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Common Spatial Pattern EEG decomposition for Phantom Limb Pain
detection.

Eva Lendaro, Ebrahim Balouji, Karen Baca, Azam Sheikh Muhammad and Max Ortiz-Catalan

Abstract— Phantom Limb Pain (PLP) is a chronic condition
frequent among individuals with acquired amputation. PLP has
been often investigated with the use of functional MRI focusing
on the changes that take place in the sensorimotor cortex after
amputation. In the present study, we investigated whether a
different type of data, namely electroencephalographic (EEG)
recordings, can be used to study the condition. We acquired
resting state EEG data from people with and without PLP
and then used machine learning for a binary classification
task that differentiates the two. Common Spatial Pattern (CSP)
decomposition was used as the feature extraction method and
two validation schemes were followed for the classification task.
Six classifiers (LDA, Log, QDA, LinearSVC, SVC and RF)
were optimized through grid search and their performance
compared. Two validation approaches, namely all-subjects val-
idation and leave-one-out cross-validation (LOOCV), resulted
in high classification accuracy. Most notably, the 93.7% accu-
racy achieved with SVC in LOOCV holds promise for good
diagnostic capabilities using EEG biomarkers. In conclusion,
our findings indicate that EEG data is a promising target for
future research aiming at elucidating the neural mechanisms
underlying PLP and its diagnosis.

I. INTRODUCTION

People suffering peripheral nerve damage often report
neuropathic pain, which is particularly difficult to treat.
Amputation, as the most extreme case of nerve injury, is
frequently associated with the presence of phantom limb
pain (PLP): the perception of pain in the missing limb
[1][2]. A large body of literature on PLP has identified a
relationship between PLP and maladaptive changes taking
place specifically in the primary somatosensory and mo-
tor cortex [3]. However, chronic pain is a complex inte-
grative phenomenon that results from interaction between
sensory, cognitive, emotional, and motivational processes [4]
and presents complex commorbidities such as anxiety and
depression[5]. PLP is associated with the activation of an
extended brain network that goes beyond the sensorimotor
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circuitry [6], and this must be taken into account when
investigating its neural basis. Although anatomical connec-
tions are one route for integration, dynamically mutable
functional connections are likely implicated in the dynamic
pain connectome [7], mediating pain perception and neural
oscillations (”brain rhythms”) have been shown to be a
medium subserving such integration [8]. Studies on the
neural basis of PLP have mostly used functional magnetic
resonance imaging (fMRI) [9], which has a coarse temporal
resolution (2-3 s) and is unsuitable to study oscillations
at frequencies higher than 0.5 Hz. At present, no study
has investigated electroencephalographic (EEG) rhythms in
subjects suffering from PLP. More generally, pain-related
changes have been observed in brain rhythms at frequencies
across the entire EEG spectrum (from infra-slow, at 0.1Hz,
to gamma oscillations, at 100Hz) [10]. When it comes to
chronic pain specifically, a rather conventional approach has
been to analyse quantitatively the power spectral density of
resting state EEG over relatively long epochs [11]. This
approach has been criticised for both overlooking power
fluctuation in shorter time scales and for not showing sta-
tistically significant differences between pathological and
healthy EEG after correction for multiple comparisons [12].
In recent years however, EEG data has been increasingly
used in combination with machine learning (ML) techniques
for diagnostic purposes (e.g. epilepsy, strokes, Alzheimer’s
disease, etc) [13]. Apart from the obvious value within
diagnostics, techniques allowing for automatic abnormal
EEG detection could lead to the derivation of EEG-based
chronic pain markers. ML methods can be categorized into
feature-based (with handcrafted, a priori selected features),
and end-to-end approaches (with learned features). Feature-
based ML has been widely used for non-invasive Brain
Computer Interfaces (BCIs), where a popular method to
extract features is through the used of the common spatial
patterns (CSP) algorithm. CSP in the context of EEG was
described by Koles et al. [14], who initially conceived it
as a way to extract abnormal components in clinical EEG
and to visualize their topography. Only recently has the
algorithm been used to extract features for neurological
disease diagnostics [15]. In substance, CSP is a supervised
source separation method based on the assumption that the
sources are uncorrelated Gaussian distributions belonging to
two distinct classes. In particular, CSP is a dimensionality
reduction technique that aims at designing spatial filters that
maximize the variance of the spatially filtered signal under
one condition while minimizing it for the other condition.
A comprehensive tutorial on CSP can be found in [16]. The
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Fig. 1. Example of spatial patterns (forward model of the sources) derived from CSP decompostion into four components using the training data from
one of the all-subjects validation schema. The patterns are displayed in an alternated fashion, from left to right showing the topographical distribution of
the largest variance for the Pain class in CSP0, followed by the largest variance for the No Pain class in CSP1, second to largest for Pain in CSP2 and
lastly second to largest for No Pain in CSP3. On the scalp topography are the channels labels also visible: the largest variance peaks at P2 for CSP0, FC4
for CSP1, FP1 for CSP2 and AF7 for CSP3.

