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ABSTRACT
Atomically thin semiconductors such as transition metal dichalcogenide (TMD) monolayers exhibit a very strong Coulomb interaction,
giving rise to a rich exciton landscape. This makes these materials highly attractive for efficient and tunable optoelectronic devices.
In this Research Update, we review the recent progress in the understanding of exciton optics, dynamics, and transport, which crucially
govern the operation of TMD-based devices. We highlight the impact of hexagonal boron nitride-encapsulation, which reveals a plethora
of many-particle states in optical spectra, and we outline the most novel breakthroughs in the field of exciton-polaritonics. Moreover, we
underline the direct observation of exciton formation and thermalization in TMD monolayers and heterostructures in recent time-resolved,
angle-resolved photoemission spectroscopy studies. We also show the impact of exciton density, strain, and dielectric environment on exci-
ton diffusion and funneling. Finally, we put forward relevant research directions in the field of atomically thin semiconductors for the
near future.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0107665

I. INTRODUCTION

Atomically thin semiconductors have emerged in the last
decade as a platform for investigating quantum many-body
phenomena and as promising candidates for novel optoelec-
tronic applications.1–6 In particular, monolayers of semiconducting
transition metal dichalcogenides (TMDs), including the extensively
studied MoS2, MoSe2, WS2, and WSe2, display weak dielectric
screening due to their truly two-dimensional character. Concretely,
the electric field lines between two charge carriers confined in
the TMD monolayer extend largely outside the material into the
surrounding dielectrics, which generally possess a small permit-
tivity. The resulting strong Coulomb interaction gives rise to rich
exciton physics in TMD monolayers. Excitons, i.e., tightly bound
electron–hole pairs, dominate the optical response in these materials
and show large binding energies and oscillator strengths.7

The multi-valley band structure and sizable spin–orbit
coupling in TMDs result in an abundance of optically active
(bright) and inactive (dark) exciton states with different spin–valley
configurations.1,8,9 Taking advantage of their two-dimensional

character, TMD monolayers can be vertically stacked to form van
der Waals (vdW) heterostructures, which allows for the creation
of complex materials with designed functionalities and opens up a
new venue for exploring intriguing many-body physics. In particu-
lar, the exciton landscape is extended to interlayer excitons, where
the constituent electrons and holes are spatially separated, i.e., they
are localized in different TMD layers.3,5,6,10 While excitons domi-
nate the optical response in TMD monolayers and heterostructures
at low or moderate carrier densities, higher-order many-particle
complexes, including trions, biexcitons, and polaritons become cru-
cial in different technologically relevant regimes, i.e., in the pres-
ence of doping, at high excitation densities, and in optical cavities,
respectively.

In order to design efficient and tunable optoelectronic devices
based on TMDs, the fundamental processes governing the device
operation must be well understood. These processes can be grouped
into three categories—optics, dynamics, and transport—which
include (i) optical absorption and emission processes, (ii) exci-
ton formation, thermalization and recombination dynamics, and
(iii) exciton diffusion and funneling (cf. Fig. 1). In this Research
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FIG. 1. Schematic illustration of the three focus areas of the review. (a) Exciton optics with a multitude of resonances in PL spectra of
hBN-encapsulated TMDs, including signatures of neutral (X0) and dark (XD) excitons, as well as trions (X−) and biexcitons (XX). (b) Exciton dynamics illustrating
thermalization via exciton–phonon scattering and recombination via Auger scattering (exciton–exciton annihilation) and radiative channels. (c) Exciton transport includ-
ing regular diffusion—dominated by exciton–phonon scattering, anomalous diffusion—governed by exciton–exciton repulsion, and exciton funneling, where the arrows in
the plane illustrate the direction of the drift current.

Update, we review the recent developments in the understand-
ing of exciton optics, dynamics, and transport in semiconducting
TMD monolayers and heterostructures. In particular, we focus on
the four most studied TMDs, i.e., MoS2, MoSe2, WS2, and WSe2.
In Sec. II, we describe optical signatures of excitons and highlight
the crucial impact of hexagonal boron nitride (hBN)-encapsulation,
which reveals the fine structure of optical spectra with a multi-
tude of many-particle states [cf. Fig. 1(a)]. Furthermore, we review
the recent advances in the extensive field of exciton–polaritons
in monolayer TMDs and heterostructures. In Sec. III, we
discuss the progress in exciton dynamics including exciton
formation, thermalization, and recombination [cf. Fig. 1(b)]. Here,
the focus lies on the direct observation of momentum-dark exci-
tons in time-resolved, angle-resolved photoemission spectroscopy
(ARPES) measurements as well as interlayer exciton formation and
recombination of moiré excitons. In Sec. IV, we summarize the
recent developments in exciton transport, emphasizing the impact
of exciton density, strain, and dielectric environment on exciton dif-
fusion and funneling [cf. Fig. 1(c)]. Finally, we highlight the most
promising avenues and pressing challenges for prospective research
in this field.

II. EXCITON OPTICS
The close relationship between optics and excitonics represents

the primary and most versatile avenue for probing and manip-
ulating excitons in transition metal dichalcogenides.1,2 Excitons
in semiconducting TMDs are typically generated via optical
excitation,11,12 where an incident photon leads to the generation of
a Coulomb-bound electron–hole pair, forming an exciton. In this
section, we discuss recent advances in exciton optics, which have
been enabled by hBN-encapsulation of TMD samples. The sharp
spectral lines resulting from the hBN-encapsulation allowed reveal-
ing a rich excitonic substructure of bright and dark excitons, as

well as higher-order charge complexes, such as trions and biex-
citons. Besides the exciton physics in TMD monolayers, we also
outline how optics can be used to probe the nature of exci-
tons in TMD-based heterostructures. Furthermore, we explore how
the exciton–light coupling can be enhanced by structuring the
surrounding dielectric medium, e.g., in cavities, leading to the
formation of exciton–polaritons.

A. Bright and dark exciton signatures
As the research field of TMDs has grown, fabrication and

device design has steadily improved, with modern device archi-
tectures being of exceptionally high quality. This has been, in
part, achieved through the encapsulation of TMDs with hexago-
nal boron nitride, an inert, two-dimensional, wide bandgap insu-
lator. The hBN efficiently protects the TMD from typically used
substrates, which generally possess many defects, dangling bonds,
and a rough surface that creates dielectric inhomogeneities.13–15

Therefore, hBN-encapsulated samples are better protected from dis-
order effects, which hamper the generation and detection of charge
complexes.16 This has triggered the optical detection of various exci-
tonic and higher-order charge complex features in recent studies. In
the following we will discuss signatures of bright and dark excitons
which have been revealed through the improved quality of sample
structures.

Absorption measurements on TMDs can directly probe the
energy of optically active excitons.17 In addition to the spectrally
lowest 1s exciton, higher-order s-states,18 as well as signatures from
the optically dark p-states,19 can be observed. Moreover, the spectral
broadening of absorption resonances directly reflects both radia-
tive and non-radiative dephasing processes.20–26 Another important
control parameter in absorption experiments is the optical polariza-
tion of the incident light. In TMDs, optical excitation by left- and
right-handed circularly polarized light generates excitons at the K
and K′ valleys in the electronic dispersion, respectively.17,26–29 This
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has important implications for both valleytronics29,30 and, due to the
spin–valley locking in TMDs,32 spintronics applications.32–35

Excitons possess a finite lifetime36 before undergoing radia-
tive decay and emitting a photon. Between their creation and
annihilation, however, phonon- or Coulomb-mediated scattering
processes allow the generated excitons to relax into some new
distribution.37,38 By measuring the optical response from the radia-
tive recombination of these excitons in photoluminescence (PL)
experiments, it is possible to uncover additional information on
excitonic processes in the TMD. In particular, PL spectra can
exhibit unique signatures from the indirect recombination of dark
excitons.39,41,41 Tungsten-based TMDs (such as WS2 and WSe2)
possess energetically lower-lying momentum-dark exciton states
[cf. Fig. 2(a)], comprised of an electron and hole in different val-
leys in the Brillouin zone.9,20,42 The large center-of-mass momentum
of these excitons forbids direct radiative recombination. However,
by simultaneous interaction with a phonon, momentum conser-
vation can be fulfilled and the dark exciton can indirectly emit
a photon, leaving behind a clear signal in the PL spectra. This
process is known as phonon-assisted photoluminescence39,40,43–45

and results in the formation of phonon sidebands, cf. Fig. 2(a).
The probability of this higher-order process is significantly lower
than the direct emission from a bright exciton. However, at suf-
ficiently low temperatures, the energetically lowest dark excitons
carry almost the entire population, which compensates for the much
lower emission probability and results in a strong signal in the PL.
Thus, in molybdenum-based TMDs, whose momentum-dark states

are located higher in energy, no phonon sidebands are observed.
The temperature-dependent PL spectrum for monolayer WSe2

39

is shown in Fig. 2(b), where at high temperatures, only emission
from the bright exciton can be seen. In contrast, at temperatures
below 50 K, the indirect emission from dark excitons dominates the
PL. Since, here, the emission of a phonon is involved, the phonon
sidebands are red-shifted in energy with respect to the position of
dark excitons (dashed white lines). Multiple resonances are observed
due to different optical and acoustic phonons involved in this pro-
cess. These phonon sidebands have been observed both for dark
excitons,39,45–47 where they dominate the PL spectra, and bright exci-
tons, where they are hidden in an asymmetric broadening of the
spectral linewidth.39,48

Note that besides the momentum-dark excitons discussed so
far, there exist also spin-dark excitons consisting of an electron and
hole with an opposite spin. These excitons can be brightened under
the application of an external magnetic field50–51 or by changing
the angle of the detector/polarization.52 In the latter case, the mag-
netic component of the electromagnetic field points out-of-plane
and hence couples the opposite spins, allowing for the two charge
carriers to recombine.

