
Spatial–temporal load balancing and coordination of multi-robot stations

Downloaded from: https://research.chalmers.se, 2025-07-01 20:41 UTC

Citation for the original published paper (version of record):
Åblad, E., Spensieri, D., Bohlin, R. et al (2023). Spatial–temporal load balancing and coordination of
multi-robot stations. IEEE Transactions on Automation Science and Engineering, 20(4): 2203-2214.
http://dx.doi.org/10.1109/TASE.2022.3214567

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Spatial–Temporal Load Balancing and Coordination
of Multi-Robot Stations

Edvin Åblad , Domenico Spensieri , Robert Bohlin , Johan S. Carlson,

and Ann-Brith Strömberg

Abstract— Cycle time minimization in multi-robot manufac-
turing stations is computationally challenging. This is due to
the many aspects that need to be accounted for, including
assigning process tasks to robots, specifying robot configurations
at tasks, sequencing, planning motions, and coordinating the
robots to avoid collisions. Hence, to find good solutions, often
some assumptions are made and/or the problem is divided
into subproblems—often limiting the set of solutions with the
risk of excluding the best ones. In this study, we generalize
the completely disjoint solution method that challenges the so-
called shortest path assumption, i.e., to let each robot use its
shortest collision-free motion between any two configurations,
regardless of the other robots. We devise a generalized method
called spatial–temporal load balancing and coordination, which
prevents robot–robot collisions by a sequence of disjoint solutions,
guiding task assignments, sequences, and robot motions (path
and velocity). We study both artificial and industrial instances.
For some of them, our suggested method is superior to methods
based on the shortest path assumption, with as much as a 28%
reduction in cycle time. Moreover, for problem instances with no
special structure, we establish that the shortest path assumption
is often reasonable.

Note to Practitioners—This work is motivated by a particular
industrial problem instance of a spot-welding station with two
robots and where welds are placed along the edge of a workpiece.
Due to the special geometry of the instance one robot can only
perform welds in the middle of the edge and the other only at the
ends. As a result, if the robots use their shortest motions between
welds, then waiting times are required to prevent collisions.
Moreover, the tasks are too close to each other to allow for a
completely disjoint solution. Hence, we suggest a method based
on sequence of disjoint solutions.

Index Terms— Robotic assembly, automotive manufacturing,
robot programming, discrete optimization, generalized Voronoi
diagram, path planning, coordination.

Manuscript received 9 June 2022; revised 16 September 2022;
accepted 10 October 2022. This article was recommended for publication
by Associate Editor L. Bascetta and Editor C. Seatzu upon evaluation of the
reviewers’ comments. This work was supported in part by the Project Smart
Assembly 4.0 through the Swedish Foundation for Strategic Research (SSF)
under Project RIT15-0025 and in part by the Sustainable Production Initiative
and the Production Area of Advance at Chalmers University of Technology.
(Corresponding author: Edvin Åblad.)

Edvin Åblad, Domenico Spensieri, Robert Bohlin, and Johan S. Carlson are
with the Fraunhofer-Chalmers Research Centre for Industrial Mathematics,
Geometry and Motion Planning Group, 41288 Gothenburg, Sweden (e-mail:
edvin.ablad@fcc.chalmers.se).

Ann-Brith Strömberg is with the Department of Mathematical Sciences,
Chalmers University of Technology and University of Gothenburg, 412 58
Gothenburg, Sweden.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TASE.2022.3214567.

Digital Object Identifier 10.1109/TASE.2022.3214567

Fig. 1. Two robots (A and B) with spot weld tools stationed at a workpiece
with spot weld tasks (blue/red markers). Robot B is configured at its, so-
called, home position; Robot A is in a configuration valid for a specific spot
weld task on the workpiece. Both robots reach the blue tasks, but only the
right reaches the red ones. For clarity, the surrounding geometries (e.g., floors)
are left out. Instance courtesy of Scania AB.

I. INTRODUCTION

TODAY’S manufacturing systems have an increasing
demand for automatic programming and optimization

support. Besides the classical demands on throughput and
lead time, there is a recent trend towards a product individ-
ualization. By accounting for minor deviations in the parts
to be assembled, the quality of the overall product can be
increased by optimizing the assembly process for each individ-
ual product, see [1]. Such an individual process contrasts the
established approach of mass production, in which the same
process is used for a series of products and thus the parts to
assemble must have a high quality, which is costly.

We consider the automatic optimization of a robotic cell,
consisting of multiple robotic arms that need to perform a
set of tasks on a workpiece. We will refer to this as the
load balancing problem, and the finish time of the last robot
(aka. makespan or cycle time) is to be minimized. In an
automotive production line different kinds of tasks are of
interest, for example inspection, sealing, and various types
of welding operations; see Figure 1. However, many of the
solution methods for the load balancing problem are rather
independent of the type of task, e.g., even though [2] refers
to this problem as the welding cell problem their main idea
applies to other types of tasks. Some aspects of the tasks, such
as tool positioning, must, however, be specified. For example,
weld operations are free to rotate but need to be placed
orthogonally to the workpiece surface, whereas inspection
ones are allowed to deviate from a perfect orthogonal angle.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-4627-4360
https://orcid.org/0000-0002-0124-9022
https://orcid.org/0000-0003-0961-8811
https://orcid.org/0000-0003-1962-7279

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Another aspect concerns whether the robot is stationary during
the task (e.g., inspection) or if the task involves a large
robot motion (e.g., sealing). To simplify the presentation,
we assume that for a robot to perform a specific task, there is
a (possibly empty) discrete set of possible configurations of
the robot’s joints. Our method extends also to tasks involving
tool motions.

A major complication of the load balancing problem con-
sists of preventing pairs of robots from colliding. Thus,
a solution to the load balancing problem includes (in addition
to scheduling, i.e., the robot-task assignment, configurations
choice at tasks, and task sequences) the robots’ motions.
A common assumption simplifying the problem is that the
best motion for each robot is the shortest collision-free path
between its configurations in the static environment (e.g., [2],
[3], and [4]). To prevent robot–robot collisions, task sequences
and motion velocities are then specified. However, a robot’s
detour from its shortest path may be beneficial in order
to prevent robot–robot collisions. In some scenarios this is
important due to two facts:

• If the shortest paths are used, then all solutions might
include long waiting times for the robots.

• We often consider robots with six revolute joints, see
Figure 1. The revolute velocity of each joint is limited,
hence it is likely that there are many motions with (near)
minimal duration, i.e., many shortest paths.

In this article, we challenge the use of the established shortest
path assumption when scheduling, initially motivated by an
industrial instance for which this assumption was unsuitable,
see Figure 1. In this instance, robot A must perform (red) tasks
at both ends of the workpiece’s edge. Thus, when moving to
the other end, it must use a detour to avoid robot B, which
performs tasks in the middle of the workpiece’s edge.

We suggest a generalization of our method [5], in which the
robots are partitioned into disjoint zones of the workstation by
use of a static partitioning surface; hence pairs of robots cannot
collide. However, that method cannot be used on all problem
instances since there is no guarantee that a static partition
exists or that it allows for a good enough makespan. To resolve
this issue, we suggest a method that enables a dynamic parti-
tion. This is motivated by the fact that if at all times the robots
are free of collision, then there exists a dynamic partition
of the workspace, and vice versa. Moreover, the dynamic
partition and the robots’ task sequences depends on each other.
The method thus unifies the two computationally challenging
aspects: scheduling and preventing robot–robot collisions.

As a consequence, the new method does not guaran-
tee to find an optimal dynamic partition. Moreover, even
though speculating that a more efficient implementation exists,
we suspect that not utilizing the shortest path assumption will
inevitably increase the required computational effort. As a
result, we still believe that one should apply the shortest path
assumption for most of the industrial encountered instances.
Our new method is meant for challenging instances in which
the shortest path assumption results in poor solutions.

The outline of the article is as follows. Related work is
reviewed in Section II. In Section III the suggested method

and its optimization models are presented and motivated.
In Section IV we present the computational tests and results,
which compare the method with a state-of-the-art software [6]
on both (motivational) artificial and industrial instances.

II. RELATED WORK

The general load balancing problem of a multi-robot station
has lately received a lot of attention. However, not only solu-
tion methods differ, but also the problem formulation. First,
we differentiate from the so-called line balancing problems
(e.g., [7]): these often consider complete production/assembly
lines, in which the robots can have completely different
purposes. In such a setting the main complication is often
represented by constraints, such as precedence, between tasks.
However, the problem is often less detailed and does not
include motion planning. An example presented in [8] assumes
a constant duration between different groups of tasks and that
robots can safely work simultaneously on these groups. Other
examples that study the load balancing problem are presented
in [9] and [10]: in the former the motion planning problem is
disregarded and in the latter the workpiece is roughly a plane
and thus the motions are easy to compute.

