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Novel Results on Output-Feedback LQR Design
Adrian Ilka, Member, IEEE , and Nikolce Murgovski

Abstract— This paper provides novel developments in
output-feedback stabilization for linear time-invariant sys-
tems within the linear quadratic regulator (LQR) framework.
First, we derive the necessary and sufficient conditions for
output-feedback stabilizability in connection with the LQR
framework. Then, we propose a novel iterative Newton’s
method for output-feedback LQR design and a computa-
tionally efficient modified approach that requires solving
only a Lyapunov equation at each iteration step. We show
that the proposed modified approach guarantees conver-
gence from a stabilizing state-feedback to a stabilizing
output-feedback solution and succeeds in solving high di-
mensional problems where other, state-of-the-art methods,
fail. Finally, numerical examples illustrate the effectiveness
of the proposed methods.

Index Terms— Controller design, linear time-invariant
system, linear quadratic regulator, Newton’s method,
output-feedback, stability.

I. INTRODUCTION

ONE of the most fundamental problems in control theory
is the linear quadratic regulator (LQR) design problem

[1]. The so-called infinite horizon linear quadratic problem of
finding a control function u(t) = −Kx(t) for x0 ∈ Rnx that
minimizes the cost functional

J =
1

2

∫ ∞

0

(
x(t)TQx(t) + uT (t)Ru(t)

+ 2xT (t)Nu(t)
)
dt,

(1)

with R > 0, Q−NR−1NT ≥ 0 subject to x(0) = x0, and

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(2)

has been studied by many authors [1]–[4], where x(t) ∈ Rnx ,
y(t) ∈ Rny , and u(t) ∈ Rnu denote the state, measurable out-
put, and the control input vectors, respectively. Furthermore,
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Slovakia (e-mail: adrian.ilka@ieee.org).

N. Murgovski is with the Department of Electrical Engineering,
Chalmers University of Technology, Hörsalsvägen 9-11, SE-412 96,
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A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx are constant
known matrices.

Often it is not possible or economically feasible to measure
all the state variables. In this case, an output-feedback control
law defined as

u(t) = −Fy(t) (3)

would be more beneficial. However, finding an optimal output-
feedback control law in the form (3) which minimizes (1),
is still one of the most important open questions in control
engineering, despite the availability of many approaches and
numerical algorithms, as it is pointed out in survey papers [5],
[6]. This is mainly due to the lack of testable necessary and
sufficient conditions for output-feedback stabilizability.

Furthermore, the majority of algorithms for output-feedback
LQR design are formulated in terms of linear matrix in-
equalities (LMIs) [7]–[14] or bilinear matrix inequalities
(BMIs) [15]–[20]. These algorithms are dependent on the used
BMI/LMI solvers and could work well for small/medium-sized
problems, but may fail to converge to a solution or become
computationally too heavy as the problem size increases
[21]. In addition, available iterative numerical algorithms with
guaranteed convergence such as [22]–[24], or algorithms using
nonlinear programming (NLP) such as [25], [26], as well as
the recently introduced ray-shooting method based approaches,
e.g. [21], [27], unfortunately require a selection of an initial
stabilizing output-feedback gain. However, a direct procedure
for finding such a gain is unknown and could be hard to
get, as highlighted in [5]. The author in [28] has proposed
a state-feedback projection theory to bypass the need of a
stabilizing output-feedback gain. However, the introduced it-
erative controller design problem results in a coupled nonlinear
matrix equations, and conditions for the existence and global
uniqueness are not introduced nor discussed. Furthermore, the
proposed Newton approach ensures only sufficient conditions
for output-feedback stabilizability. Finally, authors in [29]
proposed an algorithm which iterates a Riccati equation from
an initial state-feedback solution, but it applies to a restrictive
problem description and its convergence has not been proven.

In general, finding stabilizing static output-feedbacks
(SOFs) is suspected to be non-deterministic polynomial-time
hard (NP-hard), as it is discussed in [5], [21] and [27]. The
problem is known to be NP-hard if structural constraints or
bounds are imposed on the entries of the controllers, see e.g.
[30], [31]. Furthermore, minimal-norm SOFs with bounded
entries, pole-placement and simultaneous stabilization via
SOFs are also considered to be NP-hard (see [21], [30] and
[32], respectively). Moreover, the authors in [5] from 1997
have reviewed results from computational complexity theory
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to suggest that ”such hope that someone can come up with
an algorithm that can solve most of the SOFs problems in
practice may not be realistic, at least for moderate and large-
size problems”. This prediction/prognosis from 20 years afar
has been more or less proven since, as described above, after
yeas of extensive research in this filed, there are still unsolved
problems, especially if we consider large-size problems.

Even though most of the output-feedback problems are
considered to be NP-hard, we have shown in our recent paper
[33] that within the LQR framework, it is possible to find
SOFs in a reasonable time even for large-scale systems. In
this paper, we expand and complete our results from [33]. First
we derive the necessary and sufficient conditions for output-
feedback stabilizability in connection with the LQR frame-
work. Then, we propose a novel iterative output-feedback
LQR design approach for linear time-invariant (LTI) systems,
using Newton’s method. Afterwards, we show that with a
simple modification a new iterative algorithm can be obtained
which has a guaranteed convergence to an optimal output-
feedback solution from any stabilizing state-feedback solution.
In addition, the proposed modified algorithm requires solving
only a Lyapunov equation at each iteration step, which is
computationally much more tractable then algorithms in the
literature, including approaches based on LMIs, BMIs, NLP
and ray-shooting methods. Finally, we propose/review some
simple and useful modifications/extensions.

The mathematical notation of the paper is as follows. The
set of real and complex numbers are denoted by R and C,
respectively. Given a matrix C ∈ Rny×nx , its pseudoinverse is
denoted by C+. For matrices A,B ∈ Rnx×nx , their Hadamard
(Schur) and Kronecker products are denoted by A ◦B and
A⊗B, respectively. Matrices, if not explicitly stated, are
assumed to have compatible dimensions. The real part of a
complex number z is denoted by ℜ(z). Finally, for any positive
integer nx, the nx × nx identity and zero matrices are denoted
by Inx , 0nx ∈ Rnx×nx , respectively. For matrices, ∥.∥ means
any matrix norm, consequently ∥.∥F , and ∥.∥2 means the
Frobenius and induced 2-norm, respectively.

II. NECESSARY AND SUFFICIENT CONDITIONS FOR
OUTPUT-FEEDBACK STABILIZABILITY

This section formulates the necessary and sufficient con-
ditions for output-feedback stabilizability in the LQR frame-
work, essential for the main results.

Considering the system (2) and the output-feedback control
law (3), let us first recall some related terminology.

Definition 1: A square matrix A ∈ Rnx×nx is said to be
stable if and only if for every eigenvalue λi of A, ℜ(λi) ≤ 0.

Definition 2: The pair (A,B) is said to be stabilizable if
and only if there exists a real matrix K ∈ Rnu×nx such that
A−BK is stable.

Definition 3: The pair (A,C) is said to be detectable if
and only if there exists a real matrix L ∈ Rnx×ny such that
A− LC is stable.

Definition 4: The system (2) is said to be static output-
feedback stabilizable if and only if there exists a real matrix
F ∈ Rnu×ny such that A−BFC is stable.

Then the novel necessary and sufficient stability conditions for
output-feedback stabilizability in the LQR framework can be
formulated as follows.

