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Abstract
This work aims at constructing a bridge between robust control theory and
reinforcement learning. Although, reinforcement learning has shown admirable
results in complex control tasks, the agent’s learning behavior is opaque. Mean-
while, system theory has several tools for analyzing and controlling dynamical
systems. This article places deep Q-learning is into a control-oriented perspec-
tive to study its learning dynamics with well-established techniques from robust
control. An uncertain linear time-invariant model is formulated by means of the
neural tangent kernel to describe learning. This novel approach allows giving
conditions for stability (convergence) of the learning and enables the analy-
sis of the agent’s behavior in frequency-domain. The control-oriented approach
makes it possible to formulate robust controllers that inject dynamical rewards
as control input in the loss function to achieve better convergence proper-
ties. Three output-feedback controllers are synthesized: gain scheduling 2,
dynamical ∞, and fixed-structure ∞ controllers. Compared to traditional
deep Q-learning techniques, which involve several heuristics, setting up the
learning agent with a control-oriented tuning methodology is more transparent
and has well-established literature. The proposed approach does not use a tar-
get network and randomized replay memory. The role of the target network is
overtaken by the control input, which also exploits the temporal dependency of
samples (opposed to a randomized memory buffer). Numerical simulations in
different OpenAI Gym environments suggest that the ∞ controlled learning
can converge faster and receive higher scores (depending on the environment)
compared to the benchmark double deep Q-learning.
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1 INTRODUCTION

In the past decade, the success of neural networks (NNs) in various approximation and regression tasks has led to sig-
nificant uptake of machine learning (ML) methods in various areas of science and real-world applications. On the other
hand, working with large data sets, the black-box nature, and complex structure of these function approximators often
hamper in-depth human understanding of such methods. Consequently, efforts have been made to improve the trans-
parency of machine learning both in terms of training an ML model and the results produced by the trained model.1,2

Additionally, making such heuristic learning algorithms converge requires tweaking and experimenting.
Although machine learning-based controllers often outperform classical control, especially in highly nonlinear envi-

ronments, their stability and performance are seldom guaranteed analytically.3,4 Control theory has a well-established and
mathematically sound toolkit to analyze dynamical systems and synthesize stabilizing, robust controllers.5 This article
focuses on the control theory-based analysis of reinforcement learning (RL). Earlier, some authors dealt with connecting
RL with classical control. Reference 6 shows that dynamic programming based reinforcement learning (Q-learning, in
particular) converges to an optimal linear quadratic (LQ) regulator if the environment is a linear system. On the other
hand, RL shines in complex environments where formulating a closed-form solution is impossible. Several works deal
with synergized model-based and data driven controllers to improve the performance of the controlled process7-9 or ana-
lyze learned controllers with tools from control.10-13 Meanwhile, control theory is seldom utilized to enhance the agent’s
training performance.

This work is motivated by the lack of convergence guarantees in deep Q-learning.14,15 Some recent advances in
DQN modify the temporal difference target in order to achieve better convergence results, for example, References 16
and 17. Reference 18 aims at characterizing divergence in deep Q-learning with the help of the recently introduced
neural tangent kernel (NTK19). In addition, they propose an algorithm that scales the learning rate to ensure conver-
gence. In Reference 20 an additive regularization term is used to constrain the loss and enhance convergence. Yet, the
of majority of deep Q-learning applications employ some heuristics such as a target network21 or random experience
replay.22

Reformulating learning as a dynamical system poses an opportunity to further study its divergent nature and formulate
stabilizing controllers to improve learning performance.

Contribution. This work aims at constructing a bridge between robust control theory and reinforcement learn-
ing. To this end, techniques from robust control theory are borrowed to compensate the non-convergent behavior of
deep Q-learning via cascade control. Instead of introducing additional control to the agent-environment interaction, the
dynamics of learning (the temporal evolution of the Q-function) is studied. First, learning is embedded into a state-space
framework as an uncertain, linear, time-invariant (LTI) system through the NTK. Based on the dynamical system descrip-
tion, convergence (or stability) can be concluded in a straightforward way. As opposed to Reference 18, stability is ensured
via modifying the temporal difference term via robust stabilizing controllers injecting fictitious rewards. In this arti-
cle, three controllers are synthesize and benchmarked: static output-feedback gain scheduling 2, dynamic ∞, and
fixed-structure ∞ controllers. The primary motivation for robust control is that it is capable of taking into account the
uncertain nature of a reinforcement learning problem. In addition, the NTK does not have to be recomputed in every
step; its variation can be included as a parametric uncertainty in the controller design. This yields a computationally more
efficient methodology than the one proposed in Reference 18. The proposed control-oriented approach makes param-
eter tuning more straightforward and transparent (i.e., involving fewer heuristics). The two aforementioned common
heuristics of deep Q-learning (target network and random experience replay22) are not needed. Instead, the temporal
dependency of samples is exploited through the dynamical system formulation. Robust control can support the learning
process, making it more explainable. Results suggest that robust controlled learning performs on par with DDQN in the
benchmark environments.

The structure of the article follows the MAD, Modeling, Analysis, and Design framework. After the preliminar-
ies (Section 2), the learning dynamics of Q-learning is formulated as an uncertain LTI system (Section 3). Then,
based on the formulated model, three controllers are formulated: Section 4.1 formulates an 2 output-feedback con-
trol, in Section 4.2 a dynamical ∞ controller is synthesized in frequency domain. Then, in Section 4.3 the ∞
controller design is adjusted to result in a controller with gains akin to the result of the 2 controller design. The
proposed controlled learning approaches are thoroughly analyzed and compared in three challenging OpenAI Gym
environments: Cartpole, Acrobot, and mountain car (Section 5). Finally, Section 6 concludes the findings of this
article.
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VARGA et al. 3

2 PRELIMINARIES

This section consists of two parts. In the first part, deep Q-learning alongside its nomenclature is given. Second, the NTK19

is introduced, which can be used to describe the evolution of neural networks under gradient descent in function space.

2.1 Deep Q-learning

In reinforcement learning (in the absence of labeled data), the agent learns in a trial and error way, interacting with its
environment. The learning agent faces a sequential decision problem and receives feedback as a performance measure.14

This interaction is commonly depicted as the feedback structure in Figure 1.
This sequential decision problem can be described with a (discrete) Markov decision process (MDP) characterized by

the following 5-tuple: ( ,,T ,R, 𝛾), where ⊆ Rns is the continuous state-space with ns dimensions. ⊂ Z is the finite,
discrete action space, T is the transition probability matrix, R ∈ R is the reward accumulated by the agent, and 𝛾 ∈]0, 1]
is the discount factor. The agent traverses the MDP following policy 𝜋(a(t)|s(t)) with discrete time-step t. Reinforcement
learning methods compute a mapping from the set of states of the environment to the set of possible actions in order to
maximize the expected discounted cumulative reward.

