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Abstract: The use of economic methods to design and fabricate flexible copper sensors decorated
with bismuth micro/nanodentrites for the detection of lead and cadmium in sweat is demonstrated.
The flexible copper sensors were constructed with simple and cost-effective materials; namely,
flexible and adhesive conductive copper tape, adhesive label containing the design of a three-
electrode electrochemical system, and nail polish or spray as a protective layer. The flexible copper
device consisted of a working electrode decorated with bismuth micro/nanodentrites using an
electrodeposition technique, a copper pseudo-reference and copper counter electrodes. Under optimal
experimental conditions, the flexible sensing platform showed excellent performance toward the
detection of lead and cadmium using differential pulse anodic stripping voltammetry (DPAdSV) in a
wide linear range from 2.0 µM to 50 µM with acceptable reproducibility and repeatability, and limits
of detection and quantification of 5.36 and 17.9 µM for Cd2+ ions and 0.76 µM and 2.5 for Pb2+ ions.
Studies of addition and recovery in spiked artificial sweat sample were performed, with a recovery
of 104.6%. The flexible copper device provides a great opportunity for application in wearable
perspiration-based healthcare systems or portable sensors to detect toxic metals in biological samples.

Keywords: flexible sensor; copper tape; bismuth micro/nanostructures; lead; cadmium; electrochem-
ical detection; sweat

1. Introduction

Human body fluids such as saliva, urine, blood, tears, interstitial fluid (IF), and sweat
are constituted of electrolytes, hormones, metabolites, salts, and proteins, which are used to
noninvasively monitor health conditions of individuals [1–3]. Sweat has been extensively
used due to ease of sampling, simplicity of operation and obtainment, and the extensive
interface of the skin [3]. Several heavy metals can be present in human perspiration, includ-
ing Zn, Pb, Cu, Cd, Mg, Ni, Ca, Hg, Na, and K ions, and are closely related to human health
conditions [4–7]. Lead (Pb2+) and cadmium (Cd2+) show toxic effects on the systems of
human body, including the endocrine, nervous, circulatory, immunological, digestive, and
cardiovascular systems [8], due to the accumulation characteristic in tissues; the respiratory
system is the main route of intoxication with heavy metals [9]. Exposure to the high levels of
cadmium cause inflammatory responses and destructive problems in the respiratory tract,
kidney, liver [9]; for example, Fanconi syndrome is associated with severe bone pain [10].
Lead intoxication causes damage to the brain and central nervous system, increased be-
havioral disorders, irritability, fatigue, intellectual disability, learning difficulties, anemia,
infertility, increase in blood pressure, renal impairment and development of chronic kidney
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disease, decline in mental functioning and cognitive impairment, loss of appetite, and in
some cases leads to coma, seizures, and even death [8,10,11]. Therefore, the monitoring of
Pb2+ and Cd2+ exposure using human body fluids can provide insight into human health
status and inform auxiliar therapeutic and toxicological studies.

Gold standard techniques to detect heavy metals in human biological fluids use un-
portable and expensive analytical instruments, including inductively coupled plasma mass
spectrometry (ICP-MS) [12] and atomic absorption spectroscopy (AAS) [13], making them
difficult to use for on-site detection and continuous monitoring. As an alternative, sen-
sors play a decisive role in transferring biosensing technologies to portable meters for
tracking hazardous compounds in decentralized analysis, reflecting advantages such as
speed, miniaturization, scalability, low power requirements, and low cost [14]. More-
over, electrochemical devices can be combined with preconcentration or deposition steps,
accumulating heavy metals at the working electrode surface, making anodic stripping
analysis the most sensitive and effective electroanalytical technique [8]. The most com-
monly used electrode materials as nonflexible supports are gold [15], carbon paste [16],
glassy carbon [17,18], and indium tin oxide [19,20]; however, they are rarely applied in
the monitoring of heavy metals in a portable system [21]. The flexible sensing systems
are generated by photolithography [22,23], direct laser writing [24], inkjet printing [25],
e-beam evaporation [26], wax printing [27], soft lithography [28], plasma etching [29], and
electrodeposition [30] techniques. However, most of these methods require fabrication
processes with sophisticated and expensive instruments, time-consuming steps, and in
some cases, need a clean work space [21]. Wei gao et. al. reported a microsensor array
designed to simultaneously detect multiple heavy metals, including Zn, Cd, Pb, Cu, and
Hg, using square wave anodic stripping voltammetry (SWASV), in which a microchip
array was constructed on a flexible polyethylene terephthalate (PET) substrate in a protocol
involving multiple steps of photolithography, evaporation (Cr/Au, Ag, Bi), and lift off [8].
Alternatively to the exhaustive and expensive protocols, Xig Xuan et. al. reported a flexible
graphene-based electrode formed by laser-writing and substrate-transfer techniques for
zinc detection in sweat [4]. Due to the toxicity of lead and cadmium and the importance
of management, the design and fabrication of flexible sensors using facile, inexpensive,
and rapid prototyping methods to produce at a large scale is fundamental for on-site
management of individual health states [8,21].