Excitons are characterized by a band structure with an effec-
tive mass determined by the excitonic center-of-mass motion
[cf. Fig. 2(a)]. PL and absorption spectroscopy can only probe the
small-momentum range within the light cone directly and hence
do not provide any momentum-resolved information. Instead,
recent studies54–57 have employed angle-resolved photoemission

FIG. 2. Optical signatures of excitons and higher-order many-body complexes in TMD monolayers and heterostructures. (a) Sketch of the excitonic center-of-mass dispersion
for a tungsten-based TMD (with energetically lower dark excitons), the direct and indirect recombination channels, and the expected PL signal. (b) Temperature-dependent
PL spectrum calculated for a WSe2 monolayer demonstrating the appearance of phonon sidebands at low temperatures. (c) PL spectrum for a hBN-encapsulated WSe2
layer as a function of applied gate voltage, revealing a plethora of charged many-particle complexes. (d) Calculated absorption spectrum (gray shaded) and experimental
peak positions (colored dots) demonstrating electric field tuning of the hybrid interlayer exciton resonance in bilayer MoS2. (e) Schematic of the band alignment of bilayer
MoS2 at finite electric field. Panels (a) and (b) adapted with permission from Brem et al., Nano Lett. 20, 2849–2856 (2020). Copyright 2020 ACS Author(s) licensed under
a Creative Commons Attribution 4.0 License; (c) adapted with permission from Li et al., Nat. Commun. 9, 3719 (2018). Copyright 2018 Springer Nature Ltd. Author(s)
licensed under a Creative Commons Attribution 4.0 License; (d) and (e) adapted with permission from Peimyoo et al., Nat. Nanotechnol. 16, 888–893 (2021). Copyright
2021 Springer Nature Ltd.
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spectroscopy measurements, which can be used to probe the exci-
tonic band structure more directly. In this technique, an ini-
tial pump pulse generates excitons before a high-energy photon
ejects electrons from the conduction band via the photoelectric
effect. While ARPES has the advantage of resolving the elec-
tron population in the whole Brillouin zone, it is not directly
clear whether the ejected conduction-band electron was bound to
a hole (forming an exciton). Nevertheless, the excitonic nature
of the measured signal can be determined with complementary
PL or absorption spectra. Concretely, the agreement between the
bandgap extracted from ARPES and the exciton resonance energy
in optical spectra provides direct evidence of the excitonic nature
of the ARPES signal. In Sec. III we explore how time-resolved
ARPES measurements can be used to probe the exciton dynam-
ics and, in particular, the thermalization between bright and
dark excitons.53,55

B. Trion and biexciton signatures
The optical response of TMD monolayers is generally domi-

nated by excitons at low and moderate excitation density in weakly
doped samples. At elevated excitation densities and in the pres-
ence of doping, higher-order charge complexes become relevant.
In general, the optical signatures of different many-particle charge
complexes are only separated by up to tens of meV. For TMDs
deposited on typical substrates such as SiO2, the inhomogeneous
broadening of spectral resonances of the order of several tens of meV
makes it challenging—if not impossible—to optically resolve these
signatures. Remarkably, encapsulation of the TMD monolayer by
hBN leads to a narrowing of the inhomogeneous linewidth, unveil-
ing a plethora of signatures in absorption and PL spectra arising
from complex recombination processes of many-body compounds.
In this section, we report on recent experiments probing trion and
biexciton features in TMDs.

Trions, formed individually from an exciton and an addi-
tional electron or hole, have been observed in absorption and
PL measurements.59–62 Biexcitons64–65—consisting of two bound
electron–hole pairs—and charged biexcitons16,66–68—biexciton plus
an electron/hole—exhibit also features that could be observed in
optical spectroscopy. In order to obtain a significant trion signal, the
TMD must be doped. This can be achieved via intrinsic doping69,70

or by the application of an external electric field.66 Owing to the
Coulomb interaction between the exciton and the electron/hole, the
trion has a binding energy of ∼20 − 30 meV and its spectral reso-
nance is thus red-shifted from the corresponding exciton energy.58,59

Moreover, absorption measurements show that the energy split-
ting between trion and exciton resonances increases with doping,
providing a signature of the polaronic character of the exciton in
the sea of doping charges.62,71,72 For this reason, trion and exci-
ton resonances are commonly denoted as attractive and repulsive
polaron branches in absorption measurements. Recent studies47,73

reported also the existence of dark trions at low temperatures in
WSe2. Similar to the excitonic case, they become visible via inter-
action with phonons. In these studies, the doping was controlled
by an applied electric field resulting in three distinct regions of the
PL dominated by dark excitons (low/no doping), dark positively
charged trions (p-type doping), and dark negatively charged trions
(n-type doping).

Figure 2(c) shows the PL spectrum around the bright exciton
energy as a function of applied gate voltage for a hBN-encapsulated
WSe2 monolayer.66 Due to the sharp lines, one can find a mul-
titude of signatures including the neutral exciton (labeled X0),
positive trion (X+), negative intervalley (X−1 ) and intravalley (X−2 )
trions, biexciton (XX), and negatively charged biexciton (XX−).
There is also clear emission from bound defect excitons (D). These
states have been shown to enhance the PL intensity of the free
exciton,74 and they are important for the realization of single-
photon emitters.75–78 Through hBN-encapsulation, recent studies
could even resolve the excited trionic 2s states.79–81

C. Exciton optics in TMD heterostructures
The two-dimensional nature of TMD monolayers encourages

the vertical stacking of multiple TMD layers. The resulting struc-
ture, held together through the van der Waals interaction, inherits
properties of the constituent monolayers. TMD homo-bilayers have
typically an indirect bandgap due to a large hybridization of the
states at the Λ and Γ valleys.82 Unlike in monolayers, whose PL
is dominated by the energetically lowest direct optical transition
at room temperature, homo-bilayers83 possess a rich structure of
momentum indirect and direct excitons,40 whose optical properties
can be tuned via strain84,85 or by an electric field.85 Hetero-bilayers,
formed from stacking two different TMD monolayers, can play host
to interlayer excitons,10 where the constituent electron and hole
reside in different layers. The spatial separation of the electron and
the hole strongly quenches the radiative recombination of these exci-
tons, and, as such, they possess long lifetimes,86,87 which is important
for transport phenomena88 and energy transfer processes in, e.g.,
solar cells.89

Interlayer excitons carry a permanent out-of-plane dipole
moment, allowing their energy to be tuned via an electric field.90–92

In PL and absorption measurements, this leads to a shift in
the exciton resonance energy. Interestingly, interlayer excitons
are also predicted to exist in homo-bilayers.93 Moreover, these
interlayer excitons strongly hybridize with the intralayer states,
inheriting some of their oscillator strength, and are thus visible
even at room temperature.93,94 It was recently shown that by vary-
ing the gate voltage across the structure, the interlayer exciton
resonance can be significantly tuned94 [cf. Fig. 2(d)]. Concretely,
the degeneracy of the two interlayer excitons is lifted, and their
resonances move closer to the A1s and A2s intralayer excitons,
respectively [cf. Fig. 2(e)].

In recent years, twisted TMD heterostructures have ignited
substantial interest and given rise to the rapidly evolving field of
semiconducting moiré superlattices.3 Here, by tuning the twist angle
between two or more stacked TMD layers, a new long-range peri-
odicity can be created leading to novel electronic and excitonic
properties.95–98 The long-range moiré pattern manifests as a periodic
network of potential wells,99–102 trapping excitons when sufficiently
deep. This trapping leads to the formation of distinct moiré exci-
ton sub-bands, tens of meV below the free exciton energy level.
Optically, this can be observed in the twist-angle dependent fine
structure of both inter-98 and intralayer101,103 excitons. In addi-
tion, the structure of moiré excitons can be analyzed in detail in
ARPES measurements. Concretely, the spatial extension of the exci-
ton can be extracted from the momentum distribution of the ARPES
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signal. In particular, interlayer excitons in WSe2/MoS2 structures
with a twist angle of 2○ were recently found to be localized within
the 6 nm moiré unit cell.104 Moreover, in the same structure but
with a 10○ twist angle, analogous experiments report the delo-
calized nature of interlayer excitons and their unique momentum
fingerprint, which directly reflects the mini Brillouin zone of the
moiré superlattice.56

Recent advances have shown that TMD-based moiré
heterostructures undergo significant lattice reconstruction at low
angles, leading to an even more complex network of trapped exciton
domains105,106 and giving rise to ferroelectric107 and strain-induced
effects.108 Analogous to monolayer systems, homo- and hetero-
bilayers exhibit higher-order charge complexes, such as moiré
trions,109–112 which appear in optical spectra as an additional fine
structure of the trion peak. For more details about this exciting
field of exciton research, we refer to a very recent review on moiré
exciton effects.3