One common way to tackle an RL problem is Q-learning. Here, the aim is learning the state-action-value (or Q)
function—the measure of the overall expected reward for taking action a(t) at state s(t)

Q(s(t), a(t)) = E
𝜋

( ∞∑

𝜏=0
𝛾

𝜏r(t + 𝜏 + 1)|s(t), a(t))

)

, (1)

with r(t) ∈ R being the immediate reward. In Q-learning the states and actions are discretized and can have huge car-
dinality. Thus, it suffers from the curse of dimensionality. Deep Q-learning alleviates this problem via approximating
the Q-function with a neural network (deep Q-network, DQN). Thus, the Q-function takes an ns dimensional envi-
ronment state s(t) ∈  and evaluates the Q-value for action a(t) ∈ , Q ∶  × → R. Then, the policy 𝜋(a(t)|s(t))
selects the action corresponding to the largest Q-value in an 𝜀-greedy way. Deep Q-learning learns by minimizing the
temporal difference (1-step estimation error) at time t following the quadratic loss function (mean squared Bellman
residual23):

(t) = 1
2
(r(t) + 𝛾max

a∈
Q(s′(t), a, 𝜃(t))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

target

− Q(s(t), a(t), 𝜃(t))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

actual

)2, (2)

with s′(t) = s(t + 1) being the next state. Then, with learning rate 𝛼, the weights of the neural network via gradient
descent is

𝜃(t + 1) = 𝜃(t) − 𝛼 𝜕(t)
𝜕𝜃(t)

= 𝜃(t) + 𝛼(r(t) + 𝛾max
a∈

Q(s′(t), a, 𝜃(t)) − Q(s(t), a(t), 𝜃(t)))𝜕Q(s(t), a(t), 𝜃(t))
𝜕𝜃(t)

T
. (3)

The gradient (assuming the Q-function is differentiable) 𝜕Q(s(t),a(t),𝜃(t))
𝜕𝜃(t)

T
determines the “direction” in which this update

is performed. Observe that the target value r(t) + 𝛾 maxa∈ Q(s′(t), a, 𝜃(t)) also depends on 𝜃(t). Thus, the correct gradi-

ent would be 𝛾
(

𝜕

𝜕𝜃(t)
maxa∈ Q(s′(t), a, 𝜃(t))

)T
−
(

𝜕

𝜕𝜃(t)
Q(s(t), a(t), 𝜃(t))

)T
. On the other hand, the mainstream Q-learning

F I G U R E 1 Agent—environment interaction in reinforcement learning
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4 VARGA et al.

algorithms perform the TD update with 𝜕Q(s(t),a(t),𝜃(t))
𝜕𝜃(t)

T
, resulting in faster and more stable algorithms.23 In the sequel, this

more common approach will be adhered to.
Deep Q-learning in its pure form often shows divergent behavior for function approximation.14,15 It has no known con-

vergence guarantees except for some similar algorithms where convergence results have been obtained.24 Two major ideas
have been developed to improve (but not guarantee) its convergence: using a target network (double deep Q-learning,
DDQN) and employing experience replay.21 In double deep Q-learning, the target network is the exact copy of the actual
network but updated less frequently. Freezing the target network prevents the target value from changing faster than
the actual Q-value during learning. Intuitively, learning can become unstable and lose convergence if the target changes
faster than the actual value. With experience replay, a memory buffer is introduced. Samples are drawn randomly from
this buffer, thus minimizing the correlation between samples observed in trajectory-based learning and enabling the use
of supervised learning techniques that assume sample independence.22

2.2 Neural tangent kernel

This section briefly defines the NTK and lists some of its relevant properties.

Definition 1 (Neural tangent kernel19). Given data xi, xj ∈ X ⊆ Rn, the NTK of an n input 1 output artificial neural
network f (x, 𝜃(t)) ∶ Rn → R, parametrized with 𝜃(t), is

Θ(xi, xj) =

(
𝜕f (xi, 𝜃(t))
𝜕𝜃(t)

𝜕f (xj, 𝜃(t))
𝜕𝜃(t)

T
)

∈ R. (4)

Remark 1 (Multiple outputs). From the NTK perspective, a neural network with n outputs behaves asymptotically
(towards the infinite width limit) like n networks with scalar outputs trained independently. That is, the diagonal elements
of the NTK will dominate.

Remark 2 (Constant kernel). Although, 𝜃(t) is changing during training, in the infinite width limit, the NTK converges
to an explicit constant kernel. It only depends on the depth, activation function, and parameter initialization variance of
an NN. In other words, during training, Θ(xi, xj) is independent of time t.

Remark 3 (Linear dynamics). In the infinite width limit, an NN can be well described throughout training by its
first-order Taylor expansion (i.e., linear dynamics) around its parameters at initialization (𝜃(0)), assuming a low learning
rate:25

f (x, 𝜃(t)) ≈ f (x, 𝜃(0)) + 𝜕

𝜕𝜃

f (x, 𝜃(0))(𝜃(t) − 𝜃(0)), (5)

and x ∈ X .

Remark 4 (Gradient flow). The NTK describes the evolution of neural networks under gradient descent in function
space. Under gradient flow (continuous learning with infinitely low learning rate via gradient descent), the weight update
is given as

d𝜃(t)
dt

=
𝜕(f (x, 𝜃(t)))

𝜕𝜃(t)
, (6)

with an at least once continuously differentiable (w.r.t 𝜃(t)) arbitrary loss function (f (x, 𝜃(t))) and x ∈ X . Then, with the
help of the chain-rule and gradient flow, the learning dynamics in Equation (5) becomes

df (x, 𝜃(t))
dt

=
𝜕f (x, 𝜃(t))
𝜕𝜃(t)

d𝜃(t)
dt

=
𝜕f (x, 𝜃(t))
𝜕𝜃(t)

𝜕(f (x, 𝜃(t)))
𝜕𝜃(t)

=
𝜕f (x, 𝜃(t))
𝜕𝜃(t)

𝜕f (x, 𝜃(t))
𝜕𝜃(t)

T
𝜕(f (x, 𝜃(t)))
𝜕f (x, 𝜃(t))

= Θ(x, x)
𝜕(f (x, 𝜃(t)))
𝜕f (x, 𝜃(t))

. (7)
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VARGA et al. 5

3 CONTROL- ORIENTED MODELING OF DEEP Q-LEARNING

In this section, deep Q-learning is translated into a dynamical system. In light of the properties of the NTK (Section 2.2),
shallow and wide neural networks are used for approximating the Q-function. That is to exploit its constant nature and
the opportunity to linearize the learning dynamics.