Bismuth-based electrodes have been selected because they are an environmentally
friendly alternative to mercury electrodes due to their low toxicity, and their ability to form
amalgam (metal alloys) with toxic metals [4,8,31]. The development and use of greener
electrode materials is extremely attractive for the routine use of disposable (“one-shot”)
metal sensors [31]. Bismuth electrodes display a well-defined, undistorted, and highly
reproducible stripping response, exhibiting excellent resolution of neighboring peaks,
wide linear dynamic range, with signal-to-background characteristics comparable to those
of common mercury electrodes [4,8,31]. While amalgam formation is responsible for the
stripping performance of mercury electrodes, the attractive and unique behavior of bismuth
film electrodes is attributed to the formation of multicomponent alloys [31]. Bismuth-based
electrodes are known to form binary- or multicomponent “fusible” alloys with numerous
heavy metals using stripping analysis of elements with standard potentials more negative
than bismuth (i.e., Zn, Ga, Cd, In, Tl, Sn, Pb) [31]. The attractive behavior of the “mercury-
free” flexible copper sensors, associated with the negligible toxicity of bismuth, hold great
promise for “one-shot” decentralized metal detecting. Moreover, Bi micro/nanostructures
are a great material for working electrodes, offering biocompatibility, high sensitivity, and
wide operational potential range owing to their stability and low influence of dissolved
oxygen [8,31]. In this work, we designed a flexible copper electrochemical sensor with
an easy, inexpensive, and prototyping method to detect lead and cadmium in sweat
samples. The flexible sensory platform contains a full electrochemical system with an
auxiliary (AE) and reference (RE) electrode consisting of copper tape, and a working (WE)
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electrode consisting of copper tape decorated with bismuth micro/nanodentrites obtained
via electrodeposition.

2. Materials and Methods
2.1. Reagents and Solutions

Bismuth(III) nitrate pentahydrate (99%), sodium acetate (99%), acetic acid (95%),
lead(II) nitrate (99%), cadmium(II) nitrate (99%), lactic acid (95%), urea (98%), sodium chlo-
ride (99%), and potassium chloride (99%) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Hydrochloric acid and sodium citrate were acquired from Synth. All other
reagents were of analytical grade and used as received. Ferric chloride solution (iron(III)
chloride solution) was purchased from Suetoku. All solutions were prepared with ultra-
pure water (resistivity > 18.0 MΩ cm) obtained from a Millipore Milli-Q system (Billerica,
MA, USA).

2.2. Instruments

Electrochemical measurements were performed using a PGSTAT204 Autolab (Eco
Chemie, Utrecht, The Netherlands) potentiostat/galvanostat controlled by NOVA software,
2.0 version. Electron microscopy images of bismuth micro/nanodentrites were obtained
with a Zeiss Sigma (Zeiss, Oberkochen, Germany) scanning electron microscope equipped
with a field emission electron gun (SEM–FEG) operating at 20 kV and OXFORD qualitative
and quantitative chemical analysis system. The Raman spectra were measured with a
micro-Raman spectrometer (LabRAM Horiba Jobin Yvon-model HR 800), equipped with a
He–Ne laser at 632.81 nm (17 mW) and a CCD camera. The measurements were performed
in backscattering configuration with 50×WD objective (Olympus MPL) by exposing the
samples during 30 s of acquisition for three accumulation intervals. The slit width of the
Raman spectrometer was 100 µm, and a diffraction grating of 600 lines/mm was used. X-ray
powder diffraction (XRD) was acquired with a D8 Advance X-ray diffractometer (Bruker)
operated at 40 mA and 40 kV, employing Ni-filtered Cu Kα X-ray radiation (λ = 1.540 Å).