D. Exciton–polaritons
The interaction of excitons with light can be qualitatively modi-

fied by structuring the surrounding dielectric environment.113 TMD
monolayers and heterostructures are particularly relevant in the
domain of nanophotonics as they are chemically stable at ambi-
ent conditions, do not suffer from lattice mismatch, and their
exciton energy lies in the technologically relevant spectral region
of visible and near-infrared, allowing for incorporation with a
wealth of nanophotonic devices.114 TMD nanophotonics can be
divided into the weak and the strong coupling regime depend-
ing on the strength of the exciton–light interaction in comparison
to the optical and material-based decay channels. In the former,
losses dominate, and the (dressed) exciton remains a well-defined
eigenmode of the system with a modified lifetime (Purcell effect).
In other words, spectra can remain qualitatively unchanged, but
exciton emission and absorption are enhanced/diminished via con-
trol of the local photonic density of states. For example, the low
quantum yield of TMDs can be compensated by coupling to a suit-
ably designed nanostructure to boost Raman and PL signals.115,116

This not only can aid optical characterization of 2D materials,117

but also has applications for ultra-compact optoelectronic devices
based on excitons.118,119 In a further example, it has been demon-
strated that the weak absorption of monolayers (≲ 10%)120 can be
greatly increased to near 100% using the Salisbury screen setup,121,122

which could have utility for ultra-thin photovoltaics. In this section,
we concentrate on TMDs in the strong-coupling regime,114,118,123–125

focusing particularly on utilizing nanophotonics for sophisticated
control of TMD exciton–polaritons, and the recent development of
polariton twistronics.

The light–matter coupling strength of TMD heterostructures
integrated into high-quality and small-volume optical microcavi-
ties can exceed both material dissipation and radiative decay from
the cavity (both typically of the order of few to tens of meV),
leading to coherent energy transfer between the exciton and cavity
mode.113 In this case, the system is in the strong-coupling regime
and is characterized by the formation of hybrid quasi-particles,
known as exciton–polaritons. These new eigenmodes of the com-
bined light–exciton system inherit properties from their constituent
parts, potentially combining the spatial coherence, small effective

mass, and long propagation lengths of photons with the tunability
and nonlinearity of material-based excitations.126 In the frequency
domain, the strong-coupling regime manifests as a splitting of the
polariton energies, known as Rabi splitting [cf. Fig. 3(a)], which is
determined by the strength of the light–exciton coupling and can
be directly observed in angle-resolved linear optical spectroscopy.113

The large oscillator strength of monolayer TMD excitons leads to
an impressive Rabi splitting (up to ∼50 meV in a typical dielec-
tric microcavity127) in comparison to traditional polariton platforms
such as GaAs quantum well microcavities (∼4 meV for a single
quantum well in a microcavity128). Furthermore, the large binding
energy allows for robust room-temperature polaritonics. The study
of exciton–polaritons in TMDs has led to a wealth of interesting phe-
nomena, such as condensation of exciton–polaritons at cryogenic
temperatures,129 polariton lasing,130 trapped131 and Bloch polari-
tons,132 motional narrowing,133 and non-linear polariton parametric
emission.134

The first demonstrations of the strong coupling regime in TMD
monolayers used conventional dielectric Fabry–Perot cavities built
from high-reflectivity distributed Bragg reflectors (DBRs),127,135

hybrid DBRs plus silver mirrors,136 and all-metal Fabry–Perot cav-
ities built from silver mirrors.137 Development of state-of-the-art
fabrication methods allows for routine and precise construction
on the nanoscale, meaning that the near- and far-field properties
of light can be manipulated to form sophisticated cavities with
controllable properties such as quality factor, field enhancement,
polarization, and topology. For instance, Zhang et al. reported on
a monolayer TMD placed on a 100 nm thick 1D photonic crystal
slab.138 Recording both angle-resolved reflectance and PL, convinc-
ing evidence of strong coupling physics has been found up to room
temperature between WS2 excitons and a guided mode supported
by the structured slab [cf. Fig. 3(a)]. In another notable work,139

exciton–polaritons were studied in a WSe2 monolayer on a 2D
SiN metasurface with a square lattice of holes. A strong direc-
tional polariton emission was measured in the far field due to the
sub-wavelength structuring. Furthermore, a computational study
demonstrated a highly tunable Rabi splitting, directional emission,
and polariton dispersion via meta-atom engineering, such as chang-
ing lattice periodicity and slab thickness. For instance, excitons can
couple to a photonic crystal mode with a “W-shaped” dispersion
[cf. Fig. 3(b)]. In this case, the polaritons will inherit a negative
effective mass and group velocity from the optical mode at nor-
mal incidence. This can lead to exotic polariton transport.140 In
another work, the strong coupling between excitons and a bound
state in the continuum supported by a 1D photonic crystal slab was
demonstrated.141

There is growing interest in exploring topological properties of
polaritons.142,144,145 One strategy toward this goal is coupling exci-
tons to topologically non-trivial photonic systems,145 which could
lead to tunable optical devices that are robust against disorder
and defects. Helical topological polaritons have been demonstrated
using a WS2 monolayer placed on a hexagonal photonic crystal142

[cf. Fig. 3(c)]. While maintaining six-fold rotational symmetry,
the unit cell can be expanded or shrunk to change the intercell
and intracell nearest-neighbor couplings. This allows two bulk lat-
tice regions to be engineered with different topological phases,
with the boundary between the two supporting a topological inter-
face mode.145 This interface was found to support a topological
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FIG. 3. Exciton–polaritons in TMD monolayers and heterostructures. (a) Experimental and simulated PL spectrum for a coupled monolayer TMD and photonic crystal slab
in the strong coupling regime. (b) Simulated “W-shaped” dispersion of exciton–polaritons supported by a monolayer TMD on a metasurface, which is tunable via lattice
periodicity and slab thickness. (c) Illustration of helical topological interface TMD exciton–polaritons. (d) and (e) Angle-resolved reflectance spectra of the interface polaritons
excited by right/left-hand circularly polarized light. (f) First experimental evidence of strong coupling between two hybrid interlayer moiré excitons and a microcavity optical
mode for a MoSe2/WS2 heterostructure, measured in angle-resolved reflection spectra. (g) Twist-angle dependence of polariton dispersion and absorption for a MoSe2/WSe2
heterostructure in a microcavity. Panels (a) adapted with permission from Zhang et al., Nat. Commun. 9, 713 (2018). Copyright (2018) Springer Nature Ltd. Author(s) licensed
under a Creative Commons Attribution 4.0 License; (b) adapted with permission from Chen et al., Nano Lett. 20, 5292–5300 (2020). Copyright 2020 ACS; (c)–(e) adapted
with permission from Liu et al., Science 370, 600–604 (2020). Copyright 2020 AAAS; (f) adapted with permission from Zhang et al., Nature 591, 61–65 (2021). Copyright
2021 Springer Nature Ltd.; (g) adapted with permission from Fitzgerald et al., Nano Lett. 22, 4468–4474 (2022). Copyright 2022 ACS Author(s) licensed under a Creative
Commons Attribution 4.0 License.

interface polariton due to the strong coupling between the photonic
interface mode and the WS2 exciton, or in an equally valid pic-
ture, as a consequence of the different topological phases of the bulk
polariton bands in the two lattice regions. Crucially, the interface
polaritons possess helical nature, i.e., the group velocity depends on
the pseudospin of the polariton, which can be directly accessed via
the circular polarization of incident light [cf. Figs. 3(d) and 3(e)].
Reference 142 demonstrates this unidirectional polariton transport
in momentum space with reflection and PL measurements of the
interface at temperatures 160–200 K.

Several unique aspects of TMD exciton–polaritons have been
uncovered in recent years. Because of the large exciton bind-
ing energy, the temperature dependence of the exciton energy
(via the bandgap146) can be used as a material-based detuning
over a wide range of temperatures. In an early demonstration for
monolayer WS2, the light–exciton composition of polaritons was
modified over the range 110–230 K, and could be inferred from
angle-resolved PL.147 As temperature was increased, the exciton
energy was observed to red-shift, causing the lower polariton to
shift from a photon-like state to an exciton-like state at small
momenta. Strong coupling physics can also be modified through
electric field induced gating of the TMD.148 Here, by introduc-
ing electrostatically induced free carriers, the oscillator strength
of the exciton decreases due to the screened Coulomb interaction
between the constituent electrons and holes—this in turn leads to a
reduced Rabi splitting. Furthermore, TMD exciton–polaritons were
shown to inherit the valley physics of the constituent exciton.149–151

Research on valley polaritonics has emerged as a popular sub-
field, and numerous combined nanophotonic and valleytronic
architectures have been explored.152–154 In a notable example, it
was shown that a condensate of exciton–polaritons in a hybrid
monolayer MoSe2–GaAs microcavity preserves valley polarization
of the pump laser better than in the linear regime due to the
speedup of the relaxation dynamics from the excitonic reservoir.155

The large exciton binding energy and oscillator strength of TMD
monolayer excitons has also opened up opportunities to explore
polaritonics beyond the 1s exciton, offering insights into the many-
body physics of TMDs62 and the potential for highly nonlinear,
exciton-based optical devices.141,156,157 For example, the strong cou-
pling between the 2s exciton in monolayer WSe2 and the opti-
cal modes of a Fabry–Perot cavity have been demonstrated.158