Theorem 1: The system (2) is static output-feedback stabi-
lizable if and only if the pair (A,B) is stabilizable, the pair
(A,C) is detectable and there exist real matrices F ∈ Rnu×ny

and G ∈ Rnu×nx such that

FC −R−1(BTP +NT ) = G, (4)

where P ∈ Rnx×nx is the real symmetric positive semi-
definite solution of

ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ) = 0,
(5)

for given Q ∈ Rnx×nx , N ∈ Rnx×nu and R ∈ Rnu×nu ma-
trices satisfying [

Q, N
NT , R

]
≥ 0, R > 0. (6)

Proof: We will first prove the necessity of Theorem 1.
Assume that A−BFC is stable for some F , i.e. the system
(2) is output-feedback stabilizable. Then the pair (A,B) is
stabilizable since A−BK is stable for K = FC, and conse-
quently the pair (A,C) is detectable, since A− LC is stable
for L = BF . Furthermore, because A−BFC is stable, there
exists a unique symmetric positive semi-definite matrix P (see
Appendix I for details), such that

(A−BFC)TP + P (A−BFC) +Q

+ CTFTRFC − CTFTNT −NFC = 0.
(7)

Rearranging (7), one can obtain

ATP + PA+Q

− (PB +N)R−1(BTP +NT )

+
(
FC −R−1(BTP +NT )

)T
R
(
FC

−R−1(BTP +NT )
)
= 0.

(8)

Hence, setting G = FC −R−1(BTP +NT ) implies the ne-
cessity of Theorem 1.

Now assume that the pair (A,B) is stabilizable, the pair
(A,C) is detectable and there exist real matrices F and G
satisfying (4). From equations (4) and (5) it follows that (7) is
satisfied. From the second condition it follows that A− LC
is stable for some L. Noting that

(A− LC) =

(
(A−BFC)− [L, −B]

[
C
FC

])
, (9)

it follows that the pair(
A−BFC,

[
C
FC

])
(10)

is detectable as well. Since P is symmetric and positive semi-
definite, we conclude from (7) that A−BFC is stable, and
hence the sufficiency of Theorem 1 is proved as well.

Remark 1: Similar conditions for output-feedback stabiliz-
ability have been obtained in [29, Theorem 1], but for a
restricted problem formulation with Q = CTC, R = I and
N = 0.
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From Theorem 1 follows that if the system (2) is output-
feedback stabilizable, then there exists a state feedback gain
K = FC such that A−BK is stable. If C is a square and
nonsingular matrix, then we can easily express the output-
feedback gain as F = KC−1. However, for most of the
output-feedback problems the matrix C is non-square, i.e.
non-invertible. Therefore, by expressing the output-feedback
gain using a pseudo-inverse as F = KC+, a so called pseudo-
inverse error appears that can be calculated as

G = FC −K, (11)

which is identical to (4), since K = R−1(BTP +NT ).
Hence, from the above and the Theorem 1 it follows that if the
system (2) is output-feedback stabilizable, then for given Q,
R, and N matrices satisfying (6), there exists a real positive
semi-definite matrix P such that (5) is fulfilled for

G = FC −K = FC −R−1(BTP +NT ), (12)

F = KC+ = R−1(BTP +NT )C+. (13)

The next Identity is straightforward and used later to obtain
the main results.

Identity 1: Suppose that F = R−1(BTP +NT )C+ and
G = FC −R−1(BTP +NT ). Then the following statements
are identical

1) R(P ) = ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ),
(14)

2) R(P ) = Q̃+GTRG+ ÃTP + PÃ− PS̃P, (15)

3) R(P ) = (A−BFC)TP + P (A−BFC) +Q

+ CTFTRFC − CTFTNT −NFC
(16)

where Ã = A−BR−1NT , Q̃ = Q−NR−1NT and
S̃ = BR−1BT .

Proof: The identity can be proved by substituting back
all the denotations.

III. INFINITE HORIZON OUTPUT-FEEDBACK LQR DESIGN

The equations (14), (15), and (16) are algebraic Riccati-like
equations. In general, Newton’s method and it’s modifications
are widely used to solve algebraic Riccati equations [34]–[36].
Inspired by [34] and [35], in this section we first propose
a Newton’s method based algorithm to design stabilizing
static output-feedback controllers. Then, we show that by
a simple modification, a computationally similarly tractable
stabilizing output-feedback controller design approach can be
obtained, while guaranteeing convergence from any initial
state-feedback LQR solution. Finally, after a short sensitivity
analysis, we show the relation of these approaches to the
infinite horizon output-feedback LQR problem (i.e. to find a
control law in the form (3), minimizing the cost function (1),
subject to system dynamics (2) and initial state x0).

A. Newton’s method for stabilizing SOF controller design

The Fréchet derivative of a matrix function
R : Fnx×nx → Fnx×nx at matrix P is a linear function

L : Fnx×nx → Fnx×nx , X → L(P,X) such that for all
X ∈ Fnx×nx

R(P +X)−R(P )− L(P,X) = o(∥X∥), (17)

where the norm is any matrix norm and F = R or C [37], [38].
The Fréchet derivative, if it exists, can be shown to be unique
[39]. Consider R defined by the Riccati like matrix equation
(15). Then its Fréchet derivative at the matrix P is given by
(see Appendix III)

L(P,X) = HT
1 (P )X +XH1(P ) +HT

2 (P )XZ

+ ZTXH2(P ),
(18)

where Z = C+C, and

H1(P ) = Ã− S̃PZ −BR−1NTZ +BR−1NT , (19)

H2(P ) = S̃PZ − S̃P +BR−1NTZ −BR−1NT . (20)

Now we can formulate the Newton’s method in Banach space
(see [36], [40]) for the solution of (15) as follows

Pj+1 = Pj + (L(Pj , Xj))
−1R(Pj), j = 1, 2, . . . . (21)

Furthermore, we can compute Pj+1 directly from (21) as

Pj+1 = Pj +Xj , j = 1, 2, . . . , (22)

where Xj is solved from

HT
1 (Pj)Xj +XjH1(Pj) +HT

2 (Pj)XjZ

+ ZTXjH2(Pj) = −R(Pj).
(23)

The equation (23) is a generalized Sylvester equation, which
can be, based on Identity 1, rewritten to the form

4∑
i=1

WjiXjUji = −R(Pj), (24)

where

Wj1 = AT − CTFT
j BT , Uj1 = I,

Wj2 = GT
j B

T , Uj2 = Z,
Wj3 = I, Uj3 = A−BFjC,
Wj4 = ZT , Uj4 = BGj .

Lemma 1: Suppose that Ā ∈ Fm×n, B̄ ∈ Fp×q , and
X̄ ∈ Fn×p. Then,

vec(ĀX̄B̄) =
(
B̄T ⊗ Ā

)
vec(X̄). (25)

Proof: For proof see [41, Lemma 4.3.1, p. 254].
Definition 5: Since the Fréchet derivative L(P,X) is linear

in X , applying Lemma 1 to the left hand side of (24) gives

vec(L(Pj , Xj)) =

(
4∑

i=1

Uj
T
i ⊗Wji

)
vec(Xj)

= KLj vec(Xj),

(26)

where KL ∈ Fn2
x×n2

x is called the Kronecker form of the
Fréchet derivative.

The generalized Sylvester equation (24) has a unique solu-
tion if and only if KL is nonsingular. In this case the solution
can be obtained analytically as

vec(Xj) = K−1
Lj

vec(−R(Pj)), (27)
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or can be approximated either by gradient-based iterative
methods (such as [42], [43] and [44]), or by any other methods
in the literature.

The proposed Newton’s method for SOF controller design
using (23)–(22) is summarized in Algorithm 1.

Algorithm 1: Newton’s method for static output-
feedback controller design.

1 Choose some initial guess P1 = PT
1 such that KL is

nonsingular, and calculate Ã = A−BR−1NT ,
Q̃ = Q−NR−1NT , S̃ = BR−1BT , and expected
tolerance on the numerical solution ϵ > 0, ϵ→ 0.