2.3. Preparation of Sweat Samples

Analyses of cadmium and lead ions in synthetic sweat samples were prepared as
reported by Mathew et al. [32], consisting of 1.0 g·L−1 of urea, 1.0 g·L−1 of KCl, 7.5 g·L−1

of NaCl, and 1.0 mL·L−1 of lactic acid solubilized in 0.1 mol·L−1 of acetate buffer solution.

3. Results
3.1. Design and Fabrication of Flexible Copper Sensor Decorated with Bismuth
Micro/Nanodentrites

The flexible copper sensors decorated with bismuth micro/nanodentrites were fab-
ricated on a flexible polyethylene terephthalate (PET) substrate using a procedure with
simple steps and inexpensive materials, as demonstrated in Figure 1. A flexible, conductive
copper adhesive tape (thickness of 40 µm) was cut in pieces of 5 × 4 cm (Figure 1(Ai)) and
glued onto PET, as depicted in Figure 1(Aii). Copper surfaces were cleaned with paper tow-
els and acetone. A template containing the design of electrochemical devices was generated
on an adhesive label sheet (Pimaco®) with a Silhouette Cameo model 3 cutting machine,
and glued onto the copper adhesive tape, as shown in Figure 1(Aiii). The rectangular shape
of electrodes was chosen to facilitate the Silhouette Cameo cutting machine work. The entire
surface was covered with a polymer layer using nail polish (Figure 1(Aiv,Av)), transferring
the design of the devices contained in the template for the copper adhesive surface after
removing the mask, as can be seen in Figure 1(Avi). The exposed copper was removed by a
corrosion step through the immersion of devices in inexpensive concentrated ferric chloride
solution for 20 min, followed by a wash step with distilled water (Figure 1(Avii)). The cor-
rosion step should be not too long to avoid the side erosion phenomenon, which can affect
the area of working electrodes. The polymer layer was removed with acetone-soaked paper
towels and then the flexible copper sensors were ready to use, as shown in Figure 1(Aviii).
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The procedure described here is generic, and can be used for others metallic surface, e.g.,
gold and nickel, alternatively to the expensive photolithography process. Figure 1(Bi) de-
picts a detailed representation of a flexible copper sensor with a complete electrochemical
system containing auxiliary (AE), pseudo-reference (RE), and working electrodes (WE).
An insulation tape (Scotch, 3M) of flexible polyvinyl chloride (PVC) was used to delimit
the area of the working electrodes. Figure 1(Bii) depicts the working electrode decorated
with bismuth micro/nanodentrites electrochemically deposited in a solution containing
0.02 mol·L−1 of bismuth(III) nitrate, 1.0 mol·L−1 of hydrochloric acid, and 0.15 mol·L−1 of
sodium citrate at a constant potential of −0.18 V (vs. Ag/AgCl) for 60 s [33]. The layer of
micro/nanodentrites was selectively deposited on the working electrode using the elec-
trodeposition technique, in which the WE are polarized cathodically, reducing the bismuth
ions on the copper surface. The formation of bismuth micro/nanodentrites is controlled
by the applied potential and time of the applied potential. Different applied potential will
produce structures without specific morphology, and the time will control the amount of
electrodeposited bismuth. The flexible copper sensor can be connected to a potentiostat
using any commercial or lab-built connector for screen-printed electrodes, e.g., DropSens
connectors ref. CAC4MMH or DSC4MM. Figure 1(Biii) shows a schematic representation
of the preconcentration step of lead and cadmium analysis of a sweat sample.
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Figure 1. Schematic representation of the design and fabrication of a flexible copper sensor decorated
with bismuth micro/nanodentrites. (A): (i) conductive copper adhesive tape; (ii) copper adhesive tape
glued onto PET substrate; (iii) adhesive tape mask glued onto copper; (iv) the surface is painted with
nail polish or spray; (v) a polymer layer covered the surface; (vi) the adhesive tape mask is removed
from the surface; (vii) the copper is corroded; (viii) the polymer layer is removed with acetone and
then the flexible copper sensors are ready to use. (B): (i) Detailed representation of flexible copper
sensor with a complete electrochemical system containing auxiliary (AE), pseudo-reference (RE),
and working electrodes (WE); (ii) working electrode decorated with bismuth micro/nanodentrites;
(iii) analysis of lead and cadmium in artificial sweat sample. USP refers to the University of Sao Paulo.
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The structural morphology of bismuth micro/nanodentrites was inspired by rime ice
from cold areas, as illustrated in Figure 2A,B. The conductive flexible copper substrate
acts as a tree branch because the bismuth micro/nanodentrites are grown electrochemi-
cally similarly to the ice. Initially, the bismuth structures seeds onto the flexible copper
surface, and they are continuously electrodeposited on the seed producing rime-ice-like
micro/nanostructures, as depicted in Figure 2A,B. Figure 2C depicts the Raman spec-
tra containing five peaks located at 64, 93, 124, 308, and 464 cm−1 of the bismuth mi-
cro/nanodentrites deposited on flexible copper sensor. The two peaks at 66 and 92 cm−1

