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Neurostimulation artifact
removal for implantable sensors
improves signal clarity and
decoding of motor volition
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Max Ortiz-Catalan1,2,3,4*
1Center for Bionics and Pain Research, Mölndal, Sweden, 2Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden, 3Operational Area 3, Sahlgrenska
University Hospital, Gothenburg, Sweden, 4Department of Orthopedics, Sahlgrenska Academy,
University of Gothenburg, Gothenburg, Sweden

As the demand for prosthetic limbs with reliable and multi-functional

control increases, recent advances in myoelectric pattern recognition and

implanted sensors have proven considerably advantageous. Additionally,

sensory feedback from the prosthesis can be achieved via stimulation of the

residual nerves, enabling closed-loop control over the prosthesis. However,

this stimulation can cause interfering artifacts in the electromyographic

(EMG) signals which deteriorate the reliability and function of the prosthesis.

Here, we implement two real-time stimulation artifact removal algorithms,

Template Subtraction (TS) and ε-Normalized Least Mean Squares (ε-NLMS),

and investigate their performance in offline and real-time myoelectric

pattern recognition in two transhumeral amputees implanted with nerve

cuff and EMG electrodes. We show that both algorithms are capable

of significantly improving signal-to-noise ratio (SNR) and offline pattern

recognition accuracy of artifact-corrupted EMG signals. Furthermore, both

algorithms improved real-time decoding of motor intention during active

neurostimulation. Although these outcomes are dependent on the user-

specific sensor locations and neurostimulation settings, they nonetheless

represent progress toward bi-directional neuromusculoskeletal prostheses

capable of multifunction control and simultaneous sensory feedback.

KEYWORDS

neurostimulation, artifact removal, implantable electrodes, prosthesis control,
osseointegration, myoelectric pattern recognition, sensory feedback

Introduction

Ziegler-Graham et al. (2008) estimated that the number of people living with
amputations in the US would more than double by the year 2050. Furthermore, it
is estimated that there are more than 1 million annual limb amputations globally
(Advanced Amputee Solutions LLC, 2012). This poses a significant challenge as the
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demand for prosthetic devices with reliable and multi-functional
control for intuitive use in daily life increases.

During the last decades, most of the development has
lead in the direction of introducing powered prostheses where
movement control is decoded from surface electromyogram
(sEMG) using myoelectric pattern recognition (Hudgins et al.,
1993; Englehart and Hudgins, 2003; Zheng et al., 2021). Further
work has also been performed to improve control resolution
and reliability through Targeted Muscle Reinnervation (TMR),
where nerves in the remaining limb are innervated into existing
musculature to increase the number of EMG channels and
improve prosthesis controllability (Kuiken et al., 2004).

However, using sEMG for prosthesis control comes with
a multitude of problems as the signal quality is heavily
dependent on environmental conditions and susceptible to
motion artifacts and myoelectric crosstalk (Ortiz-Catalan et al.,
2014). To remedy this, recent work extending the concept of
bone-anchored (osseointegrated) prostheses to also include bi-
directional electrical communication has allowed electrodes to
be implanted and connected directly through the implant to
the prosthesis. This has improved controllability and general
prosthesis usability over classical myoelectric prostheses (Ortiz-
Catalan et al., 2014, 2020b; Mastinu et al., 2018).

The bi-directional communication additionally allows
neurostimulation to provide sensory feedback to the user (Ortiz-
Catalan et al., 2014, 2020a). By placing spiral cuff electrodes
around nerves in the residual limb, somatosensory (touch)
sensations can be elicited through neurostimulation. However,
due to the nature of electrical signals, and the fact that
the electrical stimulation pulses are often larger in amplitude
compared to the underlying EMG signal, the stimulation pulses
can also be picked up by the nearby EMG electrodes. This
creates unwanted artifacts in the activation patterns used to
detect the user’s intent and leads to reduced pattern recognition
performance and robustness (Hartmann et al., 2015).

