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Rigid Body Ship Dynamics

MARTIN ALEXANDERSSON
Chalmers University of Technology
Department of Mechanics and Maritime Sciences

Abstract

It is common today that operational data is recorded onboard ships within the Internet
of Ships (IoS) paradigm. This enables the possibility to build ship digital twins as
digital copies of the real ships. Predicting the ship’s motions with ship dynamics could
be an important sub-component of these ship digital twins. A model for the ship’s
dynamics can be identified based on observations of the ship’s motions. The identified
model will have model uncertainty due to imperfections and idealizations made in
physical model formulations as well as uncertainty from errors in the measurement
data, which can be very pronounced when using full scale operational data. It is
easier to develop accurate models with low model uncertainty using data obtained in
a controlled laboratory environment where the measurement errors are much lower,
especially in calm water conditions. The prediction model should be able to describe
scenarios that a ship has never encountered before, which is possible if much of the
underlying physics has been identified. Grey-box modelling is a technique which
combines operational data with physical principles to achieve this.

The objective of this thesis is to develop system identification methods for grey
box models with good generalization of the model scale rigid body ship dynamics in
calm waters.

A model development procedure is proposed to handle the model uncertainty
through the selection of candidate models based on a hold-out evaluation procedure.
The measurement noise is handled by an iterative preprocessor, which uses an extended
Kalman filter (EKF) and a Rauch Tung Striebel (RTS) smoother that uses an initially
estimated predictor model from semi-empirical formulas.

It is demonstrated that the ship’s roll motion with high accuracy can be described
using a quadratic damping model. For the more complex manoeuvring models,
multicollinearity is a large problem where the appropriate complexity needs to be
selected with the bias-variance trade-off between underfitting or overfitting the data.
Hold-out turning circle tests were predicted with high accuracy for the wPCC and
KVLCC2 test case ships with models from the proposed development procedure and
parameter estimation method.

The proposed methods can produce prediction models with high generalization
given that a suitable model structure has been selected from the candidate models
and an appropriate split in the hold-out evaluation of the model development process
has been applied.

Keywords: Extended Kalman filter, Inverse dynamics, Multicollinearity, RTS
smoother, Ship digital twin, Ship manoeuvring, System identification
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Chapter 1
Introduction

The use of twin models is not a new idea. NASA built twin rockets for the Apollo
missions, where one rocket went to the Moon and the other twin rocket stayed on
Earth. The twin model could have been used as a reference object in case of a mishap
during the mission. The twin model concept has many other useful applications, not
just for catastrophic scenarios with a failing space ship, but also for more ordinary
applications for conventional ships. However, building a real twin ship as a reference
object is not realistic. Instead, with data recorded aboard ships, it is possible to build
a ship digital twin (SDT) to serve the same purpose. System identification methods
of rigid body ship dynamics are presented in this thesis, which can be used to build
important sub-components/models in the SDTs.

Ship dynamics is a branch of ship hydrodynamics that concerns the ship’s forces
and motions when the ship is allowed to move and rotate in all directions. Seakeeping
and Manoeuvring are the two major subfields (see Figure 1.1). Seakeeping studies
the behavior of a ship in a seaway while it is under the influence of external waves,
currents, and wind. Calm water conditions, lacking the external waves, are further
assumed in Manoeuvring, which is considered either an idealized and simplified case
of Seakeeping or the true conditions in sheltered environments. This chapter first

(a) Seakeeping. (b) Manoeuvring.

Figure 1.1: Seakeeping and manoeuvring model tests, copyright SSPA.

provides a background by defining the Internet of Ships (IoS), ship digital twins
(SDT) and the modelling of rigid body ship dynamics with white-box, black-box, or
grey-box models. A literature review of system identification is then presented. The
motivation and objective of this research are then stated, followed by the assumptions
and limitations.
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Chapter 1. Introduction

1.1 Background

With the principles of the Industry 4.0, Shipbuilding 4.0 will transform the design,
manufacturing, operation, shipping, services, production systems, maintenance, and
value chains in all aspects of the shipbuilding industry (Stanic et al. 2018). The
emergence of the Internet-of-Things (IoT) has led to the introduction of the Internet
of Ships (IoS) paradigm (Liu et al. 2016).

“IoS is the interconnecting of sensing objects, such as ships, crews, cargoes,
onboard equipment, the waterway environment, waterway facilities, shore-
based facilities, and other navigation elements. The sensing objects are
embedded with various sensor and heterogeneous network technologies
that enable them to collect and exchange data.”

Safety enhancements, route planning and optimization, energy efficiency, automatic
berthing and autonomous shipping are some of the emerging applications of the IoS
(Aslam et al. 2020). A ship digital twin (SDT), which is a digital copy of a real ship,
is one way to utilize all data within the IoS (Chen et al. 2021). SDTs are data-driven
in contrast to the alternative model-based virtual prototyping (VP) (Major et al.
2021). An SDT is typically used as a model for an existing ship from which data can
be collected; the VPs are prototypes for future ships, in which no operational data
is available. The models for VP and SDT are categorized as white-box, black-box,
or grey-box models.White-box models are used in VP. Either black-box or grey-box
models are used in the SDTs.

• White-box modeling
involves applying physical principles to ensure that no observed data is required.
One example is computational fluid dynamics (CFD). Semi-empirical models, in
which unknown physical constants have been derived from historical experiments,
could also be considered white-box models (Leifsson et al. 2008).

• Black-box modeling
means that parameters do not have physical significance and that the objective
is to find an effective model that fits the observed data (Lindskog and Ljung
1995).

• Grey-box modeling
is using a combination of white-box and black-box modeling methods to ensure
that both a physical model and data are used. This concept is also referred to
as semi-physical modeling, hybrid modeling, or semi-mechanistic modeling in
the literature (Leifsson et al. 2008).

The white and black component can be combined as a grey box model in several ways,
using either a serial or parallel approach (Leifsson et al. 2008) as seen in Figure 1.2.
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1.2. Literature review

White-box Black-box

(a) Serial grey-box.

Black-box White-box

(b) Serial grey-box.

Black-box

White-box

Join

(c) Parallel grey-box.

Figure 1.2: Several ways to combine white- and black-box models in grey box
models.

1.2 Literature review

Ship digital twin (SDT) has a positive trend in the number of publications in recent
years (2018-2021). Most of the papers concern ship equipment such as electric power
systems, propulsion system, ship hull structure, and marine diesel engines. A small
minority of the SDT applications handle ship trajectory, speed, and fuel consumption
(Assani et al. 2022). Even though SDT is not explicitly mentioned, there are many
publications about methods that can be used as SDTs. Lang et al. (2022) predicted
the propulsion power for a chemical tanker for three test case voyages by using ML
black-box modeling. However, the manoeuvres were excluded. Nielsen et al. (2022)
used grey-box modelling for the manoeuvring prediction of a ferry, where a deep
learning model (black-box) captures the residues between a first-principles model
(white-box) and observed data. These studies demonstrate the vast potential within
the field.

Noteworthy publications within the system identification of the ship’s manoeuvring
dynamics are summarized in Table 1.1 and categorized as black-box or grey-box
models. The system identification can be applied to full scale data (Åström and
Källström 1976; Revestido Herrero and Velasco González 2012; Perera et al. 2015),
which has the highest model uncertainty and measurement uncertainty. Therefore, it
is the hardest task but also the most relevant. A method for reducing the uncertainty
is using model test data (Araki et al. 2012; Luo et al. 2016; Xue et al. 2021; Miller
2021; He et al. 2022). The uncertainty can be further reduced by using simulated
data (Shi et al. 2009; Zhu et al. 2017; Wang et al. 2021), which can demonstrate the
potential of new methods that have the benefit of the true model being known. One
must however be consistent with the main objective of identifying real objects, not
only mathematical models (Miller 2021).

Black-box modeling was used in He et al. (2022), using a neural network, and in

3



Chapter 1. Introduction

Table 1.1: System identification references, black-box (BB), grey-box (GB).

Method BB GB Data Reference
Genetic algorithm ✓ Lake test Miller (2021)
Neural network ✓ Model test He et al. (2022)
Gaussian process ✓ Model test Xue et al. (2021)

Kalman filter maximum
likelihood

✓ Full scale Åström and Källström
(1976)

Unscented Kalman filter ✓ Full scale Revestido Herrero
and Velasco González
(2012)

Extended Kalman filter ✓ Full scale Perera et al. (2015)
Extended Kalman filter ✓ Simulated Shi et al. (2009)
Constrained least squares ✓ Model test,

CFD
Araki et al. (2012)

Support vector regression ✓ Simulated Zhu et al. (2017), Wang
et al. (2021)

Support vector regression ✓ Model test Luo et al. (2016)

Xue et al. (2021), using a Gaussian process. The nonparametric models are related
because the system structure is known but no parameters are required; this is seen in
Pongduang et al. (2020). However, most of the system identification methods for ship
manoeuvring models use grey-box modeling by assuming a predefined mathematical
model, which reduces the problem to a parameter estimation. The Kalman filter
(KF) combined with maximum likelihood estimation was proposed in 1976 by Åström
and Källström (1976) to develop a linear manoeuvring model that utilized manually
recorded data in 1969 aboard the Atlantic Song freighter. The extended Kalman
filter (EKF) can also estimate parameters if the parameters are represented as states
of the state space model. This technique was used on a nonlinear Nomoto model
(Perera et al. 2015) and a 3 degree of freedom model (3DOF) (Shi et al. 2009).
The EKF was used in Araki et al. (2012), with constrained parameters based on
physical reasoning and prior knowledge from constrained least squares regression.
The unscented Kalman filter (UKF), which has been proposed as an improvement
to the EKF for handling nonlinear systems, was used in Revestido Herrero and
Velasco González (2012). Support vector regression (SVR) has also been investigated
by Luo et al. (2016), Zhu et al. (2017), and Wang et al. (2021). A genetic algorithm
was used by Miller (2021) for the system identification of a model test performed on
a lake.
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1.3. Motivation and objective

1.3 Motivation and objective

A profuse amount of data concerning the operation of ships in the oceans is collected
daily. Many uses and potential applications of this data remains to be discovered.
The use of SDTs (which are modelled as white-boxes, black-boxes, or grey-boxes)
has potential . Black-box modeling is entirely data-driven, which means that no
prior understanding of the system generating the data is needed. Therefore, it is an
attractive option for the SDT modelling. One caveat is that the black-box modeling
may provide infeasible models outside of the domain covered by the available data
(Nielsen et al. 2022).