Strong coupling with trions has also been reported.62,151,159–161

Because of their charged and composite fermionic nature, trion
polaritons possess strong nonlinear behavior compared to neutral
bosonic excitons.162

Recently, hybrid intra-interlayer moiré exciton–polaritons
were explored in a H-stacked MoSe2/WS2 heterostructure with
a twist angle of ∼56.5○ placed in a λ/2 microcavity.163 Here, a
twist-dependent interlayer hybridization means that the interlayer
excitons inherit a large oscillator strength from the MoSe2-based
intralayer excitons at small twist angles.164 It was found that the
two bare moiré excitons coherently couple to the cavity mode to
form three moiré polariton branches, which are measured with
angle-resolved reflection and PL [cf. Fig. 3(f )]. In other words, the
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moiré polaritons in this system are a three-way coherent coupling
between a cavity photon and the bare intra- and interlayer moiré
excitons. Relative to monolayer exciton–polaritons, these hybrid
moiré polaritons show negligible energy shift, smaller line-
broadening, and much stronger reduction in the Rabi splitting with
increasing excitation densities. These observations are attributed to
the zero dimensionality of the moiré exciton and a consequent exci-
ton blockade effect.165 Localization of the exciton at the potential
minima in each moiré supercell can be expected to lead to enhanced
exchange and dipole–dipole interactions (via the interlayer compo-
nent). This extra energy cost of adding an exciton to a moiré cell
leads to a suppression of many-body effects and the exciton–photon
coupling saturating at one exciton per moiré cell. This study
presents an exciting first step toward “polaritonic twistronics.”
Unfortunately, experiments are typically limited to a few fixed twist
angles, while in theoretical studies, one can map out the moiré
exciton–polariton energy and absorption over a wide range of twist
angles, as recently demonstrated for the specific case of the purely
intralayer exciton–polaritons of a twisted type II MoSe2/WSe2 het-
erostructure in a microcavity using a combined Wannier plus
Hopfield method166 [cf. Fig. 3(g)]. Furthermore, theoretical studies
have looked at possible topological transport properties of inter-
layer exciton–polaritons in a cavity,167 while a Bose–Hubbard model
has been used to explore moiré-induced optical nonlinearities,168

and a quantum-electrodynamical extension of the Bethe–Salpeter
method has been used to explore an interesting photon-induced
reordering and mixing of intra- and interlayer excitons in an
untwisted MoS2/WS2 bilayer.169

III. EXCITON DYNAMICS
The dynamics of exciton formation, thermalization, and

recombination, crucially, determines the performance of TMD-
based optoelectronic devices. For instance, the thermalization of
excitons into long-lived dark states in tungsten-based TMDs results
in the suppression of the PL, making these materials undesir-
able for light-emitting applications, but suitable for light har-
vesting. Similarly, non-radiative recombination processes, such as
exciton–exciton annihilation, can significantly limit the quantum
yield. At moderate doping levels or large exciton densities, many-
body complexes, such as trions or biexcitons, become relevant and
dominate the thermalization and recombination dynamics. More-
over, in TMD heterostructures, charge transfer arises as a major
thermalization mechanism, and the exciton recombination dynam-
ics becomes significantly influenced by the stacking and the twist
angle of the constituent layers. In this section, we summarize the
recent progress in the understanding of these important processes.

A. Exciton formation and thermalization
Recent advances in two-photon photoemission spectroscopy

(2PPS), also known as time-resolved ARPES (tr-ARPES), have
enabled the direct observation of exciton formation and thermal-
ization in energy, momentum, and time.53,55–57,170 In this technique,
an initial pump pulse photoexcites electrons from the valence band
to the conduction band, resulting in the formation of excitons.
After a certain time delay, the excitons’ constituent electrons are
photoemitted by a second pulse, and their energy and momentum

are then measured by a hemispherical analyzer or a time-of-flight
momentum microscope.170 The detected electrons directly reflect
the exciton population and, importantly, their momentum config-
uration. Thus, ARPES allows for the direct visualization even of
momentum-dark excitons, which are not directly accessible in PL
or optical absorption spectra.

The formation of momentum-dark excitons in WSe2
monolayers has been resolved in a very recent tr-ARPES study.53

First, electrons and holes at the K point are optically excited,
leading to an almost immediate signal arising from photoemitted
electrons with momentum K [cf. Figs. 4(a) and 4(b)]. After a delay
of 0.4 ps, electrons with momentum Λ (also commonly denoted
Q or Σ in literature) and energy similar to those at the K point
are detected. The measured energy of Λ electrons is significantly
lower than the energy predicted by ab initio calculations of the
single-particle band structure. However, due to their large binding
energy, momentum-dark KΛ excitons (formed by a hole at the
K point and an electron at the Λ point) have been predicted
to reside energetically below the bright KK states.9,42,55,171,172 In
other words, the observed Λ electrons are bound to holes at the
K valley and thus form momentum-dark KΛ excitons. The delay
between the appearance of K and Λ electrons is, therefore, a direct
reflection of the intervalley exciton–phonon scattering, which is
responsible for the thermalization of the exciton population in the
multi-valley band structure of TMDs.55,172 The measured delay of
0.4 ps thus quantifies the exciton–phonon scattering time at the
considered temperature of 90 K. Another experiment has been
performed for monolayer WS2,55 where similar energy of KK and
KΛ excitons was resolved and an intervalley scattering time of
16 fs at room temperature was extracted. The definite proof that
photoemitted electrons arise from bound exciton states relies on the
direct visualization of the exciton wave function and the theoretical
prediction of an inverted dispersion relation for the photoemitted
electron.171 Both features have been successfully observed in mono-
layer173 and bulk57 WSe2. These recent studies investigating exciton
formation with tr-ARPES confirm the importance of momentum-
dark KΛ excitons in tungsten-based TMDs and provide a direct
quantification of the intervalley exciton–phonon scattering time
in these materials.

The exciton thermalization dynamics can also be probed indi-
rectly via the optical absorption and emission characteristics of
the material.37,38,174–177 Initial studies focused on resolving the val-
ley and spin depolarization after a circularly polarized optical
excitation.178–181 Other studies have utilized indirect signatures of
dark excitons in optical spectroscopy to track their formation. For
example, optical-pump THz-probe experiments can be performed
to resolve the exciton dynamics by exploiting the temporal evolu-
tion of the 1s-2p exciton transition resonance.174,182 In particular,
the blue-shift of the 1s-2p THz resonance peak reflects the sub-
picosecond relaxation of bright KK excitons into the lower-lying
momentum-dark KΛ state, which displays larger 1s-2p resonance
energy.175 The formation dynamics of dark excitons have also been
indirectly resolved by tracking the emergence of phonon-assisted PL
peaks at cryogenic temperatures.176

The exciton formation can also be resolved by exploiting the
population-induced changes in the optical absorption.37,38,177 In par-
ticular, above-band optical excitation provides a unique fingerprint
to track the relaxation cascade into the exciton ground state.37,38
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FIG. 4. Exciton and trion dynamics in monolayer TMDs. (a) ARPES maps of the electron occupation in the conduction and valence bands during (0 ps) and shortly
after (0.3 ps) optical excitation. (b) Time-resolved energy scan of the ARPES signal at the K and Λ (Q) valleys illustrating the thermalization of excitons into the dark
KΛ states. (c) Time snapshots of the trion PL, displaying an asymmetric broadening that can be traced back to the trion temperature. (d) Schematic illustration of trion
recombination and the electron recoil effect. (e) Time evolution of the extracted trion temperature for different lattice temperatures, demonstrating trion cooling. Panels
(a) and (b) adapted with permission from Madéo et al., Science 370, 1199–1204 (2020). Copyright 2020 AAAS; (c)–(e) adapted with permission from Zipfel et al., Phys.
Rev. B 105, 075311 (2022). Copyright 2022 APS.

Signatures of efficient phonon cascades that would enable this pro-
cess have been recently observed.183 The opposite process of exciton
dissociation can occur via an external electric field184 or by scattering
with phonons185 and crucially limits the performance of TMD-based
optoelectronic devices.