The problem of stimulation artifacts (SAs) is not only
present in the area of prosthesis control, but also applies
to any system involving closed-loop neuromodulation (Zhou
et al., 2018). Literature on the topic of removing unwanted
signals from recorded biosignals is expansive; for example,
removal of ocular artifacts is of great interest for those using
electroencephalography (EEG) for brain-computer interface
applications (Nolan et al., 2010; Sreeja et al., 2018; Jafarifarmand
and Badamchizadeh, 2019). However, research involving
prosthesis control applications is lacking. Moreover, the existing
literature mostly focuses on removing electrocardiogram (ECG)
artifacts from the EMG signals (Marque et al., 2005; Zhou
et al., 2007) and do not consider the artifacts caused by
neurostimulation for providing tactile feedback. Furthermore,
while prior work has investigated SAs and closed-loop
myoelectric control (Hartmann et al., 2015), stimulation and
recording were conducted via surface electrodes placed on the
skin. Therefore, there is a need to develop and test methods for
real-time stimulation artifact removal (SAR) using implanted
EMG electrodes.

In this paper, we implement two real-time stimulation
artifact removal algorithms, Template Subtraction (TS) and
ε-Normalized Least Mean Squares (ε-NLMS), and investigate
their performance in offline and real-time myoelectric pattern
recognition with two transhumeral amputees implanted with
nerve cuff and EMG electrodes. Using offline analysis, we show
that both algorithms are capable of significantly improving
signal-to-noise ratio (SNR) and pattern recognition accuracy of
artifact-corrupted EMG signals. Furthermore, both algorithms
improved real-time decoding during a Motion Test (Kuiken
et al., 2009; Ortiz-Catalan et al., 2013) performed during active
neurostimulation.

Materials and methods

This study was approved by the Swedish regional
ethical committee in Gothenburg (DNR: 769-12). All
participants provided written informed consent prior to
participation in the study. Data and code related to this study
are freely available on the Open Science Framework (Earley
et al., 2022a).

Hardware

The embedded hardware was based on previous work
(Mastinu et al., 2017). It comprises a TM4C123GH6PM 32-
bit ARM Cortex-M4F main microcontroller unit (MCU) with
floating point unit clocked at 80 MHz (Texas Instruments,
Dallas, TX, USA) and a secondary MSP430G2755 16-
bit mixed signal MCU at 16 MHz (Texas Instruments,
Dallas, TX, USA). The secondary MCU handles stimulation
waveform generation and signal acquisition through a RHS2116
digital electrophysiology stimulator and amplifier chip (Intan
Technologies, Los Angeles, CA, USA), capable of sampling
from implanted electrodes and stimulating the extraneural
spiral-cuff electrodes within the arm of a person with
a neuromusculoskeletal prosthesis (Integrum AB, Mölndal,
Sweden). During stimulation pulse generation, the secondary
MCU ceases signal acquisition (Figure 1A, in red), effectively
blanking the EMG signal to avoid saturating the EMG channels
and quickly return the electrode potential to baseline after
each stimulation pulse (Hartmann et al., 2015). This blanking
removes most of the SA spike but leaves the longer lasting
exponential tail still in the signal (O’Keeffe et al., 2001; Zhou
et al., 2018). However, by sampling the stimulation channel, a
reference signal highly correlated with the stimulation artifact
can be acquired for later use by SAR algorithms.

Algorithm selection and description

Two algorithms were selected with focus on ease of
implementation, computational complexity, and ability to
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FIGURE 1

The Template Subtraction (TS) algorithm identifies stimulation artifacts from the original signal x(t) [(A), in blue] immediately following
neurostimulation [(A), in red] and averages them using exponential filters (B) to form an artifact template (C). This template is subtracted from a
newly-identified artifact [(D), in orange)] to yield an estimated artifact-free signal x̂(t) (E).

FIGURE 2

The ε-Normalized Least Mean Squares (ε-NLMS) adaptive filter algorithm convolutes the reference signal u (t) with filter weights w to predict the
artifact waveform (A). The predicted artifact is subtracted from the original signal x (t) to yield an estimated artifact-free signal x̂(t) (B), which is
then also used to update the filter weights after each sample (C).

perform SAR in real-time during closed-loop control of a
prosthetic hand. Both algorithms were implemented such that
they were to be executed immediately following the delivery of
a neurostimulation pulse, aligning with the first non-blanked
sample after stimulation pulse generation.

Template Subtraction
We implemented a TS algorithm based on a first order

infinite impulse response (IIR) filter, similar to the ones
presented by Keller and Popovic (2001) and Azin et al.
(2007). The algorithm was chosen due to its simplicity and
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recursive formulation, yielding a computationally efficient
implementation for usage in real-time on an embedded
device.

