ eq𝜈|2

is how much atomic type A contributes to the normal mode. Here n̂𝑖𝛼 is a unit projec-
tion vector of atom i in direction 𝛼 and the sum over 𝑖 is taken over all atoms of type
A.

The frequency along the paths between the high symmetry points in the Brillouin
zone can be plotted in what is referred to as a dispersion plot. This is shown in Fig. 6.1
for BZO using the PBE functional. The unit cell (5 atoms) is cubic with size 𝑎0=4.24
Å and the calculations are done using phonopy. For definition of the high symmetry
points, see Fig. 2.1. The color coding is (Ba, Zr, O) = (R, G, B), which implies that, e.g.,
a pure oxygen mode will be colored blue and mixed modes will have a mixed color.
The direct method introduced by Parlinski et al. [103] is used with individual atomic
displacements with size 0.01 Å.The size of the computational cell, the supercell, is 2x2x2
of the unit cell and the LO-TO splitting is included following Ref. [104]. The direct
method in Ref. [103] will give the exact frequencies at high symmetry points, due to
the use of the 2x2x2 supercell. Interpolation between these high symmetry points is
carried out and if the range of the physical interaction is within half of the supercell
size, then the interpolation scheme gives the correct frequencies also in between the
high symmetry point.
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6.2. Harmonic approximation

To test the accuracy with respect to the range of the physical interaction between
the atoms we have also done the calculations for a 4x4x4 supercell. The result is shown
as dotted lines in Fig. 6.1. The two calculations agree at the high symmetry points and
in between the differences are only a few meV. We conclude that a supercell with size
4x4x4 should be sufficient with respect to range of the physical interaction.

6.2.2 Thermodynamics and phonons
The thermal properties of the vibrational motion can be obtained from statistical me-
chanics. The motion is quantized and the normal mode becomes a quasiparticle, a
phonon. The canonical partition function for the phonon system is given by [105]

𝑍 = ∏
q𝜈

exp (−𝛽ℏ𝜔q𝜈/2)
1 − exp (−𝛽ℏ𝜔q𝜈)

. (6.10)

where 𝛽 = 1/𝑘𝐵𝑇 . The energy is then given by

𝑈(𝑇 ) = − 𝜕
𝜕𝛽 ln𝑍

= ∑
q𝜈 (

1
2 + 1

exp (𝛽ℏ𝜔q𝜈) − 1)
ℏ𝜔q𝜈

(6.11)

and by using the expression for the density of states in Eq. (6.9) the sum can be replaced
by an integral

𝑈(𝑇 ) = ∫
∞

0
𝑔(𝜔) d𝜔 (

1
2 + 1

exp (𝛽ℏ𝜔) − 1) ℏ𝜔

= ∫
∞

0
𝑔(𝜔) d𝜔 (

1
2 + ⟨𝑛(𝜔, 𝑇 )⟩) ℏ𝜔 .

(6.12)

In the last line the Bose-Einstein distribution ⟨𝑛(𝜔, 𝑇 )⟩ is introduced, the mean occu-
pancy of the state with frequency 𝜔 at temperature 𝑇 . In the same way the entropy is
given by

𝑆(𝑇 ) = −𝑘B 𝛽2 𝜕
𝜕𝛽 (

1
𝛽 ln𝑍)

= 𝑘B ∫
∞

0
𝑔(𝜔) d𝜔 (

𝛽ℏ𝜔
exp (𝛽ℏ𝜔) − 1 − ln (1 − exp (−𝛽ℏ𝜔))) .

(6.13)

and the Helmholtz free energy 𝐹 is then obtained from the relation
𝐹 (𝑇 ) = 𝑈(𝑇 ) − 𝑇 𝑆(𝑇 ) . (6.14)

In Fig. 6.2 the computed temperature dependence for the energy, entropy and free en-
ergy for BZO using PBE is depicted. The energy and entropy increases as function of
temperature, while the free energy decreases.
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Figure 6.2: The thermal energy 𝑈 , entropy 𝑆 and free energy 𝐹 as function of temperature for
BZO.

6.2.2.1 Mean-squared displacement
The atomic displacement operator can be expressed as [101],

̂𝑢𝛼
𝑖 = 1

𝑁𝑞 ∑
q𝜈 √

ℏ
2𝑚𝑖𝜔q𝜈 (𝑎q𝜈 + 𝑎†

−q𝜈) exp [𝑖q ⋅ R0
𝑖 ] (n̂𝑖𝛼 ⋅ eq𝜈) (6.15)

where 𝑎† and 𝑎 is the creation and annihilation operators [72]. The distribution of
the atomic displacements can then be obtained as expectations values of Eq. (6.15). It
can be shown [106] that the distribution is an uncorrelated multivariate Gaussian in
phonon coordinates, or q-space. The mean value is zero and the variance is given by
the mean-squared displacement (MSD),

⟨(𝑢𝛼
𝑖 )2⟩ (𝑇 ) = 1

𝑁𝑞 ∑
q𝜈

ℏ
𝑚𝑖𝜔q𝜈 [

1
2 + ⟨𝑛(𝜔q𝜈 , 𝑇 )⟩] (𝑒𝑖𝛼

q𝜈)
2 (6.16)

where 𝑒𝑖𝛼
q𝜈 = |n̂𝑖𝛼 ⋅ eq𝜈|. Ref. [107] shows that the distribution in atomic displacements

is a correlated multivariate Gaussian with zero mean. In the classical limit the MSD
becomes proportional to temperature,