are indicative of the rhombohedral bismuth structure [34]. The three weak Raman peaks
centered at 124, 308, and 464 cm−1 are attributed to the β-Bi2O3 (tetragonal) phase [34,35].
No significant change in the bare flexible copper sensor and flexible copper sensor deco-
rated with bismuth micro/nanodentrites after Pb2+ and Cd2+ ion sensing was detected
by EDS or XRD, as depicted in Figure 2D,E, indicating that there was no corrosion after
the sensing step. This high catalytic stability is therefore attributed to the physical and
chemical stability of bismuth micro/nanodentrites. The XRD pattern of the flexible copper
sensor decorated with bismuth micro/nanodentrites (top, in gray) shows six diffraction
peaks at 22.7◦, 26.5◦, 27◦, 37.8◦, 39.7◦, 47.3◦, and 48.7◦ attributed to the (003), (111), (012),
(104), (110), (024), (116), and (112) planes of Bi2O3 [PDF#41-1449] [36]. The XRD pattern
of bare flexible copper sensor (bottom, in orange) depicts three diffraction peaks at 43◦,
50.5◦, and 74.3◦ attributed to the (111), (200), and (220) planes of the FCC copper phase
[JCPDS# 65–9026] [21]. The flexible copper sensor was successfully decorated with bismuth
micro/nanodentrites using an easy preparation process with which it is also quite simple
and efficient to detect Cd2+ and Pb2+ in sweat.
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Figure 2. SEM–FEG image for flexible copper sensor decorated with bismuth micro/nanodentrites
under different magnifications of 20,000× in (A) and 50,000× in (B). Raman spectra of flexible copper
sensor decorated with bismuth micro/nanodentrites in (C). Energy-dispersive X-ray spectroscopy for
flexible copper sensor decorated with bismuth micro/nanodentrites before (D(i)) and after (D(ii))
sensing, and for bare flexible copper sensor before (D(iii)) and after (D(iv)) sensing. XRD patterns of
flexible copper sensor decorated with bismuth micro/nanodentrites (top, in gray) and bare flexible
copper sensor (bottom, in orange) in (E).
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3.2. Analytical Performance