By averaging artifacts immediately following stimulation
pulses using multiple exponential filters with filter learning rate
α, a representative template of length N is constructed which
is subtracted from the original signal x (t) to yield an estimated
artifact-free signal x̂(t) as illustrated in Figure 1.

Let Wk (i) represent the learned artifact at sample
i = 1, ..., N after the end of stimulation pulse k. Assuming that
tk is the sample index at which stimulation pulse k ends, i.e.,
when the stimulation artifact is present in the EMG signal, the
recursive update is defined as:

Wk(i) ={
(1− α) · Wk−1(i) + α · x(tk + i− 1),i = 1,..., N

0,i > N
(1)

and the estimated artifact-free signal is then given by
subtracting the template:

x̂ (tk+i− 1) = x (tk+i− 1)−Wk (i) , i ≥ 1,k ≥ 0 (2)

ε-Normalized Least Mean Squares
We also implemented a variant of the common Least Mean

Squares (LMS) adaptive filter, namely the ε-NLMS filter. The ε-
NLMS algorithm is an improved version of the standard LMS
algorithm, yielding better performance for signals with intervals
of larger and lower signal energy such as speech signals and
overall faster convergence (Sayed, 2008). The ε-NLMS algorithm
is slightly more computationally expensive than the standard
LMS algorithm, but has still been successfully used to remove
neurostimulation artifacts in real-time (Basir-Kazeruni et al.,
2017).

As the adaptive filter relies on a reference signal highly
correlated with the SA (in our case, samples from the
stimulation channel itself), the algorithm can adapt to varying
artifact waveforms without requiring completely relearning of
the weights. Figure 2 illustrates the working principle of the
adaptive filter.

Let x (t) be the original signal, u(t) =

[ u (t) u (t − 1) . . . u (t − N − 1)] a vector containing the
N previous samples from the reference u(t), and wt a weight
vector of length N at sample t. The estimated artifact-free signal
x̂(t) is then given as:

x̂ (t) = x (t)− wT
t−1u(t), (3)

and the weights are updated according to the ε-NLMS update
rule:

wt = wt−1 +
α

ε+||u(t)| |2
u(t)x̂ (t) , (4)

where ε > 0 is a small constant for avoiding division by zero,
and α is a positive learning rate parameter.

Offline evaluation

An offline evaluation to identify optimal algorithm
parameters and investigate the sensitivity to parameter variation
was conducted with one participant with a transhumeral
amputation and an osseointegrated e-OPRA implant system
(Integrum AB, Mölndal, Sweden) connected to a prosthetic
arm as previously reported (Ortiz-Catalan et al., 2020b). Signals
were sampled at 1,000 Hz from the four channels normally
used to control hand open, hand close, pronate, and supinate
functions using direct control. In addition, the stimulation
channel was sampled as a reference for the ε-NLMS algorithm.
Signals were processed with a 50 Hz notch filer to reduce
electrical interference and passed through a second order digital
high-pass filter at 20 Hz to remove signal bias. Square biphasic,
asymmetric, and stimulation pulses (Günter et al., 2019) were
applied at the stimulation frequency through the cuff electrode
around the median nerve.

Initial data collection
We performed an initial data collection to obtain EMG

signals both with and without SAs for offline evaluation. During
the experiment, the participant was asked to perform three
tasks: (i) no movement, (ii) repeated hand close and hand open,
or (iii) repeated pronation and supination. Signals in scenario
(i) were recorded for 10 s, while scenarios (ii) and (iii) were
recorded for 15 s each. During the first half of each recording,
stimulation was applied in the form of multiple successive
pulses, where four sets of suitable stimulation parameters were
chosen based on the participant’s detection threshold—pulse
amplitudes of 300–450 µA, pulse frequencies of 30–50 Hz, and
a pulse width of 150 µs. In total, 12 recordings were obtained
containing both artifact-free and artifact-contaminated EMG
signals.