2 for j=1:maxIteration do
3 Fj = R−1(BTPj +NT )C+,
4 Gj = FjC −R−1(BTPj +NT ),

5 R(Pj) = Q̃+GT
j RGj + ÃTPj + PjÃ− PjS̃Pj ,

6 if trace(R(Pj)
TR(Pj)) > ϵ then

7 Xj ← by solving the matrix equation (24),
8 Pj+1 = Pj +Xj ,
9 else

10 break;
11 end
12 end

Remark 2: It follows from (24) that if C = I then Z = I
and the generalized Sylvester equation (24) reduces to

(A−BKj)
TX +X(A−BKj) = −ATPj − PjA

−Q+ (BTPj +NT )TR−1(BTPj +NT ).
(28)

Hence, the Algorithm 1 becomes equivalent to [35, Algorithm
1.1] for state-feedback LQR design.

Remark 3: Algorithm 1 has a termination condition that
depends on a constant ϵ > 0, ϵ→ 0, which describes the
expected tolerance on the numerical solution. For example
ϵ = 10−d means d digit desired accuracy in the numerical
solution.

The results from this subsection are used only as an inter-
mediate step to obtain the main results, the modified Newton’s
method. Therefore, global convergence and existence of a
stabilizing solution remains to be proven. Although, standard
local q-quadratic convergence results for Newton’s method
apply [41, Theorem 5.2.1], as detailed in [42, Theorem 1].
In particular, if Newton’s method is started sufficiently close
to a solvent for which the Fréchet derivative is non-singular,
the iteration converges with a quadratic rate. Kantorovich
theorem can also be applied to provide sufficient conditions for
existence of a solvent and convergence of Newton’s method
to that solvent [41, Theorem 5.3.1].

Remark 4: Based on standard results for Newton’s method
(see [41, Theorem 5.2.1] and [42, Theorem 1]), Algorithm 1
requires an initial guess P1 = PT

1 which is close enough to
a solvent for which the Fréchet derivative (i.e. KL) is non-
singular. However, a direct procedure to get such initial guess
is out of the topic of this paper, since the results from this
subsection are only used as an intermediate step to obtain the
main results, the modified Newton’s method.

In the next subsection we show that with a simple modi-
fication a new iterative algorithm can be obtained which has
a guaranteed convergence from any stabilizing state-feedback
solution to an output-feedback solution.

B. Modified Newton’s method for stabilizing SOF
controller design

In order to calculate the Newton step in the Algorithm 1,
we need to solve the generalized Sylvester equation (24). In
this subsection we show that with a simple modification we
can approximate the Newton step and converge to a solution
with similar computational effort, but with a guaranteed con-
vergence from any state-feedback solution.

By freezing the matrix G in (15), the term GTRG becomes
a constant during an iteration step and the Fréchet derivative
reduces to

L̂(Pj , Xj) = (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj), (29)

and the Newton’s method to

(Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) = −R(Pj), (30)

Pj+1 = Pj +Xj , j = 1, 2, . . . . (31)

Equation (30) is a Lyapunov equation, which can be solved ef-
ficiently and with much less computational effort than solving
(24) with (27) or with other iterative methods.

The Algorithm 2 summarizes the proposed modified New-
ton’s method for SOF controller design using (29)–(31).

Algorithm 2: Modified Newton’s method for static
output-feedback controller design.

1 Choose some ϵ > 0 (ϵ→ 0), and initial guess
P1 = PT

1 such that Ã− S̃P1 is stable (such P1 can
be obtained via the standard state-feedback LQR
design, see Remark 10). Then calculate
Ã = A−BR−1NT , Q̃ = Q−NR−1NT and
S̃ = BR−1BT .

2 for j=1:maxIteration do
3 Fj = R−1(BTPj +NT )C+,
4 Gj = FjC −R−1(BTPj +NT ),

5 R(Pj) = Q̃+GT
j RGj + ÃTPj + PjÃ− PjS̃Pj ,

6 if trace(R(Pj)
TR(Pj)) > ϵ then

7 Xj ← (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) =

−R(Pj),
8 Pj+1 = Pj +Xj ,
9 else

10 break;
11 end
12 end

1) Convergence: In this sub-subsection, we show that under
certain assumptions, Algorithm 2 has a guaranteed conver-
gence from a stabilizing starting guess P1 (i.e. Ã− S̃P1

is stable for some Q̃ ≥ 0), to a stabilizing output-feedback
solution.

Let us recall some results relating to the convergence proof.
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Definition 6: The inertia of a matrix W ∈ Rn×n is the
triple In(W ) = (π(W ), ν(W ), δ(W )) where π(W ), ν(W ),
and δ(W ) are the number of eigenvalues with positive, nega-
tive, and zero real part respectively [34].

Lemma 2: If H = HT ∈ Rn×n, A ∈ Rn×n, and
W > 0 ∈ Rn×n satisfy AH +HAT = −W ≤ 0, and
δ(A) = 0, then In(−H) ≤ In(A).

Proof: For proof see [45, Proposition 1, p. 447].
Lemma 3: Let H = HT ∈ Rn×n, A ∈ Rn×n,

W > 0 ∈ Rn×n and C ∈ Rl×n satisfy
AH +HAT = −W ≤ CTC, where (A,C) defines a
detectable pair. Then ν(A) = n if and only if ν(H) = 0.

Proof: For proof see [34, Lemma 8, p. 5].
The next Proposition shows that if the conditions described in
Theorem 1 hold, then with a stabilizing starting guess (P1) the
Algorithm 2 cannot fail due to a singular Lyapunov operator.

Proposition 1: Suppose that the conditions in Theorem 1
hold, and the pair (Ã, C̃q) is detectable, where Q̃ = C̃T

q C̃q is
a full-rank factorisation of Q̃. If P1 is stabilizing, and Algo-
rithm 2 is applied to (15), then the Lyapunov operator of the
Lyapunov equation in step 7 from Algorithm 2 is nonsingular
for all j and the sequence of approximate solutions Xj is well
defined.

Proof: Suppose that the pair (Ã, C̃q) is detectable. From
step 7 from Algorithm 2 applied to (15) we can get

(Ã− S̃Pj)
T (Pj +Xj) + (Pj +Xj)(Ã− S̃Pj)

= −Q̃−GT
j RGj − PjS̃Pj ≤ −Q̃,

(32)

since Q̃ and S̃ are positive semi-definite, due to
Q−NR−1NT ≥ 0 and R > 0. From (32) follows that
if Ã− S̃Pj is stable, then Ã− S̃(Pj +Xj) is also stable.
Furthermore, Lemma 3 implies that Pj +Xj is positive
semi-definite. The Lyapunov operator corresponding to the
Lyapunov equation in step 7 from Algorithm 2 is well
defined, precisely as

Ω̃j(Xj) = (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj), (33)

for Xj ∈ Rnx×nx and j = 1, 2, . . ..
Let us recall the following Lemma.

Lemma 4: Suppose that {Pj}∞j=2 is a sequence of sym-
metric matrices such that {R(Pj)}∞j=2 is bounded. If the
pair (Ã, B) is stabilizable and Ã− S̃Pj is stable for each
j = 2, . . ., then {Pj}∞j=2 is bounded.

Proof: For proof see [35, Lemma 2.3, p. 696].
Remark 5: If R(Pj) ̸= 0, i.e., if Pj is not a solution

of (15), then the Newton step (of Algorithm 2) is
a descent direction of ∥R(Pj +Xj)∥F . It follows
that we have ∥R(Pj +Xj)∥F ≤ ∥R(Pj)∥F and
∥R(Pj +Xj)∥F = ∥R(Pj)∥F if and only if R(Pj) = 0.
That is, the residual decreases as long as Pj is not a solution
of (15).