⟨(𝑢𝛼
𝑖 )2⟩ (𝑇 → ∞) = 1

𝑁𝑞 ∑
q𝜈

𝑘𝐵𝑇
𝑚𝑖𝜔2

q𝜈
(𝑒𝑖𝛼

q𝜈)
2 , (6.17)

while at low temperatures it approaches the zero-point motion value

⟨(𝑢𝛼
𝑖 )2⟩ (𝑇 = 0) = 1

𝑁𝑞 ∑
q𝜈

ℏ
2𝑚𝑖𝜔q𝜈

(𝑒𝑖𝛼
q𝜈)

2 . (6.18)
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6.3. Sampling configurational space

6.3 Sampling configurational space
In extracting, FC one can make use of the frozen phonon method and displace one
atom at the time. However, here wewill consider themore efficient method and directly
displace all atoms in the cell and thereby collecting training structures for the regression
problem in Eq. (6.6). For instance, one can displace all atoms according to a normal
distribution given some appropriate standard deviation. This method has been denoted
Rattle [102].

A more proper, but also more computationally demanding way of generating the
training structures, is to generate displacements usingmolecular dynamics (MD), prefer-
ably ab-initio molecular dynamics (AIMD).

Another attractive way to generate training structures is to make use of derived nor-
mal modes. The normal modes can be populated according to some given temperature.
To generate the atomic displacements, which are Gaussian distributed, the Box-Muller
method can be used. The displacements are then given by

𝑢𝛼
𝑖 = ∑𝜈

𝐴𝑖
𝜈𝑒𝑖,𝛼

𝜈 √−2 ln (𝑄𝜈) cos (𝜋𝑈𝜈) , (6.19)

where 𝑄𝜈 and 𝑈𝜈 are two uniform random numbers between 0 and 1, and

𝐴𝑖
𝜈 = [

ℏ
𝑚𝑖𝜔𝜈 (

1
2 + 𝑛(𝜔𝜈 , 𝑇 ))]

1/2
. (6.20)

We have here dropped the index q, since we are only interested in the modes that are
commensurate with the supercell, the modes at the Γ-point for the supercell. If we
would like to populate the modes classically instead, the amplitude

𝐴𝑖
𝜈 =

[
𝑘𝐵𝑇
𝑚𝑖𝜔2

𝜈 ]

1/2

(6.21)

should be used.
In Fig. 6.3 we show results for BZO using the “standard” method based on individual

atomic displacements with size 0.01 Å (here denoted phonopy) and using the method
based on training structures and regression (here denoted hiphive). The phonopy re-
sults are the same as in Fig. 6.1 and the hiphive results are based on training structures
from phonon modes at 100 K using the classical amplitude in Eq. (6.21). Both results are
based on a 4x4x4 supercell and in the hiphive calculations the cutoff for the FCs is set
to 8.0 Å, about 𝐿/2, where 𝐿 = 4𝑎0 = 16.94 Å is the supercell size. In the same figure
we show the projected DoS which is smeared using a Gaussian kernel with 𝜎 = 0.2
meV.
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Figure 6.3: projected dispersion at the high symmetry points using hiphive and phonopy in
the 4 × 4 × 4 supercell. Color assigned as (Ba, Zr, O) = (R, G, B).

We notice that the two methods give very similar results. There is, however, a differ-
ence for the lowest mode at the R point. That motion is strongly anharmonic, leading
to a renormalized larger frequency for the hiphive method. This is owing to the larger
and more physical displacements that are sampled by that method.

6.4 Anharmonicity
The harmonic model provided equations for calculating frequencies, and, e.g., free en-
ergies. However, there are a lot of properties of a material that are related to the lattice
that are not described by the harmonic approximation. For example, lattice thermal
conductivity, thermal expansion, phonon lifetimes, soft modes and structural phase
transitions [101, 108, 109]. Higher order terms from the expansion in Eq. (6.3), then
have to be included. Keeping terms up to fourth order gives us,

𝑉 = 1
2!Φ𝛼𝛽

𝑖𝑗 𝑢𝛼
𝑖 𝑢𝛽

𝑗 + 1
3!Φ𝛼𝛽𝛾

𝑖𝑗𝑘 𝑢𝛼
𝑖 𝑢𝛽

𝑗 𝑢𝛾
𝑘 + 1

4!Φ𝛼𝛽𝛾𝜐
𝑖𝑗𝑘𝑙 𝑢𝛼

𝑖 𝑢𝛽
𝑗 𝑢𝛾

𝑘𝑢𝜐
𝑙 . (6.22)

Therefore, it is apparent that we need methods that also address the anharmonic inter-
actions.
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6.4. Anharmonicity

6.4.1 Perturbation theory
The dynamics of the anharmonic system can be investigated by, e.g., perturbation the-
ory. This is carried out by writing the harmonic Hamiltonian on a diagonal form using
the creation and annihilation operators [108],

ℋ = ∑
𝜆

ℏ𝜔𝜆 (𝑎†
𝜆𝑎𝜆 + 1

2) , (6.23)

with energy eigenstates, |𝑛⟩, sometimes referred to as Fock states. The displacement
operator, defined Eq. (6.15), was used to rewrite the Hamiltonian and 𝜆 = (q, 𝜈). A
potential of the third order can then be written as [108],