Bismuth is a promising electrode material for lead, cadmium, and zinc detection;
however, it is not appropriate for the anodic stripping of copper and mercury ions due
to its lower oxidation potential (~−0.2 V). Hence, a flexible copper sensor decorated
with bismuth micro/nanodentrites can only be used for cadmium and lead detection,
because zinc can react with chloride ions from sweat, forming chloro complexes with
different oxidation states, leading to competition with cadmium and lead ions. Taking into
account that the focus of this work is to demonstrate the design and fabrication of flexible
copper sensor decorated with bismuth micro/nanodentrites, the deposition potential and
deposition time were strategically chosen to be −1.0 V, due to the fact that zinc ions can
interfere, for which the oxidation peak is centered between −1.4 V and −1.0 V; they can
also form chloride complexes with different oxidation state, and due to strong hydrogen
evolution [4,8]. Similarly to the zinc ions, the copper ions were not selected because the
reoxidation of Cu2+ can occur in the potential range between −0.2 V and 0.2 V (vs. Bi),
in which the copper from the electrode can be oxidized, decreasing the accuracy of the
analysis. The deposition time was 60 s, indicating a rapid method using devices fabricated
with low-cost materials. Figure 3A depicts voltammograms (DPASV) with two distinct
oxidation peaks at −0.5 V and −0.35 V for simultaneous detection of cadmium and lead
in artificial sweat obtained in the concentration ranges between 2.0 and 50 µM for Pb2+

and 0.5 and 10 µM for Cd2+. The metallic ions in solution are reduced on the flexible
copper sensor decorated with a bismuth micro/nanodentrites surface (M+n + ne−→M(Bi))
followed by reoxidation initiated with anodic stripping. The anodic peak potential was
shifted due to copper reference electrode, which can be addressed using silver ink. The
anodic current peak increased linearly with the concentration in agreement with DPASV,
as demonstrated in Figure 3A. The equations of linear regression of the analytical curves
shown in Figure 3B,C are: I (A) = 2.6 × 10−7 + 1.0 Ccadmium (mol·L−1) with r = 0.997 and
I (A) = −1.8 × 10−5 + 6.4 Clead (mol·L−1) with r = 0.995. The detection limits were 5.36 µM
for Cd2+ and 0.76 µM for Pb2+.
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Figure 3. Differential pulse anodic stripping voltammetry in (A) and analytical curves for Cd2+ in 

(B) and Pb2+ in (C) obtained for flexible copper sensors decorated with bismuth mi-

cro/nanodentrites. Differential pulse anodic stripping voltammetry in (D) and analytical curves for 
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Figure 3. Differential pulse anodic stripping voltammetry in (A) and analytical curves for
Cd2+ in (B) and Pb2+ in (C) obtained for flexible copper sensors decorated with bismuth mi-
cro/nanodentrites. Differential pulse anodic stripping voltammetry in (D) and analytical curves
for Cd2+ in (E) and Pb2+ in (F) obtained for bare flexible copper sensor. Conditions: simultaneous
detection of heavy metals with the concentration varying from 2.0 µM to 50 µM in artificial sweat.
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The simultaneous detection of cadmium and lead was also performed with bare
flexible copper sensors, as shown in Figure 3D. All DPAS voltammograms were well-
defined with well-separated oxidation peaks and a narrow linear concentration range
from 2 to 50 µM. The current signals at −0.45 V and −0.30 V generated analytical curves
with linear regressions of I (A) = −7.4 × 10−7 + 0.4 Ccadmium (mol·L−1), r = 0.999, and
I (A) = −1.8 × 10−6 + 1.3 Clead (mol·L−1), r = 0.996, for cadmium and lead, respectively.
The limits of detection were 4.2 µM and 3.7 µM for cadmium and lead, respectively. The
sensitivity (slope of the analytical curve) for the bare flexible copper sensor was higher
than for the flexible copper sensor decorated with bismuth micro/nanodentrites for Cd2+

detection, while for Pb2+ ions, the highest slope was obtained with the flexible copper
sensor decorated with bismuth micro/nanodentrites, demonstrating that the detection
system is versatile and able to detect cadmium and lead with either a bare sensor or flexible
copper sensor decorated with bismuth micro/nanodentrites. The sensitivity and wider
detection range is superior with bismuth micro/nanodentrites due to the ability of bismuth
to form alloys with heavy metals, and to its insensitivity to dissolved oxygen [37,38].