The white-box modeling, which is not relying on the data, does not have this
problem. However, to obtain high accuracy it does require a complete understanding
of the system. Acquiring such knowledge may be possible for some cases with CFD
calculations, but it is not practical for the complex environment and nonlinearities of
a ship operating at sea (Miller 2021). Wind, waves, and currents add uncertainty to
the modelling in the deep sea. Water depth and the bank effect add uncertainty in
coastal areas (Nielsen et al. 2022). Even if the sea is flawlessly modelled, long-term
predictions with high accuracy will be exposed to deterministic chaos (Lorenz 1963),
which is popularly known as the butterfly effect. During the butterfly effect, only
a very small difference in the initial conditions results in a significantly different
outcome. For instance, a period of two weeks is believed to be the upper limit for
weather forecasts (Zhang et al. 2019). Because the methods developed in this thesis
frame the first step towards system identification in full scale sea conditions, grey-box
modelling is used. The grey-box model involves merging the white-box and black-box
methods in an attempt to alleviate concerns regarding both models.

It is practical to first assume higher levels of simplifications and approximations for
the problem under study and thereafter increase the complexity of the problem step
by step. The effects of various factors can be initially studied in isolation with this
approach. rigid body ship dynamics at full scale sea conditions comprises uncertainties
from:

• the environment: wind, waves, and currents
• the ship: geometry and mass properties
• the measurements

The simplification this thesis presents is limiting the uncertainties at full scale sea
conditions by using model test data from a controlled laboratory environment. The
main objective of this thesis is to:

develop system identification methods for grey box models with good
generalization of the model scale rigid body ship dynamics in calm waters.

To fulfill the research objective, the goals for this thesis have been formulated by
following the step-by-step approach. The approach consists of reducing complexity
and then gradually increasing the model complexity:
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Chapter 1. Introduction

Roll motion model

The first goal of the thesis is to develop a model for the calm water rigid body ship
dynamics in the roll degree of freedom; it is based on model test data.

Manoeuvring model

The second goal is to increase the complexity and uncertainty of the modelling by
adding the surge, sway, and yaw degrees of freedom, which addresses the manoeuvring
problem.

Model generalization

The third goal is a constraint. In order to be of practical use in the internet of ships
(IoS) applications, the models must be able to make predictions outside of the domain
covered by the available data.

1.4 Assumptions and limitations

The calm water condition is used as a simplification of the real sea condition that
a ship encounters. This condition does not account for the factors of wind, waves,
and currents. These assumptions simplify the system identification by reducing the
degrees of freedom to: surge, sway, yaw and, roll. The rigid body assumption simplifies
the ship to a stiff body that does not transform under the influence of forces. It is
important to note that all results are not necessarily directly transferable to the full
scale when model scale data is used considering potential scale effects.

1.5 Reproducibility

The research for this thesis has been conducted with the aim of having a high degree
of reproducibility. The U.S. National Science Foundation (NSF) subcommittee on
replicability in science defines reproducibility as (Bollen et al. 2015):

“Reproducibility refers to the ability of a researcher to duplicate the results
of a prior study using the same materials and procedures as were used
by the original investigator. ... Reproducibility is a minimum necessary
condition for a finding to be believable and informative.”

To ensure adequate reproducibility, all code developed in this research has been made
available as open source. In addition, the used data has been published as open data,
as seen in the references in Table 1.2. Publishing the roll decay data from Paper 1 as
open data was not possible due to intellectual property (IP) rights.

6



1.6. Outline of the thesis

Table 1.2: References for reproducibility.

Paper Code Data
1 Alexandersson (2022b) Unpublished due to IP rights
2 Alexandersson (2022a) Alexandersson (2022c), Stern et al. (2011)

1.6 Outline of the thesis

Chapter 2 presents the models for rigid body ship dynamics used in this thesis. The
models for roll motion are introduced in section 2.1, and the manoeuvring motion
models are introduced in section 2.2. These models represent the physical principles
and thereby the white-box component of the developed grey-box models. Parameter
estimations, representing the black-box component, are used to regress the parameters
of the white-box models. The parameter estimations are introduced in chapter 3
for the roll motion and the manoeuvring motion in section 3.1 and section 3.2. A
summary of the appended papers, which includes research activities and a selection
of the most relevant results, is presented in chapter 4, followed by the conclusions in
chapter 5 and plans for future work in chapter 6.

7





Chapter 2
Rigid body ship dynamics models

The dynamics of a ship comprise a variety of forces and motions in the six degrees
of freedom (6DOF): surge, sway, heave, roll, pitch, and yaw. Heave and pitch motions
are neglected in calm water conditions to ensure that a four degrees of freedom
(4DOF) model can sufficiently express the ship’s dynamics. Models for roll and the
manoeuvring model for the remaining DOFs are presented in section 2.1 and section
2.2.

2.1 Roll motion

The roll motion without manoeuvres or external forces can be expressed by (Himeno
1981),

A44ϕ̈+ B44
(
ϕ̇

)
+ C44 (ϕ) = 0 (2.1)

where the static stability of the ship is expressed as the stiffness C44(ϕ) with a
function of the roll angle ϕ, the damping B44(ϕ̇) with a function of the roll velocity
ϕ̇ and inertia A44 connected to the roll acceleration ϕ̈. The ship’s roll motion can
be observed under these conditions in a roll-decay test. The model is forced to an
initial roll angle, as seen in Figure 2.1a. The model is then released (Figure 2.1b) and
rolls back to equilibrium (Figure 2.1c). The model will pass this static equilibrium
point as a result of momentum and not stop until it has reached the end point on
the other side (Figure 2.1d). This motion starts a new cycle in which the model rolls
back again. This new cycle results in oscillatory motion where potential energy is
transferred to kinetic energy and back to potential energy.

(a) The ship model is
forces to an initial an-
gle and then released

(b) Starts to roll back
(c) Static equilibrium

(d) End point other
side

Figure 2.1: Roll decay test.

This oscillation would never end if it was not for the roll damping. Interactions
between the ship and the water, such as friction, wave generation, eddy generation,
and hydrodynamic lift, will cause the ship to lose some of its energy. The energy loss
means that the oscillation is decaying over time, as seen in Figure 2.2, which displays
the time series for the roll angle.
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Figure 2.2: Example roll decay signal.

The damping B44
(
ϕ̇

)
can be expressed as an expansion series:

B44
(
ϕ̇

)
= B1 · ϕ̇+B2 · ϕ̇

∣∣ϕ̇∣∣ +B3 · ϕ̇3 + ...+Bn · ϕ̇n (2.2)

This series can be truncated to be expressed as a “linear model” (Eq. (2.3)), “quadratic
model” (Eq. (2.4)), and “cubic model” (Eq. (2.5)).

A44ϕ̈+B1ϕ̇+ C1ϕ = 0 (2.3)

A44ϕ̈+ C1ϕ+
(
B1 +B2

∣∣ϕ̇∣∣) ϕ̇ = 0 (2.4)

A44ϕ̈+
(
B1 +B2

∣∣ϕ̇∣∣ +B3ϕ̇
2)
ϕ̇+

(
C1 + C3ϕ

2 + C5ϕ
4)
ϕ = 0 (2.5)

Models for the remaining degrees of freedom are presented in the next section.

2.2 Vessel manoeuvring models
Ship manoeuvring is a simplified case of seakeeping. The encountering waves have
been removed, assuming calm water conditions. The manoeuvring motions have low
frequencies so that added masses and other hydrodynamic derivatives can be assumed
as constants (Fossen 2021). Three manoeuvring models are used in this thesis:

• Linear (LVMM) (Matusiak 2021)
• Abkowitz (AVMM) (Abkowitz 1964)
• Modified Abkowitz (MAVMM), which is proposed in Paper 2

Figure 2.3 shows the reference frames used in the manoeuvring models where x0 and
y0 and heading Ψ are the global position and orientation of a ship fix reference frame
O(x, y, z) (or rather O(x, y) when heave is excluded) with origin at midship. u, v, r,
X, Y and N are velocities and forces in the ship fix reference frame.
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2.2. Vessel manoeuvring models

Figure 2.3: Reference frames.