ℋ3 = ∑
𝜆𝜆′𝜆″

Ψ𝜆𝜆′𝜆″(𝑎𝜆 + 𝑎†
−𝜆)(𝑎𝜆′ + 𝑎†

−𝜆′)(𝑎𝜆″ + 𝑎†
−𝜆″), (6.24)

where the same displacement operator is used and −𝜆 = (−q, 𝜈). Extension to even
higher orders is straight forward. The potential in Eq. (6.24) will cause scattering be-
tween the Fock states as, ℋ3 contains terms such as, 𝑎†

𝜆𝑎𝜆′𝑎†
𝜆″ . As a result, the Fock

states are no longer energy eigenstates of the Hamiltonian. One way to handle this
issue is to use perturbation theory, given that the anharmonicity is weak.

Maradudin and Fien [110] have an excellent discussion of how the anharmonic sys-
tem impacts the frequency of the system using perturbation theory. They showed that
the unperturbed system, the harmonic system, will experience a complex shift of the
frequency, Δ𝜔 + 𝑖Γ. The imaginary part (Γ) is related to the lifetime of the phonons,
which leads to a broadening of the vibrational spectrum, which we will see later. The
Δ𝜔 is simply a shift of the frequency. Ref. [108] uses perturbation theory to calculate
Γ using a third order potential for a couple of different materials.

6.4.2 Quasi harmonic approximation
The simplest correction to the real part of the complex shift is due to the increased
(or decreased) separation of the nearest neighbor atoms at elevated temperatures, ther-
mal expansion. The thermal expansion can be calculated directly from higher order
derivatives of the PES as presented in [110], or by explicitly changing the volume and
calculate a new set of frequencies, which is done in the quasi harmonic approximation
[101]. Practically, this carried out by calculating the harmonic frequencies and elec-
tronic energies at a few different volumes, and then minimizing the free energy with
respect to the volume at different temperatures. It is evident that the electronic ener-
gies increase with either an increase or decrease in volume. However, the frequencies
are commonly decreasing with increasing volume as the bonds tends to soften. This
increases the vibrational entropy, and in turn decreases the free energy, which leads to
an expansion of the volume. It is worth noting that there exists materials with negative
thermal expansion, but they are rare, see e.g., [111].
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6.4.3 Soft modes and structural phase transitions
As noted in the beginning of this chapter, it is not given that the potential was expanded
around a minimum, it could as easily have been expanded around a saddle point (or a
local maximum). That is, we know that the Jacobian is zero, however, for a minimum it
is required that theHessianmatrix should be positive definite, that is, all eigenvalues are
positive. Therefore, if the dynamical matrix, Eq. (6.7), which is related to the Hessian,
exhibits negative eigenvalues we conclude that the potential was not expanded around
aminimum but rather at a saddle point. This means that the potential energy is lowered
along the normal mode corresponding to that eigenvalue.

Structures that exhibit negative eigenvalues of the dynamical matrix are sometimes
referred to as dynamically unstable structures. However, at elevated temperatures, ex-
periments might indicate that the dynamically unstable structure is the one that is ob-
served. For example, BCO undergoes a series of phase transitions from orthorhombic to
rhombohedral to cubic. However, the dynamical matrix of the cubic and rhombohedral
structure exhibits negative eigenvalues (imaginary frequencies) [112]. The explanation
is that the anharmonic forces can stabilize the structure. Moreover, if the anharmonic
interactions are very strong, the real part of the complex shift for the frequency might
be large. Modes with large shifts of the frequency with respect to the temperature are
sometimes referred to as soft modes.

6.5 Effective harmonic modelling
The idea behind effective harmonic modelling is to generate a harmonic model that
represents the anharmonic system at a specific temperature and, if needed, volume.
We will restrict the analysis to the temperature dependence, but extensions to include
the thermal expansion is straight forward, although more computationally demanding.
There exist a plethora of methods that implements this, see e.g., [107, 113–116]. For
example, some methods include the following minimization problem,

min
𝚽(𝑻 ) {⟨(ℋ − 𝚽(𝑇 ))2⟩𝜆} . (6.25)

𝚽(𝑇 ) is the second order FC at temperature T and 𝜆 is the ensemble in which the
minimization is carried out. While other methods rely on Green’s functions [115, 116]
or a variation formulation [107]. The ensemble can either be the harmonic ensemble
which is generated by the model, or the anharmonic ensemble. The minimization is
usually done with respect to the forces,

min
𝚽 {∑

𝑖𝛼
(𝐹 𝛼

𝑖 − Φ𝛼𝛽
𝑖𝑗 𝑢𝛽

𝑗 )
2

}
, (6.26)

but the energy can easily be used/included if needed.
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6.5. Effective harmonic modelling

6.5.1 Temperature dependent effective potential
Hellman [114, 117] developed the temperature-dependent effective potential (TDEP)
method. This method minimizes the difference between the harmonic model and the
anharmonic system that we want to study, in the ensemble of the anharmonic system.
This means that the samples, or snapshots, used in Eq. (6.26) can be, e.g., drawn from
MD simulations. The minimization problem is then solved by casting the problem into
a linear system of equations as discussed in Sect. 6.1 and the same methodology is em-
ployed here. A caveat of the method is that the snapshots have to be drawn sufficiently
separated in time. Too frequent draws will lead to large correlations in the data, which
is detrimental to the stability of the minimization problem. Other approaches based on
MD simulation exists as well, see e.g., [115].