Assuming Q1(t) = Q(s(t), a(t), 𝜃(t)) is the actual Q-value and Q2(t) = Q(s′(t), a′(t), 𝜃(t)) is the next Q-value with
a′(t) = argmaxa∈ Q(s′(t), a, 𝜃(t)) are the system states, Q-learning can be modeled with uncertain continuous, linear
time-invariant dynamics. Let the NTK of the deep Q-network be evaluated at the current state of the environment s(t)
for output a(t). Denote it as Θ1 = Θ((s(t)|a(t)), (s(t)|a(t))). Similarly, for the next state as Θ2 = Θ((s(t)|a(t)), (s′(t)|a′(t))).
The role of Θ1, and Θ2 is to characterize how Q1(t) and Q2(t) will evolve during learning according to Remark 4. In addi-
tion, denote the bounded uncertainty block encompassing unmodeled learning behavior byΔ ∈ R2×2, ||Δ||∞ < ∞, where
|| ⋅ ||∞ denotes the infinity norm.

Theorem 1 (Dynamics of deep Q-learning). Deep Q-learning can be modeled as a continuous-time, linear time-invariant
system with output multiplicative uncertainty with the help of the NTK as

[ dQ1(t)
dt

dQ2(t)
dt

]

=

([
−Θ1 𝛾Θ1

−Θ2 𝛾Θ2

]

+ Δ

)[
Q1(t)
Q2(t)

]

+

[
Θ1

Θ2

]

r(t),

y(t) =

[
1 0
0 1

][
Q1(t)
Q2(t)

]

. (8)

Proof. The proof consists of three parts. First, learning dynamics are formulated for fixed state-action values, and the
appearance of the NTK is shown. Then, results are cast into a state-space form for selected Q-values. Finally, the necessity
of the uncertainty block and its components are discussed.

Part 1: Learning dynamics. In order to describe the learning as a dynamical system, first, the weight update with
quadratic loss (Equation 3) is translated into continuous-time (gradient flow). Assume 𝜃(t+1)−𝜃(t)

𝛼

is the Euler discretization
of d𝜃

dt
.26 If the learning rate 𝛼 → 0 the parameter update in continuous time can be written as

d𝜃(t)
dt

= (r(t) + 𝛾max
a∈

Q(s′(t), a, 𝜃(t)) − Q(s(t), a(t), 𝜃(t)))𝜕Q(s(t), a(t), 𝜃(t))
𝜕𝜃(t)

T
. (9)

Based on Equation (9), the Q-value evolution at state s(t) for action a(t) can be written with the help of the chain-rule as

dQ(s(t), a(t), 𝜃(t))
dt

= 𝜕Q(s(t), a(t), 𝜃(t))
𝜕𝜃(t)

d𝜃(t)
dt

=
(
𝜕Q(s(t), a(t), 𝜃(t))

𝜕𝜃(t)
𝜕Q(s(t), a(t), 𝜃(t))

𝜕𝜃(t)

T)

(r(t) + 𝛾max
a∈

Q(s′(t), a, 𝜃(t)) − Q(s(t), a(t), 𝜃(t))). (10)

Since the temporal difference (the first term in the right hand side in Equation (9)) is a scalar, it commutes with the
vector 𝜕Q(s(t),a(t),𝜃(t))

𝜕𝜃(t)

T
. Therefore, in Equation (10), the term

(
𝜕Q(s(t),a(t),𝜃(t))

𝜕𝜃(t)
𝜕Q(s(t),a(t),𝜃(t))

𝜕𝜃(t)

T)
∈ R appears. This is the NTK eval-

uated at s(t) for action a(t):Θ((s(t)|a(t)), (s(t)|a(t))), see Definition 1. Note that, in this setting, the scalar product is always
non-negative as it is the sum of the squared partial derivatives.

Similarly to Equation (10), the Q-value changes at an arbitrary su(t), au(t) state-action pair can be computed assuming
temporal difference update with data tuple (s(t), a(t), r(t), s′(t)):

dQ(su(t), au(t), 𝜃(t))
dt

= 𝜕Q(su(t), au(t), 𝜃(t))
𝜕𝜃

d𝜃(t)
dt

= Θ((s(t)|a(t)), (su(t)|au(t)))(r(t) + 𝛾max
a∈

Q(s′(t), a, 𝜃(t) − Q(s(t), a(t), 𝜃(t))). (11)

Based on Equation (11), the evolution of the Q-function is only influenced by the NTK.
In the preliminaries, s′(t)) was defined as s(t + 1). Assuming continuous-time (gradient flow), s′(t) becomes s(t + Δt),

and Δt → 0. Next, let the arbitrary su(t), au(t) state-action pair be the next state s′(t) and the best action at that state,
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6 VARGA et al.

denoted by a′(t). Then, the evolution of Q(s′(t), a′(t)𝜃(t)) becomes

dQ(s′(t), a′(t), 𝜃(t))
dt

= 𝜕Q(s′(t), a′(t), 𝜃(t))
𝜕𝜃(t)

d𝜃
dt

= Θ((s(t)|a(t)), (s′(t)|a′(t)))(r(t) + 𝛾max
a∈

Q(s′(t), a, 𝜃(t)) − Q(s(t), a(t), 𝜃(t))). (12)

Part 2: State-space. Using the simplified notations Q1(t) = Q(s(t), a(t), 𝜃(t)), Q2(t) = Q(s′(t), a′(t), 𝜃(t)), Θ1 =
Θ((s(t)|a(t)), (s(t)|a(t))), andΘ2 = Θ((s(t)|a(t)), (s′(t)|a′(t))) the two first-order inhomogeneous linear ODEs (Equations 10
and 12) can be organized into state-space form with the system states being [Q1(t), Q2(t)]T and assuming the reward r(t)
is an exogenous signal. Then, the nominal system becomes

[ dQ1(t)
dt

dQ2(t)
dt

]

=

[
−Θ1 𝛾Θ1

−Θ2 𝛾Θ2

][
Q1(t)
Q2(t)

]

+

[
Θ1

Θ2

]

r(t). (13)

Learning dynamics are characterized by the NTKs Θ1 and Θ2 in the coefficient matrices.
Part 3: Uncertainties. Despite its simple form, this system is inherently uncertain. This uncertainty stems from a

single source but manifests in three forms that are specific for reinforcement learning. In contrast to a supervised
learning setting, where data is static, in reinforcement learning, data is obtained sequentially as the agent explores the
environment.

• Changing environment states. The system states Q1(t) and Q2(t) have unmodeled underlying dynamics as they always
correspond to different s(t), s′(t) environment states and actions (recap: Q ∶  ×→ R). On the other hand, if slow
learning rate is assumed, and the Q-function is smooth, the deviation from the modeled Q-values is bounded. This

deviation can be included into the modeling framework as an output multiplicative uncertainty ΔQ =
[
ΔQ1 0

0 ΔQ2

]

,

overbounding the temporal variation of the states. It is assumed this uncertainty is proportional to the magnitude of
the Q-values.