The manoeuvring equation can be described as (Fossen 2021),−Xu̇ +m 0 0
0 −Yv̇ +m −Yṙ +mxG

0 −Nv̇ +mxG Iz −Nṙ

 u̇v̇
ṙ

 =

mr2xG +mrv + XD (u, v, r, δ, thrust)
−mru+ YD (u, v, r, δ, thrust)

−mruxG + ND (u, v, r, δ, thrust)


(2.6)

where the first matrix describes the inertia of the ship in the surge, sway and yaw
directions. The inertia in air is represented by the mass m and moment of inertia
Iz. The added mass in water is represented by: Xu̇, Yv̇, Yṙ, Nv̇ and Nṙ. The
hydrodynamic forces from the ship hull and rudder are desribed in the functions XD(),
YD() and ND(). The accelerations (u̇, v̇ and ṙ) can be solved from this equation,

ν̇ =

u̇v̇
ṙ

 =

 1
−Xu̇+m 0 0

0 − −Iz+Nṙ

S − −Yṙ+mxG

S

0 − −Nv̇+mxG

S − Yv̇−m
S

 mr2xG +mrv + XD (u, v, r, δ, thrust)
−mru+ YD (u, v, r, δ, thrust)

−mruxG + ND (u, v, r, δ, thrust)


(2.7)

where S is a helper variable:

S = −IzYv̇ + Izm+NṙYv̇ −Nṙm−Nv̇Yṙ +Nv̇mxG + YṙmxG −m2x2
G (2.8)

A state space model for manoeuvring can now be defined with six states:

x =


x0
y0
Ψ
u
v
r

 (2.9)
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Chapter 2. Rigid body ship dynamics models

where x0, y0 and Ψ are the global coordinates and heading of the ship and u, v and r
are the velocities as seen in Figure 2.3. The time derivative of this state ẋ can be
defined by a state transition f(x, c) using geometrical relations how global coordinates
x0, y0 and Ψ depend on u, v, and r viz.,

ẋ = f(x, c) + w =


ẋ0
ẏ0
Ψ̇
u̇
v̇
ṙ

 + w =


u cos (Ψ) − v sin (Ψ)
u sin (Ψ) + v cos (Ψ)

r
u̇
v̇
ṙ

 + w (2.10)

where c is control inputs (rudder angle δ and thrust); the last three derivatives: u̇, v̇,
ṙ are calculated with Eq. (2.7). w is the process noise, i.e., the difference between
the predicted state by the manoeuvring model and the true state of the system. w is
unknown when the manoeuvring model is used for manoeuvre predictions and therefore
normally assumed to be zero, but it is an important factor when the manoeuvring
model is used in the EKF (see subsection 3.2.2). The manoeuvring simulation can now
be conducted by numerical integration of Eq. (2.10). The main difference between the
manoeuvring model:s lies in how the hydrodynamic functions XD(u, v, r, δ, thrust),
YD(u, v, r, δ, thrust), ND(u, v, r, δ, thrust) are defined. These expressions are denoted
in prime system (X ′

D, Y ′
D, N ′

D) below for the various manoeuvring models: LVMM,
AVMM and MAVMM.

Linear vessel manoeuvring model (LVMM) (Matusiak 2021)

XD’ (u′, v′, r′, δ) =Xδδ +Xrr
′ +Xuu

′ +Xvv
′ (2.11)

YD’ (u′, v′, r′, δ) =Yδδ + Yrr
′ + Yuu

′ + Yvv
′ (2.12)

ND’ (u′, v′, r′, δ) =Nδδ +Nrr
′ +Nuu

′ +Nvv
′ (2.13)

Abkowitz vessel manoeuvring model (AVMM) (Abkowitz 1964)

XD’ (u′, v′, r′, δ, thrust′) =Xδδδ
2 +Xrδδr

′ +Xrrr
′2 +XT thrust

′ +Xuδδδ
2u′

+Xurδδr
′u′ +Xurrr

′2u′ +Xuuuu
′3 +Xuuu

′2

+Xuvδδu
′v′ +Xuvrr

′u′v′ +Xuvvu
′v′2

+Xuu
′ +Xvδδv

′ +Xvrr
′v′ +Xvvv

′2

(2.14)

12



2.2. Vessel manoeuvring models

YD’ (u′, v′, r′, δ, thrust′) =Y0uuu
′2 + Y0uu

′ + Y0 + Yδδδδ
3 + Yδδ + Yrδδδ

2r′ + Yrrδδr
′2

+ Yrrrr
′3 + Yrr

′ + YT δδthrust
′ + YT thrust

′ + Yuδδu
′

+ Yurr
′u′ + Yuuδδu

′2 + Yuurr
′u′2 + Yuuvu

′2v′ + Yuvu
′v′

+ Yvδδδ
2v′ + Yvrδδr

′v′ + Yvrrr
′2v′ + Yvvδδv

′2 + Yvvrr
′v′2

+ Yvvvv
′3 + Yvv

′

(2.15)

ND’ (u′, v′, r′, δ, thrust′) =N0uuu
′2 +N0uu

′ +N0 +Nδδδδ
3 +Nδδ +Nrδδδ

2r′ +Nrrδδr
′2

+Nrrrr
′3 +Nrr

′ +NT δδthrust
′ +NT thrust

′ +Nuδδu
′

+Nurr
′u′ +Nuuδδu

′2 +Nuurr
′u′2 +Nuuvu

′2v′ +Nuvu
′v′

+Nvδδδ
2v′ +Nvrδδr

′v′ +Nvrrr
′2v′ +Nvvδδv

′2 +Nvvrr
′v′2

+Nvvvv
′3 +Nvv

′

(2.16)

Modified Abkowitz vessel manoeuvring model (MAVMM)

Only the most relevant coefficients in AVMM are included, as proposed in Paper 2.

XD’ (u′, v′, r′, δ, thrust′) =Xδδδ
2 +Xrrr

′2 +XT thrust
′ +Xuuu

′2 +Xuu
′ +Xvrr

′v′

(2.17)

YD’ (u′, v′, r′, δ, thrust′) =Yδδ + Yrr
′ + YT δδthrust

′ + YT thrust
′ + Yurr

′u′ + Yuu
′

+ Yvvδδv
′2 + Yvv

′

(2.18)

ND’ (u′, v′, r′, δ, thrust′) =Nδδ +Nrr
′ +NT δδthrust

′ +NT thrust
′ +Nurr

′u′ +Nuu
′

+Nvvδδv
′2 +Nvv

′

(2.19)

The hydrodynamic functions above are expressed using nondimensional units with
the prime system, denoted by the prime symbol (′). The quantities are expressed in
the prime system, using the denominators in Table 2.1. For instance, surge linear
velocity u can be expressed in the prime system as seen in Eq. (2.20) using the linear
velocity denominator.

u′ = u

V
(2.20)

Equations can either be written in the Prime or regular Standard Institute (SI) system.
The hydrodynamic derivatives are always expressing forces in the prime system as

13



Chapter 2. Rigid body ship dynamics models

Table 2.1: Prime system denominators.

Quantity Denominators
angle 1
angular acceleration V 2

L2

angular velocity V
L

area L2

density ρ
2

force L2V 2ρ
2

frequency V
L

inertia moment L5ρ
2

length L

linear acceleration V 2

L

linear velocity V

mass L3ρ
2

moment L3V 2ρ
2

time L
V

volume L3

function of state variables. The (′) sign is therefore implicit and not written out as
seen in Eq. (2.21).

Y ′
δ′ = ∂Y ′

D

∂δ′ := Yδ (2.21)

The exceptions are the added masses (Xu̇, Yv̇, Yṙ, Nv̇ and Nṙ) which are expressed in
both Prime system or the regular SI system where the (′) sign is therefore explicitly
stated. There is however a great benefit in expressing the hydrodynamic forces in the
prime system. The forces are often nonlinear due to a quadratic relation to the flow
velocity, as seen in Eq. (2.22).

YD = Yδ · δ · L
2V 2ρ

2
(2.22)

which becomes linear when expressed in the prime system as seen in Eq. (2.23).

Y ′
D = Yδ · δ′ (2.23)
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2.2. Vessel manoeuvring models

2.2.1 The propeller model

A propeller model is developed based on Manoeuvring Modeling Group (MMG) model
(Yasukawa and Yoshimura 2015) where the thrust is expressed as:

thrust = D4KTn
2ρ (2.24)

and the thrust coefficient KT is modelled as a second order polynomial:

KT = J2k2 + Jk1 + k0 (2.25)

The advance ratio J is calculated as:

J = u (1 − wp)
Dn

(2.26)

where D is propeller diameter, n is propeller speed and wp is the wake fraction at an
oblique inflow to the propeller from the drift angle and the yaw rate. A semi-empirical
formula for wp is provided in the MMG model. As an alternative, a simple polynomial
is proposed in Eq. (2.27).

wp = C1δ + C2δ
2 + C3β

2
p + C4u+ wp0 (2.27)

wp is modeled as a function of rudder angle δ, to include wake influence from the
rudder and ship speed u, to include a speed dependency. The influence from drift
angle β and yaw rate r is expressed by βp in Eq. (2.28).

βp = β − r

V
· xp (2.28)

where xp is the propeller longitudinal position and wp0 is the regular Taylor wake
fraction, applicable to straight ahead steaming with no rudder angle. Similar to the
MMG propeller model, two sets of parameters C1-C4 should be used in the propeller
model depending on the sign of βp.
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Chapter 3
Methods

The system identification of rigid body ship dynamics can be simplified into param-
eter estimation if parameterized physical models is assumed as the most appropriate
model from a collection of candidate models. The parameter estimations for roll
motion and manoeuvring are presented in section 3.1 and section 3.2. The most
appropriate models are selected in the model development process which is described
in section 3.3.

3.1 Roll model parameter estimation

Parameter estimation can be applied to identify the roll damping parameters (B1, B2,
B3) and stiffness parameters (C1, C3, C5) in the parameterized roll motion models
from the previous chapter (Eq. (2.3), Eq. (2.4) and Eq. (2.5)). These equations do
not have unique solutions because each equation can be multiplied by an arbitrary
factor to obtain a new valid solution. Inertia is therefore excluded to obtain unique
solutions. This is achieved by normalizing the equations by the total roll inertia A44,
as seen in Eq. (3.1), for the linear model.