TABLE I
PARTICIPANTS INFORMATION

Subject ID Sex Age Amputation type # Epochs

NP1 F 41 TR 326
P2 M 57 TT 301
P3 M 50 TH 155
P4 M 49 TH 272
P5 M 65 TH 173
P6 F 44 TR 147
P9 M 18 TH 273
P10 M 34 TF 181
P11 F 60 TR-b/TT-b 290

NP12 M 44 TR-b/TT-b 514
P14 M 44 TT 169

NP16 M 45 TH 530
P18 F 43 TT 199
P19 M 74 TT 339
P20 M 63 TF-b 181

NP21 M 43 TR 362
NP24 M 46 TH 362
NP25 F 39 TF 362
P26 F 38 TF 362
P27 M 54 TF 362

NP32 M 24 TR 211
NP33 M 76 TT 362
NP51 M 45 TH 362
P52 M 54 TF 181
P54 M 54 TH 362

NP57 M 58 TT 362

primary question we seek to answer with the present study
is whether EEG data contain relevant information for the
study and diagnosis of PLP. We answer this question by
setting up the problem as a classification task. Specifically,
we record EEG from subjects with acquired amputation, with
and without PLP and explore the use of different machine
learning classifiers for the discrimination of these two classes
using CSP based features. Further, we display topographic
maps extracted using CSP filtering, which is of particular
interest for the broader scope of our application. Our ultimate
goal is not limited to mere classification of abnormal signals,
but it extends to the exploration of whether EEG patterns can
be used as markers for PLP.

II. METHODOLOGY

A. PLP dataset

The study was approved by the Swedish Ethical Re-
view Authority (Dnr 041-17, T652-17) and all participants
provided written informed consent. A total of 26 adults
subjects with acquired limb deficiency were enrolled on a
voluntary basis and assigned to one of two groups (Pain

or No Pain, based on whether they suffered from PLP).
Details on the participants are reported in Table I: subject
IDs starting with the letter P indicate those belonging to
the Pain group while NP demarcates the ID of those in
the No Pain group. Age at recording (years) and amputation
type (TR - transradial, TH - transhumeral, TT - transtibial,
TF - transfemoral, and the suffix -b indicating bilateral
amputations) are also denoted. EEG was recorded using a 58-
channel referential montage (visible in Figure 1), with active
electrodes fixed in a cap at the standard 10-20 positions and
AFz as ground (g.HIamp, g.tec medical engineering GmbH,
Austria). During the recording, subjects rested with their
eyes closed sitting comfortably on a chair in a quiet room
for sessions of variable length between 5 and 7 minutes.
Some participants underwent multiple recording sessions on
different days. Signals were sampled at 2400Hz.

B. Preprocessing
The preprocessing was carried out using custom MATLAB

scripts and EEGLAB functions [17]. The steps, in order,
were: resampling a 256Hz, 50Hz powerline removal with
CleanLine (EEGLAB plugin), and re-referencing to common
average. The data were then bandpass filtered between 4
and 40Hz and segmented in 2-second non-overlapping EEG
epochs. 4 Hz was chosen as lower cutoff frequency in order
to minimize possible artifact. The first and last 30 seconds
of every recording session were discarded. Table I contains
information regarding the number of epochs used for each
subject. The remainder of the analyses was carried out in
Python.

TABLE II
ALL-SUBJECTS VALIDATION PERFORMANCE (%)

LDA LinearSVC Log QDA RF SVC

Accuracy 83.82 87.89 87.91 88.76 99.76 98.16
(0.79) (0.81) (0.82) (0.91) (0.15) (0.41)

Precision 81.89 87.23 87.15 82.29 99.59 97.49
(2.77) (1.23) (1.13) (1.29) (0.29) (0.54)

Recall 88.15 89.45 89.6 99.48 99.95 98.95
(4.68) (1.04) (0.91) (0.19) (0.07) (0.39)

F1-score 84.76 88.32 88.36 90.07 99.77 98.22
(0.99) (0.75) (0.76) (0.72) (0.15) (0.40)

Entropy 10.63 11.69 12.02 6.88 0.5 2.96
(0.78) (1.00) (0.89) (1.11) (0.27) (0.64)
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TABLE III
LEAVE ONE OUT CROSS VALIDATION PERFORMANCE (%)

LDA LinearSVC Log QDA RF SVC

Accuracy 74.4 74.9 75.2 82.4 92.4 93.7
Precision 72.0 74.2 74.5 76.3 92.5 92.7
Recall 82.1 78.2 78.5 95.1 92.7 95.3
F1-score 76.7 76.1 76.4 84.7 92.6 94.0
Entropy 7.9 11.1 11.4 8.3 9.8 7.1

C. Feature extraction

Functions from the MNE-python package [18] were used
to carry out the CSP based feature extraction. Briefly, CSP is
a technique that takes multichannel data in the original filter
space belonging to two classes (here Pain and No Pain) and
decomposes them into additive components in a surrogate
source space. The optimization criterion used to determine
the CSP is to maximize the variance of the spatially filtered
signal under one condition while minimizing it for the other
condition. In this study, we have decomposed the signals into
4 components. Training data were used to estimate the filters
that were then applied to the test set. For every epoch, the
average power of the data in the CSP space was taken as
representative feature.