However, the robots’ motions have a major impact on the
makespan and on the feasibility of the problem. The motion
planning problem is PSPACE-complete, and it is reasonable
to assume that it has an exponential computational complexity
with respect to the number of degrees of freedom (robot
joints) (see [11]). Thus, planning a motion between two
configurations in a static environment is a challenge, and
proving a motion to be optimal (or that no motion exists) is not
reasonable for a general instance. Therefore, sampling-based
algorithms such as [12] or [13] are often used to compute
the motions. On some instances (or for some robots) exact
methods based on optimal-control such as [14] can be applied.

The complicating fact that the load balancing problem
is influenced by the robots’ motions needs to be handled.
A common approach is to apply an algorithm that does not
require planning all motions: it relies on an initial bounding
of the motion duration and the assumption that no collisions
occur. Then, the model is iteratively refined by planning a
subset of motions: finding the actual durations and collisions.
This can be done in different ways: in [3] a lower bounding
problem is iteratively solved, the motions in the solution are
planned and the lower bounding problem updated. In [2] a
so-called branch-and-price method is used to detect which
motions to plan and how to combine planned sequences into
a solution. In [15] collision-free paths are precomputed and
a mixed integer linear model is solved to minimize the cost
of the station for a given makespan, where so-called big-M
constraints model robot–robot collisions. In [4] a so-called
genetic algorithm is purposed for both the assignment and
sequencing of tasks as well as for the planning of the motions.
All these, however, utilize the shortest path assumption.

In order to find a feasible solution in which robots do not
collide, it is common to optimize the velocities of the robots
and to fix the sequences and geometric paths of the motions;
this optimization is often referred to as coordination (see [16]).
A similar approach is to allow waiting in the optimization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ÅBLAD et al.: SPATIAL–TEMPORAL LOAD BALANCING AND COORDINATION OF MULTI-ROBOT STATIONS 3

problem that is solved to assign tasks and sequences, and
to prohibit motions that cannot be used simultaneously (see,
e.g., [2]). However, there are methods that prevent robot–robot
collisions by modifying the geometric paths of the motions,
e.g., the so-called prioritized planning approach [17], in which
the motions are planned in a specific order of the robots,
and are such that the already planned motions are avoided.
The prioritized planning idea is extended in [18] that also
coordinates previously planned motions simultaneously as
the new robot path is planned. A further extension is to
simultaneously plan motions for multiple robots as in [19]
and [20]. In [21] also the fixed sequences are challenged by
considering some robot–robot collisions during scheduling,
the remaining robot–robot collisions are prevented by using
multi-robot motion planning in a post processing step.

Another approach to avoid robot–robot collisions, suggested
in [5], computes a static partition of the workstation, and each
robot is always contained in a private zone. The partition is
suggested to be a so-called generalized Voronoi diagram using
the robots as so-called generators, see [22]. The use of a static
partition is also used in [23]. To summarize, currently there are
methods that coordinate robots by optimizing their velocities,
i.e., temporal coordination, and methods that coordinate robots
by separating them in space, i.e., spatial coordination, and
some methods that exploit both aspects to plan motions.
However, to the best of our knowledge, there is no method
that exploits both the temporal and the spatial aspects for the
load balancing problem considering a cluttered environment.

We apply a method similar to our previous work [3], in the
sense that an optimization problem is iteratively solved to
find task assignments (corresponding robot configurations) and
sequences. In each iteration the model is updated, mainly
by the new durations of the motions. In [3] the problem to
solve is a so-called Min-Max Multiple Generalized Travelling
Salesperson Problem, where min-max defines the makespan
objective, multiple agents (i.e., robots) are considered, and
generalized means that for each pair of task and agent there can
be multiple configurations. However, to allow for the robots to
be partitioned into disjoint zones, we also consider set packing
constraints as in [5]. Our model is inspired by models of the
generalized TSP, see e.g., [24].

III. SPATIAL–TEMPORAL LOAD BALANCING AND

COORDINATION

We generalize the concept of a workspace partition intro-
duced in [5], in which the robots are separated into disjoint
zones by a partitioning surface. The main motivation behind
our former approach is to implicitly force the robots to not
take shortcuts that cause needless waiting times. Our new
approach includes a coarse time-indexing, in each time-period
the workspace is partitioned such that consecutive partitions
slightly overlap in time, to allow for the robots to safely
transition between time-periods without necessarily waiting
on another. To build these partitions and to optimize the
corresponding robots’ task sequences, we suggest an algorithm
with two main stages and corresponding optimization models.

The algorithm is called spatial–temporal load balancing
and coordination algorithm (ST-algorithm) to indicate that

Fig. 2. Main components, corresponding subsections (A–D), and two stages
of our spatial–temporal load balancing and coordination algorithm.

both the spatial and temporal domains are utilized; its flow-
chart is depicted in Figure 2. Additionally, algorithms based
on the shortest path assumption will be referred to as SP-
algorithms. Before the main stages of the ST-algorithm the
initialization step consists of finding all colliding pairs of robot
configurations at tasks, and for each robot to compute lower
bounds on the durations of the collision-free motions between
its configurations at tasks (see Section III-A for details and
Figure 3 for an illustration of colliding configurations).

The purpose of stage I is to find multiple candidate
(dynamic) partitions, of various numbers of time-periods.
This is done by iteratively solving the stage I optimization
model that selects a robot and its configuration for each
task. Additionally, all robot configurations used in the same
time-period need to be pairwise collision-free (the first config-
urations also being collision-free w.r.t. all configurations in the
previous time-period). Moreover, in stage I the makespan is
approximated by letting the duration between a robot’s tasks
to be the minimum duration between any configurations of
the corresponding tasks. This simplification enables the stage I
model to be efficiently solved with a reasonable accuracy. The
blocks of stage I are iterated, resulting in many solutions to the
stage I model by updating the lower bounds on the duration
of motions and by prohibiting past solutions; the details are
described in Section III-B. Each stage I solution generates a
candidate (dynamic) partition that is static in each time-period.

In stage II of the ST-algorithm each candidate from stage I
(and the corresponding static partitions) is evaluated. For a
given time-period and partition only some of the robots’
configurations do not collide with the partition; these con-
figurations are guaranteed to be collision-free w.r.t. the con-
figurations of the other robots. Stage II thus has the purpose
to optimize the robots’ task sequences given that the corre-
sponding motions respect the given partitions. In this stage
it is determined in which time-period and by which robot

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 3. Illustration of the discrete sets of robot configurations available for
the tasks, an assignment that only requires a single time-period, and edges
representing pairwise colliding configurations.

a task should be performed, w.r.t. the partitions. Moreover,
in contrast to the stage I problem, each robot’s task sequence
is modelled as a path between specific configurations at tasks
(instead of only specifying the tasks) making the resulting
makespan more accurate. This is possible since the partitions
prohibit robots from colliding and since only a subset of
the robots’ task-configurations are accepted by the partitions.
Note that in stage II the fastest motion for a robot has been
decoupled from the other robots’ motions, thus motivating an
accurate modelling of the makespan. The details of stage II
are described in Section III-D.

A. Notation and Initialization
The initial step in the ST-algorithm (block A in Figure 2) is

to detect collisions between pairs of robots’ configurations at
different tasks. We introduce I as the set of robots, J as the
set of tasks, and Gi

j as the set of configurations available for
robot i ∈ I at task j ∈ J . In addition, the set Ki := ∪ j∈JGi

j ,
denotes the set of configurations associated with robot i ∈ I.

The output of the initial step in the ST-algorithm is the
set P of all pairwise colliding configurations (ik, rl) denoting
robot i in configuration k ∈ Ki colliding with robot r in
configuration l ∈ Kr , see Figure 3. Moreover, let C ∈ C be a
set of cliques covering all edges in P (see Section III-B1 for
details). Thanks to efficient collision queries [25], the set P of
colliding configurations can be constructed in reasonable time,
assuming that the number of configurations |Ki | for each robot
i ∈ I is not too large; in our industrial instances these are in
the order of thousands. Note that building the sets Ki is often
a complication all of its own (see [26, §4.1]) and we note that
apart from the initialization our method is quite insensitive to
the size of Ki , see also Section III-D3.

To introduce the main decision variables, we first let T =
{1, . . . , T } to be the set of time-periods, each corresponding to
a partition. Then let the decision variable x i

tk ∈ {0, 1} equals
to one if robot i ∈ I uses configuration k ∈ Ki in time-
period t ∈ T , except for the first configuration in time-period
t ∈ T , which is represented by the variable x fi

tk ∈ {0, 1}. Let
pi

k denote the processing time of performing a task by robot
i in configuration k ∈ K. Moreover, we let zi

t denote the time
at which robot i ∈ I is finished with its work assigned in
time-period t ∈ T \ {T } and can start the work in the next
time-period. Finally, we let z denote the total makespan.