ϕ̈+ B1

A44
ϕ̇+ C1

A44
ϕ = ϕ̈+B1Aϕ̇+ C1Aϕ = 0 (3.1)

The identified normalized damping and stiffness parameters B1A and C1A can be
expressed in dimensional units by multiplication with the normalization factor A44.
If A44 is unknown before hand, it can be calculated using Eq. (3.2) (Piehl 2016),
assuming that the meta center height GM is known.

A44 = GMgm

ω2
0

(3.2)

The frequency ω0 can be obtained with Fast Fourier transform (FFT) of the roll
signal. Two methods for parameter estimation have been investigated: the “derivation
approach”, referred to in IMO (2006), and the “integration approach” used in Söder
et al. (2019b) which are both described in the next subsections.

3.1.1 Derivation approach

In the derivation approach, Eq. (3.1) is treated as a linear regression problem, where
the states (ϕ, ϕ̇, ϕ̈) are known and the parameters B1 and C1 must be regressed.
Only roll angle ϕ is known from the experimental data, which means that the velocity
and acceleration ϕ̇, ϕ̈ also must be estimated (note that this is done with numerical
differentiation in Paper 1 and with the extended Kalman filter (EKF) in Paper 2). A
least squares fit must be applied to the roll motion equation to identify the damping
and stiffness parameters.
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Chapter 3. Methods

3.1.2 Integration approach

In the integration approach, Eq. (3.1) is solved as an ordinary differential equation
(ODE) for many estimated sets of parameters until the solution converges. This method
is time-consuming, and convergence is not guaranteed. However, the advantage is
that only roll angle ϕ is needed.

3.2 Manoeuvring model parameter estimation

A new parameter estimation method is proposed in Paper 2 for the remaining degrees
of freedom. A manoeuvring model is used to solve the reversed manoeuvring problem.
The problem may consist of predicting unknown forces from known manoeuvring
model test data. The hydrodynamic derivatives in the manoeuvring model can be
identified through regression of the force polynomials on forces predicted with inverse
dynamics (see subsection 3.2.1). The measurement noise must be removed prior
to the regression of hydrodynamic derivatives in the manoeuvring model. This is
conducted by an extended Kalman filter (EKF) and a Rauch Tung Striebel (RTS)
smoother (see subsection 3.2.2). The EKF requires an accurate manoeuvring model
as the predictor. Therefore, the accurate manoeuvring model is both the input
and output of the method. As a solution to this dilemma, a linear manoeuvring
model that includes hydrodynamic derivatives estimated with semi-empirical formulas
(Appendix A) is used as the initial predictor. Once the regressed manoeuvring model
has been obtained, the parameter estimation can be refined, using the regressed
manoeuvring model as the predictor model in the EKF, to improve the filter and
obtain a more accurate manoeuvring model. The method is summarized in Figure 3.1
and can be repeated several times (indicated by the dashed arrow) for improved
accuracy.

Model test data: x, δ, thrust EFK + RTS Predictor initial model

x, ẋ, ẍ, δ, thrust

Regression

XD

YD

ND

Inverse dynamics model(Yuv , Nδ, ...)

Figure 3.1: Method to estimate the manoeuvring model hydrodynamic derivatives.

Using semi-empirical formulas (Appendix A) for the initially estimated manoeuvring
model adds prior knowledge about the ship dynamics to the regression. An example,
with simulation results from the steps in the iteration, is presented in Figure 3.2.
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Figure 3.2: Simulation with: initial model and first and second iteration of the
parameter estimation method.

3.2.1 Inverse dynamics and regression

Each manoeuvring model has some hydrodynamic functions XD(u, v, r, δ, thrust),
YD(u, v, r, δ, thrust), ND(u, v, r, δ, thrust) that are defined as polynomials. The hy-
drodynamic derivatives in these polynomials can be identified with force regression
of measured forces and moments. The measured forces and moments are usually
taken from captive model tests (CMT), planar motion mechanism (PMM) tests, or
virtual captive tests (VCT). However, motions are recorded when the ship is free
in all degrees of freedom. Hence, forces and moments causing ship motion must be
estimated by solving the inverse dynamics problem. The inverse dynamics problem
is solved by restructuring the system equation (Eq. (2.7)) to get the hydrodynamics
functions on the left-hand side. If the mass and inertia of the ship with added masses:
Xu̇, Yv̇, Yṙ, Nv̇, and Nṙ are known; the forces in the Prime system can be calculated
using Eq. (3.3), Eq. (3.4), and Eq. (3.5). These forces can be used to regress the
hydrodynamic derivatives through the ordinary least square (OLS) method. If the
added masses are unknown, they can be calculated using potential flow methods or
semi-empirical methods (Appendix A).

XD’ (u′, v′, r′, δ, thrust′) = −X ′
u̇u̇

′ + u̇′m′ −m′r′2x′
G −m′r′v′ (3.3)

YD’ (u′, v′, r′, δ, thrust′) = −Y ′
ṙ ṙ

′ − Y ′
v̇ v̇

′ + ṙ′m′x′
G + v̇′m′ +m′r′u′ (3.4)

ND’ (u′, v′, r′, δ, thrust′) = I ′
z ṙ

′ −N ′
ṙ ṙ

′ −N ′
v̇ v̇

′ + v̇′m′x′
G +m′r′u′x′

G (3.5)
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Chapter 3. Methods

An example that includes forces calculated with inverse dynamics from motions in a
turning circle test can be seen in Figure 3.3. The forces have been converted to SI
units.
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Figure 3.3: Forces and moments calculated with inverse dynamics on data from a
turning circle test.

3.2.2 Data cleaning

It is possible to do an exact parameter estimation on flawless (simulated) data with no
noise (see Paper 2). However, such data from physical experiments does not exist in
reality. The measured data will always contain process noise and measurement noise.
In order to mitigate the effects of noise, the data is pre-processed using the extended
Kalman filter (EKF) (Brown and Hwang 1997) and the Rauch Tung Striebel (RTS)
smoother (Rauch et al. 1965), which are both presented below. EKF is an extension
of the Kalman filter (KF) that is used to work on nonlinear systems such as the
manoeuvring models. The premise is that noise can be neglected if it has no rational
physical explanation. For instance, if noisy measurement data would be completely
correct, that would mean that large ship vibrations must have originated from large
high frequency forces considering the large mass of the ship. A prior understanding of
the dynamics suggests that these forces are not present. Therefore, the noise should
be considered as measurement noise and should be removed. Low-pass filtering is
commonly used to remove noise; motions above a cutoff frequency are considered
unphysical measurement noise. The problem with low-pass filtering is that choosing
the cutoff frequency is difficult. It is often either too low (removing some of the signal)
or too high (keeping some unfiltered measurement noise in the data). The Kalman
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3.2. Manoeuvring model parameter estimation

filter has a predictor model, a manoeuvring model in this case, that continuously
estimates the system’s state that runs parallel with the measurement data. The
filter estimates the current state as a combination of the measurement data and the
predictor model estimate based on the possible validity of the data and the model. If
the data has low noise, the estimate is closer to that data. Conversely, if the model
provides very accurate predictions, then that estimate is closer to the model. The
system’s inverse dynamics require everything about the state (positions, velocities,
and accelerations) to be known. Only positions are known from the measurements,
but the velocities and accelerations are instead estimated by the EKF. The EKF
is recursive and can be ran online; it continuously makes new estimates as new
measurements arrive. The EKF uses passed measurements to estimate states in the
near future. This property is commonly used for online applications such as autopilots
or autonomous ships. This restriction is unnecessary for the estimation for already
existing data, where an entire time series of existing measurements is available. The
knowledge of both past and future data can be used to improve the filter. An EKF
filter can include future time steps by adding the RTS smoother after the filter. The
RTS smoother is an algorithm that runs the EKF backward to account for future
time steps. The used EKF recursive algorithm used is summarized in the pseudo-code
below (Brown and Hwang 1997).

Algorithm 3.1 (Discrete-time extended Kalman filter)
Inputs Initial values: x0, P0, Cd, Rd, Qd, Ed

Output Estimated states: x̂, estimated state covariances P̂
1. Initial values:

1. x̂[0] = x0
2. P̂ [0] = P0

2. For k in n measurements (time steps)
1. KF gain

1. K[k] = P̂ [k]CT
d

(
CdP̂ [k]CT

d +Rd

)−1

2. IKC = In −K[k]Cd

2. Update
1. State corrector x̂[k] = x̂[k] +K[k](y − Cdx̂[k])
2. Covariance corrector P̂ [k] = IKC · P̂ [k]IT

KC +K[k]RdK
T

3. Predict
1. State predictor x̂[k + 1] = x̂[k] + h · f̂(x̂[k], c[k])
2. Covariance predictor P̂ [k + 1] = Ad[k]P̂ [k]Ad[k]T + EdQdE

T
d

Here, n is number of states (6 in this case), In is an n · n identity matrix. The
transition matrix is calculated for each iteration using a Jacobian of the transition
model:

Ad[k] = I + h
∂f (x[k], c[k])

∂x[k]

∣∣∣∣
x[k]=x̂[k]

(3.6)
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This part and the fact that the nonlinear transition model is used directly as the
predictor are the extension part of the EKF compared to the linear KF. Please note
the linear approximation in Eq. (3.6) around the current state. This approximation
can cause stability problems if the real system and the linearized system deviates too
much, when large time steps are used on a very nonlinear system. The Unscented
Kalman Filter, which was used in Revestido Herrero and Velasco González (2012), is
an alternative that can be used in these situations.