Algorithm parameter selection
To select the values of hyperparameters N and α for each

algorithm, we devised an optimization scheme based on semi-
synthetic signals. By using the data collected during scenario
(i) and superimposing pure stimulation artifacts a(t) from
scenario (ii) and (iii) onto the artifact-free EMG signals x(t),
the Root Mean Square Error (RMSE) between the true artifact-
free signal x(t) and the estimated artifact-free signal x̂ (t),

RMSE =

√
1
N
∑N

i = 1
(
x (i)− x̂ (i)

)2, can be used as the
optimization objective (Liang and Lin, 2002; Li et al., 2019). This
approach has been used in previous work for evaluating SAR
algorithm performance (Liang and Lin, 2002; De Clercq et al.,
2006; Waddell et al., 2009), and provides a method by which the
outcome is compared to the true artifact-free signal x(t), which
cannot be known in in vivo testing. Due to the large variance
in signal amplitude, the parameters were optimized for each
channel individually and selected based on the median optimal
RMSE of each of the 32 semi-synthetic signal combinations.
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Sensitivity analysis
Since selecting the algorithm hyperparameters is a

complicated task when no existing signals are available for use
in the above-described optimization scheme, we investigated
the change in algorithm performance with respect to small
deviations from the optimal parameters for N and α .

Using the same set of semi-synthetic signals as the
optimization procedure, the algorithms’ hyperparameters were
varied before applying them to the signals. However, using the
RMSE between the true EMG signal x(t) and the estimated
artifact-free signal x̂ (t) as a performance metric can be
problematic for comparing performance between channels
due to the large variation in signal amplitude. The RMSE
is completely usable when optimizing algorithm performance,
but as soon as comparing signals of different fundamental
amplitudes, another metric is required. Additionally, the
RMSE is difficult to interpret and relate in terms of
absolute performance.

Therefore, a more general metric based on SNR, as
employed in Basir-Kazeruni et al. (2017), was used for
evaluating the algorithms’ performance related to changes in
the hyperparameters. The metric, hereby denoted as 1SNR or
SNR improvement, measures the change in SNR in decibels
when applying the algorithm. It is not dependent on the absolute
amplitude of the signals, but rather on the relative energy
content of the true signal x(t), artifact a(t), and estimated
artifact-free signal x̂ (t), as

1SNR = SNRout − SNRin = SNR
(
x (t) , x̂ (t)− x (t)

)
−SNR (x (t) , a (t)) (5)

The identified optimized parameters and the sensitivity
analyses were used to guide the selection of parameters for the
real-time evaluations (see section “Real-time evaluations”).

Pattern recognition performance
To evaluate the impact of the algorithms on the pattern

recognition performance, signals were manually labeled with
both the intended movement and the presence or absence of
simultaneous stimulation (Figure 3). Both SAR algorithms were
applied to pre-recorded signals before separating the samples
into time windows of 200 samples with 150 samples of overlap.
In accordance with the findings by Hartmann et al. (2015),
blanked samples were removed from signals before extracting
Mean Absolute Value (MAV), Zero Crossings (ZC), Slope Sign
Changes (SSC), and Waveform Length (WL) from each window
(Hudgins et al., 1993).

The feature vectors from time windows without SAs were
used to train a one-layer neural network using Rectified Linear
Unit (ReLU) and softmax activation functions for predicting
the intended prosthesis movement. The feature vectors used
for training were randomly split into a 60% training set, 20%
validation set and a 20% testing set, and the training set was

augmented by adding additional 10 dB SNR noise to the feature
vectors after being normalized. The network was trained and
evaluated in MATLAB (MathWorks Inc., Natick, MA, USA).

The remaining feature vectors, calculated on time windows
containing SAs, both raw and processed by each algorithm, were
fed to the trained network to evaluate the network and algorithm
performance. The training and evaluation procedure was
performed 100 times to account for the inherent randomness
during data splitting and training.

Real-time evaluations

To evaluate the real-time implications for prosthesis
controllability, Motion Tests were performed with two
participants with transhumeral amputation (Kuiken et al., 2009)
as implemented in BioPatRec (Ortiz-Catalan et al., 2013). Both
participants were home users of the osseointegrated e-OPRA
implant.

First, a one layer neural network was trained on the standard
features MAV, ZS, SSC, and WL (Hudgins et al., 1993) calculated
from time windows at 500 Hz of length 200 ms, with 150 ms
overlap on eight EMG channels to predict the prosthesis
movements hand open, hand close, pronate, supinate, and rest.
No stimulation was active during the training and thus no SAs
were included in the training data.