• Parametric uncertainty in the NTK. Dynamically changing environment states cause parametric uncertainty through
the NTK. Although the NTK seldom changes during training for wide neural networks (Remark 2), it is only true
if the data (where the NTK is evaluated) is static. This is not the case in reinforcement learning: it has to be
evaluated for different (s(t)|a(t)), (s′(t)|a′(t)) pairs in every step. Since both Q1(t) and Q2(t) are known, the NTK
can be computed in every step. On the other hand, that would lead to a parameter-varying system. On the other
hand, since the actual NTK values are only influenced by data, upon initialization of the neural network, it can
be evaluated at several environment state pairs to estimate its bounds offline. Parametric uncertainties can form
nonconvex regions which can only be handled via robust control by overbounding there regions. To this end, the
parametric uncertainty is pulled out from the plant and overbounded by convex and unstructured uncertainty
structure. In particular, it is captured with an output multiplicative uncertainty, see Figure 2 This technique is dis-
cussed comprehensively in Reference 27. Finally, the following output multiplicative uncertainty structure is defined,

ΔΘ =
[
Δ
𝜗

0.1Δ
𝜗

0.1Δ
𝜗

Δ
𝜗

]

.

• Exploration. Exploration in deep Q-learning means taking an action that do not correspond to the highest Q-value
at s(t). Thus, Q2(t) may not be maxa∈ Q(s′(t), a, 𝜃(t)), rather randomly selected Q value. It can be lumped into the

previously introduced output multiplicative uncertainty terms as ΔExp =
[

0 0
0 Δ

̂Q2

]

.

Note that none of the uncertainty blocks are time-dependent but bounded. That is because this model proposed to over-
bound all possible uncertainties in a robust way. Then, all uncertainty components are combined into a single uncertainty
block

Δ = ΔQ + ΔΘ + ΔExp. (14)
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VARGA et al. 7

F I G U R E 2 The parametric uncertainty makes the frequency response of the system vary within nonconvex bounds, depicted with blue
regions in this Nyquist diagram. The output multiplicative uncertainty overbounds this variation.

Finally, assuming the output of the single input, multiple output system is Q1(t), and Q2(t), the uncertain LTI model of
deep Q-learning is

[ dQ1(t)
dt

dQ2(t)
dt

]

=

([
−Θ1 𝛾Θ1

−Θ2 𝛾Θ2

]

+ Δ

)[
Q1(t)
Q2(t)

]

+

[
Θ1

Θ2

]

r(t),

y(t) =

[
1 0
0 1

][
Q1(t)
Q2(t)

]

. (15)

▪

Next, through a series of remarks, some properties of this system are outlined.

Remark 5 (Uncertainty structure). It would be possible to select different error structures for the unmodeled dynam-
ics. For example, an input multiplicative uncertainty would make more sense for the exploration uncertainty. However,
for simplicity, it is assumed it is an output multiplicative uncertainty. Alternatively, it could be handled as parametric
uncertainty directly via 𝜇-synthesis.28

Conjuncture 1 (Nominal stability). The stability of the linearized deep-learning dynamics is easy to check. The nominal
linear system is stable if the real parts of the 2 × 2 system matrix’s eigenvalues are negative, that is,

eig

([
−Θ1 𝛾Θ1

−Θ2 𝛾Θ2

])

= [𝜆1, 𝜆2], if Re(𝜆1), Re(𝜆2) < 0 then asymptotically stable. (16)

The state matrix above has one zero eigenvalue, while the other eigenvalue is 𝛾Θ2 − Θ1. Thus, the system describing
Q-learning is locally asymptotically stable if Θ1 > 𝛾Θ2. The magnitude of the NTK is related to the rate of change of
the function approximator during learning. Intuitively, if Q2(t) (the target) is changing faster (dictated by 𝛾Θ2) than the
actual value Q1(t) (dictated by Θ1), learning will not converge. This result supports the divergence claim of standard deep
Q-learning.15

Remark 6 (Relation to double deep Q-learning). A common remedy for the divergent behavior of Q-learning is the target
network.21 That is, Q2(t) is computed from an independent but identical neural network which is less frequently updated.
In the control-oriented modeling framework, this would mean a piecewise static Q2(t), with Θ2 = 0. Since Θ1 ≥ 0, the
state space representation of double deep Q-learning would be asymptotically stable for all Θ1. This remark highlights
the efficiency of DDQN from an alternative perspective.

Remark 7 (Boundedness of the parametric uncertainty). In reinforcement learning, the NTK changes due to the dynam-
ically changing data. Therefore, the bounds of the NTK can be evaluated by computingΘ1 andΘ2 for a set of environment
states in a grid-based fashion, offline, assuming the environment states are bounded too. Figure 3 depicts a slightly dif-
ferent approach: actual state transitions are taken from one of the simulation case studies (Section 5.1). This significantly
reduces the domain where the NTK is evaluated. In addition, it highlights another important property: Θ1 and Θ2 are
correlated, since both values are computed with the same kernel. Exploiting this correlation can greatly reduce the range
of the parametric uncertainty.

Remark 8 (Frequency of the learning). Using fast Fourier transform (FFT), the frequency content of the agent’s input
and output signals can be analyzed. Results suggest that these signals are slowly changing. We hypothesize that is due to
the smoothness of the Q function (plus low learning rate) and the rewarding scheme; thus learning is in the low-frequency
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8 VARGA et al.

F I G U R E 3 Evaluations of the NTK during uncontrolled learning in the Cartpole environment. The NTKs are bounded by the red lines:
200 < Θ1 < 500, 0.8Θ1 < Θ2 < 1.2Θ1. In the controlled cases, Θ1 > 500 will be less frequent and only happen when exploring.

(A) (B) (C)

F I G U R E 4 FFT of the agent’s input and output signals in a controlled Cartpole environment. (A) FFT of r(t); (B) FFT of Q1(t); (C) FFT
of Q2(t)

domain (regardless of the environment and control strategy). Figure 4 depicts the FFT of r(t), Q1(t), and Q2(t) for a
controlled Cartpole scenario.

In the next section, stabilizing controllers are formulated based on the linearized learning dynamics (Equation 8).

4 EXPLICITLY CONTROLLED DEEP Q-LEARNING

Learning is supported with a cascade control layout that prevents divergent learning behavior for any state-action com-
bination. To this end, the common agent-environment interaction (Figure 1) is augmented with an additional feedback
controller K, as depicted in Figure 5. In the sequel, the effect of the control on learning is dissected via injecting it into
controlled loss functions. In particular, three different controllers are synthesized and compared: gain scheduling 2
output-feedback control, dynamic∞, and fixed-structure robust∞.

Remark 9 (Random experience replay). Opposed to several Q-learning variants, this approach do not use random expe-
rience replay. Instead, the sequential nature of the data is exploited when computing the tracking error. However, it is

F I G U R E 5 Deep Q-learning cascade feedback control
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VARGA et al. 9

possible to log episodic trajectories and replay them to the agent to help learning. This method is advantageous in sparse
reward environments.