Additionally, Cd2+ and Pb2+ ions were detected individually in sweat, as illustrated in
Figure 4. The current signals at anodic peak potential at −0.47 V and −0.32 V increased
linearly with concentrations in the range of 2.0 × 10−6 mol L−1 to 50 µM, as depicted in A
for Cd2+ ions and in C for Pb2+ ions. The regression line of analytical curve obtained in B
for Cd2+ ions was I (A) = −4.1 × 10−6 + 1.5 Ccadmium (mol·L−1), and the analytical curve
obtained in C for Pb2+ ions was −4.03 × 10−5 + 18.8 Ccadmium (mol·L−1). The detection
limits were 6.6 µM for Cd2+ ions and 2.6 µM for Pb2+ ions. The slopes for individual
detection were close to those of simultaneous detection, indicating that the flexible copper
is versatile and can be used to detect Cd2+ and Pb2+ ions simultaneously or individually.
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Figure 4. Differential pulse anodic stripping voltammetry in (A) and respective analytical curves
in (B) for detection of Cd2+ and Pb2+ ions using flexible copper sensors decorated with bismuth
micro/nanodentrites. Conditions: individual detection of heavy metals with the concentration
varying from 2.0 µM to 50 µM in artificial sweat.
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The physiological levels of toxic metals in sweat are low (<1 mg/L); in the cases of
Cd2+ and Pb2+ the concentrations are 100 µg/L [8]. The flexible copper sensor decorated
with bismuth micro/nanodentrites was used to determine Cd2+ and Pb2+ levels in fortified
sweat samples to simulate contaminated sweat. The average recovery ranged from 97.8%
to 104.6%. The satisfactory results demonstrate that the flexible copper sensor decorated
with bismuth micro/nanodentrites has a high accuracy and potential for Cd2+ and Pb2+

sensing in biofluids.
The selectivity of flexible copper sensor decorated with decorated with bismuth

micro/nanodentrites was generated with 2.5 µM of glucose, cholesterol, ascorbic acid,
dopamine, and uric acid in artificial sweat. Voltammograms obtained for DPASV in
Figure 5 indicate a maximum percentage of interference of 10% for dopamine due to a
biofouling effect, which could be addressed using a thin layer of Nafion [39]. Copper
ions can compete with lead and cadmium for the bismuth active sites on the electrode
surface [39]. Zinc ions were not added in the interference study because the oxidation peak
is centered between −1.4 V and −1.0 V, leading to strong hydrogen evolution, and Zn2+

can form chloride complexes with different oxidation states [4,8]. Considering that the
flexible device was fabricated with inexpensive flexible copper tape, the results shown in
this work are satisfactory; however, they can be enhanced with the use of a high-quality
flexible copper tape and a Nafion layer on the bismuth micro/nanodentrites [39].
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Figure 5. Interferent study with glucose, cholesterol, ascorbic acid, dopamine, and uric acid. The
concentration for lead and interferents was 2.5 µM in artificial sweat.

Table 1 depicts a list of sensors to detect Pb2+ and Cd2+ in different matrices using
stripping voltammetry. We could not find any report on the use of flexible copper sensors
decorated with bismuth micro/nanodentrites to detect toxic metals (i.e., Pb2+ and Cd2+) in
sweat. The LOD of this work is higher than in previous studies using different matrices,
which may be attributed to the reason that the nature of the copper layer composition is
unfavorable when compared to the carbonaceous electrode materials. However, flexible
copper sensors decorated with bismuth micro/nanodentrites are highly adaptable to
wearable microfluid devices with inexpensive materials. Our method involves simple
steps with non-sophisticated materials and an apparatus that can be easily acquired in any
local market, such as adhesive label sheets (Pimaco®), Silhouette Cameo model 3 cutting
machine, and copper adhesive tape. They are cheaper than copper inks, providing an
alternative method for copper flexible electrode production to be adapted for microfluidics
and wearable devices.
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Table 1. Figures of merit for Pb2+ and Cd2+ ions detection using devices functionalized with bismuth.
Due to the limited studies on sensors modified with bismuth micro- nano-structures for determi-
nation of Pb2+ and Cd2+ ions on relevant biological fluids, figures of merit are also included for
environmental purposes.