For each Motion Test, the participant was instructed to
perform each movement multiple times in randomized order
and hold the correct movement for a total of 1 s (non-
continuous) within a time limit of 5 s while measuring the
time to completion. The trial would conclude after the 1 s of
cumulative correct movement predictions were achieved; for
unsuccessful trials, timed outcomes were set to the maximum
time (5 s). First, a test without stimulation was performed
to assess the baseline controllability of the prosthesis. Then,
stimulation as a train of successive stimulation pulses at 20 Hz
was enabled during the test; stimulation amplitude and pulse
width were selected such that control of the prosthesis was
impaired, but limited control of the prosthesis was still possible.
Finally, the two algorithms were enabled on all signal channels
and two additional motion tests (one for each algorithm)
were performed. Guided by the outcomes from the sensitivity
analysis, the TS algorithm was implemented with a learning rate
α = 0.06 and a template length N = 25, and the ε-NLMS was
implemented with a learning rate α = 0.035 and a filter length
N = 25. The order of SAR algorithms was randomized.

Statistical analysis

For the offline evaluation, where the finite boundaries
of accuracy skewed the outcomes, the Wilcoxon rank sum
test was performed to assess if there was a significant
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FIGURE 3

Overview of the process used for evaluating offline myoelectric pattern recognition performance of the two algorithms on signals containing
stimulation artifacts.

difference in classification accuracy for signals containing
SAs and after applying the TS and ε-NLMS algorithms.
Corrections for multiple comparisons were made using Holm–
Bonferroni corrections.

For the Motion Test, where outcomes were either discretized
or skewed due to incomplete trials, the Wilcoxon rank sum test
was performed to assess if there was a significant difference in
completion rate (percentage of Motion Test trials completed
successfully), completion time (duration of each trial, maximum
5 s for unsuccessful trials), movement accuracy (percentage
of correct predictions during each trial), and selection time
(elapsed time before first correct prediction, maximum 5 s for
unsuccessful trials) between movements with and without SAs,
and between the artifact-corrupted trials and the trials with SAR
enabled. Corrections for multiple comparisons were made using
Holm–Bonferroni corrections.

Results

Offline evaluation

Using the initial data collected, we performed a series of
offline evaluations of the two algorithms to investigate their
sensitivity to tuning of hyperparameters and effect on MPR
classification accuracy.

Sensitivity analysis
Learning rate

As can be seen in Figure 4, larger learning rates α

generally led to more variability in the 1SNR for both
algorithms, indicating that a larger learning rate improves
SNR more for some semi-synthetic signals while causing a
reduced improvement for others. For some parameter values,
the 1SNR also yielded negative changes, meaning that the
algorithms induced more artifact noise into the signal than
what was effectively removed. This was especially prominent
for ε-NLMS, which displayed an overall larger performance
variation.

By comparing the 1SNR curves with the dashed lines
representing the optimal parameter value for minimizing the
median RMSE, it is evident that both performance metrics
(RMSE and 1SNR) were seemingly well correlated. The optimal
parameters (dashed lines) generally provided a sound trade-off
between the median and lower quartile SNR improvement. For
example, consider the performance of the TS algorithm (blue)
for the supinate channel (lower right) in Figure 4—by purely
optimizing median 1SNR, the optimal parameter would be
α = 0.04 which would yield a larger 1SNR variability and even
cause the lower quartile to lie below zero. Instead, the RMSE
optima provided similar median and upper quartile 1SNR
performance, but with a considerably better lower quartile
performance.
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FIGURE 4

1SNR increased with an increasing learning rate α to a point, after which further increases in the learning rate worsened the change. The
sensitivity of both Template Subtraction (TS) (blue) and ε-Normalized Least Mean Squares (ε-NLMS) (red) showed similar trends. Higher learning
rates α led to increased variability (shaded regions), but the α determined by the parameter optimization (dashed vertical lines) provided a good
balance between median performance and variability.

In summary, an increased learning rate α led to increased
performance variability and optimizing for RMSE provided
a good balance between median performance and variability.
Furthermore, an excessive learning rate caused negative 1SNR
improvement, indicating that α needs to be tuned sufficiently
low for correct functionality, especially for ε -NLMS.

