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Abstract

In this paper, we propose a scheme for the joint optimization of the user transmit power and

the antenna selection at the access points (AP)s of a user-centric cell-free massive multiple-input-

multiple-output (UC CF-mMIMO) system. We derive an approximate expression for the achievable

uplink rate of the users in a UC CF-mMIMO system in the presence of a mixed analog-to-digital

converter (ADC) resolution profile at the APs. Using the derived approximation, we propose to maximize

the uplink sum-rate of UC CF-mMIMO systems subject to energy constraints at the APs. An alternating-

optimization solution is proposed using binary particle swarm optimization (BPSO) and successive

convex approximation (SCA). We also study the impact of various system parameters on the performance

of the system.

Index Terms

Cell-free massive MIMO, user-centric architecture, alternating-optimization, antenna selection, up-

link power allocation

I. INTRODUCTION

The concept of massive multiple-input-multiple-output (mMIMO) systems with a vast number

of transmitting or receiving antennas or both have received much theoretical and practical
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Reference
User-

centric

ADC /

Mixed

ADC

Objective
Energy

constraint
Optimization methodology

[8] X × sum-rate & minimum rate ×
Successive Lower-Bound

Maximization

[9] X × sum-rate & minimum rate ×
Successive Lower-Bound

Maximization

[10] X ×
Ratio of sum-rate to energy

consumption
×

Successive Lower-Bound

Maximization

[11] X × minimum rate × Bisection method

[12] × X sum-rate × lower bound maximization

[13] × X sum-rate & minimum rate ×
lower bound maximization &

Bisection method

[14] × X minimum rate × geometric programming

This paper X X sum-rate X
alternating optimization using

SCA-GP and BPSO

TABLE I: Comparison of this work with existing literature

attention over the last few years [1]. The idea of a large number of co-located antennas has

been then extended to distributed mMIMO systems [2], and the performance improvements

achievable from such distributed transceivers have been studied under different system models

in papers like [3]–[6]. In a conventional cellular communication system, geographical areas are

divided into non-overlapping regions called cells, and all users within a cell are served by a

single base station (BS). Massive densification of such cells, popularly termed as small cell

communication, has been proven to be one viable solution for achieving high energy efficiency

(EE) [7]. However, the future demands of wireless communication systems are multi-faceted and

more challenging to achieve. Hence, the small cell communication systems may not cater to all

of them.

Recently, the idea of cell-free (CF) communication has attracted much attention [5]. A CF-

mMIMO system comprises a large number of access points (AP)s simultaneously serving a

smaller (compared to the number of APs) number of users with the help of a central pro-

cessing unit (CPU) supervising the whole communication system. CF communication has been

demonstrated to improve the performance over the small cell schemes and thus is a promising

technology capable of achieving the demands of 5G and 6G communication standards.
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Several papers in the literature like [15]–[23] have investigated multiple aspects of CF systems.

Detailed surveys and studies on CF systems are available in papers such as [15], [16] and

references therein. The authors of [18] show that CF-mMIMO systems can achieve higher

rates (in terms of 5%-outage and minimum rate) when compared to small-cell users even

when power allocation is applied more frequently in the small cell scheme. Furthermore, the

authors of [19] compare the EE and spectral efficiency (SE) of CF systems with those of single-

cell mMIMO systems. They also prove that CF systems can perform better with good power

allocation strategies like the max-min power control schemes, though time-consuming. They

rightly emphasize that the utility of the resource allocation algorithms depends both on the

quality of performance and the implementation complexity. The uplink and downlink SE of

a CF-mMIMO system under Rician channel fading conditions have been studied in [21]. The

authors also evaluate the performance losses incurred in the uplink and downlink channels due to

the unavailability of the phase of the line of sight (LoS) paths. The performance of CF systems

with multi-antenna APs and multi-antenna user equipment (UE) is studied in [22]. Furthermore,

a closed-form expression for the achievable downlink SE considering the availability of imperfect

channel state information (CSI), non-orthogonal pilots, and power control is provided. Recently,

approximate outage probability (OP) expressions are derived for uplink CF-mMIMO systems

using the dimension reduction method for multifold integration in [23].

In a conventional CF system, all the users are served by all the APs. However, in large

networks, each user is physically close to only a finite set of APs. Hence, the authors of [24]

have introduced the concept of a user-centric (UC) virtual cell approach to CF-mMIMO, wherein

each user is served only by a limited number of AP’s [25]. UC CF systems can be implemented

with lesser backhaul overhead and were demonstrated to outperform the conventional CF systems

in terms of achievable rate-per-user for the vast majority of the users in the network [24]. UC CF-

mMIMO architecture with multiple antennas at both the APs and users has been studied in [8].

The authors of [26] have investigated the performance of UC CF-mMIMO at millimeter-wave

frequencies. Downlink power control strategies to maximize the sum-rate or the minimum rate

for a UC CF-mMIMO system are explored in [9]. Another essential aspect of UC CF-mMIMO

systems is the user assignment strategies. One such strategy which ensures that at least one AP

serves each user is discussed in [11]. We provide a summary and contrast our contributions to

the existing literature in Table I.

The usage of a large number of antennas in both mMIMO and CF-mMIMO systems can
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significantly increase the power consumption from radio frequency (RF) circuits, and digital

signal processing (DSP) units [27]–[29]. Moreover, the power consumption of an analog-to-

digital converter (ADC) is known to scale linearly with the signal bandwidth roughly and

exponentially with the quantization bit [30]. For example, the power dissipation of an eight-

bit ADC with a sampling rate of 20 Giga-samples per second is 10 Watt [31]. Hence, the

more the number of antennas at the AP, the higher the power consumption at the AP. Therefore,

energy efficiency is a significant performance metric in wireless communications, especially in

CF-mMIMO systems that employ many antennas.

The ADC power consumption could be reduced by reducing the bit resolution or up-scaling the

number of antennas, or keeping the number of users constant [32]. However, on the other hand,

the reduction in the spectral efficiency due to low-bit resolution ADCs is also a severe concern

[33]. One solution to mitigate the loss would be to have mixed resolution ADC architecture at

the APs.

The performance of mixed resolution ADC architecture has been extensively studied in the case

of cellular mMIMO systems. For example, the authors of [34], [35] have derived an approximate

expression of the uplink SE and outage probability of mMIMO systems with MRC receivers

using the additive quantization noise model (AQNM) for modeling the imperfections in the

received signal due to low-bit resolution ADCs, respectively. Similarly, an approximate analytical

expression for the uplink achievable rate of an mMIMO system with finite-precision ADCs and

maximal ratio combining (MRC) receivers has been studied in [36]. The authors of [37] have

considered the joint power control and resource allocation for a device-to-device (D2D) underlay

cellular system with a multi-antenna BS employing ADCs with different resolutions. Similarly,

the uplink achievable SE of multi-user distributed mMIMO with mixed-ADC receivers has been

studied in [29]. Their study has concluded that the distributed mixed-ADC architecture is an

energy-efficient design capable of outperforming the centralized mMIMO system. Furthermore,

the architecture can achieve large throughputs by deploying a large number of low-resolution

remote radio heads (L-RRHs).