Remark 6: It is important to note that P1 ≥ P2, where
P1 is the initial guess, is not true in general. This is one
of the drawbacks of Newton’s methods. In [34] and [35] the
authors have introduced a step-size control (for state-feedback
LQR design), which can efficiently solve the problem of a
potentially disastrous first Newton step.

Collecting the results so far, we have the following conver-
gence result for the modified Newton’s method.

Theorem 2: Suppose that the pair (Ã, B) is stabilizable, the
pair (Ã, C̃q) is detectable, and there exist real matrices F and
G such that FC −R−1(BTP +NT ) = G. If Algorithm 2
is applied to (15) with a stabilizing starting guess P1 (i.e.
Ã−BK1 is stable for some Q̃ ≥ 0), then P ∗ = limj→∞ Pj

exists and is the stabilizing solution of the generalized Riccati-
like equation (15).

Proof: The proof follows from Theorem 1, Lemma 2, 3,
4, and Proposition 1.

Remark 7: The assumption that the pair (Ã, C̃q) is de-
tectable, where Q̃ = C̃T

q C̃q is a full-rank factorisation of Q̃,
is a requirement even for the standard state-feedback LQR
design.

Remark 8: If C = I then G = 0 and the Algorithm 2
becomes equivalent to [35, Algorithm 1.1] for state-feedback
LQR design (or to [34, Algorithm 1], if we require controlla-
bility of the pair (Ã, B) and observability of the pair (Ã, C̃q)).

Remark 9: From Theorem 2 follows that the convergence
rate of Algorithm 2 is at least sublinear. We have observed
from the examples studied later in Section V that the conver-
gence rate is in fact linear, if Ã− S̃P ∗ has no eigenvalues on
the imaginary axis, although further investigation is needed for
a formal proof. If Ã− S̃P ∗ has eigenvalues on the imaginary
axis, the convergence behaviour remains an open problem (as
it is still an open problem even for standard state-feedback
LQR design, see for example [35, Remark 1.1]).

Remark 10: If system (2) is stabilizable and (Ã, C̃q) is
detectable, then the standard state-feedback LQR solution for
(2) for some Q̃ ≥ 0 always gives a P1 for which Ã− S̃P1 is
stable.

C. Sensitivity analysis
It is well known that the Newton’s method based ap-

proaches, in general, are highly sensitive to ill-conditioning.
Condition numbers measure the sensitivity of a problem to
perturbation in the data. The unstructured absolute condition
number cond(R(P )) can be expressed in terms of the Fréchet
derivative of R(P ) in (15), evaluated at P

cond(R(P )) = max
X ̸=0

∥L(P,X)∥
∥X∥

=: ∥L(X)∥. (34)

By applying a Frobenius norm

cond(R(P )) = max
X ̸=0

∥L(P,X)∥F
∥X∥F

= max
X ̸=0

∥vec
(
L(P,X)

)
∥2

∥vec
(
X
)
∥2

= ∥KL∥2,

(35)

the problem of computing cond(R(P )) reduces to finding the
2-norm of KL. The relative condition number of R(P ) at
P , denoted by rcond(R(P )), can be written in terms of the
absolute condition number cond(R(P )) (see, [46, Sec. 2, p.
776]) as

rcond(R(P )) = cond(R(P ))
∥P∥
∥R(P )∥

. (36)
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For structured condition numbers of R(P ) at P , as well as for
level-2 condition numbers using higher order Fréchet deriva-
tives, please see [46], [47] and references therein. The effect of
condition numbers on convergence will be investigated later,
in Section V.

D. Connection to infinite-horizon LQR with
output-feedback

This subsection describes the relation of Algorithm 1 and
2 to infinite-horizon LQR with output-feedback. First, let us
recall the necessary conditions for the solution of the LQR
problem with output feedback, i.e. the existence of a control
law in the form (3) minimizing (1) subject to (2) with R > 0,
Q−NR−1NT ≥ 0 and x(0) = x0.

Lemma 5: The necessary conditions for the solution of the
LQR problem with output feedback are given by

0 = AT
c P + PAc +Q+ CTFTRFC − CTFTNT

−NFC,
(37)

0 = AcY + Y AT
c + Xx0

, (38)

0 = RFCPCT − (BTP +NT )Y CT , (39)

with Xx0 = x0x
T
0 and Ac = A−BFC.

Proof: For proof see [48, p. 297-302].
The dependence of Xx0

in (38) in the initial states x0 makes
the optimal gain dependent on the initial state through equation
(38). In many applications x0 may not be known (which is
typical for output-feedback design, as it is pointed out in [48]).
It is usual (see for example [49]), to sidestep this problem by
replacing

Xx0
≡ E{Xx0

}, (40)

where E{Xx0} = E{x0x
T
0 } is the initial autocorrelation of

the state. Usually, it is assumed that nothing is known of x0

except that it is uniformly distributed on a surface described
by Xx0

. Most of the papers on output-feedback LQR design
assume that the initial states are uniformly distributed on the
unit sphere, i.e. Xx0

= I (e.g. [14], [18], [48], [50]).
The next theorem describes how Algorithm 1 and 2 are

connected to the initial condition problem described above.
Theorem 3: The solution of Algorithm 1 and 2 satisfies

the necessary conditions described by equations (37)–(39) in
Lemma 5 if and only if Y = I and Xx0 = −Ac −AT

c .
Proof: From (39) it follows that

F = R−1(BTP +NT )Y CT (CY CT )−1. (41)

By assuming that Y = I the equation (41) reduces to

F = R−1(BTP +NT )CT (CCT )−1

= R−1(BTP +NT )C+,
(42)

which is identical to the step 3 in Algorithm 1 and 2.
Furthermore, from equation (38) for Y = I it follows that

Xx0
= −Ac −AT

c . (43)

Finally, setting G = FC −R−1(BTP +NT ) and by rear-
ranging (37) we can get (14) which is equivalent (see Iden-
tity 1) to the step 5 in Algorithm 1 and 2. Hence, the proof is
completed.

Remark 11: The initial state x0 is generally free and so is
Y which is a function of Xx0 . Hence, instead of guessing
Xx0 = I , we may guess for Y = I , and thus the nonlinearity
in Y in (37)–(39) disappears. So, one can get a simple
Riccati-like equation (37), which can be solved easily using
Algorithm 1 or 2.

A direct comparison of setting Xx0
= I versus Y = I will

be investigated in Section V.

E. Output-feedback LQR problem with known initial
conditions

In the previous subsection III-D, we have shown the relation
of Algorithm 1 and 2 to output-feedback LQR problem,
and that the proposed algorithms involve less nonlinearities
compared to other approaches in the literature when the initial
conditions are not given priory, i.e. x0 is unknown. In this
subsection, we show (see Algorithm 3) how the Algorithm 2
can be extended if the initial conditions are known.

Algorithm 3: Iterative algorithm for output-feedback
LQR design with known initial conditions.