Template/filter length

Considering the sensitivity when the template/filter length
N was varied in Figure 5, the choice of N does not seem to be
as crucial for determining the algorithms’ performance as the
learning rate α.

One may observe that after a certain length the performance
stayed constant. This is a logical behavior, considering that the
number of samples between each stimulation pulse is dependent
on the sampling and stimulation frequency. In the offline
evaluation, the semi-synthetic signals were sampled at 1,000 Hz
and contained stimulation pulses generated at 30–50 Hz, leading
to a maximum of roughly 33 samples between each pulse. It is
therefore understandable that the algorithm performance stayed
constant once N ≥ 30 as both algorithms are reset to start over
again once a new pulse is detected.

Another interesting observation is that TS behaved similarly
across all channels. When the template length was increased
from zero, the SNR improvement was immediate and continued

to increase when the template was extended. Considering ε-
NLMS, however, a too short filter (N ≤ 7 in this case)
decreased the SNR between the residual artifact and the true
EMG signal when applying the algorithm, rather than removing
the stimulation artifact. It thus seems important that the
filter length is chosen long enough to correctly reduce the
artifact signal power.

In contrast to the learning rate, both algorithms’
performance consistently improved as the template/filter
length N increased. However, ε-NLMS required a sufficient
length before any SNR improvement was noticed while TS
improved the SNR immediately when increasing the length
from zero. This indicates that ε-NLMS may require more care
when manually tuning the filter length. Optimizing for RMSE
seemed to provide a reasonable trade-off between performance
and variability, although the observation was not as evident as
for the learning rate.

Offline pattern recognition

Using the constructed semi-synthetic signals containing
artifacts, we evaluated the effect of stimulation on the MPR
performance. In total, n = 100 training and evaluation
iterations were performed to account for the inherent
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FIGURE 5

1SNR generally improved with an increasing length N for Template Subtraction (TS) (blue), however ε-Normalized Least Mean Squares (ε-NLMS)
(red) required a minimum length be met before improvement was seen. Variability of the outcome (shaded region) did not appear to relate to
the length N, nor did the value determined via parameter optimization (dashed vertical lines) consistently align with the maximum 1SNR.

randomness of the training data split and network initialization.
The total accuracy, defined as the portion of the predictions
that were correct, decreased significantly between artifact-free
signals (median [IQR]: 95.0% [94.5%, 95.7%]) and signals
containing raw SAs (48.1% [46.4%, 49.5%]; Wilcoxon rank sum:
p < 0.001), and was significantly improved after applying either
of TS (78.8% [77.0%, 80.2%], p < 0.001) or ε-NLMS (77.1%
[74.9%, 78.7%], p < 0.001) compared to artifact-corrupted
signals (see Figure 6). The accuracy with either SAR algorithm
did not reach the same levels as the artifact-free test signals
(p < 0.001) although TS performed better than ε-NLMS
(p < 0.001).

Motion Tests

The Motion Test was used to determine the effect of
the two artifact removal algorithms on real-time myoelectric
pattern recognition. Participants were generally able to complete
movements when no stimulation was provided (96% completion
rate), movements were significantly affected during stimulation
(20% completion rate; Wilcoxon rank sum: p < 0.001,
Figure 7A). This completion rate was significantly improved by
using either TS (56%, p = 0.029) or ε-NLMS (52%, p = 0.041).

Additional outcome measures from the Motion Test also
provide insight into how the artifact removal algorithms
affected myoelectric decoding. The completion time describes
the amount of time taken to perform the defined movement for

1 s, within a 5 s trial. Completion time showed generally good
performance without stimulation (median [IQR]: 1.26 s [1.01,
2.34]), which significantly increased during neurostimulation

FIGURE 6

Offline pattern recognition accuracy was significantly reduced
for signals containing stimulation artifacts (SAs) but both
Template Subtraction (TS) and ε-Normalized Least Mean Squares
(ε-NLMS) significantly restored the PR accuracy, although
without reaching the same level as for the test set of
artifact-free signals.
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FIGURE 7

Real-time Motion Test outcomes were deteriorated by neurostimulation, but performance was recovered when using artifact removal
algorithms. Template Subtraction (TS) resulted in a significantly improved completion rate (A), and ε-Normalized Least Mean Squares (ε-NLMS)
significantly reduced the movement completion time (B) and increased the movement accuracy (C). Neither algorithm had a significant effect
on selection time (D). Colored whisker plots represent pooled median and interquartile range. Circle and square points represent data from the
two participants, and the gray horizontal lines represent their individual medians.