B. Generating Candidate Partitions (Stage I)
In order to state the partitioning problem (block B in

Figure 2) as a mixed integer linear optimization problem
(MILP), we need to introduce the path variables associated
with stage I. Let y1i

te ∈ {0, 1} represent the decision whether

Fig. 4. Illustration of a solution to the stage I problem (1). The used sets
Gi

j are visualized, but several robots can reach most tasks. The colliding
configurations are not visualized (cf. Figure 3); a solution has no colliding
configurations within a time-period and the start of the next time-period.

to use the undirected edge e = (j, q) ∈ E ⊂ J × J ,
i.e., that robot i ∈ I moves from task j to task q in
time-period t . To simplify the notation, interpret [t + 1] as
(t mod T) + 1, e.g., the time-period following T is 1. Also,
let δ(S) := {(j, q) ∈ E | j ∈ S, q /∈ S} be the set edges to
neighbour tasks of S ⊂ J .

The time c1i
e of using edge y1i

te is chosen as the minimum
motion time for the robot between any two configurations
in the respective two tasks of e. This time is a valid lower
bound for the more accurate time that would use path vari-
ables between configurations instead of between tasks, see
Section III-B2 for further motivation of this simplification.
At this stage, the robots’ motions are planned w.r.t. the static
environment, which is quite computationally expensive, hence
the motion durations are bounded from below by using the
straight path. These bounds are used until the corresponding
motions are planned and their durations known, cf. [3].

The stage I problem (see Figure 4) is then to

minimize z (1a)

s.t.
�
k∈Ki

x fi
tk = 1, i ∈ I, t ∈ T , (1b)

�
t∈T

�
i∈I

�
k∈Gi

j

(x fi
tk + x i

tk) = 1, j ∈ J , (1c)

�
k∈Ki

pi
k(x fi

tk +x i
tk)+

�
e∈E

c1i
e y1i

te ≤ zi
t−zi

t−1, t ∈T , i ∈I, (1d)

zi
t−1 +

�
k∈Ki

pi
k x fi

tk ≥ zr
t−1, i, r ∈ I, t ∈ T , (1e)

�
(ik)∈C

(x fi
tk + x i

tk + x fi
[t+1]k) ≤ 1, C ∈ C , t ∈ T , (1f)

�
k∈Gi

j

(x fi
tk + 2x i

tk + x fi
[t+1]k) =

�
e∈δ(j)

y1i
te ,

t ∈ T , i ∈ I, j ∈ J , (1g)�
k∈Gi

j

2x i
tk −

�
q∈S\{ j}

�
k∈Gi

q

(x fi
tk + x fi

[t+1]k) ≤
�

e∈δ(S)

y1i
te ,

t ∈ T , i ∈ I, j ∈ S ⊂ J , (1h)

zi
0 = 0, zi

T ≤ z, i ∈ I, (1i)

x fi
tk, x i

tk, y1i
te ∈ {0, 1}, t ∈ T , k ∈ Ki , i ∈ I, e ∈ E . (1j)

The objective function (1a) expresses the makespan minimiza-
tion, (1d) express the duration of each robot in each time-
period, and (1e) enforce waiting times between time-periods
so that robot i must wait if it finishes its first task before
robot r enters the same time-period. Constraints (1b) ensure
that each robot has a first task in each time-period and (1c)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ÅBLAD et al.: SPATIAL–TEMPORAL LOAD BALANCING AND COORDINATION OF MULTI-ROBOT STATIONS 5

enforce that each task is assigned. The set packing constraints
(1f) ensure that colliding configurations cannot be assigned to
the same time-period or be first in the following time-period.
Constraints (1g) connect the symmetric path variables with
the assigned tasks, expressing that y1i

t· should form a path for
robot i ∈ I over its assigned tasks in time-period t ∈ T with
ends in the first tasks of time-periods t and t + 1. Constraints
(1h) (inspired by [24]) eliminate subtours by enforcing that if
a path visits a task in a set S of tasks, then the path needs
to enter and leave this set, unless the set contains the ends
of the path. As usual with subtour elimination constraints,
these are generated as needed by the solver. Finally, note that
in [24] there are many families of valid inequalities that could
be adapted to be used in (1). However, our preliminary tests
did not find any additional valid inequalities that substantially
accelerated the solution process.

1) Generating the Clique Cover: The goal is to compute
a clique cover [27] that covers the edges in P with maximal
cliques of nodes (sets of mutually exclusive configurations),
i.e., colliding configurations or configurations of the same task.
To achieve this, the algorithm from [27] may be used, but we
used a simple algorithm that first greedily combines uncovered
edges into cliques and when all edges are covered by cliques,
the cliques are made maximal by including covered edges.

Preliminary tests showed that the resulting cover was better
than the trivial cover with a pair of nodes for each edge.
Moreover, we tested some other clique covers (e.g., [27]) and
found no significant difference in solution time of model (1)
for our instances. We suspect that this is due to the structure of
the collision graph P , in which two similar configurations are
likely to collide with the same configurations of other robots.
Moreover, it is often the robot’s tool causing a collision; in
that case all configurations of the same robot and task will
have many colliding configurations in common.

2) Dominance Criterion: One main reason for using the
path variables only between tasks is that a dominance criterion
can be effectively applied, and for our industrial instances
such criterion removes sufficiently many variables to make the
model solvable in reasonable time. The key observation is that
the only difference between two configurations k, l ∈ Gi

j for
some robot i ∈ I and task j ∈ J , are their processing times
and their sets of colliding configurations, i.e., the set δc(ik) :=
{rl | (ik, rl) ∈ P}. Hence, k dominates configuration l (i.e., l
can be removed) if it holds that

pi
k ≤ pi

l and δc(ik) ⊆ δc(il). (2)

This dominance criterion is applied iteratively until no more
variables can be removed from Gi

j .
For our instances the criterion (2) is advantageous since

the processing times are usually all equal. Moreover, for the
geometry of our industrial instances, the set of configurations
for each robot and task is often reduced to a singleton,
i.e., |Gi

j | � 1. In contrast, if the motion durations between
configurations (not between tasks) are considered then a direct
generalization of (2) does almost never apply, the reason for
this being that the motion times vary a lot, especially between
different so-called inverse configurations.

The efficiency of dominance criterion (2) allows for the
original set of configurations to be large, and, if needed,

to closely represent a continuous set such as robot tool
rotations or deviations. Recall Section III-A.

3) Decide the Number of Time-Periods and Generate Mul-
tiple Candidates: In model (1) the number of time-periods
is constant, however, since the model requires a first task for
each robot and time-period, it is beneficial to limit the number
of time-periods. Moreover, the duration of each time-period
as computed by (1d) is an underestimate, the true motions
and their durations depend on the configurations and on the
motions of other robots. Hence, the optimal objective value
of model (1) is only a lower bound on the makespan and
hence it is beneficial to find several different solutions with
low objective values.

To choose the parameter T , we suggest solving model (1)
for multiple values of T , e.g., increasing from T = 1 until the
objective value grows too large. For our instances this often
occurs for relatively few time-periods T � 6. To speed up
the process, we suggest limiting the solution time, and then
choosing the most promising value of T for a longer run.

Note that model (1) is quite pessimistic, in the sense that a
robot may not continue in the next time-period until all other
robots have reached the same time-period, cf. constraints (1e).
Relaxing these constraints instead yields an optimistic model
where the robots never wait, which may be feasible and not
cause collisions. It is not clear which of these variants that
yields the best solution to the complete load balancing problem
when the waiting times are optimized, see Section III-D2.
To resolve this, we suggest solving model (1) with and without
the waiting times constraints (1e).

Moreover, we suggest solving the model multiple times,
as indicated in Figure 2. In each iteration, we make the model
more accurate by planning the motions of the robots for
the decided tasks sequences and updating the corresponding
durations. However, as the durations in (1d) are the minimum
between all pairs of configurations between two tasks, this
does not perturb the instance much. Thus, to exclude previous
solutions, we suggest including the logical constraint�

t∈T

�
j∈J

�
k∈Gi∗ (j)

j

x f i
tk + x i

tk ≤ |J | − 1, (3)

where i∗(j) denotes the robot previously assigned to task j .
Constraint (3) is included in model (1) in all future iterations

with equal numbers of time-periods. The constraint ensures
that at least one task is assigned to another robot. Preliminary
results showed that this constraint yields sufficiently diversified
solutions, whereas excluding specific configurations or allow-
ing a task to move to another time-period did not have much
effect on the overall solution. Moreover, to limit the overall
computation time the set of candidates need to be small, and
for our instances we use roughly twenty candidate stage I
solutions. We observed that the objective value of (1) does not
increase much by iteratively including constraints of the type
(3). Note that another (less restrictive) constraint can be used if
more candidate solutions can be analysed in reasonable time.