4.1 Static output-feedback2 controller design

The system (Equation 8) can be stabilized via an output-feedback controller. First, the control input u(t) (an additional
stabilizing reward) is introduced into the state-space representation of learning as

[ dQ1(t)
dt

dQ2(t)
dt

]

=

[
−Θ1 𝛾Θ1

−Θ2 𝛾Θ2

][
Q1(t)
Q2(t)

]

+

[
Θ1

Θ2

]

r(t) + Δ

[
Q1(t)
Q2(t)

]

+

[
Θ1

0

]

u(t). (17)

As long as Θ1 ≠ 0, the system is controllable.5 For control design purposes, create an augmented model via appending a
tracking error state e(t) to the state-space. Minimizing e(t) forces the controlled Q1(t) values to asymptotically converge
to the target r(t) + 𝛾 ̂Q2(t) (if it is frozen). The error e(t), e(0) = 0 and the extra state xe(t) are written as

e(t) = ẋe(t) = r(t) + 𝛾 ̂Q2(t) − Q1(t), (18)

and

xe(t) =
∫

t

0
r(𝜏) + 𝛾 ̂Q2(𝜏) − Q1(t)d𝜏, (19)

respectively. Then, the augmented state-space model from concatenating Equations (17) and (19) becomes

⎡
⎢
⎢
⎢
⎣

dQ1(t)
dt

dQ2(t)
dt

ẋe(t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−Θ1 𝛾Θ1 0
−Θ2 𝛾Θ2 0
−1 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Q1(t)
Q2(t)
xe(t)

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

Θ1

Θ2

1

⎤
⎥
⎥
⎥
⎦

r(t) + Δa

⎡
⎢
⎢
⎢
⎣

Q1(t)
Q2(t)

0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

Θ1

0
0

⎤
⎥
⎥
⎥
⎦

u(t) +
⎡
⎢
⎢
⎢
⎣

0
0
𝛾

⎤
⎥
⎥
⎥
⎦

̂Q2(t), (20)

where xa(t) = [Q1(t), Q2(t), xe(t)]T represent the augmented states,Δa = diag{Δ, 0} ∈ R3×3 is the error augmented error
structure, and ̂Q2(t) = Q2(t). Note that, no additive error is assumed for the augmented state.

Remark 10 (Exogenous ̂Q2(t)). If Q2(t) were included directly, the system would be rank deficient (i.e., rows 1 and 3
are multiplies of each other (with factor Θ1)), yielding a zero eigenvalue. Thus, the system would not be controllable.
Consequently, stabilizability is not met either. If ̂Q2(t) is an external signal, it can be chosen freely (e.g., as ̂Q2(t) = Q2(t))
without affecting the dynamical properties of the closed-loop system.

An optimal, gain scheduling output-feedback 2 controller can be realized assuming some properties of the uncer-
tainty block and the external signals.2 controller cannot handle the uncertainty blockΔa explicitly. Thus, it is handled in
two parts: the parametric uncertainty is computed explicitly in every step, while the rest of the uncertainties are neglected.
The scheduling parameter 𝜌 captures the variation of Θ from a nominal one in an affine way. The bounds of 𝜌 stem from
Remark 7. Additionally, it is assumed that there exist a stabilizing controller for every 𝜌 ≠ 0. Next, the coefficient matrices
of the augmented model in Equation (20) are encompassed into Pa, and write

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dQ1(t)
dt

dQ2(t)
dt

ẋe(t)
zp,Q1 (t)
zp,Q2 (t)
zp,xe (t)
zu(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Θ1(𝜌) 𝛾Θ1(𝜌) 0 Θ1(𝜌) 0 Θ1(𝜌)
−Θ2(𝜌) 𝛾Θ2(𝜌) 0 Θ2(𝜌) 0 0
−1 0 0 1 𝛾 0

w
1
2
x,Q1

0 0 0 0 0

0 w
1
2
x,Q2(t)

0 0 0 0

0 0 w
1
2
x,xe

0 0 0

0 0 0 0 0 W
1
2

c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Pa

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q1(t)
Q2(t)
xe(t)
r(t)
̂Q2(t)
u(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)
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10 VARGA et al.

with z(t) = [zp,Q1 (t), zp,Q2 (t), zp,xe (t), zu]T , and Wx = diag{wp,Q1 , wp,Q2 , wp,xe}. Instead of handling the parametric uncer-
tainty in a linear parameter varying (LPV) way, a locally optimal controller is constructed every step via solving the
controller design problem repeatedly. The goal is finding a stabilizing optimal controller u(t) = −K(𝜌)xa(t) that minimizes
the lower linear fractional transformation (LFT) ||l(Pa,K(𝜌))||2 for every 𝜌 in a gain-scheduled manner as

min
K(𝜌)

||l(Pa,K(𝜌))||2 = min
K(𝜌)

√

∫

∞

0
zT(t)z(t)dt, (22)

which turns into the following quadratic optimization problem:5

min
K(𝜌)

J(xa(t),u(t)) =
1
2∫

∞

0
xT

a (t)TWxxa(t) + u(t)TWcu(t)dt. (23)

The solution to the above optimization can be given in a closed-form, yielding the he control algebraic Riccati equation.29

Wx ≽ 0, and Wc > 0 are positive (semi-)definite diagonal weighting matrices, serving as tuning parameters for the
controller. Wx penalizes the performance, including the tracking error, and Wc penalizes the control input. Assigning
high diagonal elements to Wx emphasizes on tracking: in this case the error shall be minimized, that is, wp,xe shall be high
compared to the other diagonal elements and Wc. The reason behind this is that the Q-values shall not be minimized. The
weight for the control input Wc can be kept low too (cheap control30), because the extra reward in the form of u(t) does
not have a physical meaning, does not result in excess energy consumption. On the other hand, u(t) acts as an arbitrary
reward that will distort the learning dynamics. Denoting the constant elements of the controller as K = [k1, k2, k3]T , the
closed-loop system can be written as

⎡
⎢
⎢
⎢
⎣

dQ1(t)
dt

dQ2(t)
dt

ẋe(t)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−Θ1(𝜌)(1 + k1) (𝛾 − k2)Θ1(𝜌) Θ1(𝜌)k3

−Θ2(𝜌) 𝛾Θ2(𝜌) 0
−1 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Q1(t)
Q2(t)
xe(t)

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

Θ1(𝜌)
Θ2(𝜌)

1

⎤
⎥
⎥
⎥
⎦

r(t) +
⎡
⎢
⎢
⎢
⎣

0
0
𝛾

⎤
⎥
⎥
⎥
⎦

̂Q2(t). (24)

The control input only affects dQ1(t)
dt

directly. Assuming ̂Q2(t) = Q2(t), and computing the actualΘ1 corresponding toΘ1(𝜌)
the Q-value change at s(t), a(t) can be written as

dQ1(t)
dt

= Θ1 (r(t) + (𝛾 − k2)Q2(t) − (1 + k1)Q1(t) + k3xe(t)) . (25)

The controller gains can be placed inside the parenthesis since the control input acts through Θ1. k1 and k2 affect the
stability of Q-learning, while k3 influences the tracking error.