Typically, the MD simulations is carried out by AIMD, although, other methods can
in principle be used too. However, if the potential is quick to evaluate, the quasiparticle
concept of the phonon is likely not necessary and the dynamics of the system can be
studied directly instead.

A drawback of the method is that MD simulations are classical, i.e., we have forfeited
the fact that the motion of the ions should be treated quantum mechanically. However,
at higher temperatures, at least above the Debye temperature, the classical treatment
should be valid.

6.5.2 Self consistent phonons
Contrary to the TDEP method the self consistent phonon (SCPH) method minimizes
the difference between the anharmonic system and harmonic model potential in the
ensemble of the harmonic system. This means that, instead of MD simulations, the
harmonic model is used to generate the snapshots with Eq. (6.19) for the minimization
problem Eq. (6.26). The benefit of generating snapshots this way is that uncorrelated
snapshots are easily generated. However, the drawback is that we need to solve the
minimization problem self-consistently. Say, e.g., that your initial guess of the effective
harmonicmodel (EHM) at the finite temperature T is generatedwith phonopy. The new
model that minimizes Eq. (6.26) for the generated snapshots will be different from the
phonopy model. Therefore, the snapshots generated from this model will be different
as well. This procedure of generating snapshots and solving the minimization problem
will continue until the difference between the model used to generate the snapshot and
the model that solves the minimization problem has converged.

There exist a few different proposed methods that fall under the SCPH name, see e.g.,
Refs. [107, 113, 116]. It is worth noting that contrary to the TDEP method, it is trivial
to incorporate quantum effects in the SCPH method since Eq. (6.19) with Eq. (6.20) is
quantum mechanical. The effect of the quantum statistics is that, e.g., the zero point
energy leads to a non-zero displacement at 𝑇 = 0 K and, in effect, a larger frequency
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Figure 6.4: Temperature dependence of the tilt mode in BZO. The temperature dependence is
from other thermally activated modes, and the shaded area is half the standard deviation. The
underlying functional used to generate the fourth order FC potential is PBEsol.

than what is probed by e.g., TDEP at low temperatures.

6.5.2.1 Effective mode potential
Fig. 6.4 shows the stabilization of the potential landscape of the AFDmode in BZO. First,
note that the energy decreases along the specific mode if all other DOFs are ignored,
this is marked as Classical-0K in the figure. However, a temperature can be modelled
by occupying all other modes except the AFD mode at a specific temperature using
Eq. (6.19) for the EHMconstructed at a specific temperature. The energy of the structure
is then set to zero to get a constant reference. The potential is then mapped along the
mode with different amplitudes (unrelated to the temperature). The potential energy is
then averaged over a large set of thermally activated structure, the shaded area is half
the standard deviation. From the potential landscape, one can conclude that the zero
point motion stabilizes the structure. In this case, the interpretation is that structure
is unable to locate in the potential minimum, even at 𝑇 = 0 K. However, the validity
of the phonon quasi-particle close to a phase transition is poorly understood, and one
should therefore be cautious in the interpretation of the results. Nevertheless, one thing
is certain, the potential stiffens as the temperature is increased due to the other DOFs.

6.5.3 Discussion
As previously noted, the essential difference between TDEP and SCPH is inwhat ensem-
ble we carry out the minimization and that it is trivial to include quantum statistics in
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Figure 6.5: Temperature dependence of the frequency of the tilt mode in BZO using PBE. SCPH-
cl uses the classical limit for the amplitude of the phonon while SCPH-qm uses the correct
quantum amplitude.

the SCPH method. However, due to the non-interactive approximation of the phonons,
it is likely that the SCPH probes higher energy parts of phase space. Nevertheless, we
are trying to create an effective second order potential, not reproduce the fully anhar-
monic system. It is therefore not obvious which of these methods produces the best
model.

Metsanurk et al. [118] used thermodynamic integration to discuss the errors involved
in accounting for anharmonic effects in this way. The thermodynamic integration was
set up such that a few values of 𝜆 were tested in between the anharmonic and harmonic
Hamiltonian. They argue that, errors in the free energy of the EHM is due to the lack
of transferability. The EHM manages to describe the average potential energy in the
ensemble which it was trained in. However, it fails to extrapolating to a general 𝜆 value
and therefore fails to correctly describe the actual anharmonic energies. TDEP and
SCPH systematically underestimated and overestimated the average potential energy
respectively for all 𝜆s.

We tested both TDEP and SCPH to study the AFD mode in BZO with PBE. The fre-
quency from TDEP is slightly smaller than the frequency from SCPH. A likely expla-
nation for the higher and lower frequencies is due to the on average higher and lower
potential energies compared to the actual potential found in SCPH and TDEP respec-
tively.

Fig. 6.5 shows the calculated frequencies as a function of temperature for the two
methods. SCPH-cl is the classical version of SCPH, meaning that the classical ampli-
tude (ℏ𝜔 << 𝑘𝐵𝑇 ) has been used in Eq. (6.19). SCPH-qm and SCPH-cl are almost
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Chapter 6. Vibrational motion

completely equal at and after 100 K, however, below that temperature there is a signif-
icant difference between the two. This demonstrates the importance of accounting for
the quantum motion at low temperatures.