TABLE IV
BEST HYPERPARAMETERS

Best Hyperparameters Count
LDA ’shrinkage’: None, ’solver’: ’eigen’ 17
LinearSVC ’C’: 0.1, ’penalty’: ’l1’ 11
Log ’C’: 0.2, ’penalty’: ’l1’, ’solver’: ’saga’ 6
QDA reg param’: 0.05 25
RF ’max depth’: None, ’max features’: 2,

’min samples split’: 5, ’n estimators’: 100 9
SVC C’: 5, ’gamma’: 0.5, ’kernel’: ’rbf’ 6

D. Validation schemes and classification

The cross validation and classification part of the study
were implemented with the use of two different validation
schemes. In the first approach a repeated random sub-
sampling validation was carried out: the epochs from each
recording session were randomly divided into training and
test sets, with 80% of the epochs allocated to the training
set and 20% of the epochs allocated to the test set. In this
way, data from all the subjects and all the recording sessions
were used to estimate the filters for CSP extraction (all-
subjects validation). The validation was iterated 10 times.
The second approach consisted in a Leave One Out Cross
Validation (LOOCV) scheme, where one subject at a time
was left out from the training set and excluded from the
estimation of the spatial filters. Six different classifiers were
used and compared. The classifiers adopted respectively were
Linear Discriminant Analysis (LDA), Logistic Regression
(Log), Quadratic Discriminant Analysis (QDA), Linear Sup-
port Vector Classification (LinearSVC), C-Support Vector
Classification (SVC) and Random Forest Classifier (RF)

(built using Scikit-Learn [19]). Fine tuning of the hyper-
parameters was carried out through grid search, in which
for given values of the parameters, all combinations were
considered. By exhaustively searching the hyper-parameter
space we are certain of reaching the best cross validation
scores for a given training/test partition. In the LOOCV
approach, a random 20% of the epochs in each recording
sessions was withheld from all the participants (including
the test subject) in order to carry out the grid search.

III. RESULTS

The number of epochs for every subject is reported in Ta-
ble I. The dataset is well balanced presenting 3753 epochs in
the No Pain class and 3947 epochs in the Pain class. Figure 1
illustrate the patterns derived from the CSP decomposition in
the all-subjects validation into four components, where filters
have been estimated using a random 80% of the epochs from
all the recording sessions and using all participants. Table
II and Table III report the performance metrics for the six
classifiers tested for the all-subjects validation and LOOCV
respectively. In addition to the classical performance metrics
(Accuracy, Precision, Recall and F1-score) also Entropy is
given as a measure of the stability of the classification over
time, where high entropy indicates a model making unstable
predictions. Finally, Table IV specifies the results of the
hyperparameter grid search (conducted with a Scikit-Learn
function [19]) on the on the LOOCV scheme. The grid search
exhaustively generates candidates from a grid of specified
parameter values, considering all their combinations. The
parameters are specified when building a classified with
Scikit-Learn. The results presented here are expressed in
terms of count of how many times the same combination of
parameters yielded the best performance over the 26 folds of
the LOOCV: the combinations with the highest counts are
reported for every classifier.

IV. DISCUSSION AND CONCLUSIONS

In this study we have investigated whether it is possible
to use EEG recordings to discriminate between people with
and without PLP. In order to achieve this, we decomposed
the EEG into four CSP components and used their average
power over 2-second epochs for the classification task. The
results demonstrate the feasibility of this approach, even in a
LOOCV setting, which is amenable to medical diagnostics.
In clinical practice, the objectives could be for example to
detect the presence of pain or to determine its magnitude in
patients in which this information is not known. One of the
reasons for choosing the CSP technique for feature extraction
is its capacity of visualizing the patterns that yield the best
classification accuracy (projections of the different compo-
nents) as scalp topographic maps (see Figure 1). Note that
this is a different approach from solving the inverse problem
aimed at localizing the 3D signal sources, which could be
carried out using the identified patterns. One limitation of our
results at present is that before decomposition, the signals
had been bandpassed filtered between 4 and 40Hz and it
includes almost all the different frequency bands contained in
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Fig. 2. Grand average of the power spectral density at four CSP components
for the Pain group (in red) and the No Pain group (in blue).

EEG (theta (4–7 Hz), alpha (8–13 Hz), beta (14–29 Hz) and
part of gamma (30–100 Hz)) (note, the delta band was left
out). The reason for using such broad bandpass filtering was
due to the exploratory nature of our analysis. By inspecting
the grand average of the power spectral density of the four
CSP components identified for the two classes (see Figure
2), it is possible to see how different spatial patterns might
emerge considering separately narrower frequency bands (i.e.
delta, theta, alpha, etc). Future studies could achieve this by
employing the Filter Bank CSP [20], which is essentially
CSP applied to the separate frequency bands extracted in
the preprocessing step. A further step in the direction of ex-
ploring the neural correlates of PLP could then be to localize
the sources yielding high classification accuracy by solving
the inverse problem. Taken all these considerations together,
EEG data seem a promising target for future research aiming
at elucidating the neural mechanisms underlying PLP.
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