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Abstract

We show that entropy is globally concave with respect to energy for a rich class
of mean field interactions, including regularizations of the point vortex model in the
plane, plasmas and self-gravitating matter in 2D, as well as the higher-dimensional
logarithmic interactions appearing in conformal geometry and power laws. The
proofs are based on a corresponding “microscopic” concavity result at finite N,
shown by leveraging an unexpected link to Kéhler geometry and plurisubharmonic
functions. Under more restrictive homogeneity assumptions, strict concavity is
obtained using a uniqueness result for free energy minimizers, established in a
companion paper. The results imply that thermodynamic equivalence of ensembles
holds for this class of mean field models. As an application, it is shown that the crit-
ical inverse negative temperatures—in the macroscopic as well as the microscopic
setting—coincide with the asymptotic slope of the corresponding microcanonical
entropies. Along the way, we also extend previous results on the thermodynamic
equivalence of ensembles for continuous weakly positive definite interactions, con-
cerning positive temperature states, to the general non-continuous case. In particu-
lar, singular situations are exhibited where, somewhat surprisingly, thermodynamic
equivalence of ensembles fails at energy levels sufficiently close to the minimum
energy level.

1. Introduction

1.1. General Setup

Let X be a topological space, W a symmetric lower semi-continuous (Isc)
function on X? (the pair interaction potential) and V a lIsc function on X (the
exterior potential), both taking values in ] — 0o, oo]. The corresponding N -particle
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mean field N-particle Hamiltonian is defined by

N

HM(xy, ..., xy) 1= %%Z W(xi,xj)+ZV(xi). (1.1)
i#j<N i=1

The self-interactions have, as usual, been excluded in order to render H®) gener-

ically finite in the case when W is singular on the diagonal. The corresponding

(macroscopic) energy E(u) of a probability measure i on X, i.e., u € P(X), is

defined by

1
E(w) :ZEIXWWXUHr/XVM €] — 00, o0] (1.2)

when X has compact support. The definition can be extended to non-compactly
supported measures (see Sect.4.2), but for most purposes it will be enough to
consider the restriction of E () to the space of all probability measures on X with
compact support, denoted by P(X)o.

Now, fix also a measure pg on X ( the “prior”). Following [15,16,29,30], the
entropy S(e) (at energy e) is the function on R defined by —oo in the case that
{E(n) = e} is empty, and otherwise,

S(e):= sup {S(u): E(u)=¢e}, S :=—/ log(u/mo)p, — (1.3)
ueP(X)o X

where S(u) is the entropy of p relative o, which, by definition, is equal to —oo
if  is not absolutely continuous wrt (. A measure ;¢ maximizing S(u) above is
called a maximum entropy measure. In the case when ¢ is a probability measure,
we shall focus on,

max S(e) = S(eg) =0, ey := E(uo)
eeR

(since S(n) < 0 with equality iff u = pp). This setup is modeled on repulsive
Hamiltonians (as in the case of identical point vortices described below), but an
equivalent setup of “attractive” Hamiltonians is obtained by replacing H™) with
—H™) and e with —e.

1.2. Background: Concavity of S(e) and Thermodynamic Equivalence of
Ensembles

In the case when E(u) is linear on P(X) (i.e., W = 0), it follows directly
from the concavity of S(x) on P(X) that the entropy S(e) is concave with respect
to e (see Sect.5.1). This is the standard setup in information theory and statistical
inference, going back to Shannon and Jaynes [38], but here we will be concerned
with the case when E (1) is quadratic, motivated by mean field models in statistical
mechanics (see 7.2 for a comparison between the classical linear setup and the
quadratic setup appearing in the context of plasmas). General, nonlinear E (1) also
appear naturally in engineering optimization [4]. The concavity properties of the
entropy S(e) for mean field models and other systems with long-range interactions
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have been studied extensively from various points of views in the last decades:
theoretical as well as experimental and numerical [15,16,21,29,31]. As stressed
in [16], the unusual properties of these systems stem from the lack of additivity
(i.e., lack of linearity of E(u)). In particular, the question whether S(e) is globally
concave is crucial in connection with negative temperature states in Onsager’s point
vortex model for the large time limit of turbulent incompressible non-viscous 2D
fluids: classical fluids [15,29], as well as quantum fluids [35,39]. In the case of
vortices of equal circulation moving in the whole plane R?, the vortex—vortex pair
interaction potential W (x, y) is proportional to the Green function for the Laplacian
in R?,

W(x,y) = —log(lx — y|). (1.4)

As emphasized in [16,30,55], the relevance of the global concavity of S(e) stems
from the fact that it equivalently means that S(e) may (under appropriate regularity
assumptions discussed in Sect. 3) be expressed as the Legendre—Fenchel transform
of the Helmholtz (scaled) free energy F(B) at inverse temperature 3 :