6.6 Higher order models and inter-atomic
potentials

By making use of the Taylor series expansion in Eq. (6.3), we can construct an inter-
atomic potential with a suitable truncation of the series expansion. That is, we can fit
a potential to interpolate the DFT results. However, it is important to note that the
Taylor series breaks down for large displacements and is not well-defined when atoms
start to diffuse. Therefore, considerable effort has been devoted to derive more general
and generic inter-atomic potentials based on some modelling of the potential energy
function 𝑉 (… ,R𝑖, …) in Eq. (6.1).
Behler et al. used neural networks [119] and Jinnouchi et al. used active learning

[120]. These methods do not use the series expansion, but rather a different set of
chemical descriptors [121]. There exist a vast number of other potential types, atom-
icRex [122], is, e.g., a software that provides a framework to construct a number of
different potentials such as the embedded atom method (EAM).
The models can then be used in, e.g., MD to extract thermodynamic and dynamical

properties [123]. Moreover, it is evident that you can directly use DFT, which is denoted
AIMD. However, the computational cost of DFT makes, e.g., correlation functions very
computational demanding.

The limitation of MD is that the motion is treated classically. Therefore, below some
temperature, usually assumed to be the Debye temperature, it is questionable to run
MD simulations. Below this temperature, the path integral formulation should be used
to calculate, i.e., free energies, but dynamical properties are not accessible with the
path integral formulation. However, centroid molecular dynamics which is based on
the path integral formulation appears to give a link to correlation functions [124]. Ref.
[125] uses the path integral formulation and centroid molecular dynamics to study the
dynamical and static properties of quartz, and compares it to the classical dynamics.

6.6.1 Correlation functions and spectra
Correlation functions can be used to study the dynamics of classical systems that are
strongly anharmonic. One such correlation function is the dynamical structure factor.
This correlation function is also something that can be obtained from neutron scattering
experiments, see, e.g., Ref. [126] for an excellent outline on how it is derived and how
it relates to experiments.
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Figure 6.6: Result for BZO with PBE at 𝑇 = 200 K. (a) Intermediate scattering function and (b)
Dynamical structure factor.

The dynamical structure factor for atoms of type A and B,

𝑆𝐴𝐵(𝑞, 𝜔) = ∫
∞

−∞
d𝑡 exp(−𝑖𝜔𝑡)𝐹𝐴𝐵(𝑞, 𝑡), (6.27)

is given by the temporal Fourier transform of the intermediate scattering function,

𝐹𝐴𝐵(𝑞, 𝑡) = 1
√𝑁𝐴𝑁𝐵

⟨𝑛𝐴(𝑞, 𝑡)𝑛𝐵(−𝑞, 0)⟩ . (6.28)

Here, 𝑛𝐴(𝑞, 𝑡) is the spatially Fourier transformed atomic density of atomic type A

𝑛𝐴(𝑞, 𝑡) = ∫ dr∑
𝐴

𝛿(r − R𝐴(𝑡)) exp (𝑖q ⋅ r)

= ∑
𝐴

exp (𝑖q ⋅ R𝐴(𝑡)) .
(6.29)

Fig. 6.6 shows the intermediate scattering functions and the resulting dynamical struc-
ture factor for q = (2𝜋/𝑎0) (2.5, 0.5, 0.5) at 𝑇 = 200 K for BZO with PBE.The calculated
functions are a superposition of all the individual atomic pairs, and the calculations are
averaged over 20 independent MD runs. The time axis for the intermediate scattering
function is shortened to 15 ps in order to show the most interesting parts, whereas the
total simulation time is 100 ps. Examining the intermediate scattering function, we can
clearly see a mode with a large amplitude that is heavily damped. This corresponds
to the broader peak at about ∼ 7meV seen in the dynamical structure factor. There is
also a higher frequency mode visible with smaller amplitude and lower damping. This
corresponds to the more narrow peak at ∼ 12.5meV.
The spectrum can be fitted to the functional form derived from a damped harmonic

oscillator [123],

𝑓(𝜔) = 𝐴
Γ𝜔2

0
(𝜔2 − 𝜔2

0)2 + (Γ𝜔)2
, (6.30)
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where Γ is related to the phonon lifetime and 𝜔0 is the undamped frequency. The
dynamical structure factor also highlights a glaring difference between the EHM and
the actual dynamics. We are trying to assign a single value, or a delta function, to a
spectrum. This assignment, to me at least, is not obvious. Anecdotally, we found that
the TDEP frequency compares very well with the undamped frequency of the AFD
mode in BZO.

Another correlation function is the MSD, which was derived for the harmonic model
and is given in Eq. (6.16). The classical limit, (𝑇 → ∞), of this correlation function, can
also be calculated from an MD simulations according to,

Δ𝛼
𝑖(𝑡) = ⟨[R𝛼

𝑖 (𝑡 + 𝑡′) − R𝛼
𝑖 (𝑡′)]

2
⟩ , (6.31)

where R𝛼
𝑖 (𝑡) is the 𝛼-component of the position of atom 𝑖 at time 𝑡 and ⟨…⟩ denotes a

time average. For long times this will approach the classical limit of the MSD

Δ𝛼
𝑖(𝑡 → ∞) = 2 ⟨(𝑢𝛼

𝑖 )2⟩ , (6.32)

where for a harmonic system ⟨(𝑢𝛼
𝑖 )2⟩ is given by Eq. (6.17).