The output from the filter contains the estimated states: x̂ and estimated state
covariance matrix P̂ . x̂ represent the most likely estimates, but the estimates have
uncertainty that is expressed in P̂ . The state of the system is described by the ships
position, heading, velocities and yaw velocity:

x = [x0, y0, ψ, u, v, r]T (3.7)

The initial state x0 is taken as the mean value of the first five measurements, where
the velocities are estimated with numeric differentiation.
Cd selects the measured states (x0, y0, ψ):

Cd = h

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (3.8)

Ed selects the hidden states (u, v, r):

Ed = h


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (3.9)

where h is the discrete time step, Rd describes the covariance matrix of the measure-
ment, Qd is the covariance matrix of the process model, and P0 is the initial state
covariance. Selecting good values for these three matrices is the most complicated
part of getting the EKF to work well. The amount of expected measurement noise
in the data should be inserted in to Rd, and the amount of error generated by the
process model (manoeuvring model) needs to be estimated in Qd. The choices for
these matrices depend on the reliability of the present data and the present process
model.
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3.2. Manoeuvring model parameter estimation

3.2.3 Regression

Finding the hydrodynamic derivatives can be defined as a linear regression problem
following the ”derivation approach” (see subsection 3.1.1):

y = Xγ + ϵ (3.10)

The label vector y and feature matrix X in the regression problem in Eq. (3.10) can
be calculated if model for the hydrodynamic forces is assumed. For example: the label
in the regression of the surge degree of freedom for the MAVMM can be calculated
using the inverse dynamics force, which is expressed with primed units:

y = −Xu̇u̇
′ + u̇′m′ −m′r′2xG′ −m′r′v′ (3.11)

The feature matrix X is expressed as:

X =
[
thrust′ u′ δ2 r′2 u′2 r′v′] (3.12)

The hydrodynamic derivatives in the γ vector (Eq. (3.13)) can be estimated with
ordinary least squares (OLS) regression.

γ =


XT

Xu

Xδδ

Xrr

Xuu

Xvr

 (3.13)

In this regression, the hydrodynamic derivatives are treated as Gaussian random
variables. The hydrodynamic derivatives in the manoeuvring model are usually
estimated as the mean value of each regressed random variable, which is the most
likely estimate. The regression result can be expressed with a multivariate Gaussian
distribution, which is defined by the regression’s mean values and covariance matrix.
The multivariate Gaussian distribution can be used to conduct Monte Carlo simulations
in the study of alternative realizations of the regression.

Strong multicollinearity is a documented problem for the manoeuvring models
(Luo et al. 2016; Wang and Zou 2018). The thrust coefficient XT in the hydrody-
namic function XD in Eq. (2.14) introduces multicollinearity to the regression. This
coefficient can instead be calculated from the thrust deduction factor tdf :

XT = 1 − tdf (3.14)

The XT coefficient is excluded from the regression by moving it to the left-hand side
of the regression equation Eq. (3.10):

y −XT · thrust = Xγ + ϵ (3.15)
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Rudder coefficients (YR) from YD equation Eq. (2.15), such as Yδ and YδT , have also
been excluded by assuming a connection with their ND equation counterpart through
the rudder lever arm xr:

YR = NR

xr′
(3.16)

3.3 Model development process

The aim of developing a manoeuvring model with parameter estimation is to develop
a model that can generalize outside the known data. The method presented in this
thesis is assessed with the hold-out evaluation (Sammut and Webb 2017). The data
in this evaluation is divided into three sets: the training set, the validation set, and
the test set as seen in Figure 3.4.

DATASET

TRAIN VALIDATION TEST

Train candidate models Validate models Evaluate final model

Figure 3.4: Model development process with hold-out evaluation.

The purpose of the training set is to train all the candidate models using the proposed
parameter estimation method. The validation set is used to select the most effective
candidate model. The training and validation sets are joined to train the selected
model as the final model. The final model is used for predicting the test set, which
is used to evaluate the accuracy of the model. These three sets are not divided
randomly; they are divided to assess the model’s extrapolation ability. The data sets
are therefore split to have the smallest yaw rates, drift-angles, and rudder-angles in
the training set; the medium values in the validation set; and the largest values in
the test set. Examples of this can be seen for the two test cases in this thesis in
Figure 4.16 and Figure 4.10 in the next chapter.
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Chapter 4
Summary and discussions of appended papers

This chapter presents a summary of the appended papers, which includes research
activities and a selection of the most relevant results including a model for the roll
motion in Paper 1 and, a manoeuvring model with a high level of generalization in
Paper 2.

4.1 Summary of Paper 1

"Analysis of roll damping model scale data"

System identification of ship roll motion, which includes roll damping and stiffness,
is developed in Paper 1. Parametric roll was observed by Froude (1861) and has
been a focus of the marine research community since the early 1950s (Galeazzi et al.
2013); it has received even more attention since France et al. (2001) demonstrated
that the APL China casualty in 1998, where a post-Panamax C11 class container ship
lost almost a third of its containers, was most likely caused by head sea parametric
rolling. The damping of roll motion plays an important role in these phenomena.
Previous literature demonstrates that the relatively small difference in the roll damping
prediction obtained with small method variation may contribute to the difference
between severe roll angles and much less noticeable motions (Söder et al. 2019a).

The objective of Paper 1 was to improve the roll damping predictions for modern
ships. The roll damping was studied using time series data from 250 (see Figure 4.1)
roll decay tests (see section 2.1) assembled by the Maritime Dynamics Laboratory at
SSPA Sweden AB (www.sspa.se). The work was divided into the following sub tasks
(also summarized in Figure 4.2):

• Find the mathematical model that is the best representation of the roll motion.
• Identify the parameters in this model for all the tests.
• Compare the identified parameters with state of art predictions.
• Develop a generic roll damping model for all ships using the identified parameters.

– Grey-box model
– Black-box model

System identification on the time series from the roll decay database was performed
with the linear (Eq. (2.3)), quadratic (Eq. (2.4)), and cubic models (Eq. (2.5)).
Estimated roll damping parameters were used to build a roll damping database. The
database could be compared to corresponding predictions with the simplified Ikeda’s
method (Kawahara et al. 2011), which is the state of art prediction for ship roll
damping. The generic roll damping model was developed as a grey-box model and a
black-box model.
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Data collection:
Roll decay DB

PIT
Damping DB

Time series B

Comparison:

Simplified ikeda

Damping DB•
•

••
•
•

•

Regressions:
Damping DB

Grey-box

Black-box

Figure 4.2: Overview of the work conducted for Paper 1.

4.1.1 Best mathematical model for the roll motion

System identification on the linear, quadratic, and cubic models was conducted using
both the “integration approach” (subsection 3.1.2) and the “derivation approach”
(subsection 3.1.1) where the best parameter estimations were obtained using the
“integration approach”. Results from the simulations with the identified models (from
one of the roll-decay tests) are presented in Figure 4.3. The cubic and quadratic
models reproduce the model test well, and the linear model is too simple to provide
an accurate representation for both smaller and larger roll angles. The amplitude
decrement ϕa and roll damping B for each oscillation can be visualized, as seen in
Figure 4.4. The goodness of fit for the linear, quadratic, and cubic models can be
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Figure 4.3: Roll decay estimation with identified cubic, quadratic, and linear
models.
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expressed using the coefficient of determination:

R2 = 1 −
∑n

i=1(ϕi − ϕ̂i)2∑n
i=1(ϕi − ϕ̄)2

(4.1)
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where ϕi is the model test roll angle at time step i, ϕ̄ is the mean roll angle from the
model test, and ϕ̂i is the predicted roll angle (with the linear, quadratic, or cubic
model). The average goodness of fit R2 was 0.995 for the cubic model, 0.993 for
the quadratic model, and 0.986 for the linear model. These values indicate that the
quadratic model is almost as useful as the cubic model for describing the roll motion.
The quadratic model, with fewer parameters than the cubic model, is expected to
have a higher level of generalization at the same accuracy and is therefore selected as
the best mathematical model for the roll motion.

4.1.2 Comparison with Ikeda’s method

Ikeda’s method divides roll damping into five damping components: the friction
component BF , the eddy component BE , the lift component BL, the wave component
BW , and the bilge keel component BBK , as in the following Eq.(4.2),

B44 = BF +BE +BL +BW +BBK (4.2)

where the wave and eddy components require strip-theory based hydrodynamic
analysis to obtain the ship’s shape coefficients. The hydrodynamic analysis requires
the ship’s exact hull geometry. Building the geometry model and performing the
strip-theory based hydrodynamic analysis are time-consuming. A ship’s hull geometry
is not always available for such purposes. A simplified Ikeda’s method (SI-method)
proposed by Kawahara et al. (2011) is used in Paper 1 to calculate all the damping
components, which include the eddy component BE and the wave component BW .
The semi-empirical formulas describe four of the five roll damping components at
motion frequency ω for a given roll amplitude ϕa at zero ship speed. A speed
dependency was introduced by adding a fifth damping term BL and a speed correction
to BW and BE , as described in Ikeda (1979), giving a function:

(BF , BW , BE , BBK , BL) = f (Lpp, beam,Cb, A0, OG, ϕa, BKL, BKB , ω, T, V )
(4.3)

The formulas within f can be expressed as Ikeda (1979) and Kawahara et al. (2011)
with the implementation in Alexandersson (2022b). It should be noted that this
method is only efficient for the estimation of the roll damping of ships within the
boundaries (Kawahara et al. 2011): 0.5 ≤ Cb ≤ 0.85, 0 ≤ ω̂ ≤ 1.0, 0.9 ≤ A0 ≤ 0.99,

2.5 ≤ Beam/T ≤ 4.5, 0.01 ≤ BKB/Beam ≤ 0.06,
−1.5 ≤ OG/T ≤ 0.2, 0.05 ≤ BKL/LP P ≤ 0.4.