1 Set Y1 = I , and choose some ϵ > 0 (ϵ→ 0),
2 for i=1:maxIteration do
3 Fi ← by Algorithm 2 with step 3 changed to

Fj = R−1(BTPj +NT )YiC
T (CYiC

T )−1,
4 Ac = A−BFiC,
5 R(Yi) = AcYi + YiA

T
c + Xx0

,
6 if trace(R(Yi)

TR(Yi)) > ϵ then
7 Yi+1 ← AcYi+1 + Yi+1A

T
c + Xx0

,
8 else
9 break;

10 end
11 end

The numerical examples in Section V suggest that Algo-
rithm 3 converges to a solution if R(P ) is well-conditioned.
But at this writing, we are not aware of a proof for this
conjecture. Although, if Xx0

= x0x
T
0 is symmetric and pos-

itive definite, and if all uncontrollable state variables of the
system (2) are asymptotically stable, then Ac is negative
definite. Hence, Yi+1 exists and is symmetric and positive
definite. It follows that Yi+1 has a full rank and if CYi+1C

T

is nonsingular, the Lyapunov operator corresponding to the
Lyapunov equation in step 7 from Algorithm 3 is well defined,
precisely as

Ωi(Yi+1) = AcYi+1 + Yi+1A
T
c + Xx0 , (44)

for Yi+1 ∈ Rnx×nx and i = 1, 2 . . .. Hence, Algorithm 3 can-
not fail due to a singular Lyapunov operator in step 7. There-
fore, if in step 3 of Algorithm 3, the Algorithm 2 succeeds in
finding Fi at each step, then Algorithm 3 produces a sequence
of symmetric matrices {Yi}∞i=2 and limi→∞ Yi = Y ∗ where
Y ∗ is the solution satisfying (37)–(39).
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IV. USEFUL TECHNIQUES, EXTENSIONS, AND
MODIFICATIONS

Control law (3) is defined in an SOF form. Many dif-
ferent controller structures can be transformed to this SOF
form, like proportional-integral (PI), realizable proportional-
integral-derivative (PIDf ), realizable proportional-derivative
(PDf ), realizable derivative (Df ), even full/reduced or-
der dynamic output-feedback controllers (DOF), dynamic
output-feedback with integral and realizable derivative part
(DOFIDf ), or dynamic output-feedback with realizable deriva-
tive part (DOFDf ), by augmenting the system with additional
state variables. For more info, see [14].

Since the proposed algorithms (Algorithm 1, 2 and 3)
belong to the LQR framework, all the well-known techniques,
modifications and, extensions of the standard LQR design can
be applied here as well. Therefore, one can apply

• Bryson’s rules [51, Section 5.2] for selecting the weight-
ing matrices Q and R,

• methods/techniques in [48] for damping, decoupling,
tracking, disturbance rejection, etc. controller design,

• techniques in [52] for different eigenvalue placements
(pole-placement techniques in LQ) and guaranteed con-
vergence rate,

• techniques in [53], [54] for frequency weighting (fre-
quency shaped LQ),

• and some other methods/techniques in the LQR frame-
work, see e.g. [48], [51] and references therein.

V. NUMERICAL EXAMPLES

In order to show the viability of the previous proposed
algorithms (Algorithm 1, 2 and 3), we have prepared two sets
of examples. The first set of examples contains 1000 randomly
generated SOF stabilizable state-space systems (via Matlab’s
rss subrutin). The second set of examples are all the SOF
stabilizable examples from the COMPleib library [55].

As algorithms to be compared, the iterative LMI (iLMI)
method from [14] and the BMI formulation of the output-
feedback LQR (OFLQR) problem (see Appendix II, Lemma 7)
have been chosen. All examples and numerical solutions
have been carried out on ASUS ZenBook UX480F (Intel(R)
Core(TM) i7-8565U CPU @ 1.80 GHz, 16 GB RAM) laptop
computer using Matlab 2018b [56]. Furthermore, BMI and
iLMI formulations have been carried out by Penlab BMI
solver [57] and by Mosek LMI solver [58] using YALMIP
R20190425 [59]. Finally, the proposed algorithms (Algo-
rithm 1, 2 and 3) have been implemented in Matlab pro-
gramming language (see Listing 1, 2 and 3), where for the
Algorithm 2 and 3 for the step 7 the built-in Matlab lyap
subrutin has been used, and for the Algorithm 1 for the step 7
the equation (27). Furthermore, in order to simplify the code of
the Algorithm 2, the Identity 1 has been used and the equation
(15) has been replaced with equation (16).

Matlab implementations and examples are fully provided in
Listing 1, 2 and 3. The first set of examples, can be down-
loaded from repository1, while the second set of examples are

1https://www.ilka.eu/FirstSetOfExamples.zip

TABLE I
GROUPS OF EXAMPLES IN THE FIRST SET OF EXAMPLES

Group 1 2 3 4 5 6 7 8 9 10
nx 1 2 4 6 8 10 20 30 40 50
ny 1 2 2 2 2 2 2 2 2 2
nu 1 2 2 2 2 2 2 2 2 2
examples 100 100 100 100 100 100 100 100 100 100

all the SOF stabilizable plants from the COMPleib library,
which is freely available (see [55]).

A. First set of examples
The first set of examples contains 1000 SOF stabilizable ex-

amples in 10 groups generated by Matlab’s rss subrutin2. Each
group represents 100 examples with different size of system
order (see Table I). Hence, we can test the behaviour and
effectiveness of the proposed algorithms and compare them to
other output-feedback algorithms in the LQR framework for
increasing number of states.

The weighting matrices have been chosen as Q = CTC,
R = I and N = 0. The initial Lyapunov matrix for Algo-
rithm 1, 2 and 3 is the optimal Lyapunov matrix from the
standard state-feedback LQR design. The stopping criterion
and maximal iteration number for Algorithm 1, 2 and 3 have
been chosen as ϵ = 10−12 and maxIteration = 9× 106.
Finally, for Algorithm 3 and for the iLMI and BMI methods,
the initial state matrix has been chosen as Xx0

= I , i.e. it has
been assumed that the initial states are uniformly distributed
on the unit sphere.

The effect of increasing the number of states on the running
time of one iteration and on the number of iterations of
Algorithm 1 and 2 are shown in Fig. 1 and 2. The effect of
increasing the number of states on the rcond(R(P )) and on the
number of iterations of Algorithm 1 and 2 is shown in Fig. 3.
It can be observed that the number of iterations and therefore
the overall running times of Algorithm 1 and 2 are sensitive
to the relative condition number of (14) (rcond(R(P ))). That
was to be expected, since it is well known that the Newton’s
method based approaches, in general, are sensitive to ill-
conditioning. The effect of increasing the number of states
on the average running times and on solved examples of
Algorithm 1, 2, 3, and of the iLMI and BMI methods are
shown in Fig. 4. It can be observed that the Algorithm 2
outperformed all the other algorithms and methods since it
has solved all the examples in this test set, while the running
time was very close or sometimes better then the running time
of Algorithm 1. Furthermore, it can be observed that even-
though for the Algorithm 1 we do not have a convergence
proof from a state-feedback solution (as for Algorithm 2), it
has solved many more examples than the iLMI or the BMI
methods. Furthermore, Algorithm 3 for nx ≥ 30 failed to
converge to a solution for few examples. It should be noted
that for all those examples the rcond(R(P ))> 1010, and even
the Algorithm 2 has struggled, since the number of iterations
for those examples was higher then 104, while for the rest of
the examples in those groups was smaller with almost 1 or 2,

2The Matlab’s rss subrutin generates a random stable system, therefore all
the examples are SOF stabilizable as well (since one can select the output-
feedback gain as zero and the closed-loop system will be stable).
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Fig. 1. The effect of increasing the number of states on the running
time of one iteration and on the number of iterations of Algorithm 1.
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Fig. 2. The effect of increasing the number of states on the running
time of one iteration and on the number of iterations of Algorithm 2.

sometimes with 3-4 orders of magnitude. This is the reason
for that large trajectory of number of iterations of Algorithm 2
in Fig. 2 for nx > 10.