(5 s [5, 5], p < 0.001, Figure 7B). Completion time was
significantly recovered when using TS (4.31 s [1.46, 5], p = 0.017)
and ε-NLMS (3.30 s [1.07, 5], p = 0.020), as compared to
using raw artifact-corrupted signals. The movement accuracy
indicated that the high rate of correct predictions without
stimulation (80.0% [44.0%, 96.4%]) similarly diminished with
active sensory feedback (0% [0, 0], p < 0.001, Figure 7C).
Again similarly, this performance was significantly restored
with TS (23.3% [0, 60.8], p = 0.021) and ε-NLMS (25.6%
[0, 80.4], p = 0.030), as compared to using raw artifact-
corrupted signals. Selection time did not show the same trend;
while uncorrupted selection time (0.05 s [0.05, 0.05]) was still
significantly hindered by the application of neurostimulation
(0.41 s [0.05, 5], p < 0.001), performance was not significantly
different when using TS (0.23 s [0.07, 1.93], p = 0.890) or
ε-NLMS (0.18 s [0.05, 2.09], p = 0.907, Figure 7D).

Taken together, these results suggest that, for movements
that are significantly impacted by neurostimulation artifacts, the
use of TS and ε-NLMS artifact removal algorithms can help
to restore some of the lost performance by making affected
movements easier and quicker to achieve.

Discussion and conclusion

In this paper, we implemented and evaluated two
algorithms, TS and ε-NLMS, to remove artifacts caused
by neurostimulation used for somatosensory feedback,
with the aim to restore control to myoelectric prosthesis
users. We evaluated the algorithms’ sensitivity to
hyperparameters and their effect on offline and online pattern
recognition performance.

Considering the algorithms’ sensitivity to variations in
the two hyperparameters α and N, the results suggest that
an increase in the learning rate α generally leads to higher
variability with increased performance for some semi-synthetic
signals and worsened performance for others. The increased
variability additionally led to a negative 1SNR caused by
more noise being introduced in the signal than what was
removed in terms of artifacts. On the other hand, optimizing
the RMSE seemed to provide a good balance between median
performance and performance variability, suggesting that the
RMSE is a useful optimization metric for automatic selection of
hyperparameters.
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Neither algorithm was negatively affected by an increase
in the length parameter N, but the improvement was constant
once the inter-pulse period was reached. Additionally, ε-
NLMS required a sufficient filter length (N ' 7) to
yield improvements in SNR, while TS provided a consistent
improvement starting from N = 1. This indicates that the ε-
NLMS adaptive filter is dependent on enough previous samples
on the reference channel to be able to predict the artifact
waveform correctly. Furthermore, TS seems to require a larger
N to reach the same performance as ε-NLMS. Given the
two algorithms’ different approaches to predicting the artifact,
this behavior is expected. The TS approach, of constructing a
template for each of the N samples following the stimulation
pulse, naturally requires a large enough N depending on the
length of the artifact in the time domain for enough effect.
On the other hand, when basing the prediction on the N last
samples, as in ε-NLMS, a lower but large enough N is sufficient
to adequately predict the artifact.

When comparing the two algorithms in offline analyses,
there is no clear evidence supporting that one is significantly
better than the other. In the evaluation of the algorithms’
sensitivity to variations in the hyperparameters, both algorithms
performed similarly in terms of achieved SNR improvement. ε-
NLMS, however, seemed to require more care when selecting
parameters since a too high learning rate α quickly degraded
the lower quartile performance and a too low filter length N
induced more noise in the signal, ultimately causing a negative
SNR improvement. In this respect, TS, which had a larger range
of values of α that provided sufficient performance and showed
consistent performance increase for all values of N, gives the
impression of being easier to tune manually. TS is additionally
more computationally efficient than ε-NLMS due to its simpler
recursive update formulation, but may require a longer template
length to achieve the same performance; ε-NLMS, on the
other hand, may be more computationally intensive due to
dot product calculation performed every sample, but require a
smaller filter length.