Inspired by these results, the performance of CF systems with low-bit resolution ADCs

has also been analyzed in many works. The authors of [38] have considered a CF-system

with multi-antenna users and multi-antenna BS employed with low-bit resolution ADCs. Their

observations reveal that with an appropriate choice of quantization bits, the CF-mMIMO with

low-bit resolution ADCs can achieve a better SE-EE trade-off when compared to the perfect high-
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bit resolution ADC counterpart. Furthermore, the authors of [13] have proved that the asymptotic

achievable rate (when the number of APs is large) of users in the CF system converges to a

finite limit independent of the ADC resolutions. They prove that the ADC resolution of the user

alone determines this limit. An optimal ADC resolution bit allocation scheme that maximizes

the sum-rate subject to the total ADC resolution bit constraint has been developed in [12].

All the prior art studying/optimizing the performance of low-bit resolution ADCs at the APs

assumes the basic CF-system model where all the APs serve all the users. None of the works,

even for a basic CF-system, let alone a UC CF-system develop antenna selection schemes to

balance EE with SE. An antenna selection scheme is crucial because some antennas attached

to ADCs with certain-bit resolutions can contribute very little to improving spectral efficiency.

At the same time, the power required to activate the RF chain of that antenna becomes a

burden penalizing the system’s total energy efficiency (EE). Therefore, posing the trade-off as

an optimization problem and solving it would determine the most feasible solution.

Hence, our paper considers a UC CF-mMIMO system with mixed resolution ADC architecture

at the APs and single-antenna users. Here, few antennas at the APs are assumed to be connected

to RF chains with high-bit resolution ADCs, and the rest are considered to have access to low-bit

resolution ADCs only. In a usual antenna selection problem, all the antennas are assumed to be

identical. In contrast, the antennas are not similar here because of the different ADC resolutions.

In this paper, we propose a scheme for the joint optimization of the user transmit power and the

antenna selection at the APs to maximize the uplink sum rate utility while satisfying a maximum

energy consumption constraint at the APs. The main contributions of this paper are summarized

as follows:

• We derive a closed-form lower bound for the achievable uplink rate of the users in a UC

CF-mMIMO system in the presence of a mixed ADC resolution profile at the APs, using

the popular use-and-forget bound.

• For sum-rate maximization, we propose an optimization technique that alternates between

two sub-problems corresponding to the optimization of power coefficients and antenna-

selection coefficients, respectively. For power control, we use the successive convex ap-

proximation (SCA) to relax the non-convex objective into a convex objective and use

geometric programming (GP) to solve the relaxed convex sub-problem. Binary particle

swarm optimization (BPSO) is used for optimizing the antenna-selection coefficients.

• We also study the impact of various system parameters such as number of APs, number of
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users, number of users served by an AP, ratio of high-resolution to total number of antenna

and permissible energy consumption on the performance of the system.

Organization: The rest of the paper is organized as follows. Section II describes the system

model under consideration. Next, in Section II-C, we evaluate the lower bound on the achievable

uplink rate. In Section III, we formulate the optimization problem to maximize the achievable

uplink sum-rate under constraints on energy consumption of the APs and the power coefficient

of the users. We also discuss the proposed solution in this section. Section IV presents the

simulation results and finally, concluding remarks are presented in Section V.

Notation: Following notations are used in this paper: X denotes a matrix, x denotes a vector

and x denotes a scalar. Also, (·)H and Tr (·) represents the conjugate transpose and trace operator,

respectively. ‖ · ‖ denotes the euclidean norm operator. diag (X) returns a diagonal matrix with

diagonal elements of X and, diag (x) returns a diagonal matrix with the elements of vector x. IN

and 0N denotes the N ×N identity and zero matrix, respectively. U [a, b] represents the uniform

distribution over the support [a, b].

II. SYSTEM MODEL

A CF-mMIMO system with M APs and K users is considered, where M ≫ K. Each AP

is equipped with N antennas and the users are equipped with a single antenna each. We have

considered a mixed ADC structure, where the ADCs connected to the antennas have different

resolution [14], [39]. Out of the N antennas at each of the AP, N1 antennas are connected with

low-bit resolution ADCs and the remaining N2 = N −N1 antennas are connected with high-bit

resolution ADCs. Let bim denotes the resolution of ADC connected to the ith antenna of the

mth AP. Unlike [14], [39] where bim was considered to be same for all the N1 antenna, we have

considered that the first N1 antenna of all the APs to have a resolution profile ranging form 1-bit

to N1-bit, i.e., bim = i ∀ i ∈ {1, 2, . . . , N1} and ∀ m ∈ {1, 2, . . . ,M}. This particular choice

of resolution profile provides more flexibility compared to the fixed low resolution profile. The

channel between the mth AP and the kth user is modeled as a Rayleigh fading channel. Let

gmk ∈ CN , represent the channel vector between the mth AP and the kth user and we have,

gmk ∼ CN (0, βmkIN) , (1)

where βmk represents the large scale fading coefficients between the mth AP and the kth user.

We assume that the knowledge of βmk is available at both the AP and the UE. Instead of
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bim 1 2 3 4 5

αi
m 0.6366 0.8825 0.96546 0.990503 0.997501

TABLE II: Impairment factor αi
m for ADC with bim quantization bit

considering a conventional CF-mMIMO system described in [5], we consider a UC version

of the CF-mMIMO system presented in [8], [26]. In the vanilla CF-mMIMO system, all the

users are served by all the APs, whereas in a UC CF-mMIMO, an AP will serve only a fixed

predefined number of users, say L. Each AP is connected to the CPU, which is responsible for

the AP cooperation, baseband processing and user-associations for the APs. We consider TDD

mode of operation, where the uplink and downlink transmissions occupy non-overlapping time

intervals. Let τc be the length of coherence interval (in samples). A part of τc, say τp, will be

used for uplink training and remaining time i.e. τc − τp = τu will be used for the uplink data

transmission. In this paper, we focus only on the uplink EE, and hence we will not consider the

downlink data transmission phase.