(4.4)

The total roll damping is predicted as the sum (Eq. (4.2)) of the damping contributions
(Eq. (4.3)). This damping can be compared with the linearized equivalent damping
Be, which is calculated for a certain roll angle ϕa with the identified roll damping
parameters B1 and B2 (Himeno 1981),

Be = B1 + 8B2ω0ϕa

3π (4.5)
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The Be non-dimensional form of the coefficient can be used according to Himeno
(1981). The non-dimensional equivalent for the linear damping coefficient is B̂e. This
form is more convenient when comparing roll damping for different ships,

B̂e = Be

ρ▽Beam2

√
Beam

2g , (4.6)

where ρ, ▽, and Beam stand for fluid density, displacement volume, and breadth of
a ship, respectively. Prediction error plots of B̂e from the simplified Ikeda’s method
and identified damping from the model tests are presented in Figure 4.5a. In this
figure, a comparison of predictions with roll amplitudes in the range of 0 to 10 degrees
is displayed for all ships with no limits and for ships within the limits of the method
(Eq. (4.4)). The R2 values of the predictions are displayed in Table 4.1. There is
reasonable agreement between the predicted roll damping and model tests for ships
within the limits. There is very poor agreement for ships outside the limits. It should
be noted that most of the points are outside the limits of the method.

Table 4.1: Validation of SI within and outside limits.

R2 Number of points
SI no limits -46.35 1470
SI within limits 0.83 120

The largest contribution to the error in the predictions comes from the wave damping
BW , as seen in Figure 4.5b. A comparison of the simplified Ikeda’s method and
the original Ikeda’s method was carried out in Paper 1; the comparison was used to
determine whether the observed deviations are the result of extrapolation or inherent
to the original method. In Ikeda’s method, more extensive knowledge of the ship hull
geometry is needed in order for BW to be calculated with a strip method and BE to
be calculated with sectional Lewis coefficients. It was possible to collect the required
hull inputs for 15 ships in the database. These ships were used in 50 of the reference
roll decay tests; all but one of the tests exceed the limits. Ikeda’s method has much
more agreement for these exceeding model tests according to Figure 4.5c and the
calculated R2 in Table 4.2.

Table 4.2: Validation of SI and Ikeda.

R2 Number of points
Ikeda 0.84 500
SI no limits -127.95 500
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Figure 4.5: Prediction error plots.

4.1.3 Generic roll damping model

A serial grey-box model for ship roll damping (see Figure 4.6) is also developed in
Paper 1. This is expanding the system identification by not only focusing on one ship,
but all modern ships. The simplified Ikeda’s method (Kawahara et al. 2011) is used
as the white-box model, which is combined with the following black-box correction
model.
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Figure 4.6: Grey-box model to predict roll damping.

The roll damping data set, obtained from the roll motion investigation, is intended
to train the black-box component of the grey-box model. The black-box correction
model of the output components from the simplified Ikeda’s method is displayed in
(Eq. (4.7)),

B̂e = 1.106 ˆBBK−0.9124B̂E+4.282B̂F +0.7457B̂L+0.1844B̂W +0.004999ϕa−0.0005097
(4.7)

Major corrections to the skin friction damping B̂F and wave damping B̂W are included
in this expression. The corrections are included because the simplified Ikeda’s method
is not very accurate for this dataset; most of the ships in the dataset exceeded the
limits of the method. A pure black-box model is also developed in Paper 1 (see
Eq. (4.8)),

B̂e = −0.02578A0V − 0.02705BKBV+
0.008993BKLV − 0.03191CbV − 0.2028OGV+

0.003472V 2+
0.004234V ω̂0 − 0.002591V ϕa − 0.008384V beam+

0.05048V+
0.007814ω̂0

2+
0.03882ω̂0ϕa − 0.001069

(4.8)

where non-dimensional frequency ω̂0 is calculated with Eq. (4.9) (Himeno 1981),

ω̂0 =

√
2ω0

√
beam

g

2 (4.9)

Over-fitting data is a concern when constructing a regression model from a data
set. Including too many parameters or allowing the order of the model to be too
high would provide a very accurate representation of the present roll damping data.
However, such a representation would be accompanied by major extrapolation errors
when the model is used for other data. The generalization of the model can be
assessed with a hold-out evaluation by using K-fold cross validation (Mosteller and
Tukey 1968) (Figure 4.7). The data has been divided into five smaller sets (folds).
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Figure 4.7: K-fold cross validation.

Four of the folds are used to train the model, and the fifth fold is used for testing
(validation). Validation consists of calculating the coefficient of determination R2 for
the fitted model. Validation is completed for all five possible train-test combinations.
The folds are randomly constructed with the restriction that all data for a particular
ship must be in the same fold. Five folds are randomly generated 20 times, which
gives 100 values of R2 from the train-test-procedure for each model. The mean values
and standard deviation of these 100 values of R2 are displayed in Table 4.3. The mean
and standard deviation of R2 simplified Ikeda’s method in this table were calculated
directly instead of using cross validation because they do not rely on the SSPA data.

Table 4.3: Statistics from cross validations with all models.

E[R2] std(R2)
model
Simplified Ikeda corrected 0.75 0.16
New regression 0.77 0.09
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4.2 Summary of Paper 2

"System identification of vessel manoeuvring models"

In order to expand the modelling complexity and uncertainty from Paper 1, system
identification of the surge, sway, and yaw degrees of freedom is studied in Paper 2.
The dynamics are assumed to be described by a ship manoeuvring model (section 2.2).
The system identification method proposed in Paper 2 was validated on two case
study ships: the wPCC (Figure 4.8) and the KVLCC2 (Figure 4.9). The models
are developed using the process described in section 3.3. Consequently, both test
cases aim to predict turning circle maneuvers. The primary dimensions of the two
case study ship models are listed in Table 4.4, with explanations in Table 4.5. The
wPCC is a wind-powered car carrier tested at SSPA (Alexandersson 2022c). This twin
screw ship with large rudders has good course stability and symmetric hydrodynamic
manoeuvring forces. The KVLCC2 model test data from the Hamburg ship model
basin (HSVA) and Maritime research institute Netherlands (MARIN) was made
available by the SIMMAN2008 conference (Stern et al. 2011). This single screw
ship has less course stability than the wPCC test case, and manoeuvring forces are
unsymmetrical due to the single propeller. This instability makes it an appropriate
second test case with parameter estimation on an unsymmetrical model.

Figure 4.8: wPCC tested at SSPA. Copyright 2020 by SSPA.

Table 4.4: Main dimensions of test case ship models.

B
[m]

D
[m]

L
[m]

LCG

[m]
Np c

[m]
α ∇

[m3]
kzz m

[kg]
wp0 xp

[m]
xr

[m]
WPCC 0.95 0.12 5.01 0.0 2 0.21 41.2 0.44 0.25 441 0.15 -2.42 -2.42
KVLCC2
(HSVA)

1.27 0.2 7.0 0.24 1 0.46 45.7 3.27 0.25 3272 0.4 -3.39 -3.5
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Figure 4.9: Ship model used in HSVA and MARIN model tests. Copyright HSVA.

Table 4.5: List of main dimensions symbols.

symbol description
B Beam
D Propeller diameter
L Length between perpendiculars

LCG Distance L/2 to centre of gravity
Np Number of propellers
T Draught
α Scale factor
∇ Volume displacement

kzz Radius of gyration / L
m Mass (excluding added mass)

wp0 Wake fraction
xp Longitudinal position of propeller
xr Longitudinal position of rudder

The parameter estimation method requires an initial guessed linear manoeuvring
model. The initial models for the two test cases have hydrodynamic derivatives
(Table 4.6) that are calculated with semi-empirical formulas (Appendix A) sourced
from Brix (1993).

Table 4.6: Initial guessed derivatives in linear models (times 1000).

Nδ Nr N ′
ṙ Nv N ′

v̇ X′
u̇ Yδ Yr Y ′

ṙ Yv Y ′
v̇

WPCC -1.5 -1.719 -0.299 -3.184 -0.128 0.179 3.0 2.402 -0.303 -9.713 -6.109
KVLCC2
(HSVA)

-1.5 -3.415 -0.822 -8.707 -1.166 1.05 3.0 4.305 -1.271 -25.266 -15.846
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4.2.1 The wPCC test case

The wPCC test case focuses on predicting forces and moments from the ship hull and
the rudders. The propeller force is not part of the prediction model; it is obtained
from the model test measurements. In the model development process (section 3.3),
the model test data used for modelling is split into the training test, the validation
test, and the test data sets (also presented in Figure 4.10),

• The training dataset: self-propulsion, pull-out tests, and zigzag10/10 tests to
starboard and port.

• The validation dataset: three zigzag20/20 tests.
• Test dataset: one turning circle test.
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Figure 4.10: wPCC training, validation and testing datasets.