B. Exciton recombination
Having binding energies in the range of hundreds of

meV, excitons govern the dynamics of electron–hole recom-
bination in monolayer semiconductors and vdW heterostruc-
tures. Depending on the dielectric environment and excitation
power, excitons mainly recombine radiatively by emitting pho-
tons or non-radiatively by other processes, e.g., via defect-assisted
recombination or exciton–exciton annihilation.186,187 Radiative
recombination in monolayers has been extensively studied in
the past,36,182,188,189 with the hallmark being the characteristic
temperature-dependence of the recombination time in tungsten-
and molybdenum-based TMDs, owing to the dominance of dark
excitons in the first case and bright excitons in the second.41,172

More recently, the radiative lifetime has been found to be tun-
able with the thickness of the hBN-encapsulation layers due to the
Purcell effect.116

Electron–hole pairs can also recombine via non-radiative
recombination processes, such as exciton–exciton annihilation
(EEA), at elevated exciton densities,187,190–197 and defect-assisted
recombination.187,198–200 EEA crucially limits the efficiency of opto-
electronic devices, as it leads to a saturation of the quantum
yield with increasing carrier density. Nevertheless, it also presents
an opportunity for photon upconversion.193,201 In this Auger-like
recombination process, one exciton recombines, by transferring
its energy and momentum to another exciton. In order for this

mechanism to occur, energy- and momentum-conservation must
be fulfilled. This implies that the efficiency of EEA is highly
sensitive to the excitonic band structure, which contains the suitable
final states. In fact, the EEA rate has been found to vary significantly
with the dielectric environment187,194,195 and strain.197 In particular,
EEA was demonstrated to be highly inefficient in hBN-encapsulated
WS2, displaying an EEA rate of 0.004 cm2 s−1 compared to
0.4 cm2 s−1 for samples deposited on SiO2 substrates.187 The large
EEA rate in TMD/SiO2 structures has been suggested to partially
originate from the relaxed energy- and momentum-conservation
due to the strong dielectric disorder in these structures.187 More
recently, a microscopic model showed that the band structure in
TMD/SiO2 structures is more favorable for EEA due to the opti-
mal energy of the higher-lying exciton state.193,196,201 In addition,
the modification of the band structure via tensile strain has been
recently shown to efficiently suppress EEA in monolayer WS2 on
a SiO2 substrate.197

C. Trion and biexciton dynamics
In the presence of doping, trions govern the dynamics in

TMDs. A lot of research is currently focusing on characterizing and
understanding the dynamics of trion formation and thermalization.
Initial studies resolved the formation of trions in pump–probe spec-
troscopy and determined a formation time of about 2 ps at cryogenic
temperatures.202,203 At the same time, the spin–valley depolariza-
tion dynamics was extensively studied,58,60,204,205 with key studies
reporting a very long-lived valley coherence for trions in MoS2

58 and
WSe2.205 Recently, the role of excited trion states has been investi-
gated. In particular, it was found that 2s excitons bound to a doping
charge can relax into the ground 1s exciton state on a timescale of
60 fs, transferring the excess energy to the doping charge in a process
denoted as autoionization.80
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Trions exhibit a characteristic recombination mechanism in
which one electron–hole pair recombines and the trion’s center-
of-mass momentum is transferred to the remaining charge carrier,
which then becomes free [cf. Fig. 4(d)]. This phenomenon is known
as the electron recoil effect206 and leads to an asymmetric broad-
ening of the trion PL, as opposed to the symmetric broadening
usually displayed by bright-exciton PL. Importantly, the broaden-
ing of the low-energy tail of the trion PL is determined by the
temperature of the trion gas.207,208 While the electron recoil effect
has been known for a long time,59,206,208 it has been exploited to
extract the trion temperature and resolve the cooling of the trion
population after an optical excitation only recently.207 In Fig. 4(c),
time snapshots of the trion PL in MoSe2 are shown.207 Imme-
diately after the optical excitation, the trion PL displays a broad
low-energy tail that shrinks on a 10 ps timescale. The shrinking is
a direct manifestation of the trion temperature cooling down and
reaching an equilibrium with the thermal bath of lattice phonons
[cf. Fig. 4(e)]. These measurements can be systematically used
to study how the trion cooling dynamics is affected by external
knobs, such as lattice temperature and doping. In fact, the cool-
ing time was found to be approximately constant (∼10 ps) up to
40 K. At higher temperatures, the thermal activation of optical and
zone-edge acoustic phonons enhances the trion–phonon scatter-
ing, resulting in faster cooling rates. While trion–phonon scattering
is the dominant cooling mechanism up to doping levels corre-
sponding to a hole density of 3 × 1011 cm−2, scattering between
trions and free carriers becomes relevant at larger doping levels
and further reduces the cooling time. The microscopic mechanisms
governing trion–phonon interactions have been recently studied in
a theoretical work.209

Understanding the main trion recombination pathways is
crucial for efficient doping tunability of optical devices. The trion
recombination time in MoSe2 monolayers was found to change
significantly with temperature, varying from 15 ps at 7 K to
sub-picosecond timescales above 100 K.188 This strong temperature
dependence was suggested to be caused by the thermal activation
of phonon-assisted trion dissociation into an exciton and a free
electron. Recent studies have estimated the non-radiative recombi-
nation time of trions in molybdenum-based TMDs to be typically
around 50–100 ps, i.e., competing or even dominating over the
radiative lifetimes of 100 ps116 and 100 ns200 that have been reported
in MoSe2 and MoS2, respectively. The significant discrepancy in
the trion recombination times among different studies highlights
the need for a better understanding of this process. In particu-
lar, future studies should be carried out at carefully controlled
experimental conditions and be accompanied by theoretical mod-
els accounting for both radiative and non-radiative recombination
mechanisms.

At high exciton densities, more complex many-particle com-
pounds, such as biexcitons, can become relevant. The spin–valley
configuration of optically accessible biexciton states, as well as the
characteristic quadratic dependence of the PL with pump power, has
been reported.16,64,67,210 In particular, bright biexcitons were found
to be composed of one KK and one K′K′ exciton with the opposite
spin configuration in WSe2 monolayers.64 More recently, biexciton
recombination and exciton–exciton scattering were predicted to be
largely tunable by external magnetic fields.65 In the presence of an
in-plane or tilted magnetic field, the spin selection rules for biexciton

recombination and exciton–exciton interaction are relaxed, allowing
for more recombination and scattering channels.

D. Exciton dynamics in TMD heterostructures
TMD heterostructures offer a platform to spatially separate

charge carriers. The resulting charge-separated state, i.e., the inter-
layer exciton or charge-transfer exciton, has characteristic properties
that can be utilized to modify the optical response and transport
properties of the material. In this section, we summarize the recent
developments in the understanding of the charge transfer process
in TMD heterostructures. Moreover, we discuss the recombination
dynamics in these systems and the impact of the twist angle between
two TMD layers.

Following the characterization of exciton formation and
thermalization in monolayer TMDs, efforts have been directed
toward investigating the dynamics of charge transfer and the
formation of spatially separated interlayer excitons in vdW
heterostructures.56,211,212 The formation dynamics of interlayer exci-
tons has been tracked in tungsten-based heterostructures using
optical-pump THz-probe spectroscopy at room temperature.213 The
density of intra- and interlayer excitons can be accessed by mea-
suring the THz conductivity at the 1s-2p transition energy of each
exciton species [cf. Fig. 5(a)]. The time-resolved THz conductivity is
shown in Fig. 5(b). The initial optical excitation generates intralayer
excitons in the WSe2 layer, which becomes manifest as a peak in the
THz spectrum at the 1s-2p transition energy of 150 meV.213 At the
same time, a low-energy peak at ∼70 meV originating from inter-
layer excitons emerges, indicating that the charge-transfer occurs
on a sub-picosecond time scale. After the optical excitation, the
intralayer exciton peak vanishes, while the interlayer exciton reso-
nances become more prominent as the whole exciton population
relaxes into this energetically favorable state. These features reflect
the transfer of electrons from the WSe2 layer to the WS2 layer, result-
ing in the formation of interlayer excitons with an excess energy
that is later dissipated into the phonon bath.214 Intriguingly, the
time scale of charge-transfer strongly depends on the stacking angle
of the vdW heterostructure. This effect has been shown to arise
from the momentum offset between intra- and interlayer exciton
dispersions [cf. Fig. 5(c)].

The charge transfer process in WSe2/MoS2 moiré lattices has
been recently resolved directly in tr-ARPES experiments,56 reveal-
ing an ultrafast sub-50 fs tunneling time scale. It was found that
the charge transfer is a two-step process, where optically excited
WSe2 intralayer excitons first scatter with phonons into the strongly
hybridized momentum-dark KΛ excitons (where electrons are delo-
calized over both layers). In a second step, these hybridized excitons
scatter into the energetically lowest interlayer exciton states, where
the electron is located in the MoSe2 layer. The charge transfer pro-
cess is sensitive to temperature, as it is mediated by phonons, and
strongly depends on the stacking, as this determines the energy
landscape of excitons.56,102,215

Apart from vdW heterostructures consisting exclusively of
individual TMD monolayers, TMD-graphene structures have also
been extensively studied due to their technological relevance.216–222

In particular, TMD and graphene can be stacked together to form
optoelectronic devices such as photodetectors or solar cells, where
the TMD acts as an optical absorber and graphene acts as a
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FIG. 5. Exciton dynamics in TMD heterostructures. (a) Intra- and interlayer Coulomb potential, together with the energetic position of the 1s and 2p exciton states in a
tungsten-based vdW heterostructure. (b) Time- and energy-resolved pump-induced change of the optical conductivity in an almost aligned (5○ twist angle) heterostructure,
illustrating the transition from an intra- to an interlayer exciton. (c) Schematic representation of the MoSe2 and WSe2 Brillouin zones twisted with respect to each other (left
panel). The finite twist angle makes the interband transition in this heterostructure indirect (right panel). (d) PL intensity in MoSe2/WSe2 heterostructures as a function of
time for different twist angles. The time evolution of the PL is fitted with a bi-exponential function and the extracted lifetimes are displayed in the inset. (e) Predicted exciton
lifetime as a function of twist angle for different temperatures. Panels (a) and (b) adapted with permission from Merkl et al., Nat. Mater. 18, 691–696 (2019). Copyright 2019
Springer Nature Ltd.; (c)–(e) adapted with permission from Choi et al., Phys. Rev. Lett. 126, 047401 (2021). Copyright 2021 APS.