Next, the controlled loss function is calculated based on Equation (25). Recall the chain-rule d𝜃
dt
= d𝜃

dQ1(t)
dQ1(t)

dt
and use

the definition of the NTK (with detailed notations) Θ1 = 𝜕Q(s(t),a(t),𝜃)
𝜕𝜃

𝜕Q(s(t),a(t),𝜃)
𝜕𝜃

T
to achieve

d𝜃
dt
=
(

r(t) + (𝛾 − k2)max
a

Q(s(t + 1), a, 𝜃) − (1 + k1)Q(s(t), a(t), 𝜃) + k3xe(t)
)
𝜕Q(s(t), a(t), 𝜃)

𝜕𝜃

T
. (26)

Then, the controlled loss is obtained by integrating Equation (26) with respect to 𝜃. In order to obtain a similar form to
Equation (2), only 𝜃 dependency is assumed for Q(s(t), a(t), 𝜃)when performing the integration. This assumption is based
on the following arguments.

• When evaluating the weight evolution (Equation 2), the more common direct method is used over a residual gradient
method,23 thus the 𝜃 dependency of the temporal difference target

r(t) + 𝛾max
a

Q(s(t + 1), a, 𝜃) is not considered.

• The controller gains k1, k2, and k3 are constants.
• The terms in the integral xe(t) (Equation 19) depend only on past values of 𝜃 (implicitly). Therefore, this term can be

considered constant when integrating with respect to 𝜃.
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VARGA et al. 11

Integrating Equation (26) with respect to 𝜃 and considering the above assumptions the controlled loss becomes

2 = ∫

∞

0

(

r(t) + (𝛾 − k2)max
a

Q(s(t + 1), a, 𝜃) − (1 + k1)Q(s(t), a(t), 𝜃) + k3xe(t)
)
𝜕Q(s(t), a(t), 𝜃)

𝜕𝜃

T
d𝜃

= 1
2(1 + k1)

(

r(t) + (𝛾 − k2)max
a

Q(s(t + 1), a, 𝜃) − (1 + k1)Q(s(t), a(t), 𝜃) + k3xe(t)
)2
, (27)

Equation (27) is the loss function for the controlled agent. The terms in the loss are weighted by the controller’s param-
eters, helping convergence at the cost of biasing the true Q-values. Note that the controller is designed for the nominal
plant without considering all the uncertainties in Δ. Although the controller is conservative, dynamic Q-value stabiliza-
tion is only guaranteed in a local sense. With this approach, uncertainties in Q1(t) and Q2(t) cannot be handled explicitly.
On the other hand, the controller is inherently robust up to a multiplicative uncertainty of 0.5.31 The parametric uncer-
tainty is handled in a gain scheduling way. The optimal controller can be recomputed every episode via evaluating the
NTK repeatedly. This is computationally intensive and bears the risk that a parameter combination occurs that cannot
be stabilized, rendering the learning divergent. In the sequel, the convergence of deep Q-learning is aided by robust con-
trol: instead of considering fixed-parameter combinations, the variations in the parameters and the states are explicitly
included in the controller design.

4.2 ∞ controller design

In this section two types of robust H∞ controllers are proposed. First, the controller design procedure is outlined for
a generic robust dynamical controller where a linear time-invariant system computes the control input. Second, the
structure of the controller is fixed and constant gains are utilized akin to the2 output-feedback controller.

Although the parametric uncertainty could be explicitly computed, it is computationally inefficient and would lead to
a parameter-varying control as demonstrated for the gain scheduling2 case. This inefficiency motivates the formulation
of a robust controller: it can be synthesized before learning, and it will be stabilizing during learning for all combinations
of states and parameters (see Figure 3). The∞ design framework is capable of handling every uncertainty inΔ in a robust
way. Furthermore, in the∞ controller design procedure the system’s response is shaped via dynamically weighting the
inputs and outputs of the system. Therefore, the low-frequency nature of the controlled learning agent can be exploited
too.

The aim is controlling the nominal system  , encompassing Equation (17), disturbed by noise through the Δ block.
The controller K has three inputs: the two noisy system states fed back and the reference signal, identical to the tracking
error of the2 controlled case: e(t) = r(t) + 𝛾 ̂Q2(t) − Q1(t). In the∞ design, performance is enforced through the tune-
able weights that give the desired shape to the singular values of the open-loop response selecting the type of the dynamic
weight and their parameters is problem dependent and based on heuristics, but these heuristics are well studied in for
example, References 5,32, and 31.

• Wu penalizes the control input and Wp penalizes the error e. As discussed before, learning is done in the low-frequency
range. Therefore, good tracking performance (large Wp) is desired at low frequencies. Although the control input has
no physical interpretation, it should be dynamically weighted too. At higher frequencies, tracking shall be penalized
more in order to reduce the singular values.

Wp(i𝜔) =
0.001

0.1i𝜔 + 1
, (28)

Wu(i𝜔) =
0.01i𝜔

(0.1i𝜔 + 1)(0.001i𝜔 + 1)
. (29)

Bode diagrams of Wu and Wp are shown in Figure 6. Note that it turns out that these weights are universal regardless
of the RL environment.

• WΔ ∈ R2×2 shapes the uncertainty. It is considered constant (with varying magnitude from environment to environ-
ment) but generally, it can be stated thatΔ is constant at low frequencies, where learning is meaningful. Its magnitude
has a peak at an extremely high frequency (1012 rad/s), which is unimportant for the learning.
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12 VARGA et al.

F I G U R E 6 Bode magnitude diagrams of the frequency-dependent tuning weights.

F I G U R E 7 Generalized Δ −  − K structure

• The purpose of Wr and W
̂Q are to normalize and inject reference signal related dynamism to the reference signals.

Here, they are considered frequency-independent with environment-specific magnitude.

The closed-loop system interconnection in the so-called Δ −  − K structure, which is the general form of the ∞
design, is depicted in Figure 7. cT = [1, 0] is responsible for selecting Q1(t). P1, and P2 denote dynamical systems with only
the first and second input channel of the nominal plant P, respectively. By applying the weighting and the compensator,

the augmented plant  =
[
11 12
21 22

]

can be formalized as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(t)
zu(t)
zp(t)
e(t)
ỹ(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 WrP1 0 P2

0 0 0 Wu

−cTWΔWp Wr(1 − cTP1)Wp W
̂QWp −cTP2Wp

−cTWΔ Wr(1 − cTP1) W
̂Q −cTP2

WΔ WrP1 0 P2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

d(t)
r(t)
̂Q2(t)
u(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (30)
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VARGA et al. 13

The closed-loop transfer function from the exogenous signals to the performance outputs can be expressed provided
that the inverse (I − 22K)−1 exists via a lower LFT as:

⎡
⎢
⎢
⎢
⎣

y(t)
zu(t)
zp(t)

⎤
⎥
⎥
⎥
⎦

= l( ,K)
⎡
⎢
⎢
⎢
⎣

d(t)
r(t)
̂Q2(t)

⎤
⎥
⎥
⎥
⎦

, (31)

where

l( ,K) = 11 + 12K(I − 22K)−1
21. (32)

In∞ control, the aim is finding a controller K that minimizes the impact of the disturbance on the performance output.
The induced (worst-case) norm:

min
K

||l( ,K)||∞ < 𝛾, (33)

where 𝛾 is a prescribed disturbance attenuation level, progressively lowered by iteration5,27* .
The resulting controller is an LTI system with three inputs uc(t) ∈ R3 (ỹ(t) ∈ �, e(t)) and one output u(t) ∈ R1. The

synthesized controller is given in state-space form as

ẋc(t) = Acxc(t) + Buc(t),

u(t) = cT
c xc(t) + Dcuc(t), (34)

where the dynamical controller has several internal states xc(t). The controller is characterized by the matrices Ac (state
matrix), Bc (input matrix, cT

c (output matrix), and Dc (feed-through matrix). Sizes of these matrices depend on the num-
ber of internal states of the controller which is the result of the iterative control design process.27 When employing the
controller in the learning context, the internal states are reset after each episode.