A. Uplink Training

In this phase, all the users simultaneously transmit their pilot sequences to the APs. Let

√
τpφk ∈ Cτp×1 be the pilot sequence transmitted by the kth user, ∀k = 1, . . . , K, where

‖φk‖2 = 1. We can utilize the high-bit resolution ADCs in a round-robin fashion at each of the

APs to ensure quality channel estimation without the quantization error caused by the low-bit

resolution ADCs [40]. The minimum-mean squared error (MMSE) estimate of gmk, denoted by

ĝmk, is also a complex Gaussian vector ĝmk ∼ CN (0, γmkIN), where the effective channel gain

of the kth user at the mth AP is

γmk =
τpρpβ

2
mk

τpρp
∑K

k′=1 βmk′ |φH
k′φk|2 + 1

, (2)

where ρp is the normalized transmit signal-to-noise ratio (SNR) of each pilot symbol [41, eq.

(5)].

B. Uplink Data Transmission

In the uplink data transmission phase, all the users send their intended data symbols to APs.

Let sk be the symbol sent by the kth user such that E [|sk|2] = 1. In a UC CF-mMIMO system,
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Algorithm 1 UE Selection

Input: γmk ∀ m = 1, . . . ,M, k = 1, . . . , K and L

Output: Set Km∀ m = 1, . . . ,M and Θ

1: for m = 1 to M do

2: 1) Sort γmk∀ k = 1, . . . , K in descending order.

2) Select first L user from the sorted vector.

3) Store the index of selected users in Km

3: for k = 1 to K do

4: θmk =







1, k ∈ Km

0, k /∈ Km

5: end for

6: end for

7: while true do

8: if
∑M

m=1 θmk 6= 0 ∀k = 1, . . . , K then

9: break

10: else

11: 1) Find AP which has strongest connection with kth user

m∗ = argmax
m

γmk

2) Find user which has weakest connection with m∗th AP

k∗ = arg min
k∈Km∗

γm∗k

3) Reset θm∗k = 1 and θm∗k∗ = 0

12: end if

13: end while

the data symbol of the kth user is decoded by only those APs serving the kth user. The mth AP

will select the L users with the strongest effective channel gains given by (2). Let Km denote

the set of users which are served by the mth AP and θmk is an indicator variable to denote

whether the mth AP serves the kth user (denoted by θmk = 1) or not (denoted by θmk = 0). The

heuristic used for UE selection is discussed in Algorithm 1 and is the same as the one used by

the authors of [11]. We can form the sets Mk = {m : k ∈ Km} which is the collection of APs

July 19, 2022 DRAFT
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serving the kth user, using the sets Km, ∀m = 1, . . . ,M . The signal received at the mth AP is

given by

ỹm =
√
ρu

K∑

k=1

gmk

√
ηksk +wm, (3)

where ρu is the normalized uplink SNR, ηk is the power control coefficient of the kth user, and

wm is the additive complex Gaussian noise with wm ∼ CN (0, IN). To quantify the effect of

low-bit resolution ADCs, we used the additive quantization noise model (AQNM) [36]. With

AQNM, the received quantized signal will be as follows,

ym =
√
ρu

K∑

k=1

Amgmk

√
ηksk +Amwm +wq

m, (4)

where Am is a N×N diagonal matrix with the ith diagonal element denoted by αi
m, representing

the impairment factor of low-bit resolution ADCs. The resolution in bits bim and the corresponding

impairment factor αi
m for bim ∈ {1 . . . 5}, are given in Table II. For bim > 5, we can use the

relation

αi
m = 1− π

√
3

2
2−2bim . (5)

Also, for the N2 antennas which are connected to the high-bit resolution ADCs, αi
m = 1. Note,

wq
m is the quantization noise at the mth AP which is modeled as an independent additive Gaussian

noise with zero mean and the covariance matrix for a given channel realization is given by

E
[
wq

m(w
q
m)

H
]
= Am (IN −Am) diag(E

[
ỹmỹ

H
m

∣
∣gmk

]
). (6)

In other words,

wq
m ∼ CN

(
0,Am (IN −Am) diag

(
ρuGmPGH

m + IN
))
, (7)

where, Gm = [gm1 . . .gmK ] and P = diag (η) with η = [η1, . . . , ηK ]. As we know that each user

will be served only by a subset of APs, the received signal ym will be processed using MRC i.e.,

multiplied with ĝH
mk and transmitted to the CPU by only those APs via the backhaul network.

Let Dmk = diag(d1mk, ..., d
N
mk) be the N × N diagonal matrix which represent the association

of the nth antenna of the mth AP and the kth user. The diagonal entries dnmk ∈ {0, 1}, for

n = 1, .., N , m = 1, . . . ,M and k = 1, . . . , K takes the value 1 if the nth antenna of mth AP
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can decode the signal from kth user and dnmk = 0 otherwise. If m /∈ Mk, then Dmk = 0N .

Hence, the received signal at CPU after MRC will be,

ŝk =
∑

m∈Mk

ĝH
mkDmkym,

=

M∑

m=1

ĝH
mkDmkym, sinceDmk = 0N , ∀m /∈ Mk,

=
√
ρu

M∑

m=1

K∑

i=1

ĝH
mkDmkAmgmi

√
ηisi +

M∑

m=1

ĝH
mkDmkAmwm +

M∑

m=1

ĝH
mkDmkw

q
m.

(8)

C. Achievable Uplink Rate

In this subsection, the uplink rate performance of the UC CF-mMIMO system introduced is

studied. Specifically, using the “use-and-then-forget” methodology popularized in [1] and used

in [5], we derive a lower bound for the achievable uplink rate of the kth user in closed-form. It

is assumed that only the knowledge of channel statistics is available at the CPU. The received

signal in (8) can be rearranged as

ŝk =
√
ρuηkE

[
M∑

m=1

ĝH
mkDmkAmgmksk

]

︸ ︷︷ ︸

DSk

+
√
ρuηk

(
M∑

m=1

ĝH
mkDmkAmgmk − E

[
M∑

m=1

ĝH
mkDmkAmgmk

])

sk

︸ ︷︷ ︸

BUk

+
√
ρu

K∑

i 6=k

M∑

m=1

√
ηiĝ

H
mkDmkAmgmisi

︸ ︷︷ ︸
IUIk

+

M∑

m=1

ĝH
mkDmkAmwm

︸ ︷︷ ︸

GNk

+

M∑

m=1

ĝH
mkDmkw

q
m

︸ ︷︷ ︸

QNk

,

(9)

where DSk, BUk, IUIk, GNk, and QNk represents the desired signal, the beamforming gain

uncertainty, the inter-user interference, the additive white Gaussian noise and the quantization

noise, respectively. In (9), it can be shown that the desired signal term is uncorrelated with the

other terms since symbols for different users are independent, and noise is independent of the

signal. Then, using the fact that uncorrelated Gaussian noise gives a lower bound on the capacity

[1], [5], the achievable uplink rate expression of the kth user is given in the following theorem.