Modification Pb2+ Cd2+ Sample Ref.

LOD(µM) Linear Range
(µM) LOD(µM) Linear Range

(µM)

Bi/Nafion/Cu 4.3 × 10−3 9.6 × 10−3–0.058 9.8 × 10−3 0.018–0.11
Pb2+: ground water
Cd2+: aquatic plant

extracts
[40]

Bi/CuSPE 0.83 1.3–13 0.53 1.0–12 River water [41]

Bismuth oxide
SPE 0.048 0.048–0.72 0.045 0.089–1.3 River water [42]

BiFME 0.010 0.05–0.35 9.2 × 10−3 0.050–0.35 Mine effluents [43]

Bi/GCE 9.2 × 10−3 0.024–0.72 0.028 0.044–1.3
Representative
pharmaceutical

matrices
[44]

Bi2O3 SPCE 9.6 × 10−4 2.4 × 10−3–0.058 1.8 × 10−3 4.4 × 10−3–0.11 Drinking water [45]

BiNP
bulk-modified

SPCPE
0.019 8.9 × 10−3–0.44 0.019 4.8 × 10−3–0.24 Urban wastewater [46]

Binano/TCE 2.6 × 10−3 0.048–0.24 3.6 × 10−3 0.089–0.44 - [47]

G/PANI/PS/SPCE 0.016 0.048–2.4 0.039 0.089–4.4 River water [48]

NC/GCE 1.0 × 10−3 0.010–4.0 - - Blueberry extract [49]

Binanodendrites/CuF 0.76 2.0–50 5.36 2.0–50 Artificial sweat This
work

Bi/Nafion/Cu, copper electrode modified with Nafion and bismuth; Bi/CuSPE, disposable screen-printed copper
electrode modified with bismuth; Bismuth oxide SPE: screen-printed bismuth oxide electrode; Bi/GCE, glassy
carbon electrode modified with bismuth; BiFMe, carbon-fiber microelectrode modified with Nafion and bismuth;
NC/GCE, nitrogen-doped carbon spheres loaded into a glassy carbon electrode; BiNP bulk-modified SPCPE,
screen-printed porous carbon electrode modified with Bi nanoparticles; Binano/TCE, Screen-printed thick-film
carbon electrode modified with Bi nanoparticles; G/PANI/PS/SPCE, screen-printed carbon electrode modified
with nanoporous fibers, graphene/polyaniline/polystyrene; Binanodendrites/CuF, flexible copper sensor decorated
with bismuth micro/nanodentrites.

4. Conclusions

In this work, we have developed a simple and low-cost method for the design and
fabrication of flexible copper sensors through a patterned label on copper adhesive tape,
nail polish, and corrosion technique with ferric chloride. The flexible copper sensor with
a complete electrochemical system consisted of a pseudo-reference (RE) and working
(WE) and auxiliary (AE) electrodes. The working electrode was decorated with bismuth
micro/nanodentrites prepared by an easy electrodeposition method on the flexible copper
surface. The flexible sensors were used for lead and cadmium detection by DPASV, with a
wide linear range between 2.0 µM and 50 µM in artificial sweat samples, high sensitivity
of 1.0 A·M−1 and 6.4 A·M−1, and a low limit of detection (LOD) of 5.36 µM and 0.76 µM
for Cd2+ and Pb2+, respectively. The determination of toxic metals in artificial sweat
showed an easy, fast, inexpensive method for on-site in noninvasive biological samples and
environmental analysis.

The advantages of the flexible copper sensor are related to mass production and low
cost, and they can be used in organic solvents, e.g., analysis of Pb2+ and Cd2+ in fuels, in com-
parison with screen-printed carbon electrodes. Despite the advances, important challenges
remain for the production of flexible copper sensors via an entirely ecofriendly procedure.
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In future works, effort is required to design systems using the cutting machine to produce
sensors without a corrosion step to avoid waste production and environmental pollution.
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