Regarding the real-time Motion Test outcomes, both TS and
ε-NLMS showed improvements to the movement completion
rate, completion times, and accuracy, suggesting that either
algorithm can be used to recover raw signals corrupted by
SAs. However, it should also be noted that these outcomes are
dependent on numerous other factors. Our offline investigations
suggest that hyperparameter selection can greatly impact the
performance of the SAR algorithms, and more so that the
optimal hyperparameter values may differ substantially between
channels. In the real-time tests, we opted to use the same
hyperparameters for all channels, demonstrating a general-use
scenario, however, fine tuning and selection of hyperparameters
may lead to further improved SAR effectiveness.

As is often the case with prosthetics research, user variability
will also drastically impact the need for and benefit of using SAR

algorithms. In this study, two participants with transhumeral
neuromusculoskeletal prostheses tested our algorithms; despite
the fact that the amputation level and technology was similar
between our participants, differences in surgical reconstruction,
electrode and nerve cuff placement, and prosthesis use meant
that different muscles were used to control the same prosthesis
movements, and depending on the proximity of the nerve cuffs
to each electrode the relative strength of SAs could differ. Thus,
stimulation parameters had been selected for each participant to
achieve a balance of performance; if SAs were too small, control
of the prosthesis would not be affected and SAR algorithms
would demonstrate no benefit, and if SAs were too large, the raw
signal would be unrecoverable with SAR and the control would
remain compromised. The stimulation parameters selected for
this study managed this balance, but as a result the outcomes
of this study must be interpreted within this basis—outside
of this balanced stimulation window, the benefit of these SAR
algorithms is reduced.

Related to this limitation is the number of participants
included in the study. A major factor influencing the
study size is the limited number of individuals using the
neuromusculoskeletal prosthesis in daily life. Not all users
in this cohort experience SAs which compromise the control
of their prosthesis. As mentioned previously, all users have
differences in limb presentation and surgical intervention
which affect the presence and severity of SAs. Thus, the
approach taken in this study is one of patient-centered design,
in which the participant’s prosthetic system was customized
to their unique limb presentation and needs: stimulation
intensity was set such that the sensation could be felt
reliably during daily activities, and SAR algorithms were
tuned such SAs could be removed without compromising
control of the prosthetic hand. This approach has yielded a
system which benefits our participants, however, the translation
of this solution to other users will depend on the limb
presentation, surgical reconstruction, selection of implanted
devices, and other factors.

The TS and ε-NLMS algorithms are both well suited to
learn and counteract static artifacts, which makes it particularly
suited for stimulation paradigms such as discrete event-
driven sensory feedback (Cipriani et al., 2014), which have
consistent and repeatable stimulation patterns. In particular,
the TS assumptions of a stable artifact profile may make
it the preferred choice for this application due to its lower
computational demands. However, most sensory feedback
research sets the stimulation intensity proportional to the
feedback measurement (typically grip force). Both TS and ε-
NLMS can adapt to changing stimulation artifacts, however
they will always lag behind a proportional feedback scheme—
the stimulation template for TS will have a maximum rate
of change limited by the learning rate, and linear correlation
between reference and signal may not be constant across
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stimulation intensities. While these algorithms may still reduce
the SA, they may under- or overcorrect and continue to leave
residual artifacts in the signals. We expect that ε-NLMS would
outperform TS in this regard, as it uses the stimulation signal
as a reference for its artifact removal, however, SAR methods
which take the current stimulation parameters into account may
be able to circumvent this issue entirely, which is an area we plan
to investigate in a future study.

Overall, when possible, it is best for implanted electrodes
to be configured in such a way as to minimize the potential
for SAs. Evaluation methods such as cross-channel impedance
measurement may be used to identify configurations with a
higher likelihood for SAs (Earley et al., 2022b), and the use
of biopolar electrodes may help to reduce the likelihood of
cross-talk. However, monopolar configurations can allow for a
greater number of unique muscle sources for a given number
of electrodes, which is of particular importance for implanted
electrodes. In these cases, SAR algorithms may be able to make
up the difference and improve the control of prosthetic limbs
while simultaneously permitting sensory feedback, allowing for
bidirectional and closed-loop control of prostheses which serve
to improve the independence and quality of life of people with
amputations.
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