Theorem 1. The achievable uplink rate for the kth user in a UC CF-mMIMO system with MRC

and a mixed ADC resolution profile at the APs is given by,

RUL
k = log2

(

1 +
Γk

Λk

)

, (10)
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where

Γk = ρuηk

(
M∑

m=1

γmk Tr (DmkAm)

)2

, (11)

and

Λk = ρu

K∑

i 6=k

ηi

(
M∑

m=1

γmk

βmi

βmk

Tr (DmkAm)

)2

|φH
k φi|2

+ ρu

K∑

i=1

ηi

M∑

m=1

γmkβmi Tr (DmkAm) +

M∑

m=1

γmk Tr (DmkAm)

+ ρu

M∑

m=1

γmk

(
K∑

i=1

ηiγmi|φH
k φi|2

)

Tr (DmkAm (I−Am)) .

(12)

Proof. Please refer to Appendix A for the proof.

III. OPTIMIZATION PROBLEM

This section first introduces the energy consumption model for the APs with mixed ADC

resolution profiles. We then formulate the problem to optimize the power coefficient ηk and the

antenna selection coefficient dnmk jointly for maximizing the sum-rate under energy consumption

constraints and present a tractable solution for the optimization problem.

A. Energy Consumption Model

We consider an energy consumption model similar to [39]. The overall power consumption

of the mth AP is modeled as

Em
AP = c0

N1∑

n=1

dnm2
n + 0.002c1 + c2

(
N∑

n=N1+1

dnm

)

, (13)

where c0 = 3 × 10−5 is a constant that depends on the specific design of the ADC, c1 is an

indicator-variable related to dnm. If dnm = 0 ∀n = 2, . . . , N1 then, c1 = 0; otherwise c1 = 1.

Also, c2 = 0.1229 Watt represents the power consumption of the high-bit resolution ADCs.

Furthermore, dnm is an indicator-variable to denote the state of the nth antenna of the mth AP.

It takes values 1 or 0 according to the following rule,

dnm =







0 if dnmk = 0 ∀ k,

1 otherwise.
(14)

The total power consumption of the network is given by Esys =
∑M

m=1E
m
AP and the maximum

power consumption is represented by Emax
sys . Note that Emax

sys corresponds to the value of Esys

evaluated for dnm = 1 for all m,n.
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B. Optimization Problem

We formulate the optimization problem with the sum-rate objective and constraints on the

power control coefficient and energy consumption. The mathematical formulation of the opti-

mization problem is as follows,

P1 : max
{dn

mk
},η

K∑

k=1

RUL
k

s.t. 0 ≤ ηk ≤ 1, ∀ k = 1, . . . , K

M∑

m=1

[

c0

N1∑

n=1

dnm2
bnm + c1 +

N∑

n=N1+1

dnmc2

]

< Emax,

(15)

where Emax denotes the maximum energy consumption acceptable for the network. Note that

the objective is a non-convex function, and the energy consumption constraint is a function of

antenna selection coefficient dnmk that takes binary values, either 0 or 1.

The energy constraints and the use of mixed ADC architecture at the APs make our problem

different from existing works like [8]. Although employing an antenna with higher resolution

ADCs reduces the quantization error and improves the rate, higher power dissipation at the ADC

is also incurred, and the energy constraint cannot be met. Therefore, determining the suitable

trade-off between the rate and energy consumption at the APs is essential. Hence, the antenna

selection coefficients at the APs must be optimized to constrain the energy consumption at the

APs and maximize the sum-rate.

Note that (15) is a joint optimization problem over the variables {dnmk} and η. Observe that

ηk are continuous variables, whereas dnmk are discrete variables. Obtaining an optimal solution

to the above problem is complicated due to the presence of integer antenna selection constraints.

Also, the objective function for the P1 is not convex with respect to the power and the antenna-

selection coefficients. Therefore, we propose a centrally implemented optimization technique

that alternates between two algorithms sequentially. One algorithm is used to optimize over the

discrete variable dnmk for fixed η, and another algorithm is used to optimize over the continuous

variable η for fixed dnmk.

1) Optimizing over η: For a fixed {dnmk}, the optimization problem in (15) reduces to

P2 : max
η

K∑

k=1

RUL
k

s.t. 0 ≤ ηk ≤ 1, ∀ k = 1, . . . , K.

(16)
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For the sum-rate optimization in (16), the objective function is non-convex. Therefore, we adopt

the SCA to solve it through a sequence of relaxed convex sub-problems. Using the rate expression

derived in Theorem 1, the sum-rate objective function is transformed into a ratio of posynomials

as follows

max
η

K∑

k=1

log2

(

1 +
Γk

Λk

)

⇔ max
η

log2

(
K∏

k=1

(

1 +
Γk

Λk

))

(a)⇔ max
η

K∏

k=1

(

1 +
Γk

Λk

)

⇔ min
η

K∏

k=1

(
Λk

Λk + Γk

)

,

(17)

where (a) follows from the fact that log is a monotonically increasing function. Rearranging the

terms in (12), we have

Λk =

K∑

i=1

(

δ
(1)
k,i + δ

(2)
k,i

)

ηi +

K∑

i 6=k

δ
(3)
k,i ηi + λ

(1)
k , (18)

where

δ
(1)
k,i , ρu

M∑

m=1

γmkβmi Tr (DmkAm) (19)

δ
(2)
k,i , ρu

M∑

m=1

γmkγmiTr (DmkAm (I−Am)) |φH
k φi|2 (20)

δ
(3)
k,i , ρu

(
M∑

m=1

γmk

βmi

βmk

Tr (DmkAm)

)2

|φH
k φi|2 (21)

λ
(1)
k ,

M∑

m=1

γmk Tr (DmkAm) . (22)

Similarly,

Λk + Γk =
K∑

i=1

(

δ
(1)
k,i + δ

(2)
k,i + δ

(3)
k,i

)

ηi + λ
(1)
k . (23)
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Note that, for a given {dnmk}, the δ
(1)
k,i , δ

(2)
k,i , δ

(3)
k,i and γ

(1)
k are dependent on only the system

parameters which are known apriori and need not be optimized. Therefore, the optimization

problem P2 is of the form

P3 : min
η

K∏

k=1





∑K

i=1

(

δ
(1)
k,i + δ

(2)
k,i

)

ηi +
∑K

i 6=k δ
(3)
k,i ηi + λ

(1)
k

∑K

i=1

(

δ
(1)
k,i + δ

(2)
k,i + δ

(3)
k,i

)

ηi + λ
(1)
k





s.t. 0 ≤ ηk ≤ 1, ∀ k = 1, . . . , K.