If the manoeuvring model built by the proposed method based on a series of model
tests (including ZigZag10/10 and 20/20 to port and starboard as well as the self-
propulsion and pull out test) (IMO 2002) can predict the turning circle maneuver,
then it is a capable model. The linear model (LVMM) was ruled too simple for the
wPCC. Only the AVMM and MAVMM were considered possible manoeuvring models
in the model selection. Forces and moment predicted for the validation dataset, with
the manoeuvring models fitted with proposed parameter estimation on the training
set, are presented in Figure 4.11. The fitted AVMM over-predicts the forces by far.
The over-prediction of forces with the AVMM can be explained by the major problems
with multicollinearity that were encountered when applying the parameter estimation
method to the wPCC data.
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Figure 4.11: Validation of force models for wPCC ZigZag20/20.
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The absolute correlation coefficient between the features in the wPCC yaw moment
regression is presented in Figure 4.12. Most of the coefficients have a very high
absolute correlation (indicated in black). Some of the regressed hydrodynamic
derivatives in the AVMM also have substantial values and large degrees of uncertainty.
Therefore, simulations of the validation cases are only possible using the MAVMM. The
simulations are displayed for one of the ZigZag20/20 validation cases in Figure 4.13.
The MAVMM was therefore selected as the most appropriate model for the wPCC in

−0.05

0.00

0.05

r
[r
a
d
/
s]

True Validation MAVMM

0.0

0.5

u
[m
/
s]

0 10 20 30 40 50 60

time

0.0

0.2

v
[m
/
s]

Figure 4.13: Validation with simulations for wPCC ZigZag20/20.

the validation step of the model development process. This model was retrained on
the joined test and validation data set to obtain the final prediction model which was
used to predict the turning circle test data set. Advance and tactical diameter (IMO
2002) from the prediction differs by 4% and 1% from the model test data, as seen in
Table 4.7.

Table 4.7: wPCC Predicted turning circle advance and tactical diameter compared
to SSPA model tests and IMO limit.

Advance
[m]

Advance
(IMO)

[m]

Tactical diameter
[m]

Tactical diameter
(IMO)

[m]
Model test 12.82 22.57 14.76 25.07
Prediction 13.3 22.57 14.93 25.07

Results from the turning circle prediction are also presented in Figure 4.14 and
Figure 4.15. Monte Carlo simulations with alternative realizations of the regression,
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considering the uncertainty in the regressed parameters, are also displayed in these
figures. The alternative realizations have similar simulation results to the model with
mean values of the regression (black line).
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Figure 4.14: Turning circle test case for wPCC, track plots from model test and
simulation.
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The mean values and standard error (se) of the hydrodynamic derivatives (expressed
with prime units for the wPCC) obtained with parameter estimation of MAVMM
(Eq. (2.17), Eq. (2.18), Eq. (2.19)) applied to all the wPCC data (including the
turning circle) are displayed in Table 4.8.

Table 4.8: wPCC MAVMM derivatives (prime units times 1000).

name mean se name mean se name mean se
Xδδ -2.927 0.011 Yur -65.507 0.082 Nδ -1.993 0.002
Xvr -7.737 0.066 Yv -20.347 0.016 NT δ -5.392 0.599
Xrr -1.413 0.026 Yu -0.027 0.001 Nr -37.341 0.096
Xuu 20.124 0.137 Yr 64.14 0.083 Nu -0.003 0.0
Xu -20.948 0.137 Nur 35.525 0.096

Nv -0.05 0.004
Nvvδ -19.051 0.054
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4.2.2 The KVLCC2 test case

The proposed system identification method is also validated using the KVLCC2 case
study ship model. The propeller is in the manoeuvring model for this test case
(instead of only the hull and rudders, as in the wPCC test case) so that the entire
ship can be simulated without additional input. The model development process,
which is described in section 3.3, is applied to the KVLCC2 as well. The data has
been split into training, validation, and test data sets (also seen in Figure 4.16),

• Training dataset: various zigzag tests to starboard and port from model tests
carried out at HSVA for the SIMMAN2008 conference (Stern et al. 2011).

• Validation dataset: ZigZag35/5 carried out at HSVA for the SIMMAN2008
conference (Stern et al. 2011).

• Test dataset: turning circle model tests carried out at MARIN for the SIM-
MAN2008 conference (Stern et al. 2011)

A propeller prediction model is needed for the KVLCC2, which is developed from
thrust measurements from the model tests, as described in the next section.
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Figure 4.16: KVLCC2 training, validation and testing datasets.
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The KVLCC2 propeller model

In the development of a propeller model, the coefficients in the KT polynomial
(Eq. (2.25)) were regressed from the KVLCC2 propeller characteristics from SIM-
MAN2008 HSVA model tests (Stern et al. 2011), as seen in Table 4.9. The propeller
model was developed with cross-validation on the training and validation datasets to
make the appropriate feature selection. The cross-validation study was carried out on
the three candidate propeller models:

• the MMG propeller model
• the simple propeller model
• the polynomial propeller model

The training and validation sets were derived from the entire model test time series
from the HSVA model tests. The model tests were randomly divided into the test
and validation sets. The random training and validation sets were repeated 100 times.
The Polynomial model was selected due to it having the highest accuracy. Taylor
wake wp0 = 0.4 was used in all three models. The MMG model used C1=2.0, C2=1.6
when βp > 0 and C2=1.1 when βp <= 0 (Yasukawa and Yoshimura 2015). Figure 4.17
displays a small portion of the cross-validation. Coefficients of the polynomial propeller
model fitted on the training and validation datasets for KVLCC2 are presented in
Table 4.10.

Table 4.9: KT polynomial coeffi-
cients.

Coefficient Value
k0 0.32419
k1 -0.22091
k2 -0.14905

Table 4.10: KVLCC2 propeller
model.

βp > 0 βp <= 0
C1 -0.1735 -0.1066
C2 0.4589 0.0771
C3 -1.8865 1.2958
C4 0.0515 0.0514
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Figure 4.17: Validation of MMG, Simple, and Polynomial propeller models for
KVLCC2.

41



Chapter 4. Summary and discussions of appended papers

KVLCC2 manoeuvring model

The linear manoeuvring model (LVMM) was ruled too simple for KVLCC2. Only the
AVMM and MAVMM were considered possible manoeuvring models in the model
selection. The forces and moments applied on the hull, rudder, and propeller predicted
with the AVMM and MAVMM fitted with the proposed parameter estimation on the
training set are displayed in Figure 4.18. The forces are accurately predicted with
both manoeuvring models. The AVMM does not provide the large over-predictions
that were observed from wPCC. However, the MAVMM is still slightly better and is
therefore selected as the suitable manoeuvring model for the KVLCC2. Simulations
of the validation cases with the MAVMM are displayed for one of the ZigZag20/20
validation cases in Figure 4.19 and Figure 4.20, where the predicted thrust is also
shown.
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Figure 4.18: Validation of force models for KVLCC2.

42



4.2. Summary of Paper 2

−0.05

0.00

0.05

r
[r
a
d
/
s]

True Validation MAVMM

0

50

th
ru

st
[N

]

0

1

u
[m
/
s]

0 50 100 150 200

time

−0.2

0.0

0.2

v
[m
/
s]

Figure 4.19: Validation with simulations for KVLCC2.
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Figure 4.20: Validation error (prediction minus (-) model test) with simulations
for KVLCC2.
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Results from the final prediction of the turning circle test are shown in Figure 4.21,
Figure 4.22 and Figure 4.23. The prediction is conducted using simulation with the
MAVMM trained on the training and validation datasets. Monte Carlo simulations
with alternative realizations of the regression are also displayed in this figure. The
alternative realizations are very similar to the model with mean values of the regression
(black line).
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Figure 4.21: Comparison between the predicted turning circle test with MAVMM
trained on HSVA data and MARIN model test results for KVLCC2.

Comparisons of turning circle advance and tactical diameters compared to the model
test results are displayed in Table 4.11. Predicted advance and tactical diameters
differ by 2% and 5%, which is considered acceptable because of the margin of the
IMO standard limits (which are also displayed in this table). The results are also
closer to the model tests than a similar study conducted for the KVLCC2 (He et al.
2022).

Table 4.11: KVLCC2 Predicted turning circle advance (A) and tactical diameter
(TD) compared to MARIN model tests and IMO limit.

δ
A

(model test)
[m]

A
(prediction)

[m]

A
(IMO)

[m]

TD
(model test)

[m]

TD
(prediction)

[m]

TD
(IMO)

[m]
35.0 21.59 21.21 31.5 21.72 23.07 35.0
-35.0 22.54 22.1 31.5 23.55 24.29 35.0
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Figure 4.22: Comparison between the predicted turning circle test with MAVMM
trained on HSVA data and MARIN model test results for KVLCC2.
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Figure 4.23: The prediction error (prediction minus (-) model test) for the turning
circle test with MAVMM trained on HSVA data and MARIN model test results
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The mean values and standard error (se) of the hydrodynamic derivatives (expressed
with prime units for the KVLCC2) obtained with parameter estimation of MAVMM
(Eq. (2.17), Eq. (2.18), Eq. (2.19)) applied on all the HSVA data are shown in Table
4.12.

Table 4.12: KVLCC2 MAVMM derivatives (prime units times 1000).

name mean se name mean se name mean se
Xvr -11.454 0.272 YT 77.34 1.23 Nδ -1.274 0.003
Xrr -1.406 0.068 Yr 256.065 0.654 Nr -105.618 0.179
Xδδ -2.719 0.013 Yv -24.467 0.02 NT -32.523 0.274
Xuu 80.508 0.618 Yur -252.991 0.658 Nu 0.063 0.001
Xu -81.415 0.618 Yu -0.119 0.003 Nv -7.156 0.016

NT δ -391.596 0.941
Nvvδ -19.257 0.089
Nur 102.252 0.183

4.2.3 Inverse dynamics

The capability of the inverse dynamics on simulated data was also investigated in Paper
2. The hydrodynamic derivatives within the manoeuvring model can be identified
exactly at ideal conditions for the parameter estimation with no measurement noise
and a perfect estimator. For example, artificial data from a turning circle test can be
simulated by a predefined/true manoeuvring model. The hydrodynamic derivatives
within the manoeuvring model can be identified with the same values. Results from
such a simulation are presented in Figure 4.24, where the regression has identified the
true values precisely.
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Figure 4.24: True and regressed hydrodynamic derivatives in MAVMM identified
with Inverse dynamics and OLS regression on a simulated turning circle with
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4.2.4 Preprocessing

The low-pass filter is a prevalent alternative to preprocessing the model test data,
as opposed to the EKF used by the proposed parameter estimation. In order to
investigate which filter is the most effective, the proposed parameter estimation was
run on the wPCC model test data with the EKF + RTS smoother replaced with
a low-pass filter. The low-pass filter applies a first-order linear digital Butterworth
filter twice (once forward and once backward) for zero-phase conditions (Virtanen
et al. 2020). Figure 4.25 displays the average simulation error RMSE with low-pass
filters at various cutoff frequencies for all wPCC model tests. Corresponding error
with parameter estimation using EKF + RTS is also presented in the figure. The
simulation error for each model test is expressed as the root mean square error RMSE
(Eq. (4.10)) of the distance between the position from the model test and simulation.