In Fig. 6.7 we show a comparison for MSD as function of temperature for three differ-
ent models, ℋ2, SCPH andMD. ℋ2 is a purely harmonic model, which was constructed
from the harmonic FCs of the 4th order potential. This figure highlights the difference
between anharmonic and quantum effects.

Consider first the motion of oxygen perpendicular to the O-Zr bond in Fig. 6.7 (a).
The vibrational frequency is low and strongly anharmonic. The corresponding displace-
ments become large. The strong anharmonicity is evident from the deviation of SCPH
from ℋ2 with increasing temperature. The MD results also show a clear decrease of
the slope. The low vibrational frequency implies that the motion becomes essentially
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Figure 6.7: The MSD calculated for BZO using PBE. We used three different models for the
calculations, MD, SCPH and a purely harmonic model.

42



6.6. Higher order models and inter-atomic potentials

classical at 300 K, which is seen from agreement between MD and SCPH at higher tem-
peratures.

Consider next the motion of oxygen parallel to the O-Zr bond in Fig. 6.7 (b). The
vibrational frequency is high, and the corresponding displacements become small. The
motion remains quantum mechanical even at 300 K and the MD results deviates from
the results from the two quantum based methods, ℋ2 and SCPH. However, the anhar-
monicity is weak and the result from ℋ2 and SCPH coincide.
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7
Data analysis

One key aspect of data analysis is to know the biases and imperfections of your input
data. This is, because, the model can only be as good as the data that it is given. It is,
therefore, just as crucial to evaluate the input data as it is the final model. Moreover,
solving the regression problem, Eq. (6.6), is a research field on its own, but a few straight
forward solutions can easily be obtained. Therefore, in this chapter, a few key insights
into how to solve Eq. (6.6), analyze the input data and evaluate the final model will be
presented.

7.1 Regression
Regression methods estimate the relation between dependent variables, which is ex-
actly what we are trying to do in Eq. (6.6). Below follows a few different linear regres-
sion methods.

7.1.1 Ordinary Least squares
The simplest solution to Eq. (6.6) is the ordinary least squares (OLS) solution which
minimizes the root mean squared error (RMSE),

min
𝚽

||A𝚽 − F||2
2. (7.1)

Since the function is convex, it is straight forward to find the global minimum,

𝚽 = (A𝑇A)−1A𝑇 F. (7.2)

This solution is, however, prone to overfitting. Meaning that, if we included features
in the model that are irrelevant or unimportant, they will mostly contribute to fitting
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noise in the input data, reducing the ability of the model to predict unseen data. The
knowledge of which features are important in, e.g., the force constant expansion in
Eq. (6.3) is not always self-evident and can sometimes be hard to judge prior to con-
structing the model, especially for higher order models. Therefore, it can be critical to
use more advanced methods that remove or regularize unimportant features.

7.1.2 Regularization
Regularization is a class of algorithms that aims to minimize the RMSE together with a
scaled penalty term, which is usually a norm of the feature vector. In Ridge (𝑛 = 2) and
least absolute shrinkage and selection operator (LASSO) (𝑛 = 1), the object function is

min
𝚽 {||A𝚽 − F||2

2 + 𝜆||𝚽||𝑛}

where ||𝚽||𝑛 is the ℓ𝑛 norm of 𝚽 and 𝜆 is a hyperparameter. A larger 𝜆 in LASSO
leads to a sparser model (fewer features) and a smaller 𝜆 leads to a denser model (more
features). Denser models tend to describe seen data very well, however, depending
on the problem they can sometimes describe unseen data rather poorly. On the other
hand, a larger 𝜆 in ridge does not necessarily lead to a sparse model, but rather, that
the features tend to have a smaller magnitude. Ridge typically leads to a smoother
function, which is desirable, since this avoids fitting of noise. However, Fransson et
al. [127], found that other machine learning (ML) methods might be more suited for
FCs fitting, such as automatic relevance determination regression (ARDR) or recursive
feature elimination (RFE).
Linear support vector regression (SVR) is another type of regularization method,

which, similarly to LASSO and Ridge penalizes large parameters. The difference lies
in the objective function. The RMSE part of the object function has been replaced with
a part that allows for small errors in the training data,

min
𝚽

⎧⎪
⎨
⎪⎩

1
2||𝚽||2

2 + 𝐶
𝑙

∑
𝑖

(𝜉𝑖 + 𝜉∗
𝑖 )

⎫⎪
⎬
⎪⎭

.

C is a user defined constant which controls the trade-off between the norm of the fea-
tures and howwell the training data is described. 𝜉𝑖 and 𝜉∗

𝑖 are slack parameters, which
penalizes predictions that lie above or below a “tube“ of acceptable errors defined by
the error margin, 𝜖. The problem can also be formulated in a slightly more explicit
form,

min
𝚽

⎧⎪
⎨
⎪⎩

1
2||𝚽||2

2 + 𝐶
𝑙

∑
𝑖
max (0, |𝑦𝑖 − 𝐴𝑗𝑖Φ𝑖| − 𝜖)

⎫⎪
⎬
⎪⎭

.