Next, the controlled learning loss is computed with the same assumptions as for the2 case. The controlled evolution
of Q1(t) is

𝜕Q1(t)
𝜕t

= Θ1 (r(t) + 𝛾Q2(t) − Q1(t) + u(t)) . (35)

If the target is independent of 𝜃 and the control signal u(t) only indirectly depends on the states of the learning agent, the
controlled quadratic loss can be written as

∞ =
1
2

(

r(t) + 𝛾max
a

Q(s(t + 1), a, 𝜃) − Q(s(t), a(t), 𝜃) + u(t)
)2
, (36)

by using the chain-rule on Equation (35) and integrating it w.r.t. 𝜃.

4.3 Fixed-structure output-feedback∞ controller design

With the previously presented method, a dynamical ∞ controller can be achieved in a general LTI structure. With the
same technique, it is possible to optimize the free parameters of a fixed-structure controller. That is define a structure
for K with tuneable parameters. This tuning minimizes the∞ norm of the closed-loop transfer function, resulting in a
suboptimal controller. On the other hand, learning is in the low-frequency range (Figure 4). Therefore, a static controller
in place of a dynamic one should perform identically well. In the fixed-structure∞ controller design, output-feedback
gains k1, k2, and k3

s
are sought, such that the closed-loop system is stable and the performance outputs (tracking error

(zp(t)), control energy (zu(t))) are minimized. Thus, the output u(t) of the fixed-structure output-feedback∞ controller is

u(t) = −k1Q1(t) − k2Q2(t) + k3xe(t). (37)

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6457 by C

halm
ers U

niversity O
f T

echnology, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 VARGA et al.

F I G U R E 8 Illustration of the environments. Left: Cartpole, middle: Acrobot, right: mountain car.

The loss function for the ∞ controlled learning can be achieved with the same steps as for the 2 controller
(Equations 25–27), and its structure will be similar too:

∞,f =
1

2(1 + k1)

(

(r(t) + (𝛾 − k2)max
a

Q(s(t + 1), a, 𝜃) − (1 + k1)Q(s(t), a(t), 𝜃) + k3xe(t)
)2
. (38)

The difference is the way how the controller gains are achieved. The gains in the fixed-structure∞ controller consider
the uncertainties implicitly. Thus they do not have to be recomputed every step. Therefore, it combines the best of two
worlds: the simplicity of the 2 controller and the robustness of the dynamical ∞ controller. On the other hand, it is
suboptimal compared to the dynamical∞ controller.

Remark 11 (Tuneable parameters, heuristics, and transparency). Reinforcement learning falls into the category of heuris-
tics. In classical RL methods, the effect of modifying a tuneable parameter on learning is often unclear (e.g., NN structure,
learning rate, replay buffer size, etc.). With the robust control approach it is possible to make such parameter tuning more
transparent and procedural.

The NTK-based prediction of Q-value change is only valid for shallow and wide NNs with a low learning rate.
This narrows down the choice of the function approximator. Value of the NTK (characterizing the nominal model
and the parametric uncertainty) is determined by two factors: the structure of the NN and the magnitude of the
environment states. In addition, the control-oriented tuning methodology is transparent and has well-established liter-
ature, making weight selection straightforward. Regardless of the environment, learning is in the low-frequency range,
making the selection of Wu and Wp easier. The constant weights WΔ, Wr, and W

̂Q are used to normalize the input
signals.

The absence of target network and randomized replay memory abolishes some additional heuristics.

5 EXPERIMENTS

The three algorithms are tested on three environments from the OpenAI Gym with an increasing complexity: Cartpole,33

Acrobot,34 and mountain car35 (Figure 8). On each domain, the proposed algorithms are benchmarked against double
deep Q-learning.21 In every experiment, the learning agent is a 2 layer fully-connected ReLU network with 2500 neu-
rons with bias terms and appropriate input-output sizes. That is to comply with the assumptions in Reference 19, that
is a shallow and wide neural network. The learning rate is 𝛼 = 0.00005, and the discount factor 𝛾 = 1. In the following
subsections, each environment will be described in detail, and the performance of the agents will be evaluated.

5.1 Cartpole

The cartpole problem (also known as the inverted pendulum) is a common benchmark in control theory. The goal is to
balance a pole to remain upright by horizontally moving the cart. The agent in this environment can take two actions:
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VARGA et al. 15

F I G U R E 9 Learning with different methods in the Cartpole environment, average of 10 random seeds.

F I G U R E 10 Loss in in the Cartpole environment with∞ control, average of 10 random seeds.

accelerating the cart left (a0) or right (a1). The state-space is characterized by four features: the position of the cart,
its velocity, the pole angle, and the pole angular velocity. In the reinforcement learning setting, the agent’s goal is to
balance the pole as long as possible. A +1 reward is given for every discrete step if the pole is in vertical direction, and the
episode ends if the pole falls or successfully keeps balancing for 200 steps. OpenAI defines the pass criteria for this Gym
environment as an average reward of 195 for 100 episodes.

Figure 9 depicts the convergence of the deep Q-learning augmented with three different controllers in the cartpole
environment. Both algorithms can solve the environment and eventually reach the target moving average reward of 195.
The dynamic ∞ converges the fastest with the least standard deviation, followed by the fixed-structure ∞ controller
(denoted by ∞,f in the plots), and the DDQN. The 2-controlled agent gets stuck in a local optimum. While designing
the 2 controller, an interesting observation was made. The diagonal elements of weighting matrix Wx penalize Q1(t),
Q2(t), and xe(t), respectively. The best result could be achieved when the second element, that is, the one penalizing the
magnitude of Q2(t)was high. This suggests, while maintaining stability and tracking, the change of Q2(t) (the target) was
slowed down, yielding a similar (but continuous) behavior to learning with a target network. Despite its good perfor-
mance, the2 controller has obvious drawbacks: learning is stabilized only in a local, one-step-ahead sense. In addition,
the NTK has to be recomputed after every step, making it computationally intensive. On the other hand, it eliminates the
need to give a bound for Θ1, and Θ2, which is crucial for the two robust approaches. In addition, the standard deviation
decreases, and oscillations are eliminated as the learning progresses. This is not the case for DDQN, which is known to
be prone to oscillations.36

Next, an in-depth analysis of the ∞-controlled learning is performed in terms of loss, Q value evolution (track-
ing), control input, and the range of the parameter variation. Naturally, as the agent’s policy converges to the optimal
one, the loss decreases, Figure 10. Since the NN is overparametrized, the loss will become near-zero. However, there are
some peaks: the loss can become very high when the agent encounters a previously unvisited state (via exploration or a
near-failure state). That is because the agent does not know what to do and takes a wrong action.