Finally, Fig. 5 compares how far the actual linear quadratic
cost is for some randomly generated initial state conditions
(x0 within a unit sphere) for Xx0 = I and for Y = I
from the optimal output-feedback cost (minimizing the linear
quadratic cost for the given x0). It can be observed that the
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Fig. 3. The effect of increasing the number of states on the
rcond(R(P )) and on the number of iterations of Algorithm 1 and 2.
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Fig. 4. The effect of increasing the number of states on the average
running times and on solved examples of Algorithm 1, 2, 3, and of the
iLMI and BMI methods.

distribution of distances from the optimal cost for different
initial conditions for Y = I , i.e. for Algorithm 2, is compa-
rable with the choice of setting Xx0

= I . Hence, Algorithm 2
is a viable approach for output-feedback LQR design with
unknown initial conditions.
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B. Second set of examples

The second set includes all the continuous-time SOF stabi-
lizable examples from the COMPleib library [55] (Table II),
i.e. all the examples expect the 10 reduced order control (ROC)
instances, and the 4 examples pointed out in [60], which
are not continuous-time stabilizable (REA4, NN3, NN10, and
NN12, indicated with the a superscript in Table II). This
rich-full library contains benchmark examples from a wide
spectrum of real-world applications and academic problems
even with nx > 4000. Therefore, we can test the behaviour
and effectiveness of our proposed algorithms on large-scale
stable/unstable plants as well. For better highlighting the
benefits of the proposed methods, the iLMI and the BMI
formulation have been evaluated on the COMPleib library as
well.

The weighting matrices for all examples have been chosen
as Q = CTC + αI , R = I and N = 0, where α = 10−9. The
αI has been introduced to ensure the positive-definiteness of
the Q matrix, as most of the examples in the COMPleib library
are ill-conditioned causing the CTC to became negative def-
inite due to numerical errors. The initial Lyapunov matrix for
the Algorithm 2 is the optimal Lyapunov matrix from the stan-
dard state-feedback LQR design. Furthermore, the stopping
criterion and maximal iteration number for Algorithm 2 have
been chosen as ϵ = 10−12 and maxIteration = 9× 106. For
the iLMI and BMI methods the Xx0

has been chosen as
Xx0

= I , and all other solver related parameters for the Mosek
LMI and Penlab BMI solvers have been kept as default.

The results summarized in Table II indicate that the pro-
posed approach is superior compared to BMI and iLMI
formulations. While the proposed Algorithm 2 has solved
92% (101/110) of the examples, the iLMI formulation 63%
(59/110) and the BMI formulation only 17% (19/110). That
is, Algorithm 2 solved 71% more examples than iLMI, and
432% more than the BMI method. In addition, even with the
built-in Matlab lyap subrutin, which is not well-suited for
large-scale problems, we where able to solve examples with
order higher then 4000 within minutes. The LAH example,
see Table II, well demonstrates that the proposed approach is
computationally much more tractable than approaches based
on LMIs and/or BMIs. While the Algorithm 2 converged to a
solution in 1.23ms, it took 31.20 s for the iLMI formulation,
and 8.28 h for the BMI one.

The results with Algorithm 2 can be further divided into 4
groups.

1) Examples which can be solved without any problem with
the Algorithm 2 (73%, 80/110 examples).

2) Examples where we had to use the balreal Matlab
subrutin to balance the system matrices in order to get
convergence to a solution with the Algorithm 2 (19%,
21 examples: AC9, AC14, HE5, JE1, JE2, JE3, TG1,
WEC1, WEC2, WEC3, UWV, TF1, CDP, NN5, NN13,
NN14, HF2D1, HF2D2, HF2D5, HF2D6, HF2D7, and
HF2D8). These examples are also indicated with the b

superscript and with gray color in Table II;
3) Examples where we had to allow large maximal iteration

number (> 109) in order to converge to a solution with
the Algorithm 2 (2%, 2 examples: AC9 and CDP).

4) Examples where the Algorithm 2 has failed to converge
to a solution (8%, 9 examples: AC10, AC13, AC18,
HE1, TF3, NN6, NN7, NN9, and NN17).

The COMPleib library well demonstrates that without
proper regularization or preconditioning, the proposed algo-
rithms may fail to converge due to numerical issues. The same
is true for the iLMI and BMI methods. Table II also indicates
that with system balancing (in our case with the built-in Matlab
balreal subrutin) we are able to solve 26% more examples
with the Algorithm 2 than without any system balancing.
This number can be further increased by preconditioning
the Lyapunov/Sylvester equation within the Newton’s method
similarly as in [36]. Furthermore, the proposed approach can
be easily extended with exact line-search, similarly as it is
done in [34], [35] to speed up the convergence and to reduce
the overall running time even further.

In Remark 9 we have discussed that the convergence rate
of the Algorithm 2 is at least sublinear. However, we have
observed from the examples above that the convergence rate is
in fact linear, if Ã− S̃P ∗ has no eigenvalues on the imaginary
axis. Convergence rates of the proposed Algorithm 1 and 2
on different COMPleib plants (AC3, AC4 and DIS2), for ini-
tial Lyapunov matrices obtained from standard state-feedback
LQR design, are shown in Fig. 6 and 8. Convergence rates of
the Algorithm 1 and 2 on the COMPleib plant AC3 for random
initial Lyapunov matrices are shown in Fig. 7 and 9. From the
figures it can be observed that the convergence rate is quadratic
for Algorithm 1 and is linear for Algorithm 2, if the initial
Lyapunov matrix is calculated by the standard LQR design,
and that it becomes quadratic/linear in the neighbourhood of
the solution when the Lyapunov matrix is randomly initialized.

In summary, the proposed algorithms, unlike other methods
based on linear/bilinear matrix inequalities, NLPs, and ray-
shooting methods, can solve almost all the SOF examples in
the COMPleib library (most of them within milliseconds). Un-
til now it has been achieved only by some multivariate direct
search methods applied to SOF stabilization in [60]. However,
the author’s attention in that publication was restricted to SOF
stabilization only, i.e. no attempt was made to optimize closed-
loop performance criteria relevant to control engineering. For
more comparison, the readers are referred to [61], where the
authors have evaluated different controller design approaches

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3218560

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

on the COMPleib library (including frequency domain ap-
proaches minimizing H∞ and/or H2 norms as well).

5 10 15 20
Number of iterations

10-10

100 AC3
AC4
DIS2

Fig. 6. Convergence rate of the Algorithm 2 on COMPleib plants AC3,
AC4 and DIS2. The initial Lyapunov matrix is obtained by the standard
state-feedback LQR design. It can be observed that the convergence
rate is linear.
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Fig. 7. Convergence rate of the Algorithm 2 on COMPleib plant
AC3 for random initial Lyapunov matrices. It can be observed that the
convergence rate becomes linear in the neighbourhood of the solution.
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Fig. 8. Convergence rate of the Algorithm 1 on COMPleib plants AC3,
AC4 and DIS2. The initial Lyapunov matrix is obtained by the standard
state-feedback LQR design. It can be observed that the convergence
rate is quadratic.

VI. CONCLUSIONS

This paper provides novel results on static output-feedback
controller design for linear time-invariant systems in the LQR
framework. Even though most of the output-feedback control
problems are considered to be NP-hard, we show that within
the LQR framework it is possible to find SOFs in sublin-
ear (linear) time even for large-scale systems. The proposed
framework, with novel necessary and sufficient conditions for

2 4 6 8 10 12

Number of iterations

10
-20

10
0

Fig. 9. Convergence rate of the Algorithm 1 on COMPleib plant AC3
for random initial Lyapunov matrices.

output-feedback stabilizability, opens the possibility to use
well known methods, such as the Newton’s methods, to design
SOFs with guaranteed convergence from a stabilizing state-
feedback solution to a stabilizing output-feedback solution.
Hence, we can get computationally efficient approaches which
succeed in solving high dimensional problems where other,
state-of-the-art methods fail.