transparent contact.223,224 In a recent study, the charge transfer in
WS2/graphene structures, after an optical excitation of excitons in
the WS2 layer, was found to occur on a sub-picosecond time scale.220

Such ultra-fast charge transfer from TMDs to graphene has recently
been shown to lead to a complete neutralization of the TMD and
thus to a filtering of the PL spectra displayed by these structures.219

Instead of the complex PL spectra of TMD monolayers, which
involve trions and charged biexcitons, TMD-graphene heterostruc-
tures exhibit single narrow PL peaks arising from radiative recom-
bination of neutral excitons. Furthermore, the asymmetry between
the electron and hole transfer leads to a charge-separated state that
can last between 1 ps220,221 and 1 ns.222 The charge-transfer process
in WS2/graphene was suggested to occur directly at the band inter-
section around the K point of the two layers. Crucially, the higher
energy barrier and suppressed tunneling strength for electrons hin-
der their tunneling from WS2 into the graphene layer, whereas holes
can efficiently tunnel and relax into the graphene Dirac cone.221

In addition, defects in the TMD layer have been suggested to
modify the charge separation lifetime by trapping the electrons into
localized states.221,222

While radiative recombination in TMD heterostructures has
been studied for a few years,10,86,87,90,225,226 only recently its twist-
angle dependence has been characterized and understood on a
microscopic footing.227 Importantly, the twist angle determines
the momentum offset between the conduction band minimum
and the valence band maximum of the two layers [cf. Fig. 5(c)].
As the transition becomes more indirect, radiative recombination
becomes less efficient, resulting in a longer exciton lifetime for
larger twist angles [cf. Fig. 5(d)]. Moreover, the moiré potential
significantly impacts the radiative lifetimes, by relaxing the momen-
tum conservation of the recombination process and modifying the
energy landscape of moiré excitons. The radiative lifetime was
found to increase by one order of magnitude when increasing the
twist angle from 1○ to 3.5○ in MoSe2/WSe2 heterostructures.227

Due to the different energy landscape of moiré excitons at small
and large twist angles, the radiative lifetime displays an opposite
temperature dependence in these two regimes. At small twist angles,
the light cone becomes depleted for increasing temperatures, result-
ing in a longer lifetime, while at large twist angle, the opposite
occurs [cf. Fig. 5(e)].
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Non-radiative recombination via Auger scattering has been
suggested to be suppressed in TMD homo-bilayers due to the hybrid
nature of the exciton, which coexists in both layers.96,192,213,228 In
fact, the EEA rate was found to decrease from 0.4 cm2 s−1 in
WSe2 monolayers to 0.006 cm2 s−1 in bilayers.192 Intriguingly, Auger
scattering has been suggested to be enhanced with an out-of-plane
electric field that polarizes excitons and effectively increases the
exciton–exciton interaction.229 A more recent work has attributed
the bimolecular recombination observed at high densities in WSe2
bilayers to the recombination of unbound electron–hole pairs.228

This has been exploited to resolve the Mott transition, which was
measured to occur around 7.4 × 1012 cm−2 in such structures. Above
this density, electron–hole pairs are unbound and the dynamics is
governed by electron–hole plasma.230

IV. EXCITON TRANSPORT
Exciton dynamics in atomically thin semiconductors has been

intensely studied for more than a decade, following the first success-
ful exfoliation of TMD monolayers. However, the spatiotemporal
dynamics of excitons has been put in the focus of 2D material
research only recently.231–235 The understanding of exciton
propagation is crucial for potential applications of TMD monolayers
and heterostructures that could rely on the controlled transport
of excitons in the material. Importantly, while excitons are
charge-neutral particles, their spatial propagation can be directed
by potential gradients generated by, e.g., inhomogeneous strain.236

Being able to track excitons in space and time is of key impor-
tance for the successful development of TMD-based devices as it
enables the opportunity to directly manipulate exciton currents.
In this section, we summarize the recent developments on exciton
transport, with focus on exciton diffusion and funneling in TMD
monolayers, as well as in vertical and lateral heterostructures.

A. Exciton diffusion
Excitons are commonly tracked in both space and

time by means of spatiotemporal photoluminescence
measurements.187,231,232,237 As schematically shown in Fig. 6(a),
excitons form after optical excitation, and then propagate and
scatter. After some time, a fraction of excitons recombines radia-
tively, emitting light at a finite distance from the initial excitation
spot. In Fig. 6(b), a streak camera image of the PL for a low
excitation density is shown, revealing a signal that decays with
time and broadens in space. Quantitatively, in the low-excitation
regime, the PL intensity IPL(x, t), being directly proportional to the
exciton density n(x, t), can be fitted to a Gaussian ∼ exp(−x2/σ2

t ),
where σ2

t = 4Dt + σ2
0 is the spatial variance and D is the diffusion

coefficient. The spatial variance changes linearly with respect
to time and the Gaussian shape of the exciton density n(x, t)
is retained for all times t. This spatiotemporal behavior can be
explained by the Fick’s law for diffusion238 ∂tn = D∇2n, which can
be recovered from the full state-dependent Boltzmann equation of
the spatiotemporal exciton dynamics in the limit of fast scattering
and quasi-thermalized local distributions.239,240 In this thermalized
regime and in the limit of state-independent scattering times
τ, the diffusion coefficient becomes D = kBTτ/M, with T and
M being temperature and total exciton mass, respectively.239,240

More recently, low-temperature deviations from this simple
temperature dependence of D have been observed and attributed
to quantum interference effects.241,242 Therefore, the transport
behavior observed in Fig. 6(b) at low excitation powers is commonly
referred to as conventional or regular diffusion. This takes place
after the excitons have reached a thermal equilibrium, while,
before that, excitons exhibit ballistic propagation (σ2

t ∝ t2) and
transient diffusion.240,243

When increasing the excitation density in the considered WS2
monolayer, a halo-like pattern emerges in the spatial PL map,
which indicates that excitons quickly move out of the excited
high-density region,232 cf. Fig. 6(b), center and right column. The
now time-dependent effective diffusion coefficient Deff(t) = 1

4
d
dt σ2

t

was observed to increase from 0.3 cm2/s at low excitation densi-
ties (below nx = 109 cm−2) up to 20 cm2/s at a moderate exciton
density of nx = 1011 cm−2.232 The microscopic mechanism govern-
ing the formation of exciton halos and the unconventional non-
linear diffusion observed in TMD monolayers at elevated exciton
densities232,233,244,245 has been ascribed to the formation of strong
spatial gradients in the exciton temperature.232,246 Such tempera-
ture gradients are caused by the scattering of excitons with hot
phonons that are created during the relaxation cascade of high-
energy Auger-scattered excitons. These high-energy excitons are
the result of efficient Auger scattering. While the gradient in the
exciton temperature explains the observed diffusion and halo for-
mation at room temperature, another phenomenon—the phonon
wind effect—has been predicted to play a relevant role in the
formation of halos at cryogenic temperatures.246 In this effect,
phonons created during the relaxation of Auger-scattered exci-
tons propagate ballistically, dragging excitons out of the excita-
tion spot. Similar non-linear diffusion247 and halo formation248

have been reported in monolayer MoS2 and were suggested
to arise from screening of the exciton–phonon interaction by
trapped charges and from the formation of an electron–hole liquid,
respectively.

Apart from excitation density, exciton diffusion can also be
controlled via dielectric engineering,14,187,249,250 strain,197,251,252 or
gating.237,253 The energy landscape of excitons, consisting of bright
and dark exciton states, is highly sensitive to both strain254,255

and changes in the dielectric environment.256 Comparing TMD
layers deposited on a SiO2 substrate with hBN-encapsulated sam-
ples, the latter display weak dielectric disorder leading to a faster
diffusion.14,187,250 Moreover, strain can alter the relative positions
of different excitonic valleys,257,258 resulting in a strain-controllable
closing of scattering channels, giving rise to diffusion coefficients
increased by a factor of 3 with about 0.6% biaxial strain.252

Finally, gating can be used to disentangle neutral exciton diffusion
from contributions to the diffusion due to unintentional doping
and trions.237,253

In recent years, also the transport and propagation of quasi-
particles beyond excitons has been studied extensively. Interestingly,
the propagation of exciton–polaritons is strongly influenced by
their excitonic or photonic nature. For example, exciton–polaritons
in WSe2 waveguides were observed to propagate at a velocity
of 0.017c, where c is the speed of light.259 In other words,
photons are significantly slowed down when they interact strongly
with excitons. Moreover, thanks to the long propagation lengths
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FIG. 6. Exciton transport in TMD monolayers and heterostructures. (a) Schematic illustration of exciton propagation and recombination in TMD monolayers. (b) Space- and
time-resolved PL for a supported WS2 monolayer, revealing the formation of a halo-like profile at large pump power densities. (c) Schematic illustration of exciton funneling
of bright excitons and anti-funneling of dark excitons. (d) Strain profile (top) and spatiotemporal evolution of the exciton PL (bottom) in monolayer WS2, showing the anti-
funneling of excitons toward regions of low strain, attributed to the drift of dark KΛ excitons. (e) Time evolution of the exciton area (spatial variance) for different pump powers,
demonstrating the anomalous diffusion of interlayer excitons in MoSe2-hBN-WSe2 heterostructures. (f) Schematic illustration of CT excitons in lateral heterostructures (top
left). Differential reflection maps at 0 and 20 ps along the interface (bottom), demonstrating exciton diffusion in lateral heterostructures. Extracted diffusion coefficient as a
function of electron–hole density (top right), revealing an abrupt increase of the spatial-spread speed after high-power excitation at the interface. Panels (a) and (b) adapted
with permission from Kulig et al., Phys. Rev. Lett. 120, 207401 (2018). Copyright 2018 APS; (c) and (d) adapted with permission from Rosati et al., Nat. Commun. 12,
7221 (2021). Copyright 2021 AAAS Author(s), licensed under a Creative Commons Attribution 4.0 License; (e) adapted with permission from Sun et al., Nat. Photonics 16,
79–85 (2022). Copyright 2022 Springer Nature Ltd.; (f) adapted with permission from Yuan et al., arXiv:2111.07887 (2021). Copyright 2021 AAAS Author(s), licensed under
a Creative Commons Attribution 4.0 License.