Q values are the states of the learning model. Figure 11 depicts the convergence of Q1(t) and Q2(t). It can be observed
that Q-values converge to a much lower value than what one would expect in a tabular Q-learning case. Since the max-
imum cumulated reward is 200, according to Equation (1) the true Q-values for an optimal state-action pair should be
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16 VARGA et al.

(A) (B)

F I G U R E 11 Q-values in the Cartpole environment with∞ controller. (A) 500 episodes; (B) one episode

(A) (B)

F I G U R E 12 Control input u(t) in the Cartpole environment with∞ controller. (A) 500 episodes; (B) one episode

200 (assuming 𝛾 = 1). On the other hand, it is well known that DQN tends to overestimate Q-values. The Q-values for
the DDQN benchmark converge to ≈295. The bias in the controlled learning stems from two sources: one is the smooth-
ing property of function approximation. Q1(t) and Q2(t) are very close to each other, confirming the smoothness of the
Q-function. Additionally, the controller integrates the tracking error. This has a substantial smoothing property on the
Q-function too. In addition, the control input u(t) acts as a dynamically changing bias in the loss (Equation 36). Zooming
in to one episode (Figure 11B), Only some minor oscillations of Q1(t) could be seen. That is because Q1(t) equals Q2(t)’s
previous value if the agent follows a greedy policy. At the beginning of the episode, it is not the case because the control
input is high at that time which makes the two Q values drift from each other, see Figure 12B. The control input (Figure 12)
has peaks at the start of each episode. It is due to the reset of the controller’s internal states. Note that the control input
peaks are in the same magnitude range as the actual Q-values. Finally, Figure 13 shows the NTK values during learning,
with the bounds prescribed in Figure 3. It is outside the prescribed range in the first few episodes, where exploration is
more significant. After the learning it starts converging, Θ1 values remain within the bounds, used for robust controller
design.

5.2 Acrobot

This environment is slightly more complex than the Cartpole. It is an under-actuated dynamical system where the goal
is swinging up a double pendulum using an actuated joint between the two links. The environment has six continuous
states (Cartesian coordinates of the pole ends and their angular velocities) and three discrete actions (positive or negative
torque, or none). The episode is successful if the lower part reaches a certain height. For every step spent trying to swing
the pole up, the agent gets −1 reward.

In this environment, the controlled agents are on par with DDQN; see Figure 14 except for the 2-controlled one. It
gets stuck in a local optimum in one of the random seeds, pulling the average score down. Oscillations are not significant
in either case.
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VARGA et al. 17

F I G U R E 13 Θ1 values in the Cartpole environment with∞ controller.

F I G U R E 14 Learning with different methods in the Acrobot environment, average of 10 random seeds.

F I G U R E 15 Learning with different methods in the mountain car environment, average of 10 random seeds.

5.3 Mountain car

The mountain car environment is the epitome of a sparse reward environment. “A car is on a one-dimensional track,
positioned between two ‘mountains.’ The goal is to drive up the mountain on the right; however, the car’s engine is not
strong enough to scale the mountain in a single pass. Therefore, the only way to succeed is to drive back and forth to
build up momentum.”35 Although it has small state-space (longitudinal position and velocity of the car) and action space
(accelerate to the left, right, or none), the agent only gets −1 reward every step it spends in the environment. The episode
terminates if the car reaches its goal on top of the mountain or fails for 200 steps. Therefore, successful exploration is the
key in this environment: the agent must find the top of the mountain via exploration as soon as possible.

The proposed cascade controllers can ensure convergence, but they do not interfere with the exploration strategy.
Therefore, the controlled agents start getting better scores at the same time as the benchmark. The controlled methods
reach a plateau faster. On the other hand, this plateau is lower for the 2 and ∞ controllers than the DDQN. The
dynamical∞ controller is smoother and reaches a similar average score to the benchmark (Figure 15).
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18 VARGA et al.

T A B L E 1 Final scores (after 2000 episodes of learning) in every environment.

Cartpole Acrobot Mountain car

2 187.92 ± 2.47 −146.44 ± 45.09 −140.57 ± 5.07

∞,f 192.59 ± 7.13 −99.93 ± 3.79 −141.41 ± 8.38

∞ 199.37 ± 1.21 −111.73 ± 13.17 −134.45 ± 8.63

DDQN 197.56 ± 7.37 −98.04 ± 8.58 −135.79 ± 9.41

Note: Best scores are highlighted in bold.

6 CONCLUSIONS

In this article, deep Q-learning has been described as an uncertain LTI system, relying on some properties of the NTK,
and assuming a deep and shallow neural network. This dynamical approach enables tackling deep Q-learning from a
different perspective. Instead of employing random experience replay or a target network, cascade stabilizing controllers
were formulated. For controller design, first, the magnitude of uncertainties (NTK parametric variation, uncertainty in the
states, and exploration) have been evaluated. Then, the input and output signals in frequency domain have been analyzed.
Simulations concluded that signals are in the low-frequency domain, and uncertainties can be bounded. Therefore, three
controllers: 2, ∞, and fixed-structure ∞ have been proposed. The 2 controller cannot handle uncertainties and
must be recomputed every step, only guaranteeing local stability. The ∞ controller is developed in frequency domain
considering uncertainties too. Low-frequency of the signals makes it possible to synthesize a controller with constant
gains that has matching performance to the dynamical ∞ controller. The integrating property of the proposed cascade
controllers has a smoothing effect on the Q-function, acting as a bias in the loss function. Therefore, learned Q-values
will be offset from the theoretical (tabular) ones. On the other hand, the proposed approach requires fewer heuristics and
provides more transparency. Assumptions for the NTK and the control-oriented weighting make the agent’s design more
straightforward. In addition, the absence of the target network and randomized replay memory obviates further the need
for heuristics. The synthesized controlled learning methods were tested in three OpenAI Gym environments. Results are
summarized numerically in Table 1. It can be concluded that the dynamical∞ is outperforms the DDQN in Cartpole and
mountain car, while it fails in the Acrobot environment. The non-dynamical (2 controller and the fixed-structure ∞
controller with limited dynamics cannot compete with the benchmark. In terms of environment interactions, learning
can be sped up significantly, while guaranteeing convergent behavior with the controlled loss functions.
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