The usability, tractability and effectiveness is also verified
on more than 1000 numerical examples in addition to all
the SOF stabilizable plants from the COMPleib library. The
proposed Algorithm 2, unlike other methods based on linear/-
bilinear matrix inequalities, NLPs, can solve almost all the
SOF examples in the COMPleib library (most of them within
milliseconds). Along this line, numerical results also indicate
that the proposed algorithms suffer from the well known
drawbacks of Newton’s methods. Therefore, regularization and
proper scaling is needed to improve usability of the proposed
approaches for ill-conditioned problems.

In terms of future works, the Lyapunov equation can be
preconditioned within the Newton’s method similarly as in
[36], and the proposed approaches can be easily extended with
exact line-search, similarly as it is done in [34], [35].

APPENDIX I
EXISTENCE OF P ≥ 0

Lemma 6: Let F ∈ Rnu×ny be given such that A−BFC
is stable. Substitution of u(t) = −Fy(t) = −FCx(t) into the
cost function (1) gives

J =

∫ ∞

0

x(t)T
(
Q+ CTFTRFC − CTFTNT

−NFC
)
x(t)dt.

(45)

Since Q+ CTFTRFC − CTFTNT −NFC ≥ 0, because
R > 0 and Q−NR−1NT ≥ 0, and since A−BFC is stable,
it follows that the Lyapunov equation

(A−BFC)TP + P (A−BFC)

= −Q− CTFTRFC + CTFTNT +NFC
(46)

has a unique solution P ≥ 0.
Proof: For proof see [62, Lemma 12.1, p. 283].
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APPENDIX II
BMI FORMULATION OF THE OFLQR DESIGN PROBLEM

Lemma 7: The static output-feedback LQR design problem
can be formulated as the following optimization problem

min
F,P

(xT
0 Px0) (47)

subject to BMI and LMI constraints

(Ã−BFC)TP + P (Ã−BFC)

+ Q̃+ CTFTRFC ≤ 0,
(48)

P ≥ 0. (49)
Proof: Assume that the Lyapunov candidate

V (x(t)) = x(t)TPx(t), (50)

is positive semi-definite. Then from the Bellman-Lyapunov
inequality follows

V̇ (x(t)) + J(x(t)) ≤ 0→ V̇ (x(t)) ≤ −J(x(t)), (51)

where
J = x(t)T Q̃x(t) ≥ 0, (52)

which indicates that the closed-loop system is stable. Integrat-
ing both sides from 0 to ∞ we can obtain the upper bound of
the cost function

J∞ ≤ V (x(0))− V (x(∞)) ≤ x(0)TPx(0), (53)

which completes the proof.

APPENDIX III
FRÉCHET DERIVATIVE OF EQUATION (15)

By substituting back F = R−1(BTP +NT )C+,
G = FC −R−1(BTP +NT ), S̃Q = NR−1NT and
S̃A = BR−1NT to the equation (15), and perturbing
with X , we can get

R(P +X) =

+ Q̃+ ÃT (P +X) + (P +X)Ã

− (P +X)S̃(P +X) + ZT (P +X)S̃(P +X)Z

+ ZT (P +X)S̃AZ − ZT (P +X)S̃(P +X)

− ZT (P +X)S̃A + ZT S̃T
A(P +X)Z

+ ZT S̃QZ − ZT S̃T
A(P +X)− ZT S̃Q

− (P +X)S̃(P +X)Z − (P +X)S̃AZ

+ (P +X)S̃(P +X) + (P +X)S̃A

− S̃T
A(P +X)Z − S̃QZ + S̃T

A(P +X) + S̃Q.

(54)

By rearranging (54), we can get

R(P +X) = R(P ) + (Ã− S̃PZ + S̃A − S̃AZ)TX

+X(Ã− S̃PZ + S̃A − S̃AZ)

+ (S̃PZ − S̃P + S̃AZ − S̃A)XZ

+ ZTX(S̃PZ − S̃P + S̃AZ − S̃A)

+ ZTXS̃XZ − ZTXS̃X −XS̃XZ.

(55)

Denoting

H1(P ) = (Ã− S̃PZ + S̃A − S̃AZ),

H2(P ) = (S̃PZ − S̃P + S̃AZ − S̃A),

L(P,X) = HT
1 (P )X +XH1(P ) +HT

2 (P )XZ

+ ZTXH2(P ),

Eo(X) = (ZTXS̃XZ − ZTXS̃X −XS̃XZ),

we get R(P +X) = R(P ) + L(P,X) + Eo(X), or
R(P +X)−R(P )− L(P,X) = Eo(X). If P is the
solution of (15) then ∥R(P +X)∥F = ∥R(P )∥F = 0
and consequently ∥X∥F = 0. From this follows that
lim∥X∥F→0 ∥Eo(X)∥F = 0, and L(P,X) is the Fréchet
derivative of (15) at P .
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TABLE II
OUTPUT-FEEDBACK LQR BENCHMARKS ON COMPle IB PLANTS

Problem description BMI iLMI Alg. 2 Problem description BMI iLMI Alg. 2

Name nx ny nu Stable Time (s) Time (s) Time (s) Name nx ny nu Stable Time (s) Time (s) Time (s)