(24)

The above objective function, a ratio of two posynomials, is a complementary GP, an intractable

NP-hard problem [42]. In such a scenario, we can use the single condensation method, where the

ratio is upper bounded by another posynomial [43]. Assume a function f (z) =
h (z)

g (z)
, where both

h (z) and g (z) are posynomials. The denominator term g (z) is lower-bounded by a monomial

using the arithmetic-mean geometric-mean inequality. If z(i−1) is the value of z at the iteration

i− 1 of the SCA and g (z) ,
∑K

k=1 µk (z), where µk (z) are monomials, then

g (z) ≥ g̃ (z) =
K∏

k=1

(
µk (z)

νk (z(i−1))

)νk(z(i−1))
(25)

where νk
(
z(i−1)

)
=
µk

(
z(i−1)

)

g (z(i−1))
=

µk

(
z(i−1)

)

∑K

k=1 µk (z(i−1))
. Hence, the ratio of posynomials f (z) will

be replaced by f̃ (z) =
h (z)

g̃ (z)
, such that f̃ (z) < f (z). In P3, g (η) =

∑K

i=1

(

δ
(1)
k,i + δ

(2)
k,i + δ

(3)
k,i

)

ηi+

λ
(1)
k is a posynomial with K + 1 terms. It can be converted into a monomial g̃ (η) by using the

single condensation method. Finally, the SCA algorithm is utilized to solve P3, details of which

are given in Algorithm 2. Here, OF stands for objective function in P3 and v is a parameter to

control the accuracy of the algorithm.

Algorithm 2 SCA Algorithm for (24)

1: Initialization: Set i = 1 and Select a feasible initial value of η

2: repeat

3: Convert the problem in GP using single condensation method.

4: Solve the relaxed convex sub-problem using interior-point method.

5: until |OF(i−1) − OFi| ≤ v

2) Optimizing over dnmk: Finally, to optimize over the dnmk, we use the BPSO, a meta-heuristic

algorithm. A particle swarm heuristic based optimization problem changes the ”trajectories” of
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a population of ”particles” through the solution space of optimization problem. This change

of ”trajectory” is done on the basis of each particle’s previous best performance and the best

performance of all particles. In binary particle swarm optimization (BPSO), the “trajectories” of

a particle are modified in a probabilistic manner such that a coordinate will be assigned a zero

or one value [44]. Let ǫ is a MN × K matrix with binary entries representing {dnmk}. BPSO

starts with generating an initial population of T particles, which in our case are the T feasible

solutions for the antenna selection coefficients (dnmk) represented by ǫ(t), ∀t = 1, · · · , T . In each

iteration, we first determine the optimal power allocation using SCA and then evaluate objective

function (sum-rate in our case) for each of the particles ǫ(t). Each particle ǫ(t) maintains a record

of the position of its previous best performance denoted by ǫt,local in terms of objective function

(sum-rate) and the best performance of all particles denoted by ǫmax. Velocity of each particle

is updated based on ǫt,local and ǫmax according to (26). Next, a sigmoid transform is used to

update the particles in a probabilistic manner given in (27). The algorithm stops after either

a predetermined number of iterations Imax or convergence. The entire heuristic is provided in

Algorithm 3.

IV. SIMULATION RESULTS

In this section, we study the performance of UC CF-mMIMO and compare the performance

with CF-mMIMO systems. Most system parameters is similar to that used in [5], except the fact

that we consider a mixed-ADC resolution. The M APs and K users are dispersed in a square of

area D×D km2. The large-scale fading coefficients, {βmk} modelling the path loss and shadow

fading are selected as follows:

βmk = PLmk10
σthzmk

10 . (28)

Here, PLmk represents the path loss, σth represents the standard deviation of the shadowing and

zmk ∼ N (0, 1). The relation between the path loss PLmk and the distance dmk between the

m-th AP and k-th user is obtained using the three slope model [5, Eq. 52]. The other parameters

used in the simulation are summarized in Table III. The normalized transmit SNRs ρp and

ρu are obtained by dividing the transmit powers ρ̄p and ρ̄u by the noise power, respectively.

Throughout the simulations, we have taken N , N1, N2 and L to be 4, 3, 1 and 5, respectively,

unless mentioned otherwise.

Note that in CF-mMIMO, each user is served by all the APs. Hence, only the power coefficients

are optimized according to the objective function, and all the antenna selection coefficients, i.e.,
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Algorithm 3 BPSO with SCA Algorithm

1: Initialization: Generate T particles ǫ(t), t = 1, . . . , T and set i = 1

2: repeat

3: Find η by solving the Algorithm 2 for each particle ǫ(t).

4: Compute the value of objective function i.e., sum-rate for each particle ǫ(t), R(t)(i)

5: Find (tm, im) = argmax
t,i

R(t)(i), Then set Rmax = R(tm)(im) and ǫmax = ǫtm(im)

6: Get it = argmax
i

R(t)(i) and set Rt,local = R(t)(it) ∀t and ǫt,local = ǫ(t)(it) ∀t
7: Calculate velocity for each particle

V (t)(i) = ΩV (t)(i− 1) + ψ1(i)
(
ǫt,local(i)− ǫ(t)(i)

)
+ ψ2

(
ǫmax(i)− ǫ(t)(i)

)
, (26)

where Ω = 0.9− i(0.9−0.2)
Imax

is the inertia weight and ψ1, ψ2 ∈ [0, 2] are two random positive

numbers.

8: Update the particle’s position as follows

ǫ(t)(i+ 1) =







1 if rrand <
1

1 + e−V (t)(i)

0 otherwise

(27)

where rrand is a random number generated from uniform distribution in [0, 1]

9: increment i = i+ 1

10: until |OF(i−1) − OFi| ≤ v

dnmk are set to be 1. Therefore, to ensure a fair comparison between both systems, we plot

the sum-rate energy efficiency (SREE), defined as the ratio of the sum-rate to the total energy

consumption at the APs. Fig. 1 and Fig. 2 compare the SREE for UC CF-mMIMO, and CF-

mMIMO for two different choices of Emax for varying M and K. The different schemes used

for comparison are

• UC BPSO-SCA-GP: Joint Optimization of {dnmk} and η using Algorithm 3.

• UC random antenna selection (RAS) - random power coefficient (RPC): A random choice

for {dnmk} ∈ {0, 1} and ηk ∼ U [0, 1].

• UC RAS-SCA-GP: A random choice for {dnmk} and η is optimized via Algorithm 2.

• UC BPSO-RPC: Algorithm 3 with step 3 replaced ηk ∼ U [0, 1].