of exciton–polaritons with a small effective mass, the optical val-
ley Hall effect has been demonstrated in MoSe2 embedded in
a microcavity.260 Trions also provide an intriguing platform for
charge transport, as they acquire the large oscillator strength of
the exciton and the charge of the extra electron or hole. In fact,
the drift of trions under the influence of an electric field has
recently been observed.253 Here, a slow diffusion coefficient of
0.47 cm2/s and a drift velocity of 7400 cm/s were reported in
a WS2 monolayer at cryogenic temperatures. Other studies have
investigated trion diffusion and reported substantially different
diffusion coefficients ranging from the 0.47 cm2/s mentioned above
up to 18 cm2/s,237,261 with signatures of even faster diffusion at
cryogenic temperatures.245 While a recent theoretical work has stud-
ied the impact of trion–phonon scattering on trion transport,209 a
microscopic understanding of trion diffusion in different regimes is
still lacking.

B. Exciton funneling
Current nanoelectronics relies on controlling the charge trans-

port within the device. While for charge carriers this can be achieved
by applying electric fields, other mechanisms are required to
spatially guide neutral excitons. Strain engineering provides a way
of manipulating exciton propagation in TMDs, since the band
structure of these materials is remarkably sensitive to strain.257,258 In
particular, strain is seen to induce significant energy shifts of exci-
ton resonances.254,255 Localized strain profiles as obtained, e.g., via
ripples,262 bubbles,263–265 pillars,266,267 or patterned substrates,268,269

result in space-dependent exciton energies E ≡ E(r) as reflected
by spatially resolved spectra. Since the excitons move toward the
spatial positions where their energy is minimal, their transport
after thermalization can typically be described by a drift–diffusion
equation

∂tn(r, t) = ∇ ⋅ (D∇n) +∇ ⋅ (μn∇V(r, t)), (1)

where n(r, t) is the spatial- and time-dependent exciton density and
μ is the exciton mobility, which can be approximated at low densi-
ties as μ ≈ D

kBT . The first term in Eq. (1) corresponds to the Fick’s
law of diffusion.238 The second term describes the drift induced
by a potential V , which could have different microscopic origin,
e.g., inhomogeneous strain, gating, or repulsive dipole–dipole inter-
actions in heterostructures.234,270,271 In the case of locally strained
monolayers, the drift force is caused by strain-induced variations of
exciton energy∇E(r), cf. Fig. 6(c).

The spectral analysis of time-integrated photoluminescence
in rippled few-layer MoS2 revealed how localized strain profiles
act as excitonic traps.262 In particular, the relation between pho-
toluminescence resonance and strain reveals that excitons funnel
before recombining.262 Excitons funnel toward regions with max-
imum strain, which results in an enhancement of the PL inten-
sity in these regions.266,272 Recently, the exciton drift has been
experimentally tracked by means of space- and time-resolved pho-
toluminescence measurements.236,273,274 Exciting far away from a
strain profile induced, e.g., by a pillar, the PL becomes broader in
space without shifting its central position.273 In other words, only
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diffusion is observed (without drift/funneling) due to the absence
of local strain profiles close to the excitation spot.273 The sit-
uation differs significantly when the excitation is performed in
strained regions, i.e., close to the pillar. In this case, the time-
resolved PL profiles reveal exciton motion toward the center
of the pillar, where the strain is maximized, by hundreds of
nanometers in the first nanosecond.273 Space- and time-resolved
PL has been applied also to strain profiles dynamically altered
by a tip.274 In this way, it has been shown how the tip-induced
strain can literally steer the motion toward the maximum-strain
positions.274

More recently, exciton anti-funneling has been reported,236

with excitons moving toward regions of low strain, see Fig. 6(d).
This surprising behavior was observed in WS2 deposited on a
borosilicate substrate with an array of polymer micropillars, in con-
trast to analogous experiments performed on MoSe2.236 This can
be understood in terms of the rich exciton landscape in TMD
monolayers. While the energies of bright (KK) states decrease
with increased strain, the opposite holds for momentum-dark KΛ
intervalley excitons.257,258 The strain-induced variation ∇Ev(r) of
the energy Ev(r) in the exciton valley v = KK, KΛ thus induces
opposite drift forces for bright (KK) and dark (KΛ) exciton
species. This complex interplay between bright and dark exciton
propagation can be described by generalizing the drift–diffusion
Eq. (1) to valley–dependent exciton densities nv(r, t) and ener-
gies Ev(r), and including the thermalization between exciton
populations in different valleys.236 In this way, it has been pre-
dicted that the propagation of KΛ excitons, which have higher
occupation than the KK onesin WS2 monolayers, follows the
experimentally observed anti-funneling behavior, cf. Fig. 6(d).
Furthermore, the initially faster propagation reflects the larger
diffusion coefficients D(x) in the corresponding spatial positions,236

as the diffusion coefficients depend on strain, i.e., D ≡ D(s(r)),
due to opening/closing of intervalley scattering channels.252 While
excitons in WS2 show an anti-funneling behavior, regular exciton
funneling has been observed in MoSe2, where, in contrast to WS2,
most of the exciton population lives in the energetically lower bright
KK states.236

Similarly, driven by the momentum-dark exciton population,
excitons have been found to funnel into dielectric inhomogeneities
in WSe2 bilayers.275 Furthermore, spin-dark excitons have been
recently reported to show the same funneling behavior as KK
excitons, i.e., drifting toward regions with high strain.276 Strain
profiles and the resulting funneling can also be engineered by
nanoscale tips274,276,277 and surface acoustic waves.278,279 In addi-
tion, local strain profiles can be used also to create quasi one-
dimensional channels, e.g., by depositing the monolayer on top
of 1D semiconductor nanowires.280 This generates a highly
anisotropic diffusion with large diffusion coefficients of ≈10 cm2/s
in the direction of the channel at room temperature. These stud-
ies exemplify how exciton transport in TMD-based devices can be
engineered with strain.280

C. Exciton transport in TMD heterostructures
After having discussed transport of excitons in TMD mono-

layers, we now turn to vertical and lateral heterostructures. Here,
the already rich exciton landscape is further extended to spatially

separated interlayer excitons, usually denoted as charge transfer
(CT) excitons in lateral junctions.

1. Vertical heterostructures
Here, interlayer excitons are composed of electrons and holes

residing in different vertically stacked TMD layers and exhibit per-
manent out-of-plane dipole moments, cf. inset in Fig. 6(e). As
a consequence, interlayer excitons display a strong dipole–dipole
repulsion, giving rise to a density-dependent renormalization of
the exciton energy. Hence, dipole–dipole repulsion becomes man-
ifest in PL spectra as a blue-shift of the exciton resonance at
elevated densities.235,270,281 As expected from Eq. (1), the density-
dependent energy renormalization gives rise to a drift force, result-
ing in a highly anomalous exciton diffusion, where the variance
of the spatial distribution of excitons does not evolve linearly in
time.234,235,270,271,282

In the case of MoSe2-hBN-WSe2 heterostructures, a super-
linear dependence of the spatial variance σ2

t with respect to time
has been recently observed at exciton densities nx > 1012 cm−2,234 cf.
Fig. 6(e). At these high densities, the potential gradient∇V = ∇(gn)
is large, and the drift-term in Eq. (1) becomes dominant. Here, g
is governed by repulsive dipole–dipole interactions due to the large
separation between electrons and holes forming interlayer excitons
in this particular heterostructure. Generally, the exciton–exciton
interaction consists of two parts—one part stemming from direct
dipolar exciton–exciton repulsion and the other part originating
from the quantum-mechanical exchange interactions, reflecting the
fermionic substructure of excitons.25,283–285 Importantly, when the
separation between the two layers is similar or larger than the exci-
ton Bohr radius, the exchange interaction—which can be negative
and thus weaken the exciton–exciton interaction—is suppressed and
the direct dipole–dipole repulsion dominates.286–288 Moreover, the
hBN spacer between the TMD layers does not only boost the dipole
moment of the interlayer excitons, but it also suppresses the moiré
potential, which could trap excitons and affect their propagation in
hetero-bilayers.3,235,289,290

A recent study on WS2–WSe2 bilayers shows that the diffusion
of interlayer excitons is highly tunable with the twist angle, which
modifies the moiré potential landscape.3 In particular, the minima
of the moiré potential act as traps, hindering the diffusion of exci-
tons and effectively decreasing the diffusion coefficient. Moreover, it
has been shown that moiré heterostructures are suitable candidates
for realizing Bose–Hubbard models of interlayer excitons, where
the twist-angle is used to control both the exciton–exciton inter-
action strength as well as the inter-site hopping amplitudes.291,292

These findings indicate that twisted TMD heterostructures could
potentially be used as quantum simulators for bosonic many-body
systems.