AC1 5 3 3 Yes - - 1.78E-02 TF1b 7 4 2 Yes - - 1.75E+03
AC2 5 3 3 Yes - - 1.37E-02 TF2 7 3 2 Yes - - 6.15E-02
AC3 5 4 2 Yes - 1.87E+01 2.30E-03 TF3 7 3 2 Yes - - -
AC4 4 2 1 No - 2.15E+00 1.59E-03 PSM 7 3 2 Yes 1.59E+00 3.37E+00 8.86E-04
AC5 4 2 2 No - - 2.22E-03 TL 256 2 2 Yes - - 1.43E+00
AC6 7 4 2 Yes - 3.69E+01 1.49E-02 CDPb 120 2 2 Yes - - 3.57E+04
AC7 9 2 1 Yes - 9.17E+00 7.12E-03 NN1 3 2 1 No - 2.15E+01 1.13E-04
AC8 9 5 1 Yes - 3.18E+00 6.97E-03 NN2 2 1 1 Yes 5.28E-01 1.10E+00 1.37E-04
AC9b 10 5 4 Yes - - 4.64E-01 NN3a 4 1 1 No × × ×
AC10 55 2 2 Yes - - - NN4 4 3 2 Yes - - 7.82E-03
AC11 5 4 2 No - - 5.21E-02 NN5b 7 2 1 Yes - - 1.41E-01
AC12 4 4 3 Yes - 1.41E+00 1.12E-04 NN6 9 4 1 Yes - - -
AC13 28 4 3 Yes - - - NN7 9 4 1 Yes - - -
AC14b 40 4 3 Yes - - 2.63E+01 NN8 3 2 2 Yes 7.04E-01 5.14E+00 8.72E-04
AC15 4 3 2 Yes - 9.38E+00 1.37E-03 NN9 5 2 3 No - - -
AC16 4 4 2 Yes - 1.50E+00 1.35E-04 NN10a 8 3 3 No × × ×
AC17 4 2 1 Yes 9.27E-01 6.12E+00 8.74E-04 NN11 16 5 3 Yes 5.12E+01 3.36E+00 5.99E-04
AC18 10 2 2 Yes - - - NN12a 6 2 2 Yes × × ×
HE1 4 1 2 Yes - - - NN13b 6 2 2 Yes - - 1.19E+01
HE2 4 2 2 Yes - 5.81E+01 8.10E-03 NN14b 6 2 2 Yes - - 1.37E+01
HE3 8 6 4 Yes - 9.22E+00 2.19E-03 NN15 3 2 2 Yes - 7.89E+00 6.58E-04
HE4 8 6 4 Yes - 1.16E+02 1.03E-03 NN16 8 4 4 Yes 1.17E+01 1.91E+00 1.51E-04
HE5b 8 2 4 Yes - - 1.19E+00 NN17 3 1 2 No - - -
HE6 20 6 4 Yes - 2.68E+02 4.42E-03 NN18 1006 1 1 Yes - - 2.17E+01
HE7 20 6 4 Yes - 2.71E+02 3.88E-03 CM1 20 2 1 Yes 3.18E+02 1.03E+01 4.18E-03
JE1b 30 5 3 Yes - - 1.07E+03 CM2 60 2 1 Yes - 1.37E+03 7.96E-03
JE2b 21 3 3 Yes - - 1.46E+00 CM3 120 2 1 Yes - - 3.82E-02
JE3b 24 6 3 Yes - - 3.73E+02 CM4 240 2 1 Yes - - 1.16E-01
REA1 4 3 2 No - 1.78E+01 5.42E-03 CM5 480 2 1 Yes - - 8.81E-01
REA2 4 2 2 No - 1.79E+01 1.19E-02 CM6 960 2 1 Yes - - 9.87E+00
REA3 12 3 1 Yes - 3.87E+00 3.13E-01 TMD 6 4 2 Yes - 1.69E+01 9.92E-04
REA4a 8 1 1 No × × × FS 5 3 1 Yes - - 9.11E-02
DIS1 8 4 4 Yes 4.56E+00 6.47E+00 1.35E-03 DLR1 10 2 2 Yes 7.11E+00 1.18E+01 5.35E-04
DIS2 3 2 2 Yes - 4.13E+00 3.02E-03 DLR2 40 2 2 Yes - - 1.12E-02
DIS3 6 4 4 Yes - 6.27E+00 3.58E-03 DLR3 40 2 2 Yes - - 9.58E-03
DIS4 6 6 4 Yes - 9.13E-01 1.44E-04 ISS1 270 3 3 Yes - - 4.57E-03
DIS5 4 2 2 No - - 1.57E-03 ISS2 270 3 3 Yes - - 2.55E-03
TG1b 10 2 2 Yes - - 3.53E+00 CBM 348 1 1 Yes - - 3.10E+02
AGS 12 2 2 Yes 7.52E+01 1.87E+01 7.21E-03 LAH 48 1 1 Yes 2.98E+04 3.12E+01 1.23E-03
WEC1b 10 4 3 Yes - - 4.52E-01 HF2D1b 3796 3 2 No - - 7.40E+02
WEC2b 10 4 3 Yes - - 3.32E-01 HF2D2b 3796 3 2 No - - 6.44E+02
WEC32 10 4 3 Yes - - 3.25E-01 HF2D3 4489 4 2 Yes - - 8.01E+02
HF1 130 2 1 Yes - - 1.12E-01 HF2D4 2025 4 2 Yes - - 6.21E+02
BDT1 11 3 3 Yes 1.97E+01 9.36E+00 8.22E-03 HF2D5b 4489 4 2 No - - 1.36E+02
BDT2 82 4 4 Yes - 8.11E+02 5.41E-02 HF2D6b 2025 4 2 No - - 1.35E+02
MFP 4 2 3 Yes 1.75E+00 - 8.58E-02 HF2D7b 4489 4 2 No - - 9.01E+01
UWVb 8 2 2 Yes - - 1.86E+00 HF2D8b 2025 4 2 No - - 5.87E+01
IH 21 10 11 Yes - - 9.92E-03 HF2D9 3481 2 2 No - - 7.48E+02
CSE1 20 10 2 Yes 4.26E+01 2.75E+00 6.14E-04 HF2D10 5 3 2 No - 8.89E-01 2.54E-03
CSE2 60 30 2 Yes - 8.98E+00 1.21E-03 HF2D11 5 3 2 No - 1.89E-01 3.46E-04
EB1 10 1 1 Yes 6.76E+00 6.14E+00 1.10E-03 HF2D12 5 4 2 Yes 2.23E+00 1.58E-01 1.17E-04
EB2 10 1 1 Yes 6.72E+00 6.15E+00 1.93E-03 HF2D13 5 4 2 Yes - 3.27E-01 4.89E-04
EB3 10 1 1 Yes 1.43E+01 2.01E+00 2.15E-04 HF2D14 5 4 2 No - 4.86E-01 8.09E-04
EB4 20 1 1 Yes - 7.70E+00 1.37E-04 HF2D15 5 4 2 No - 3.36E-01 9.40E-04
EB5 40 1 1 Yes - - 1.12E-03 HF2D16 5 4 2 No - 2.09E+00 1.05E-03
EB6 160 1 1 Yes - - 1.01E-01 HF2D17 5 4 2 No 1.47E+00 3.33E-01 9.58E-04
PAS 5 3 1 Yes - - 9.41E-04 HF2D18 5 2 2 No - 3.12E-01 5.44E-04
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1 function [F,P,iteration,critFun]=algorithm1(A,B,C,Q,R,N,P,maxIteration,stopCrit)
2 iteration = 0; % initializing the iteration number
3 critFun = inf; % initializing the critterial function
4 Z = pinv(C)*C;
5 I = speye(size(A));
6 while (iteration < maxIteration) && critFun > stopCrit
7 K = R\(B'*P + N');
8 F = K*pinv(C);
9 Ac = (A - B*F*C);

10 RE = Ac'*P + P*Ac + Q + C'*F'*R*F*C - C'*F'*N' - N*F*C;
11 U = B*(F*C-K);
12 KR = kron(I,Ac') + kron(Z',U') + kron(Ac',I) + kron(U',Z');
13 P = P + mat(KR\vec(-RE));
14 critFun = trace(REˆ2);
15 iteration = iteration + 1;
16 end
17 end

LISTING 1. Algorithm 1 implemented in Matlab/Octave programming language.

1 function [F,P,iteration,critFun]=algorithm2(A,B,C,Q,R,N,P,maxIteration,stopCrit)
2 iteration = 0; % initializing the iteration number
3 critFun = inf; % initializing the critterial function
4 while (iteration < maxIteration) && critFun > stopCrit
5 K = R\(B'*P + N');
6 F = K*pinv(C);
7 RE = (A - B*F*C)'*P + P*(A - B*F*C) + Q + C'*F'*R*F*C - C'*F'*N' - N*F*C;
8 P = P + lyap((A - B*K)',RE);
9 critFun = trace(REˆ2);

10 iteration = iteration + 1;
11 end
12 end

LISTING 2. Algorithm 2 implemented in Matlab/Octave programming language.

1 function [F,P,Y,iterationIL,critFunIL,iterationOL,critFunOL]=algorithm3(A,B,C,Q,R,N,P,Y,Xx0,
maxIterationOL,maxIterationIL,stopCritOL,stopCritIL)

2 iterationOL = 0; % initializing the outer-loop iteration number
3 critFunOL = inf; % initializing the outer-loop critterial function
4 while (iterationOL < maxIterationOL) && critFunOL > stopCritOL
5 iterationIL = 0; % initializing the inner-loop iteration number
6 critFunIL = inf; % initializing the inner-loop critterial function
7 while (iterationIL < maxIterationIL) && critFunIL > stopCritIL
8 K = R\(B'*P + N');
9 F = K*Y*C'/(C*Y*C');

10 RE = (A - B*F*C)'*P + P*(A - B*F*C) + Q + C'*F'*R*F*C - C'*F'*N' - N*F*C;
11 P = P + lyap((A - B*K)',RE);
12 critFunIL = trace(REˆ2);
13 iterationIL = iterationIL + 1;
14 end
15 LYE=(A-B*F*C)*Y+Y*(A-B*F*C)'+Xx0;
16 Y=lyap((A-B*F*C),Xx0);
17 critFunOL = trace(LYEˆ2);
18 iterationOL = iterationOL + 1;
19 end
20 end

LISTING 3. Algorithm 3 implemented in Matlab/Octave programming language.
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