• CF SCA-GP: All dkmn = 1 and η is optimized via Algorithm 2.
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Parameter value

Carrier frequency 1.9 GHz

Bandwidth 20 MHz

Noise figure 9 dB

AP antenna height 15 m

User antenna height 1.65 m

σsh 8 dB

ρ̄p, ρ̄u 100 mW

τc, τp 10

TABLE III: Simulation parameters
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Fig. 1: SREE versus M for K = 8, L = 5, κ = 0.25

• CF RPC: All dkmn = 1 and ηk ∼ U [0, 1].

It is evident from Fig. 1a and Fig. 2a that for the same system settings, the use of BPSO-SCA-GP

demonstrates the best performance of all the schemes. Note that UC BPSO-SCA-GP performs

better than CF SCA-GP because of the following two reasons: (i) In UC CF-mMIMO, each

AP serves only the users with the best channel estimates. However, in a CF-mMIMO system,

the AP serves users even with poor channel estimates, resulting in the overall performance

degradation. (ii) The joint optimization of {dnmk} and η using Algorithm 3 ensures that the sum-

rate is maximized while satisfying the energy constraint (by selecting the appropriate antennas)

resulting in a superior SREE. Note that the performance of UC BPSO-RPC is very close to the

version obtained using UC BPSO-SCA-GP in both Fig. 1a and Fig. 2a. Thus it can be concluded
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Fig. 2: SREE versus K for M = 50, L = 5, κ = 0.25

that antenna selection is more crucial than optimizing the power coefficients. Moreover, replacing

the SCA algorithm in BPSO-SCA-GP with random power allocation saves execution time.

From Fig. 1a, we can observe that SREE decreases as M increases. As M increases, energy

consumption increases, but the sum-rate does not increase in the same proportion since K is

fixed. In contrast, in Fig. 2a, we can see that SREE increases as K increases for a fixed M . Fig.

1b and Fig. 2b shows that in terms of SREE, for 100% energy consumption, UC CF-mMIMO

and CF-mMIMO have similar performances. Furthermore, note that randomized allocation by

UC-RAS-RPC achieves the lowest SREE in all figures, reinforcing the importance of optimizing

the system parameters by other schemes.

In Fig. 3, we show the performance of our schemes for variations in the ratio of high-bit

resolution ADCs to the total number of ADCs, denoted by κ = N2

N
. Here, we assume N = 4

and N2 will vary according to the chosen κ. Note that, for κ = 0.25, i.e., for the case of only

one high-bit resolution ADC, UC BPSO-SCA-GP performs significantly better than all the other

schemes except UC-BPSO-RPC. This reiterates the idea that antenna selection is essential to

maximize the SREE. With an increase in κ, the antennas are equipped with similar ADCs, the

performance gap between the schemes decreases. Also, with a relaxation in the energy constraint

in Fig. 3b, we observe a similar trend, but the SREE of UC CF-mMIMO decreases. Finally, in

Fig. 4, we plot the effective sum-rate, which is the sum-rate normalized by the number of users

L served per AP, for various values of L. We observe that with an increase in L, the interference
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Fig. 3: SREE versus κ for M = 32, K = 8, L = 5

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

(a) When E
max

= 0.75E
max

sys

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

(b) When E
max

= E
max

sys

Fig. 4: SREE versus L for M = 64, K = 8, κ = 0.25

increases at the APs, and hence, the effective sum-rate decreases. However, in contrast to SREE,

for the case of effective sum-rate, the performance degradation from BPSO-SCA-GP to RAS-

RPC is significantly lower. This is because BPSO-SCA-GP increases the sum-rate by reducing

the interference via switching off antennas, thereby saving energy, and this advantage of BPSO-

SCA-GP over RAS-RPC is reflected better in SREE of earlier figures.

Convergence & Complexity: Next, to study the convergence behavior of the system, we

demonstrate the growth in the value of the objective function (sum-rate) for the increasing
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iteration number of our alternating optimization routine. Fig 5a and Fig 5a includes such plots

for different values of M and K respectively. We can observe that for all choices of M and

K, the algorithm is monotonic, i.e., with every iteration, the values of the objective function

increase and converges to a constant value. This indicates that each sub-problems maximizes the

objective function and hence plays a role in moving the solution towards the optimum in very

few iterations.

Note that one possible concern regarding the algorithm’s performance can be the sub-optimality

of the proposed solution due to the use of BPSO for optimizing the antenna selection. However,

it will be a computationally intensive task to verify the closeness between the optimal solution

obtained by a brute force search over all possible antenna selection choices and the solution

proposed by BPSO. For example, consider a system with M APs, each with N antennas and

K users. There are 2MNK possible choices of antenna resolution configurations. Hence, an

exhaustive search of all the possible combinations will be tedious even for moderate values of

M , N , and K. Hence, we study the performance of the BPSO algorithm using a minimal system

setting.

Here, we have a performed an exhaustive search over all possible antenna selection combi-

nations in a system where M = 3, N = 2 and K = 3. Of the 2 antennas, one is considered to

have a 1 bit ADC and the other a high-resolution ADC. There can be 2MNK = 218 = 2, 62, 144

feasible solutions for the antenna selection problem. For Emax = 0.75Emax
sys , many combinations

does not fall into the feasible category and we are hence left with 1, 14, 624 choices. However,

this is still a huge number especially considering the network parameters. We calculate the

power coefficient vector η for the possible choices of antenna selection coefficients which took

roughly 300 hours to complete, and determined the optimal value as shown in Fig. 6. Note that

our algorithm reaches the optimal value in just four iterations in 140 seconds.

The simulation is performed on a desktop with Intel(R) Core(TM) i7-8700 CPU and running

Windows 11. The clock of the machine is 3.20 GHz with a 32 GB memory. The computational

complexity of the BPSO-SCA-GP algorithm corresponds to the maximum number of times it

needs to compute the objective function using the SCA-GP algorithm for power coefficient

calculation. It depends on the maximum number of iteration, i.e., Imax and the number of

particle used in each iteration, i.e., T . Hence, the maximum number of times the BPSO-SCA-

GP algorithm will call the SCA-GP subroutine is bounded by ImaxT whereas, in the case of

exhaustive search, one needs to make 2MNK such calls. In simulations, we considered Imax = 50
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and T = 10 which is independent of other system parameters. Hence, the maximum number

of times our algorithm call SCA-GP subroutine is bounded by 500 which is much less than

2MNK = 218 = 2, 62, 144 which is the number of searches a exhaustive search has to make even

for a toy system like M = 3, N = 2 and K = 3. Also, we have noticed that the BPSO algorithm

typically converged in less than 10 iteration, which means the actual calls for SCA-GP are below

100.