2. Lateral heterostructures
Recently, laterally stacked TMD monolayers have emerged

as a promising new platform to study one-dimensional excitons.
In these structures, two different monolayers are grown beside
each other and covalently stitched together in the plane,293–299 cf.
Fig. 6(f ). At the interface, the formation of spatially separated
CT excitons has been predicted.300,301 While for interlayer exci-
tons in vertical heterostructures the spatial separation of electron
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and hole is restricted by the layer distance, separations of sev-
eral nanometers are predicted for CT excitons, thanks to the
large device length.300,301 While exciting far away from the inter-
face leads to the regular monolayer diffusion [black points in
top-right Fig. 6(f )], exciting close to the quasi one-dimensional
channel formed at the interface results in intriguing transport
properties.300,302–304 The different excitonic energies in the two
monolayers drive the propagation of excitons toward and across
the interface.300,302,304 This can be revealed by varying the central
position of the excitation spots close to the interface of an hBN-
encapsulated MoSe2–WSe2 lateral heterostucture, showing a non-
trivialtemperature depeendence of the diffusion lengthin the two
monolayers.303

A peculiar spatial expansion along the interface has been
observed in a WSe2–WS1.16Se0.84 lateral heterostructure.300 Here,
an abrupt enhancement of the diffusion along the 1D channel
is measured for excited densities above 5 ×1012 cm−2, resulting
in effective diffusion coefficients of the order of 100 cm2/s, cf.
the red points in Fig. 6(f ). This reflects a first-order Mott tran-
sition, with the formation of a dense electron–hole plasma that
diffuses quickly, leading to a broad electron–hole distribution along
the interface already after few tens of picoseconds,300 cf. bottom
row in Fig. 6(f ). For intermediate excitation densities (from 1 to
4 × 1012 cm−2), the effective diffusion coefficient increases with
the excitation power up to values of few 10 cm2/s, i.e., up to two
orders of magnitude larger than the monolayer values obtained
when exciting far away from the interface [cf. Fig. 6(f)]. This
increase in the effective diffusion coefficient has been attributed
to the dipole–dipole repulsion between CT excitons,300 favored by
the large spatial separations of several nanometers.301 These results
put forward lateral heterojunctions as promising one-dimensional
“highways” for excitons and unbound charge-carriers in an
electron–hole plasma.

V. OUTLOOK
The vast number of studies on mono- and multi-layered

TMDs—highlighting the crucial importance of the rich and versatile
exciton landscape for optoelectronic applications and fundamental
research—has opened up many avenues that still remain unexplored
in this field. Here, we outline some of these prospective research
directions.

A. Optics
While optical signatures of the exciton landscape including

bright and dark excitons in both TMD monolayers and heterostruc-
tures have been extensively studied, the impact of different valley
and spin configurations of more complex many-body compounds is
still not completely understood. In particular, previous studies have
not addressed the potential relevance of trion states with charge car-
riers located around symmetry points other than the K or K′ valleys.
Although it is well known that excitons formed by electrons (holes)
at the Λ (Γ) point are the energetically lowest or very close to the
lowest-lying states in some monolayers and heterostructures,42,102,258

the energetic position of, e.g., trion or biexciton states composed
of charges in these valleys has remained in the dark. The optical
response of these higher-order charge complexes could be further

controlled by tuning the relative energetic position of the involved
valleys with strain.257,258

The impact of strongly correlated states on the optical response
of TMDs is a hot topic of research that still needs to be further
explored. Very recently, signatures of many-body states beyond
trions have been identified in reflectance spectra of heavily
electron-doped WSe2 monolayers.305 While these signatures have
been proposed to arise from six- and eight-body exciton states inter-
acting with the Fermi sea of doping charges,306 it remains unclear
why these many-body compounds are not experimentally observed
in hole-doped samples. The optical fingerprint of excitons interact-
ing with a Wigner crystal of electrons has also been reported,307

providing a tool to investigate strongly correlated electron systems.
A recent theoretical study has suggested using terahertz light to
directly probe the internal quantum transitions of the Wigner crystal
itself.308 The experimental realization of correlated exciton phases
such as exciton Wigner supersolids309,310 could shed light on the
interplay between exciton–exciton interactions and their bosonic
quantum statistics.

Regarding TMD polaritonics, one current focus in this field
concerns utilizing polaritons as both a probe of, and as a poten-
tial means to control microscopic processes in TMDs. For exam-
ple, recent theoretical studies have explored how the shape of
the polariton dispersion and modification of the effective phonon
scattering matrix can drastically alter phonon scattering rates
in comparison to bare excitons.311,312 Even more sophisticated
microscopic theories will be necessary to fully describe newly
reported hybrid exciton–photon–phonon states.313 Moving beyond
monolayer exciton–polaritons provides a promising route toward
quantum nonlinear devices. In addition to trion polaritons,162

interlayer exciton–polaritons represent an exciting combination
of quantum tunneling with strong light–matter coupling that
possesses a permanent dipole moment.314,315 These dipolaritons
offer enhanced nonlinearity, as well as highly controllable polari-
ton transport and condensation, making them relevant for potential
quantum optoelectronic applications.316

B. Dynamics
The recent observation of the ultrafast formation of

momentum-dark excitons in tr-ARPES measurements53 represents
a major step forward in the characterization and understanding of
the exciton dynamics in TMD monolayers and heterostructures.
Nevertheless, these recent experiments excited the TMD with
linearly polarized light and, therefore, simultaneously generated KK
and K′K′ excitons with opposite spin configurations. Therefore, the
spin-relaxation via, e.g., scattering with chiral phonons or intervalley
exchange could not be distinguished from spin-conserving interval-
ley thermalization. The direct visualization and understanding of
the main spin relaxation processes would be crucial for an accurate
characterization of the limits and advantages of TMD-based
spintronic devices.

Moreover, the first tr-ARPES studies on TMD heterostruc-
tures have been performed revealing crucial insights into the
main charge transfer channels,56 as well as indications of exciton
localization resulting from superlattice-periodic moiré poten-
tial.104 However, further studies of this kind involving different
hetero-/homo-bilayers and varying crucial system parameters such
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as twist-angle and temperature are necessary to confirm these first
observations and to provide conclusive understanding of charge-
transfer and localization dynamics. In particular, resolving the
small moiré induced splittings of the ARPES signal in momen-
tum and energy and preparing comparable samples with different
stacking configurations provides a major experimental challenge.
Furthermore, a microscopic model predicting the ARPES signa-
tures of strongly correlated electronic states, as well as superlattice
Umklapp-processes, is still missing.

Exciton–exciton annihilation in TMD monolayers has been
well characterized so far—the main scattering channels involved
have been identified196 and the tunability with external knobs
has been explored.187,195–197 However, the understanding of Auger
recombination of excitons in TMD heterostructures is still lacking.
While it has been observed that EEA is severely weakened in homo-
bilayers,192 the microscopic origin of this suppression is unclear.
More experimental and theoretical studies are needed to understand
the microscopic mechanisms behind EEA and the tunability of this
process in TMD heterostructures.

Studies on excitonic many-body complexes have so far focused
on the optical fingerprint of these quasi-particles in absorption
and PL spectra. Only recently the trion thermalization dynam-
ics have been investigated by exploiting the temporal evolution of
the PL line shape.207 Similar methods could be used to study the
thermalization dynamics of other many-body complexes such as
polaritons and biexcitons. Such experimental studies, together with
appropriate theoretical models, would provide a better understand-
ing of the main scattering mechanisms involved in the thermaliza-
tion of photoexcited charges. The latter is crucial for an optimal
design of efficient optoelectronic devices.

C. Transport
In recent years, the intrinsic mechanisms governing exciton

diffusion and funneling have been well established. In particular,
exciton diffusion is known to be controlled by exciton–phonon
scattering at low exciton densities233 and to be hindered by dielec-
tric inhomogeneities and traps.14 It has also been understood that
KK and KΛ excitons funnel in opposite directions of the strain
gradient, although the reason for the unexpectedly large optical acti-
vation of KΛ excitons at room temperature has remained unclear.236

Furthermore, the understanding of the mechanisms governing
the transport of more complex many-particle compounds is
still lacking. The few reported diffusion coefficients for, e.g.,
trions, differ substantially in the current literature,237,245,253,261

indicating the difficulty in accurately assessing the transport prop-
erties of many-particle states. Future studies should aim to thor-
oughly characterize diffusion of trions and other many-particle com-
pounds consistently across different samples, temperatures, doping
levels, and excitation densities in order to gain a better under-
standing of the underlying microscopic mechanisms. We anticipate
that, not only the main scattering mechanisms hindering prop-
agation should be identified, but also the interplay between dif-
ferent many-particle compounds that might coexist (e.g., trions,
excitons and single electrons) should be better understood. While
research on excitons and higher-order charge complexes in atom-
ically thin materials has significantly advanced in the last decade,

there is still a lot of new and exciting physics to be explored in the
coming years.
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