RMSE =

√∑N
n=1(d2

n)
N

(4.10)

where dn is the euclidean distance for each time step between the model test positions
(x0, y0) and the predicted positions. The simulations show that high accuracy can be
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Figure 4.25: Average simulation error with MAVMM fitted on wPCC model test
data using low-pass filters with various cutoff frequencies or EKF.

obtained using a low-pass filter as the preprocessor if an optimal cutoff frequency is
selected. The low-pass filter’s accuracy decreases quickly at lower or higher frequencies.
Higher cutoff frequencies result in too much measurement error in the data, which
causes the OLS regression to perform poorly. In extreme cases, it is similar to having
no filter. An extremely low cutoff frequency removes too much, including parts of the
actual signal. The results show that the low-pass filter with a 7 Hz cutoff frequency
has the lowest error rate among the low-pass filters. The EKF + RTS method in
the parameter estimation has an even lower error rate, which is why it is used as the
preprocessor in the proposed parameter estimation.
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Chapter 5
Conclusions

The main conclusions are presented in this section with respect to the main
objective of this thesis:

develop system identification methods for grey box models with good
generalization of the model scale rigid body ship dynamics in calm waters.

The conclusions are categorized by the goals that comprise this objective.

Roll model

The first goal of the thesis was to use model test data to develop a model for the
calm water rigid body ship dynamics in the roll degree of freedom. Three candidate
models were considered:

• the linear roll motion model
• the quadratic roll motion model
• the cubic roll motion model

Data from 250 roll decay tests obtained from SSPA were used to evaluate these models.
The linear model was not as accurate as the nonlinear models. The quadratic model
was almost as accurate as the cubic model and is expected to have a higher degree of
generalization with fewer parameters in the model. Therefore, the quadratic model is
the best description for the roll motion.

Predictions with the original Ikeda’s method were also conducted for some of the
ships that exceeded the limits of the simplified Ikeda’s method. These predictions
were in much better agreement with the dampings from the model tests. These results
indicate that the observed deviations with the simplified Ikeda’s method are the result
of extrapolation rather than errors inherent to the original Ikeda’s method.

A grey-box correction model of the simplified Ikeda’s method and a complete
black-box model to predict ship roll damping were proposed in Paper 1. The proposed
models yield better predictions than the simplified Ikeda’s method outside its limits
and worse predictions within its limits. Applying corrections to the simplified Ikeda’s
method outside its limits is therefore not enough for obtaining useful roll damping
predictions for modern ships; an additional course of action is necessary. Further
research efforts must focus on updating and improving the simplified Ikeda’s method.
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Manoeuvring model

The second goal of this thesis was to increase the complexity and uncertainty of the
modelling by adding the surge, sway, and yaw degrees of freedom. This goal addresses
the manoeuvring problem.

It is demonstrated in Paper 2 that the hydrodynamic derivatives within a manoeu-
vring model can be identified exactly in ideal conditions with no measurement noise
and a perfect estimator. Such a result appears during the identification of parame-
ters in a manoeuvring model on data from simulations with the same manoeuvring
model. System identification on actual model tests has the challenge of handling the
measurement noise and the model uncertainty. A new system identification method
has been proposed in Paper 2, where a preprocessor with an EKF and an RTS
smoother are run in iteration for a set of candidate manoeuvring models to handle
both the measurement noise and model uncertainty. System identification with the
proposed pre-processor has higher accuracy than when low-pass filters are applied.
Parameter estimation with no filter or a low-pass filter with the wrong settings result
in inaccurate estimations.

The linearization in the EKF may threaten stability, which can be a problem for
sparse time series with longer time steps. This was not a problem for the present test
cases, with very high frequency data (100 Hz). Using the unscented Kalman filter
(UKF) instead of the EKF can resolve stability issues . This resolution has not been
examined further in this thesis.

Multicollinearity was a significant problem with the AVMM for both the wPCC
and KVLCC2 data. Consequently, some of the regressed hydrodynamic derivatives in
the AVMM have unphysically large values and substantial uncertainties. The model is
still mathematically correct; the regressed polynomials fit the training data well. The
regressed polynomial could be the sum of large counteracting coefficients. The model
is effective when the states are similar to the training data. When extrapolating, the
balance between these massive derivatives may be disturbed, which quickly yields
significant extrapolation errors. This behavior occurred for the wPCC test case
when predicting forces and moments with the AVMM on unseen validation data;
it is a documented problem (ITTC 2008). The MAVMM has fewer hydrodynamic
derivatives with lower multicollinearity and minor extrapolation errors. Including
propeller thrust in the manoeuvring model made it possible to obtain high accuracy
with fewer hydrodynamic derivatives. An additional concern with a high number of
parameters in a model is that the standard manoeuvres used in this paper do not
follow the aspect of persistence of excitation. As a result, some of the hydrodynamic
derivatives might not be identifiable (Revestido Herrero and Velasco González 2012).
For instance, the model is exposed to only two rudder angles in the majority of the
data during the zigzag tests. A series of step responses used in (Miller 2021) provides a
better excitation, but requires a large amount of space. Wider space is possible during
lake experiments, but not in a narrow basin. The model generalization therefore must
be addressed, as seen in the next section.
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Model generalization

The third goal of this thesis was model generalization. In order to be of practical use
in an Internet of Ships (IoS) application, the models must be able to make predictions
outside the domain covered by the available data. A model development process for
manoeuvring models with a high degree of generalization was proposed in Paper 2.
The process was executed along with the proposed parameter estimation technique
on the wPCC and KVLCC2 test cases. Turning circles where predicted with high
accuracy on models trained on zigzag tests. This result indicates that the models
have a high degree of generalization because the turning circles have much larger
rudder angles, drift angles, and yaw rates compared to the training zigzag tests.
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Chapter 6
Future work

A long-term objective of this research is to develop system identification methods
for rigid body ship dynamics of full scale ships in real sea conditions. The study
of these dynamics is an important sub-component of ship digital twins, which can
be used to investigate alternative scenarios of the real ship’s operation. The system
identification methods can be used in advanced autopilots or unmanned surface vessels
(USVs). Multiple aspects of the ship’s energy consumption originate from its motions.
Components of the motions include added resistance in waves or added resistance
from the wind and currents. Prediction models for the ship’s dynamics can therefore
be used to optimize the energy consumption. The investigation of the ship dynamics
in a calm-water laboratory environment conducted in this thesis is one step towards
the long-term objective. Possible additions to this research will be discussed further
in this section.

System identification of model scale rigid body ship dynamics in waves

The calm water assumption used in this thesis reflects a situation that is rare in
reality because the sea is never completely calm. The wind, waves, and currents will
always influence the movement of real ships. To expand the research beyond the calm
water assumption, the development of system identification methods for more realistic
conditions is necessary. Entering the seakeeping sub field of ship dynamics introduces
new challenges to the system identification compared to the manoeuvring and roll
motions, which are studied in this thesis. Seakeeping comprises two more degrees
of freedom: heave and pitch. Both of these factors increase the complexity of the
models. More importantly, the constant added mass assumption used in this thesis is
no longer valid under the influence of wave forces; this means that alternative system
identification methods are needed. Wind, waves, and currents all add many uncer-
tainties to the system identification. Conducting system identification of seakeeping
model tests data is a way to control these uncertainties. The influence from the waves
can be studied in isolation from the wind and currents. The measurement accuracy of
the ship and wave motions is also much higher in the laboratory, which makes system
identification of model scale rigid body ship dynamics in waves a worthy next step
for the research.
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System identification of full scale rigid body ship dynamics in wind and
current

The calm water assumption used in this thesis may be valid for ships operating on
inland waters or sheltered coastal areas. The validity is especially likely if the calm
water assumption is expanded to include the influence of the wind and currents.
System identification of the ship’s rigid body dynamics can be conducted on data
from full-scale operation of ships in these conditions. This would also be a necessary
next step for the research because it adds the uncertainties from the wind and current
in full scale while excluding the influence from the waves.

System identification of full scale rigid body ship dynamics

Given that a satisfactory system identification can be obtained as described by the
two steps above, the logical following step would be to combine them in full-scale
operation in wind, currents, and waves. To fulfill the requirements of the research
project and as a direct, natural continuation of the system identification methods,
the data analysis method and established ship dynamic digital twin models can be
used to study how ship dynamics can affect a ship’s operational performance (fuel
consumption and speed loss) in the open sea. This could be another piece of the ship
digital twin project. In particular, after establishing the ship digital twin, some online
learning and identification methods must be studied and researched to update the
digital twin for various applications for ship operation.
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Appendix A
Initial estimates

The parameter estimation method requires an initial guessed linear manoeuvring
model. Initial models for the two test cases have hydrodynamic derivatives that can
be calculated with semiempirical formulas (Eq. (A.1)-Eq. (A.9)) taken from (Brix
1993).
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