4) Special Case T = 1: If the problem has a single time-
period (T = 1), model (1) is substantially reduced to a model
similar to the one presented in [5]. Since all configurations
then need to be collision-free, any configuration that collides
with all configurations of another task can then be removed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Moreover, since there can be no waiting times the optimistic
and pessimistic versions of Section III-B3 coincide. Further,
the y-variables will model a tour instead of a path, and the
first task (x fi

tk) of a time-period loses its meaning and only the
assignment variables x i

tk are needed; cf. [5].
5) SAT Model for Stage I: In order to generate more can-

didates, we utilize a crude model that is cheaper to solve and
can be represented as a classic SAT (satisfiability) problem.
The SAT model is derived from the two assumptions: (i) the
processing times are much longer than the motion durations,
hence sequencing becomes redundant; (ii) the processing
times are all equal, hence the makespan objective reduces
to assigning equally many tasks to each robot. Consequently,
we enforce that each robot can perform maximum L tasks,
evenly distributed over time-periods t ∈ T \ {T }, and the
remainder in time-period T . Letting Lt denote the number
of tasks allowed in time-period t ∈ T , we set Lt := 	L/T

for t ∈ T \ {T }. For each value of T , L is increased from
	|J |/|R|
 until the problem is satisfiable.

Using these assumptions, model (1) can be represented as
a pure SAT problem with the following clauses:�

i∈I

�
t∈T

�
k∈Ki

x fi
tk, (4a)

�
j∈J

�
t∈T

�
i∈I

�
k∈Gi

j

(x fi
tk ∨ x i

tk), (4b)

�
t∈T

�
i∈I

CardLt −1

��
k∈Ki

x i
tk

�
, (4c)

�
t∈T

�
C∈C

Card1

⎛
⎝ �

(ik)∈C
x i

tk + x fi
tk + x fi

[t+1]k

⎞
⎠. (4d)

The operator Cardn transforms a cardinality constraint (i.e.,
at most n elements can be true) into SAT clauses using a max-
imum cardinality network, see [28]. Note that Card1 allows at
most one element to be true, which has a more efficient SAT
formulation (e.g., [29]). However, as the set of cliques C is
generated from the set of colliding configurations P , we found
that a simple pairwise formulation was the most efficient for
the SAT solver. For compactness of presentation we choose to
present (4d), to avoid having a clause for all combinations of
x i

tk , x fi
tk , and x fi

[t+1]k , e.g., ¬x i
tk ∨ ¬xr

tl for (ik, rl) ∈ P . Note
also that the constraint (3) that prohibits previous solutions
can also be efficiently translated to a SAT constraint, which is
done in [30, §3.5.2].

Formulation (4) is efficient enough to prove (in)feasibility
of our industrial instances using the popular SAT solver called
MiniSat [31]. Hence, by enumeration, the minimum L and the
corresponding T can be acquired. Thus, in addition to the two
variants of (1) we use the solution of (4) to produce candidate
partitions to evaluate in the stage II of the ST-algorithm.

C. Compute and Analyse Partitions
Between stage I and stage II in the ST-algorithm

(cf. Figure 2) for each candidate solution and time-period a
generalized Voronoi diagram is built (as in [5]). This is a valid
partition of the workspace (separating surfaces) such that each
robot can use its assigned configurations in the corresponding
time-period while remaining in its zone of the partition.

With these partitions in mind, the notation for the stage II
problem is now introduced. For a given partition and cor-
responding time-period t ∈ T each robot can only use the
subset Ḡi

t j ⊆ Gi
j of its configurations that are collision-free

with respect to the partition. Moreover, the configuration of
the first task in each time-period must be collision-free with
respect to the partitions of both the previous and current time-
periods, i.e., Ḡfi

t j := Ḡi
t j ∩ Ḡi

[t−1] j for t ∈ T .
By construction, we have that the solution to the stage I

problem (1) uses configurations from the sets Ḡi
t j and Ḡfi

t j .
Moreover, by only considering the configurations in these
sets the packing constraint (1f) becomes redundant. As a
consequence of these simplifications, the task sequences can
be modelled in more detail. In particular, we introduce the path
variables y2i

te , where e = (kl) ∈ E i
t ⊆ Ki × Ki denote edges

between pairs of configurations. The set of undirected edges
E i

t is the complete graph with the node set of configurations
K̄i

t := ∪ j∈J Ḡi
t j .

D. Evaluating Candidate Partitions (Stage II)

The main purpose of introducing the partitions is to decou-
ple the motion planning problem among the robots. Within
each time-period the robots are separated by the partitioning
surface; hence, planning each motion with respect to the envi-
ronment and the partitioning surface is sufficient to guarantee
that the robots will not collide with each other.

Even though the path can now be planned for each robot
separately, it is still computationally too expensive to plan
every motion to find its duration. To resolve this, the procedure
from stage I is applied, i.e., the duration along each edge
e = (kl) ∈ E i

t is initially bounded from below. This duration
bound, denoted c2i

te , is initialized from the stage I procedure as
either the duration of the (possible colliding) straight motion
between configurations k and l, or the duration of a previously
planned motion that is collision-free w.r.t. the environment but
might collide with the partition.

To find a sequence of configurations (block D in Figure 2)
we consider the stage II problem to

minimize z (5a)

s.t.
�
k∈K̄i

t

x fi
tk = 1, i ∈ I, t ∈ T , (5b)

�
t∈T

�
i∈I

�
k∈Ḡi

t j

(x fi
tk + x i

tk) = 1, j ∈ J , (5c)

�
k∈K̄i

t

pi
k(x fi

tk + x i
tk) +

�
e∈E i

t

c2i
te y2i

te ≤ zi
t−zi

t−1,

t ∈ T , i ∈ I, (5d)

zi
t−1 +

�
k∈K̄i

t

pi
kx fi

tk ≥ zr
t−1, i, r ∈ I, t ∈ T , (5e)

x fi
tk + 2x i

tk + x fi
[t+1]k=

�
e∈δ(k)

y2i
te ,

k ∈ K̄i
t , t ∈ T , i ∈ I, (5f)�

k∈Ḡi
t j

2x i
tk −

�
q∈S\{ j}

�
k∈Ḡi

t j

(x fi
tk + x fi

[t+1]k) ≤
�

e∈δ(S)

y2i
te ,

t ∈ T , i ∈ I, j ∈ S ⊂ J, (5g)

zi
0 = 0, zi

T ≤ z, i ∈ I, (5h)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ÅBLAD et al.: SPATIAL–TEMPORAL LOAD BALANCING AND COORDINATION OF MULTI-ROBOT STATIONS 7

x fi
tk = 0, k ∈ K̄i

t \ K̄i
[t−1], t ∈ T , i ∈ I, (5i)

x fi
tk, x i

tk, y2i
te ∈ {0, 1}, k ∈ K̄i

t , e ∈ E i
t , t ∈ T , i ∈ I. (5j)

Model (5) differs from the stage I model (1) in that only the
configurations allowed by the partitions (Ḡi

t j) can be used, the
redundant set packing constraints (1f) are removed, and the
path variables (y2i

te) are between configurations rather than
tasks (as in Figure 4). The last, difference is that different
time-periods have different durations for the motions, which
is a consequence of the motions respecting different partitions.

The solution of (5) is a sequence of configurations in
each time-period. In between these configurations the robots’
motions need to be planned with respect to the corresponding
partitions. The resulting durations can be used to compute the
actual makespan and to improve the lower bound provided
by the model by updating the corresponding values of c2i

te .
In contrast to stage I, this is the only modification made to
the stage II problem in each iteration. The computed makespan
and the lower bound are used to determine if the current
solution is the current best solution (i.e., the incumbent)
and if the model cannot provide a new incumbent solution,
respectively; cf. Figure 2.

The idea of iteratively solving the problem, planning
the motions, and updating the motion durations originates
from [3]. Indeed, for the special case of T = 1, the two
approaches are equivalent (cf. [5]). For T > 1 we need
to consider the sequencing problem (5), in which different
configurations can be used in different time-periods.

1) Local Refinement of Stage I Solutions: The main change
that allows for using the path variables y2i

te (between pairs of
configurations) in the stage II model is the smaller number of
allowed configurations in each time-period. Using this obser-
vation, the quality of the stage I solutions can be improved if
the number of allowed configurations is limited. We suggest
applying a local refinement of each stage I solution, so that the
resulting partitions more accurately account for the durations
between configurations.