Next, we discussed the complexity of the SCA-GP algorithm. The complexity of the convex

(GP) subproblem in the SCA-GP algorithm depends on the number of variables and constraints

[45]. In terms of big-O notation the complexity of GP subproblem is O (K4) as there are K

variables and K constraints. The overall complexity of SCA-GP can be obtained by multiplying

the total number of iterations required for convergence (NSCA) and the factor mentioned in

terms of big-O notation. Finally, the complexity of BPSO-SCA-GP algorithm is bounded by

ImaxT (NSCAO (K4)) whereas the complexity of exhaustive search is 2MNK (NSCAO (K4)).
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Fig. 5: Convergence of BPSO-SCA-GP

V. CONCLUSIONS

This work studied a UC CF-mMIMO system, where APs are equipped with multiple antennas

having a mixed ADC resolution profile. An algorithm for jointly optimizing the user’s transmit

power and antenna selection at the APs is proposed. An alternating optimization approach,

utilizing the BPSO and SCA algorithms, is used to maximize the sum-rate of the system with
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Fig. 6: Exhaustive Search Vs. BPSO-SCA-GP

constraints on the maximum energy consumed. Our simulation results demonstrate significant

improvements in terms of SREE compared to schemes where a joint optimization is not per-

formed. The effect of various system parameters such as number of APs, number of users,

number of users served by an AP, the ratio of high-resolution to the total number of antennas

is also studied. Some interesting future research directions include a) studying the performance

improvements with multiple antennas at the users, b) coupling the presented architecture with a

next-generation technology such as large intelligent reflecting surface (IRS) or non-orthogonal

multiple access (NOMA) systems.

APPENDIX A

PROOF FOR THEOREM 1

From (9) and using the popular “Use and forget” bound, the achievable uplink rate for k-th

user can be expressed as follows

RUL
k = log2

(

1 +
|DSk|2

E [|BUk|2] +
∑K

i 6=k E [|IUIki|2] + E [|GNk|2] + E [|QNk|2]

)

(29)

Next, we need to calculate the DSk, E [|BUk|2], E [|IUIki|2], E [|GNk|2] and E [|QNk|2]. First, we

calculate DSk. Since, gmk = ĝmk + g̃mk where ĝmk is estimate and g̃mk is error is estimation
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and both are independent so, we have

DSk =
√
ρuηkE

[
M∑

m=1

ĝH
mkDmkAm (ĝmk + g̃mk)

]

=
√
ρuηk

M∑

m=1

E
[
Tr(ĝH

mkDmkAmĝmk)
]

=
√
ρuηk

M∑

m=1

γmk Tr (DmkAm)

(30)

Second, we calculate E [|BUk|2] and E [|IUIk|2]. From (9), we have

E
[
|BUk|2

]
= E





∣
∣
∣
∣
∣

√
ρuηk

M∑

m=1

ĝH
mkDmkAmgmk −DSk

∣
∣
∣
∣
∣

2




= ρuηkE





∣
∣
∣
∣
∣

M∑

m=1

ĝH
mkDmkAmgmk

∣
∣
∣
∣
∣

2


− |DSk|2
(31)

and

E
[
|IUIk|2

]
= E





∣
∣
∣
∣
∣

√
ρu

K∑

i 6=k

M∑

m=1

√
ηiĝ

H
mkDmkAmgmisi

∣
∣
∣
∣
∣

2




= ρu

K∑

i 6=k

ηiE





∣
∣
∣
∣
∣

M∑

m=1

ĝH
mkDmkAmgmi

∣
∣
∣
∣
∣

2




(32)

By adding (31) and (32), we get

E
[
|BUk|2

]
+ E

[
|IUIk|2

]
= ρu

K∑

i=1

ηiE





∣
∣
∣
∣
∣

M∑

m=1

ĝH
mkDmkAmgmi

∣
∣
∣
∣
∣

2


− |DSk|2 (33)

Now, we need E

[∣
∣
∣
∑M

m=1 ĝ
H
mkDmkAmgmi

∣
∣
∣

2
]

which is equal to E

[∣
∣
∣
∑M

m=1 g
H
miAmDmkĝmk

∣
∣
∣

2
]

.

Using the fact that ĝmk = cmk

(√
τpρp

∑K

j=1 gmjφ
H
j φk + w̃p,mk

)

, we have

E





∣
∣
∣
∣
∣

M∑

m=1

gH
miAmDmkĝmk

∣
∣
∣
∣
∣

2


 = E





∣
∣
∣
∣
∣

M∑

m=1

gH
miAmDmkcmk

(

√
τpρp

K∑

j=1

gmjφ
H
j φk + w̃p,mk

)∣
∣
∣
∣
∣

2


 (34)
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where, w̃p,mk ∼ CN (0N , IN), is independent of gmi ∀i, so we have

E





∣
∣
∣
∣
∣

M∑

m=1

gH
miAmDmkĝmk

∣
∣
∣
∣
∣

2


 = τpρp E





∣
∣
∣
∣
∣

M∑

m=1

K∑

j=1

(
cmkφ

H
j φk

)
gH
miDmkAmgmj

∣
∣
∣
∣
∣

2




︸ ︷︷ ︸

T1

+ E





∣
∣
∣
∣
∣

M∑

m=1

gH
miDmkAmcmkw̃p,mk

∣
∣
∣
∣
∣

2




︸ ︷︷ ︸
T2

(35)

First, we compute T1. We have

T1 = E





∣
∣
∣
∣
∣

M∑

m=1

K∑

j=1

(
cmkφ

H
j φk

)
gH
miDmkAmgmj

∣
∣
∣
∣
∣

2




= E

[
M∑

m=1

K∑

j=1

M∑

n=1

K∑

t=1

(
cmkφ

H
j φk

) (
cnkφ

H
k φt

)
Tr
(
DmkAmgmjg

H
ntAnDnkgnig

H
mi

)

] (36)

After taking the expectation inside the summation and some algebraic manipulations, we have

T1 =

M∑

m=1

M∑

n=1

cmkcnk|φH
k φi|2βmiβni Tr (DmkAm)Tr (DnkAn)

+
M∑

m=1

K∑

j=1

c2mk|φH
k φj|2βmiβmj Tr

(
DmkA

2
m

)

(37)

Similarly, we have

T2 = E

[
M∑

m=1

c2mk Tr
(
gH
miDmkAmw̃p,mkw̃

H
p,mkAmDmkgmi

)

]

= E

[
M∑

m=1

c2mk Tr
(
DmkAmw̃p,mkw̃

H
p,mkAmDmkgmig

H
mi

)

]

=

M∑

m=1

c2mkβmi Tr
(
DmkA

2
m

)