Thus, the idea is similar to ridge, we want the features to be as small as possible, or
rather, the function to be as smooth as possible. This is done by having some acceptable
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Figure 7.1: Comparing OLS, LASSO and SVR for a fictive regression problem

errors in the prediction, but too large errors gets penalized, for further information, see
Ref. [128].

To demonstrate the strength of regularization, an arbitrary function is constructed
as superposition of 4 sinusoidal waves. The amplitude acts as the parameter that we
want to find and the wave act as the basis. To add some complexity, 3 more sinusoidal
waves were included as basis functions. The function were sampled with 90 points
that were randomly generated between 0 and 1 and a Gaussian noise, 𝒩 (0, 0.6), was
added. The resulting function and features are presented in Fig. 7.1 and Table 7.1. OLS
represents the function very well inside the region where the samples have been drawn,
however, it severely overestimates the function for x values larger than 1. We note that
this is due to the severely over/underestimated coefficients. The regularized methods
on the other hand describe the function significantly better, even outside the sampled
region, with more reasonable features. Fortunately, this artificial problem is not a good
representation of the FCs problem, where the OLS method actually performs decently,

ground truth 0.856 0 0.99 0.47 0.62 0 0
OLS 1329.44 2483.43 -50.07 1384.53 0.66 0.06 -1445.98

LASSO 0.00 0.00 0.62 0.00 0.63 0.04 -0.52
SVR 0.08 -0.22 0.79 -0.06 0.65 0.04 -0.39

Table 7.1: Amplitude of sinus wave with random frequency.
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but it highlights the properties of the penalty term in the extreme cases.

7.1.3 Bayesian methods
Another set of regression methods is the Bayesian methods which utilizes Bayes theo-
rem,

𝑝(𝚽|F) = 𝑝(𝐹 |𝚽)𝑝(𝚽)
𝑝(F) , (7.3)

where 𝑝(𝚽|𝐹 ) is the posterior, 𝑝(𝐹 |𝚽) the likelihood, 𝑝(𝚽) are the prior and 𝑝(F) the
marginal likelihood. A typical algorithm from this formalism is, e.g., ARDR [129],
where the prior over the features is constructed as a centered elliptical Gaussian. By im-
posing hyperpriors it is possible to find the covariance and standard deviation. ARDR
allows for pruning of features with a slim distribution, i.e., features that most likely are
irrelevant. The feature values that maximize the posterior is then taken as the solution.
Conveniently, this formalism also allows us to draw parameters from the posterior to
investigate the uncertainty of properties that are of interest, e.g., the phonon dispersion
(see Chapter 6). The posterior can also be used to marginalize out the parameters and
sample the uncertainty of new points.

An interesting note here is that some regularization algorithms can be understood
from this formalism. For example, the ridge solution is themaximum posterior estimate
of a Gaussian likelihood and a centered spherical Gaussian prior.

7.2 Correlation and Condition number
The likelihood in Equation (7.3) is commonly assumed to be a normal distribution (as
in the case of ARDR),

𝑝(F|,𝚽, 𝜎) = 1
(2𝜋𝜎)𝑁/2 exp(− 1

2𝜎2 (A𝚽 − F)𝑇 (A𝚽 − F))

∝ exp(− 1
2𝜎2 (𝚽 − �̃�)𝑇 (A𝑇A)(𝚽 − �̃�)) .

(7.4)

If we assume a uniform prior, 𝚽 ∼ 𝒰 , the posterior, which is a distribution of the
features, 𝚽, will be identical to the likelihood. In that case, we can identify the mean
and covariance matrix of the features as,

𝚺 = (𝜎−2A𝑇A)−1

�̃� = 1
𝜎2𝚺A

𝑇 F.
(7.5)

Where �̃� is the OLS solution given in Eq. (7.2) and 𝐶 = A𝑇A is the cross-correlation
matrix. For the best possible solution, we want the inversion of the cross-correlation
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matrix to be as well posed as possible. This means that, the cross-correlation matrix
should include asmuch information as possible for each feature. That is, the data should
ideally be drawn as if it were independent data. The cross-correlation matrix for such
data will have a very slim distribution for the off-diagonal elements, see, e.g., Ref. [130]
for more details.

Another related method of estimating how well posed the regression problem in
Eq. (6.6) is, is the condition number. The condition number is the ratio of the largest
and smallest singular value of the design matrix. The singular values are calculated as
the square root of the eigenvalues of the cross-correlation matrix. That is, the condition
number tells you how large the difference between the smallest and largest scaling of a
general vector is. For an ill-conditioned problem, the condition number would be large,
i.e, the scaling between two general vectors is very different. A severely conditioned
problem have two or more linearly dependent columns in the design matrix, which
gives an infinite condition number.

To demonstrate an example of correlations and the condition number, three design
matrices were constructed for BZO. Only harmonic interactions were considered, the
cutoffwas set to 8Å and the total number of features were 102. The snapshots were gen-
erated from the rattle, phonon and MD methods. The standard deviation of the rattled
structures were set to 0.05Å, and the temperature for the phonon and MD structures
were 300 K. The columns in the design matrix, A, has been standardized, i.e., the distri-
bution of the training data for a single feature has a standard deviation of one. Fig. 7.2
then shows the correlations between three harmonic features, ideally, the distributions
should be the shape of a circle. However, as the figure depicts, the features have more
or less the shape of an ellipse, meaning that the features are, to some extent, correlated.
Moreover, the condition number and the average, minimum and maximum value from
the cross-correlation matrix are summarized in Table 7.2, which has been multiplied by
103 and normalized as described in [130]. For this specific example, the correlations be-
tween the features in the rattle snapshots seems to be on average the lowest. However,
no general trends or conclusions between the three ways of generating snapshots can
be drawn from this minimal analysis, that is, this serves only as an example.