Given a solution to the stage I problem, define the set of
available configurations to be Ḡi∗(j)

t∗(j) j = Gi∗(j)
j and Ḡi

t j = ∅
for i �= i∗(j) and t �= t∗(j), where i∗(j) denotes the
robot performing task j and t∗(j) denotes the time-period
the task j is assigned to. Then solve the stage II problem
with the following modifications: relax the constraint (5i)
and enforce the set packing constraints (1f). This can be
seen as a local refinement since it allows the sequence of
tasks to be rearranged within each time-period and (more
importantly) it allows for better choices of configurations.
For our type of robots, this refinement prevents unnecessary
changes between different inverse configurations. At many
of these configurations the robot occupies roughly the same
volume even though some revolute joints are rotated, e.g.,
180 degrees. For such configurations, the sets of conflicting
configurations are approximately equal, but their locations in
the configuration space are far apart.

The effect of using this local refinement is that new con-
figurations, allowing for a lower makespan, will be chosen
to generate the partitions for the stage II problem. The local
refinement step reduces the risk of partitions hindering the

usage of better configurations. Note that this is a step towards
solving a more accurate version of the stage I problem (1) in
which durations between configurations are accounted for.

2) Coordination Improvement: The models (1) and (5) are a
bit pessimistic since they require the robot to remain in certain
fixed disjoint partitions over a whole time-period. However, the
true criteria are that the robots may not collide, i.e., at every
given time point, their volumes should be disjoint, and a valid
partition of the workspace should exist. An infinitely short
time-period is, however, not feasible in the models (1) and (5).
Moreover, the computational effort needed to prove a certain
optimality gap typically increases with increasing numbers of
time-periods. However, this issue can be partially resolved in
a post-processing step, in which each robot uses its assigned
task sequence and the configuration path of its planned motion.
Instead, the velocities (and wait-times) are re-optimized to
minimize the makespan subject to robot–robot collisions. This
can be done efficiently using the algorithm suggested in [16].
This post-processing step can be seen as local search in a
larger space than allowed by the models (1) and (5) and when
solving our instances, it often results in a slightly improved
makespan.

The coordination ensures that in each time point a valid
partition of the workspace exists, i.e., each robot is assigned
to a private volume. However, these time-varying surfaces are
not built explicitly, but they are implicitly represented by the
fact that the robots are always free from collision. Hence,
unlike the partitions used (in the ST-algorithm in Figure 2)
as collision objects in motion planning queries, these implicit
partitions are only used to certify that the solution is safe from
collisions.

3) Downsampling the Number of Alternatives: As noted
in Section III-A, it can be useful to consider huge sets
Ki , which is problematic in the stage II model (5) since
the number of sequence variables grows quadratically with
the number of configurations. However, once the partitions
have been computed it is possible to downsample the set of
configurations for each robot independently, as in [32] and [26,
§4.1]. Downsampling is problematic to do before stage I, since
then key configurations (that do not collide with many other
configurations) may be removed, which in some industrial
cases leads to long waiting times due to coordination.

Note that the size of Ki is not an issue in the stage I model
(1), since the sequence variables y1i

te in that stage depend on
the size of J . Moreover, the dominance criterion (2) reduces
the size of sets Ki . However, to simplify the presentation and
comparison we do not apply a downsampling procedure.

IV. COMPUTATIONAL RESULTS

The computations presented in this section were carried
out on a computer with an AMD Ryzen 9 3900X 12-Core
3.79 GHz and 32GB of RAM. Concurrency is exploited when
solving the MILP models and when planning motions. How-
ever, all presented computation times, including time-limits
are so-called wall-clock times. The main focus of this study
is not on computation time but rather on the potential of the
ST-algorithm (Figure 2). Future improvements are suggested
in Section V-A.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

To evaluate and motivate the ST-algorithm suggested in
Section III, we compare it with the state-of-the-art software
IPS [6], in Section IV-A on artificial instances (for some
of which the shortest path assumption is clearly violated),
in Section IV-B on industrial instances (including the instance
that initiated the research developed in this article).

To solve the MILP models we use the Gurobi [33] branch-
and-cut optimizer using the lazy-callback routine that allows
for verifying (and adding) subtour constraints on integer
solutions. To solve the SAT models we use the MiniSat
solver [31]. The remainder of the ST-algorithm, i.e., the
dominance criterion and interfaces to the above solvers, are
implemented in C++. For the artificial instances we used the
programming language Julia [34] to plan the motions, to build
the partitions, as the interface to the ST-algorithm, and to
visualize the solutions. For the industrial instances we used
the software IPS to plan the motions, to build the partitions,
and to visualize the solutions. We used the scripting language
LUA [35] as interface between the ST-algorithm and IPS.

The MILP models are not solved to optimality since the
models are themselves approximations, and we believe that
spending a lot of computational effort in proving optimality
is not worth the effort. To this end we use a combination
of two simple termination criteria for all MILP models: (i) a
10-minute time-limit and (ii) 1% optimality gap. Preliminary
tests showed that after 10 minutes (on our largest instances),
the objective value did no longer progress (roughly the same
value as after one hour). The 1% optimality gap is often but not
always achieved (e.g., for the large industrial instances when
evaluating many time-periods). Moreover, we limit the number
of candidate solutions generated in stage I to twenty and the
maximum number of stage II iterations is ten per candidate
solution.

The resulting run times varied from a few hours to nearly
a day among the instances presented below. The majority of
computational time is in stage II, and roughly 10% in stage I.
In both stages it is the solution of the MILP models that
spend nearly all the computational time. The SP-algorithm
(implemented in IPS) converges after roughly one hour even
for the large instances.

A. Artificial Instances
To illustrate a scenario in which the shortest path assump-

tion is unsuitable, we consider a two-dimensional workspace:
robots having two revolute joints each and straight links of
equal length and radius, and tasks being points in the plane.
For each task a robot can reach (and which is not located
exactly at the robot’s base or at maximum reach), the robot
will have two configurations. Moreover, each robot i ∈ I has
a corresponding home task i ∈ J and multiple corresponding
configurations k ∈ Gi

i , the home task has to be the robots first
and last task in the solution and the processing time is zero,
i.e., pi

k = 0, k ∈ Gi
i , i ∈ I, whereas for all other tasks it is

two seconds, i.e., pi
k = 2, k ∈ Gi

j , j ∈ J \ I, i ∈ I.
In this setting, we first consider a small instance with six

tasks; Figure 5 shows (a) the solution found by IPS (using the
shortest path assumption), and (b)–(d) the best solutions found
by our suggested algorithm for T = 1, 2, 3. Figure 5a reveals

Fig. 5. Solutions of a small instance with six tasks (triangles) plus two
home tasks (squares), snapshots of the robots (filled), traces of the robots’ tool
centres, and the partitions’ boundaries (dashed lines) that the corresponding
robot’s motion is planned with respect to.

that the shortest path assumption is quite bad: indeed, the two
right-most tasks (excluding home tasks) can only be reached
by the right robot, moreover, the straight path (in the joint
space) between these two tasks collides with the left robot
at every other task. Thus, the right robot also performs some
additional tasks on the way in order to avoid waiting.

Figure 5b illustrates the solution with a single time-period,
i.e., the two robots are partitioned into disjoint zones. The
resulting solution is slightly improved from that in (a), since
the right-most robot performs two tasks and takes a detour
instead of waiting for the left-most robot.

Figure 5c shows the solution with two time-periods. This
solution is a bit harder to visualize since the coordination
improvement step of Section III-D2 has been applied, as a
result, the two robots are sometimes in different time-periods.
Each robot has a corresponding partition that guides the
robot’s current motion (most apparent for the right robot).
Figure 5d illustrates the solution for three time-periods, which
also has the lowest makespan. However, increasing the number
of time-periods is not always beneficial (since each robot
performs at least one task in each period); e.g., T = 4 resulted
in a makespan (z) of 8.64 s.

For the instance illustrated in Figure 5 detours are obviously
beneficial, however, does this occur on larger instances? Or can
other sequences resolve the collisions? To see if this is com-
mon, we generated ten instances with four robots and fifty ran-
domly positioned tasks. One of them with the ST-algorithm’s
solution is illustrated in Figure 6. We found that detours are
rarely generated and (for these instances) it is better to use the
shortest paths. As compared with the SP-algorithm from IPS,
the ST-algorithm produced (on average) 0.36% worse cycle
times. However, an exact Wilcoxon signed rank test (cf. [36])

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ÅBLAD et al.: SPATIAL–TEMPORAL LOAD BALANCING AND COORDINATION OF MULTI-ROBOT STATIONS 9

Fig. 6. Solutions of a large random instance with fifty tasks (triangles)
plus four home tasks (squares), snapshots of the robots (filled), traces of the
robots’ tool centres, and the partitions’ boundaries (dashed lines) that the
corresponding robot’s motion is planned with respect to.