(38)

Finally, by substituting (37) and (38) in (35), we have

E





∣
∣
∣
∣
∣

M∑

m=1

gH
miDmkAmĝmk

∣
∣
∣
∣
∣

2


 = |φH
k φi|2

(
M∑

m=1

γmk

βmi

βmk

Tr (DmkAm)

)2

+
M∑

m=1

γmkβmi Tr
(
DmkA

2
m

)

(39)
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and substitution of (39) and (30) results in

E
[
|BUk|2

]
+ E

[
|IUIk|2

]
= ρu

K∑

i 6=k

ηi

(
M∑

m=1

γmk

βmi

βmk

Tr (DmkAm)

)2

|φH
k φi|2

+

M∑

m=1

γmkβmi Tr
(
DmkA

2
m

)

(40)

Next, we compute E [|GNk|2]. From (9), we have GNk =
∑M

m=1 ĝ
H
mkDmkAmwm, hence

E
[
|GNk|2

]
= E

[
∣
∣
∣

M∑

m=1

ĝH
mkDmkAmwm

∣
∣
∣

2
]

(41)

Using the fact that ĝH
mk and wm are independent, we have

E
[
|GNk|2

]
= E

[
M∑

m=1

‖AmDmkĝmk‖2
]

=
M∑

m=1

E
[
ĝH
mkDmkAmAmDmkĝmk

]

=
M∑

m=1

γmk Tr
(
DmkA

2
m

)

(42)

Finally, we compute E [|QNk|2]. From (9), we have QNk =
∑M

m=1 ĝ
H
mkDmkw

q
m, hence

E
[
|QNk|2

]
= E





∣
∣
∣
∣
∣

M∑

m=1

ĝH
mkDmkw

q
m

∣
∣
∣
∣
∣

2




=

M∑

m=1

E
[
|ĝH

mkDmkw
q
m|2
]

(43)

For a given channel realization, we have

wq
m ∼ CN

(
0,Am (IN −Am) diag

(
ρuGmPGH

m + IN
))

E
[
|ĝH

mkDmkw
q
m|2
]
= E

[
ĝH
mkDmkw

q
mw

q

m

H
Dmkĝmk

]

= E
[
ĝH
mkDmkAm (IN −Am) diag

(
ρuGmPGH

m + IN
)
Dmkĝmk

]

= E
[
Tr
(
DmkAm (IN −Am) diag

(
ρuGmPGH

m + IN
)
ĝmkĝ

H
mk

)]

(44)
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We got the above equation using the cyclic property of trace function and commutative nature

of multiplication of diagonal matrices. Further, we can simplify as follows

E
[
|ĝH

mkDmkw
q
m|2
]
= E

[
Tr
(
DmkAm (IN −Am) {diag

(
ρuGmPGH

m

)
ĝmkĝ

H
mk + ĝmkĝ

H
mk}
)]

= Tr
(
DmkAm (IN −Am)E

[
diag

(
ρuGmPGH

m

)
ĝmkĝ

H
mk + ĝmkĝ

H
mk

])

= ρu Tr
(
DmkAm (IN −Am)E

[
diag

(
GmPGH

m

)
ĝmkĝ

H
mk

])

+ γmk Tr (DmkAm (I−Am))
(45)

Now we need to solve E
[
diag

(
GmPGH

m

)
ĝmkĝ

H
mk

]

E
[
diag

(
GmPGH

m

)
ĝmkĝ

H
mk

]
= E

[

diag

(
K∑

i=1

ηigmig
H
mi

)

ĝmkĝ
H
mk

]

= E

[
K∑

i=1

ηi diag
(
gmig

H
mi

)
ĝmkĝ

H
mk

] (46)

∵ diag
(
gmig

H
mi

)
=








|g1
mi|2

. . .

|gN
mi|2








and ĝmkĝ
H
mk =








|ĝ1
mk|2 ĝ1

mk (ĝ
2
mk)

∗ · · · ĝ1
mk

(
ĝN
mk

)∗

...
...

ĝN
mk (ĝ

1
mk)

∗
ĝN
mk (ĝ

2
mk)

∗ · · · |ĝN
mk|2








Hence, we have

E

[
K∑

i=1

ηi diag
(
gmig

H
mi

)
ĝmkĝ

H
mk

]

=

E








K∑

i=1

ηi








|g1
mi|2|ĝ1

mk|2 |g1
mi|2ĝ1

mk (ĝ
2
mk)

∗ · · · |g1
mi|2ĝ1

mk

(
ĝN
mk

)∗

...
...

|gN
mi|2ĝN

mk (ĝ
1
mk)

∗ |gN
mi|2ĝN

mk (ĝ
2
mk)

∗ · · · |gN
mi|2|ĝN

mk|2















(47)

∵ E
[
ĝmkĝ

H
mk

]
is diagonal ∴ estimate at different antenna will be uncorrelated. So the expectation

of all the off-diagonal terms will be zero. Hence we have

E

[
K∑

i=1

ηi diag
(
gmig

H
mi

)
ĝmkĝ

H
mk

]

=

K∑

i=1

ηi








E [|g1
mi|2|ĝ1

mk|2]
. . .

E
[
|gN

mi|2|ĝN
mk|2

]








(48)

Now we need to calculate the E [|g1
mi|2|ĝ1

mk|2]. As ĝmk = cmk

(√
τpρp

∑K

j=1 gmjφ
H
j φk + w̃p,mk

)

and ĝmk ∼ CN (0, γmkIN). Note that the gmi and ĝmk both are vectors of i.i.d. random variables

so E [|gn
mi|2|ĝn

mk|2] will be same for all n = 1, . . . , N
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E
[
|gn

mi|2|ĝn
mk|2

]
= γmkβmi + γmkγmi|φH

k φi|2 (49)

so,

E

[
K∑

i=1

ηi diag
(
gmig

H
mi

)
ĝmkĝ

H
mk

]

= γmk

(
K∑

i=1

ηi
(
βmi + γmi|φH

k φi|2
)

)

IN . (50)

After putting the above equation in (45), we have

E
[
|ĝH

mkDmkw
q
m|2
]
= ρu Tr

(
DmkAm (IN −Am)E

[
diag

(
GmPGH

m

)
ĝmkĝ

H
mk

])

+ γmk Tr (DmkAm (I−Am))

= ρuγmk

(
K∑

i=1

ηi
(
βmi + γmi|φH

k φi|2
)

)

Tr (DmkAm (I−Am))

+ γmk Tr (DmkAm)− γmk Tr
(
DmkA

2
m

)

(51)

The result in (10) follows by substituting (30),(40),(42) and (51) in (29), and this completes the

proof.
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