𝐶min 𝐶max 𝐶mean condition number
rattle 0.0000 1.2545 0.0278 41.3469
phonon 0.0000 5.8271 0.0885 57.4894
MD 0.0000 1.3010 0.0361 69.0985

Table 7.2: Condition number, minimum, maximum, and average correlation for the harmonic
features of BZO within a cutoff of 8Å. The total number of features are 102.
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Figure 7.2: Visualization of correlations of the three most short ranged parameters in a training
set from (a) rattle, (b) phonon and, (c) MD

7.2.1 Model performance
Finally, the performance of the model can be evaluated through cross validation, which
measures how well the model is at predicting unseen data. Cross validation splits your
data set into several different training and validation sets. The model is trained on the
training set and tested on the validation set. This is repeated for all of the splits, and
in the end you can check the performance of the model by, e.g., calculating an average
score. The score is calculated via a loss function, a common loss function is the RMSE.
The splits can be done in several different ways, but two has mainly been explored in
this thesis, namely shuffle-split and KFold. KFold divides the data into 𝑘 sets, each set
is then chosen once as a validation set, and the others are used as training examples.
Shuffle-split randomizes 𝑥 number of validation sets in each iteration and the rest serves
as training examples. The benefit of shuffle-split is that you can do as many splits as
you’d like without making the training set smaller, which is a restriction of KFold. The
benefit of KFold is that all data are used at least once as a validation set, which is not
guaranteed in shuffle-split.

However, there are other loss functions that in addition to minimizing the error pe-
nalize the number of non-zero features in the model. One such loss function is the
Bayesian information criterion (BIC),

BIC = 𝑘 ln 𝑛 − 2 ln �̂�, (7.6)

where k is the number of non-zero features, n is the number of samples and �̂� is the
maximized value of the likelihood function. BIC is calculated on the whole training set,
i.e., there are no cross validation splits when evaluating a model using BIC. Commonly,
both BIC and cross-validation are used in tandem to evaluate the performance of the
model.
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In paper I, the harmonic approximation was used to calculate the hydration enthalpy
and entropy for BZO. We thoroughly investigate the vibrational spectrum of all atomic
types and defect structures. From this, we deduced specific frequencies and modes that
are of significant interest to the hydration thermodynamics. Direct comparison with
experimental studies is difficult, as the van’t Hoff plot shows a non-linear behavior,
indicating two temperature regions with different hydration entropy and enthalpy. We
find that the calculated hydration entropy agrees reasonably well with the reported
experimental values in the high temperature range.

In paper II, the anharmonicity of the BZO structure has been explored, and more
specifically, how it affects the frequency of the AFD mode. We constructed a fourth
order FCP based on DFT data. The potential was then subsequently used to construct
a SCPH model. In addition to the SCPH model, the potential was used to run MD. We
showed that, it is pivotal to account for anharmonic interactions and quantum fluctu-
ations to correctly capture the proper temperature dependence of the AFD mode in
BZO.

Similar methods were applied in Paper III to study the very anharmonic perovskite
CsPbBr3. In this paper, the soft modes responsible for the continues-order phase tran-
sitions exhibited by CsPbBr3 were explored. We found that these modes were over-
damped significantly above the phase transition temperature.

A natural continuation of this work is to further investigate the hydration enthalpy
and entropy for BZO, which is not completely understood. As mentioned above, the
equilibrium constant shows a non-linear behavior experimentally, i.e., there exist a
high and low temperature region. Therefore, there is undeniably something changing
in thematerial around 500∘C. Yamazaki et al. [49, 131] suggested that the deviation from
linearity is due to a not negligible hole concentration at higher temperatures. This is
something that was disputed by Kjølseth et al. [132], who argue that the non-linear
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behavior is more likely to be due to the clustering of yttrium dopants and oxygen va-
cancies at low temperatures. It has been shown that the oxygen vacancy gets strongly
bound to the dopant [46], which leads to a less exothermic hydration enthalpy. The sig-
nificant defect interactions will also very likely lead to a configurational disorder. This
disorder should increase the configurational entropy of the defect cells, which could
explain the significantly larger hydration entropy at lower temperatures. This could,
for example, be investigated using CEs in further projects. Furthermore, it is also im-
portant to elaborate on the role of electron-holes in the hydration reaction of proton
conducting membranes to further solidify the dynamics of the hydration reaction.

Although significant progress has been made in the manufacturing of well perform-
ing chemical reactors, electrolyzers and fuel cells [69, 133, 134], challenges remain. For
example, electrolyzers suffer from slow electrode kinetics [134]. The role that proton
association with defect traps plays for both the hydration reaction and the proton mo-
bility is still elusive [12, 46, 132]. The effect of high concentrations of dopants on the
sinterability and phase stability is also something that needs to be considered for fur-
ther devices [135].
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