TABLE I

NUMBER OF ROBOTS, TASKS, AND CONFIGURATIONS, AND THE IDENTI-
CAL PROCESSING TIMES, FOR THE FOUR INDUSTRIAL INSTANCES

couldn’t reject (with 95% confidence) that the logarithm of
the cycle time ratios are zero-median distributed, i.e., the
0.36% are not significant and the solution qualities of the
two algorithms cannot be distinguished by our results. Thus,
we conclude that for most instances, the shortest path assump-
tion should be used to yield a more tractable problem and
that the solutions will be similar to those of the ST-algorithm.
However, there are (large) instances for which there is a large
gain in challenging the shortest path assumption, e.g., the
industrial instances that are considered next.

B. Industrial Instances
We now turn to some industrial instances. First, we study

two variations of the spot weld instance that motivated this
research, recall Figure 1. Second, as for the artificial instances,
we test the ST-algorithm on more common instances, including
two other types of tasks: inspection and stud welding. Table I
shows the number of robots, tasks, and task-configurations
of these instances to indicate the problem sizes. As for the
artificial instances each robot has a so-called home task in
which its cycle starts and ends. For each instance, all tasks
(except homes) have equal processing times, which is quite
common. The processing times vary, however, among the
instances. Note that larger processing times results in larger
overlaps between time-periods in the ST-algorithm.

The spot-weld instance visualized in Figure 1 originally
has a complication in the form of a tool change. We first
ignore this complication by considering all tasks to be identical
(Spot), and then we consider the real problem (Spot+change).
The reason for the tool change is that a single task requires
another spot-welding tool that the right-most robot can equip.
We apply the simplification done in industry today, this single

TABLE II

THE MAKESPANS OF APPLYING AN SP-ALGORITHM (zSP), THE

ST-ALGORITHM (zST), AND THE DISJOINT ALGORITHM zD FROM [5],
AS WELL AS THEIR RELATIVE DIFFERENCE, FOR FOUR INDUS-

TRIAL INSTANCES WITH DIFFERENT KINDS OF TASKS

Fig. 7. A snapshot of the ST-algorithm’s solution of the instance Spot, where
the current partition allows for the robots to avoid collision.

task is done first and then the robot will change tool (requiring
17.3 s) before starting to weld the other tasks. The tool change
is represented by 14 tasks, each with a processing time of
1.236 s, the corresponding start of the sequence for this robot
is then fixed.

Table II shows the results for the industrial instances,
including the inspection and stud welding stations. For the spot
weld instance (with or without tool change) that motivated this
study, not assuming shortest paths is extremely beneficial. For
this problem instance (cf. Figure 1) the tasks are positioned
roughly on a single line. Further, due to the kinematics of the
robots, at both ends of this line there are tasks that only the
right robot can perform. Hence, if detours are not allowed, then
the right robot (A) cannot access the leftmost tasks without
waiting for the left robot (B) (regardless of task sequence).
Thus, there are industrial instances in which it is useful to
consider detours—a solution is illustrated in Figure 7.

A class of structured instances for which the ST-algorithm
outperforms the SP-algorithm is exemplified in Figure 8.
In this class the tasks are positioned roughly on a straight
line (e.g., weld points on a workpiece’s edge as for the spot
weld station of Figure 1). Moreover, one of the two robots
can only reach/perform tasks in the middle of this line. The
tasks are also too densely positioned to allow for a disjoint
solution (T = 1). For the instance in Figure 8 the SP-algorithm
found a solution of z = 68.5 s. The ST-algorithm found a
more balanced solution of z = 55.4 s, close to the lower
bound (53.2) obtained by relaxing the robot–robot collisions
requirements. This class of instances illustrates the use/power
of the ST-algorithm and the benefits of allowing detours. It is
likely that other classes of structured instances exist, for which
the ST-algorithm outperforms the SP-algorithm.

Table II also shows the results for two conventional
instances, where the tasks are more evenly spread over the
workpiece. For these instances, the results are similar to those

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 8. A minimalistic problem instance where the tasks are positioned
roughly on a line, the upper robot can reach all tasks, the lower can only
reach tasks in the middle. (b) and (c) show snapshots of the ST-algorithm’s
solution, one in each time-period.

of the artificial instances: an SP-algorithm is often a better
choice, and sometimes even a much better choice than the ST-
algorithm. The fact that the SP-algorithm sometimes performs
better has a fivefold explanation: (i) the stage I problem doesn’t
measure the accurate motion durations, (ii) the number of
candidate solutions is quite limited, (iii) the model yields a
pessimistic estimate of the makespan, (iv) the model is compu-
tationally demanding for a large T (number of time-periods),
and (v) the models of both stages are not solved to optimality.
Some of these aspects are discussed in Section V-A.

Lastly, Table II shows the general improvement of the
generalization made in the ST-algorithm w.r.t. to the disjoint
algorithm for load balancing of multi-robot station (see [5],
called intersection-free therein) that searches for solutions with
a single time-period T = 1. For the two versions of the
spot weld instance, there is a very large gain, since the tasks
are too densely positioned to allow for a disjoint partition;
hence, the right-most robot does all the work. In contrast,
for the stud weld instance, there exists a rather good disjoint
solution, but the ST-algorithm finds a slightly better one.
Finally, the inspection instance admits a completely disjoint
solution, which is found by both the disjoint algorithm and
the ST-algorithm.

V. CONCLUSION

In this study we devise a method for load balancing and
coordination of a multi-robot station. Our main contribution
is the solution of the problem in a general form, by relaxing the
so-called shortest path assumption (i.e., that each robot uses its
shortest collision-free motion between pairs of configurations
regardless of the other robots). We suggest coordinating the
robots by not only tuning their velocity, but also by allowing
for detours to prevent robot–robot collisions. Our load bal-
ancing algorithm consists of two stages, each including an
optimization model. Stage I uses a generalization of a model
for a disjoint load balancing algorithm (where each robot
receives its own disjoint zone). The generalization allows the
solution to be disjoint during shorter time-periods. Stage II
optimizes the sequences given the zones for each time-period.

We found that for certain instances our solutions have sig-
nificantly shorter makespans than solutions from an algorithm

using the shortest path assumption. Moreover, for both the
artificial and industrial instances, we found that in terms of
makespan, our algorithm is often comparable to the ones
using the shortest path assumption. However, we believe that
the computational effort will be lesser if the shortest path
assumption is used, since fewer motions need to be planned.
Consequently, we advise to first apply an SP-algorithm, and if
the solution is poor (e.g., unbalanced or include long waiting
times) apply our ST-algorithm.

A. Further Work

There are two major directions of further works, both aiming
at solving the stage I and stage II models (or variants thereof)
more efficiently. The first is to more rigorously evaluate differ-
ent decomposition methods, valid inequalities, and heuristics
to aid the solver (which doesn’t necessarily need to be a MILP
solver but, e.g., a constraint programming solver). Secondly,
to disband the use of an exact solver for these models and
develop a tailored heuristic (which typically perform well on
related sequence problems).

APPENDIX UNSUCCESSFUL MODELING IDEAS

Many aspects of our suggested modelling might seem unin-
tuitive and that better options might be available. However,
we preliminarily investigated several modelling approaches,
which were clearly inferior. We briefly present these ideas.
Time-Indexed Models: Instead of employing long time-periods
spanning multiple tasks, we attempted to use a model with a
fine time-indexing, where each task and motion spans multiple
time-steps. In such a setting the number of time-steps is used
to approximate the durations of tasks and motions. Hence,
the makespan value becomes less accurate than that of our
suggested model, but by increasing the number of time-steps
this error becomes less severe. The argument for using this
kind of model is that the robots only need to be separated in
each given time point and not during an entire time-period.

First, we used a SAT formulation, with variables deciding
in which time-step a robot starts a task and by which configu-
ration. Constraints were generated to forbid the same robot
to use the nearest time-step for other starts, depending on
motion duration and task processing times. Similarly, colliding
configurations were also constrained from being used. This
idea is originally from [37] that models an airport’s runway
scheduling problem. They found it successful, however we did
not, which is since our instances do not have the same kind
of sparsity: a robot may process any task at any time, whereas
an aeroplane needs to land in a narrow time-window.

Our second version of the time-indexed model we tested
was based on using a MILP model, since much fewer lin-
ear constraints than SAT constraints are required to enforce
sufficient time in-between any two consecutive tasks. However,
the model was computationally intractable due to the con-
straints preventing robots from using colliding configurations
simultaneously.

Our third version of the time-indexed model is a hybrid
between our suggested model and one with finer time-
steps. In this model each time-step corresponds to a task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ÅBLAD et al.: SPATIAL–TEMPORAL LOAD BALANCING AND COORDINATION OF MULTI-ROBOT STATIONS 11

To forbid colliding configurations, constraints between adja-
cent time-steps are included, and robots are allowed to stay
at tasks. The duration of a robot is, however, the sum of
processing times, motion durations, and waiting times. Since
the task order is decided by this model, no subtour constraints
are needed. Despite this, we could not efficiently solve this
model, mainly due to the constraints preventing colliding
configurations, but also due to the sequence variables. We note
that this model resembles our suggested model if we let each
time-period comprise exactly one task. The difference is that
our suggested model does not allow for starting the same
task twice (to model waiting), which can be resolved by
relaxing (1b) and (1c) to be inequality constraints. However,
the resulting large number of time-periods makes the model
hard to solve.

Our fourth version of the time-indexed model is sim-
ilar to the first but is based on constraint programming.
The configurations are represented by alternative intervals
for the tasks with lengths corresponding to processing
times. Disjunctive/no-overlap constraints with transition times
between the intervals are used to model: (i) the motion
duration and (ii) that two robots may not use colliding
configurations too close in time (colliding motions were not
accounted for as limitations of the formulation). We found that
the IBM Ilog CP optimizer [38] often provided good solutions
in reasonable time, but it was seldom able to prove optimality.
Considering this a heuristic approach, which would be highly
useful, however, we believe that a tailored heuristic would be
more successful, see Section V-A. Decomposition Methods:
Another family of methods tested was to solve models similar
to (1) and (5) (with the coordination aspect disregarded,
although the aim was to include it) using decompositions
methods, such as Dantzig–Wolfe decomposition and (logic)
Benders decomposition. The goal is to implicitly handle the
sequencing variables by either Dantzig–Wolfe decomposition,
which considers convex combinations of sequences of config-
urations (similar to [39]), rather than assignments of specific
configurations, or by a Benders decomposition, in which the
makespan objective is captured by Benders cuts generated by
the Benders subproblem (that computes the best sequence of
given configurations, inspired by [40]). Despite that both meth-
ods yield quite tractable problems, it seems that the vanilla
branch-and-cut method using subtour elimination constraints
is hard to outperform. We still think that a successful decompo-
sition method can be constructed. Making the decomposition
effective will, however, require the model to be slightly
modified or some other property (that we have overlooked)
be exploited. Moreover, the decomposition method needs to
incorporate the coordination aspect (robots may not collide).

Regarding the Benders decomposition, we attempted to
generate both classical Benders cuts by using a rich set of
valid inequalities for the GTSP subproblems [24], and logical
Benders cuts as in [40], as well as lifting the generated cuts as
suggested by [41]. We also looked at [42] that surveys different
methods for vehicle routing. One of them uses Benders decom-
position on a so-called three-indexed formulation, containing
binary variables for selecting the nodes of each vehicle.
Regarding the Dantzig–Wolfe decomposition, we think that

the sequencing is best contained in the subproblems; for the
Benders decomposition approach this resulted in relatively
small GTSP problems. However, since the Dantzig–Wolfe
approach only prices and not constrains the subproblem, the
subproblem become quite large and intractable.

REFERENCES
[1] R. Söderberg, K. Wärmefjord, J. S. Carlson, and L. Lindkvist, “Toward

a digital twin for real-time geometry assurance in individualized
production,” CIRP Ann., vol. 66, no. 1, pp. 137–140, 2017, doi:
10.1016/j.cirp.2017.04.038.

[2] D. Hömberg, C. Landry, M. Skutella, and W. A. Welz, “Automatic
reconfiguration of robotic welding cells,” in Math for the Digital Factory.
Cham, Switzerland: Springer, 2017, pp. 183–203, doi: 10/dvjz.

[3] D. Spensieri, J. S. Carlson, F. Ekstedt, and R. Bohlin, “An iterative
approach for collision free routing and scheduling in multirobot sta-
tions,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 950–962,
Apr. 2016, doi: 10.1109/TASE.2015.2432746.

[4] H. Touzani, H. Hadj-Abdelkader, N. Séguy, and S. Bouchafa, “Multi-
robot task sequencing & automatic path planning for cycle time opti-
mization: Application for car production line,” IEEE Robot. Automat.
Lett., vol. 6, no. 2, pp. 1335–1342, Apr. 2021, doi: 10/fxqj.

[5] E. Åblad, D. Spensieri, R. Bohlin, and J. S. Carlson, “Intersection-
free geometrical partitioning of multirobot stations for cycle time
optimization,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 842–851,
Oct. 2017, doi: 10/gc2bhc.

[6] (May 2021). Industrial Path Solutions. [Online]. Available:
https://industrialpathsolutions.com/ips-robot-optimization

[7] O. Battaïa and A. Dolgui, “A taxonomy of line balancing problems
and their solution approaches,” Int. J. Prod. Econ., vol. 142, no. 2,
pp. 259–277, 2013, doi: 10.1016/j.ijpe.2012.10.020.

[8] T. C. Lopes, C. G. S. Sikora, R. G. Molina, D. Schibelbain,
L. C. A. Rodrigues, and L. Magatão, “Balancing a robotic spot
welding manufacturing line: An industrial case study,” Eur. J.
Oper. Res., vol. 263, no. 3, pp. 1033–1048, Dec. 2017, doi:
10.1016/j.ejor.2017.06.001.

[9] J. Xin, C. Meng, F. Schulte, J. Peng, Y. Liu, and R. R. Negenborn,
“A time-space network model for collision-free routing of planar motions
in a multirobot station,” IEEE Trans. Ind. Informat., vol. 16, no. 10,
pp. 6413–6422, Oct. 2020, doi: 10.1109/TII.2020.2968099.

[10] V. Tereshchuk, J. Stewart, N. Bykov, S. Pedigo, S. Devasia, and
A. G. Banerjee, “An efficient scheduling algorithm for multi-robot task
allocation in assembling aircraft structures,” IEEE Robot. Autom. Lett.,
vol. 4, no. 4, pp. 3844–3851, Oct. 2019, doi: 10/gmpvcq.

[11] S. M. LaValle, “Hierarchical methods,” in Planning Algorithms,
L. Cowles, Ed. Cambridge, U.K.: Cambridge Univ. Press, 2006,
pp. 210–212, doi: 10.1017/CBO9780511546877.

[12] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,”
in Proc. Millennium Conf. IEEE Int. Conf. Robot. Automat. Sym-
posia (ICRA), San Francisco, CA, USA, vol. 1, Apr. 2000, pp. 521–528,
doi: 10.1109/ROBOT.2000.844107.

[13] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in Proc. 49th IEEE Conf.
Decis. Control (CDC), Atlanta, GA, USA, Dec. 2010, pp. 7681–7687,
doi: 10.1109/CDC.2010.5717430.

[14] C. Landry, R. Henrion, D. Homberg, M. Skutella, and W. Welz,
“Task assignment, sequencing and path-planning in robotic weld-
ing cells,” in Proc. 18th Int. Conf. Methods Models Autom.
Robot. (MMAR), Miedzyzdroje, Poland, Aug. 2013, pp. 252–257, doi:
10.1109/MMAR.2013.6669915.

[15] S. Pellegrinelli, N. Pedrocchi, L. M. Tosatti, A. Fischer, and T. Tolio,
“Multi-robot spot-welding cells for car-body assembly: Design and
motion planning,” Robot. Comput.-Integr. Manuf., vol. 44, pp. 97–116,
Apr. 2017, doi: 10/ggh369.

[16] D. Spensieri, R. Bohlin, and J. S. Carlson, “Coordination of robot paths
for cycle time minimization,” in Proc. IEEE Int. Conf. Autom. Sci. Eng.
(CASE), Aug. 2013, pp. 522–527, doi: 10.1109/CoASE.2013.6654032.

[17] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
Algorithmica, vol. 2, nos. 1–4, pp. 477–521, Nov. 1987, doi: 10/dv9stf.

[18] M. Saha and P. Isto, “Multi-robot motion planning by incremental coor-
dination,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006,
pp. 5960–5963, doi: 10/d9rpwx.

[19] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“DRRT*: Scalable and informed asymptotically-optimal multi-robot
motion planning,” Auto. Robots, vol. 44, nos. 3–4, pp. 443–467,
Mar. 2020, doi: 10/gn669q.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1016/j.cirp.2017.04.038
http://dx.doi.org/10/dvjz
http://dx.doi.org/10.1109/TASE.2015.2432746
http://dx.doi.org/10/fxqj
http://dx.doi.org/10/gc2bhc
http://dx.doi.org/10.1016/j.ijpe.2012.10.020
http://dx.doi.org/10.1016/j.ejor.2017.06.001
http://dx.doi.org/10.1109/TII.2020.2968099
http://dx.doi.org/10/gmpvcq
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1109/ROBOT.2000.844107
http://dx.doi.org/10.1109/CDC.2010.5717430
http://dx.doi.org/10.1109/MMAR.2013.6669915
http://dx.doi.org/10/ggh369
http://dx.doi.org/10.1109/CoASE.2013.6654032
http://dx.doi.org/10/dv9stf
http://dx.doi.org/10/d9rpwx
http://dx.doi.org/10/gn669q

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[20] H. Ha, J. Xu, and S. Song, “Learning a decentralized multi-arm
motion planner,” presented at the 4th Conf. Robot Learn. (CoRL),
in Proceedings of Machine Learning Research, vol. 155, J. Kober,
F. Ramos, and C. Tomlin, Eds. Cambridge MA, USA: Journal of
Machine Learning Research, 2021, pp. 103–114. [Online]. Available:
https://proceedings.mlr.press/v155/ha21a.html

[21] J. Chen et al., “Cooperative task and motion planning for multi-arm
assembly systems,” 2022, arXiv:2203.02475, doi: 10/hj2r.

[22] J. Edwards, E. Daniel, V. Pascucci, and C. Bajaj, “Approximating the
generalized Voronoi diagram of closely spaced objects,” Comput. Graph.
Forum, vol. 34, no. 2, pp. 299–309, May 2015, doi: 10.1111/cgf.12561.

[23] B. Zhou, R. Zhou, Y. Gan, F. Fang, and Y. Mao, “Multi-robot multi-
station cooperative spot welding task allocation based on stepwise
optimization: An industrial case study,” Robot. Comput.-Integr. Manuf.,
vol. 73, Feb. 2022, Art. no. 102197, doi: 10/hjc3.

[24] M. Fischetti, J.-J. Salazar-González, and P. Toth, “The generalized
traveling salesman and orienteering problems,” in The Traveling Sales-
man Problem and Its Variations. Boston, MA, USA: Springer, 2007,
pp. 609–662, doi: 10/c2zshz.

[25] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast distance
queries with rectangular swept sphere volumes,” in Proc. Millennium
Conf. IEEE Int. Conf. Robot. Automat. Symposia (ICRA), vol. 4,
Apr. 2000, pp. 3719–3726, doi: 10/db2qkp.

[26] E. Åblad, “Mathematical modelling for load balancing and minimization
of coordination losses in multirobot stations,” M.S. thesis, Dept. Math.
Sci., Chalmers Univ. Technol., Gothenburg, Sweden, 2020. [Online].
Available: https://research.chalmers.se/publication/515684

[27] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time com-
plexity for generating all maximal cliques and computational exper-
iments,” Theor. Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006, doi:
10.1016/j.tcs.2006.06.015.

[28] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell,
“Cardinality networks: A theoretical and empirical study,” Constraints,
vol. 16, no. 2, pp. 195–221, Apr. 2011, doi: 10/c2b6dr.

[29] J. Marques-Silva and I. Lynce, “Towards robust CNF encodings of cardi-
nality constraints,” in Proc. Int. Conf. Princ. Pract. Constraint Program.,
C. Bessière, Ed. Berlin, Germany: Springer, 2007, pp. 483–497, doi:
10/fp5m43.

[30] E. Åblad, “Intersection-free load balancing for industrial robots,”
M.S. thesis, Dept. Math. Sci., Chalmers Univ. Technol., Gothenburg,
Sweden, 2016.

[31] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Germany: Springer, 2004, pp. 502–518, doi: 10/dqxrqm.

[32] J. S. Carlson, D. Spensieri, K. Wärmefjord, J. Segeborn, and
R. Söderberg, “Minimizing dimensional variation and robot traveling
time in welding stations,” Proc. CIRP, vol. 23, pp. 77–82, Jan. 2014,
doi: 10.1016/j.procir.2014.03.199.

[33] Gurobi Optimization, LLC. (2019). Gurobi Optimizer Reference Manual.
[Online]. Available: http://www.gurobi.com

[34] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017, doi: 10/f9wkpj.

[35] R. Ierusalimschy, Programming in Lua, 4th ed. 2016.
[36] T. Berthold, “Heuristic algorithms in global MINLP solvers,” Ph.D.

dissertation, Dept. Math. Natural Sci., Technische Universität Berlin,
Berlin, Germany, 2014.

[37] P. Avella, M. Boccia, C. Mannino, and I. Vasilyev, “Time-indexed
formulations for the runway scheduling problem,” Transp. Sci., vol. 51,
no. 4, pp. 1196–1209, Nov. 2017, doi: 10/gcmvnb.

[38] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “IBM ILOG CP optimizer
for scheduling,” Constraints, vol. 23, no. 2, pp. 210–250, 2018, doi:
10/gdg3b4.

[39] W. A. Welz, “Robot tour planning with high determination costs:
Routing under uncertainty,” M.S. thesis, Technische Universität
Berlin, Fakultät II-Mathematik und Naturwissenschaften, Berlin, Berlin,
Germany, 2014, doi: 10/gf57.

[40] S. Riazi, C. Seatzu, O. Wigstrom, and B. Lennartson, “Benders/gossip
methods for heterogeneous multi-vehicle routing problems,” in Proc.
IEEE 18th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2013,
pp. 1–6, doi: 10/dzpc.

[41] T. L. Magnanti and R. T. Wong, “Accelerating benders decomposition:
Algorithmic enhancement and model selection criteria,” Oper. Res.,
vol. 29, no. 3, pp. 464–484, Jun. 1981, doi: 10/bs956m.

[42] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” Eur. J. Oper. Res., vol. 59, no. 3, pp. 345–358,
1992, doi: 10/b8mckf.

Edvin Åblad was born in 1991. He received the
Ph.D. degree in applied mathematics and mathemat-
ical statistics in Chalmers in 2022. He is currently
a Researcher at the Fraunhofer-Chalmers Research
Centre for Industrial Mathematics, Geometry and
Motion Planning Department. His bachelor’s the-
sis treated optimization of power consumption in
smart home appliances and his M.S. thesis was on
intersection-free load balancing for industrial robots.
His current research interests include computational
geometry, multi-agent modeling, and optimization
algorithms.

Domenico Spensieri was born in 1978. He received
the M.Sc. degree in computer engineering from the
University of Pisa with major in automation, robotics
and control systems, in 2003, and the Ph.D. degree in
product and production development from Chalmers
University in 2021. After a brief period in industry,
in 2004, he joined the Fraunhofer-Chalmers Cen-
tre (FCC) for Industrial Mathematics, Gothenburg,
as a Software Engineer. He is currently an Applied
Researcher at FCC, working on robotics, and mod-
eling, simulation and optimization of multi-agent

systems, including industrial robots and human–robot applications.

Robert Bohlin was born in 1972. He received the
Ph.D. degree in mathematics on robot path planning
from the Chalmers University of Technology in
2002. He is currently a Researcher and the Project
Manager at the Fraunhofer-Chalmers Research Cen-
tre for Industrial Mathematics—FCC, Geometry and
Motion Planning Department. His research interests
include methods, algorithms and tools for virtual
product realization and in particular automatic path
planning, collision detection, simulation of flexible
material, optimization, and kinematics.

Johan S. Carlson was born in 1972. He received the
Ph.D. degree in mathematical statistics on how to
reduce geometrical variation in assembled products
from the Chalmers University of Technology in
2000.

He is currently the Director of the
Fraunhofer-Chalmers Research Centre for
Industrial Mathematics—FCC, and is heading the
Department of Geometry and Motion Planning. His
research interests include methods, algorithms, and
tools for virtual product realization and in particular

geometry simulation and assurance. He has over 20 years of experience
with industrial development and implementation related to mathematics as a
leading edge in virtual product realization and many of the results have been
transferred into commercial software products and working procedures.

Ann-Brith Strömberg was born in 1961. She
received the Ph.D. degree from Linköping University
in 1997. She is currently a Professor of Mathematical
Optimization with the Department of Mathematical
Sciences, Chalmers University of Technology, and
the University of Gothenburg. Her research inter-
ests include mathematical modeling and solution of
optimization problems, including discrete, convex
non-smooth, simulation-based, and multiobjective
optimization. Much of her research is carried out in
cooperation with academy and industry and includes

scheduling of production and maintenance, load balancing, integration of
variable electricity generation in the energy systems, and transport planning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10/hj2r
http://dx.doi.org/10.1111/cgf.12561
http://dx.doi.org/10/hjc3
http://dx.doi.org/10/c2zshz
http://dx.doi.org/10/db2qkp
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10/c2b6dr
http://dx.doi.org/10/fp5m43
http://dx.doi.org/10/dqxrqm
http://dx.doi.org/10.1016/j.procir.2014.03.199
http://dx.doi.org/10/f9wkpj
http://dx.doi.org/10/gcmvnb
http://dx.doi.org/10/gdg3b4
http://dx.doi.org/10/gf57
http://dx.doi.org/10/dzpc
http://dx.doi.org/10/bs956m
http://dx.doi.org/10/b8mckf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