S(e) = érel%(—F(ﬂ) + Be). (1.5)

Here F (B) is defined as the following infimum of the (scaled) free energy functional
Fp(u)
F(B)= inf Fp(u), Fp(u):=BE(W) — S() (1.6)
neP(X)o

(where F () is defined to be equal to 400 if S(u) = —o00). Accordingly, when
S(e) is globally concave thermodynamic equivalence of ensembles is said to hold
[16,30,55] (since it amounts to the equivalence between the microcanonical en-
semble at a fixed energy e and the canonical ensemble at a corresponding fixed
inverse temperature §, in the large N-limit). More generally, this duality fits into
primal—dual formulations of nonlinear optimization problems, where the free en-
ergy functional appears as the augmented Lagrangian [4]. If thermodynamic equiv-
alence of ensembles holds, then S(e) is differentiable at almost any energy level e
and, by the concavity of F(f), the infimum over the 8 in formula 1.5 is attained
precisely at the inverse temperature

_dS(e)

Ble) o

Remarkably, as stressed already by Onsager in the late 40 s [48], this means, since
S(e) is decreasing for e > E(u), that in the “high-energy regime”

E(no) <e, (1.7)

an energy level e should correspond to a negative inverse temperature . As a
consequence, the repulsive vortex interaction should then become effectively at-
tractive, resulting in the aggregation of microscopic vortices of equal circulation
into large-scale coherent clusters (as observed in oceanic and atmospheric fluids,
notably Jupiter’s famous great red spot). A few years after Onsager’s prediction
the existence of negative temperature states was experimentally verified in nuclear
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spin systems [50], while the original prediction was quantitatively experimentally
demonstrated only very recently in a 2D quantum superfluid (a Bose Einstein con-
densate [35,39]). Note that the high-energy region only exists if

E (o) < oo.

This is automatically the case if X is compact and W and V are locally integrable,
but it also holds in many non-compact situations, for example, the vortex model in
R?, when 11 is taken as a Gaussian probability measure (incorporating conservation
of angular momentum).

As shown in [29], if W (x, y) defines a weakly positive definite kernel, as in the
point vortex model, then the concavity of S(e) holds in the “low-energy regime”

e < E(uo),

which corresponds to positive inverse temperature 8 (more precisely, in [29] it is
assumed that W is continuous; the general case is discussed in Sect.5.1). However,
the concavity may fail in the “high-energy regime,” and thus, the correspondence
with negative temperature then breaks down (leading to the peculiar phenomenon of
negative heat capacity [16,44]). This is illustrated by the mean field Blume-Emery—
Griffiths spin model in [16, Section 4.2.4]. In the case of the point vortex model,
the global concavity of S(e) has been established when X is the unit disk in RZ[15]
(or a sufficiently small deformation of the unit disk) or all of R2 [15,19,42], while
shown to fail for some domains X (e.g., a sufficiently thin rectangle). The proofs in
[15,19] exploit that in the case of the point vortex model any minimizer g of the
free energy functional Fg (i) satisfies a second-order PDE (the Joyce-Montgomery
mean field equation/the Liouville equation). This opens the door for the application
of various PDE techniques (uniqueness results, concentration/compactness alter-
natives, symmetrization arguments, etc.).

1.3. Summary of the Main Results

To the best of the author’s knowledge, there are, apart from a few special cases—
such as the BEG model and the vortex model recalled above—no general global
concavity results for mean field Hamiltonians. Even in the case of the regularized
vortex model [29], the question of global concavity of S(e) raised in [29] appears
to have been left open. Similar questions have also been put forward in the context
of self-gravitating matter, where regularizations appear naturally [40]. Allowing
regularizations is also crucial when comparing theoretical results with numerical
simulations (such as [26,53]) to ensure that the concavity of S(e) is arobust feature
of the models in question. The main aim of the present work is to establish the
concavity of S(e) for a rich class of potentials W, V and priors pg, including the
point vortex model in R?, as well as its regularizations and regularized plasmas
and self-gravitating systems in 2D and power laws. However, since neither explicit
calculations, nor PDE techniques are available for such interactions W we take a
different route. First it is shown that the (upper) microcanonical entropy (at energy
e).

sM(e) = %log pENHM /N > e} (1.8)
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is concave for any finite N. (In the context of the point vortex model, this mi-
crocanonical entropy appears in [15, Theorem 4.2].) Then, letting N — oo, and
using the asymptotics for SiN) (e) from [29], the concavity of the upper entropy
S+ (e) is obtained (defined by replacing the condition E (i) = e in the definition
1.3 of S(e) with the condition E(u) > e). Hence, the concavity of S(e) in the
high-energy region, e > E (i), results from the observation that S;(e) = S(e)
there. This derivation of the concavity of S(e) is in the spirit of statistical mechan-
ics; the macroscopic property in question emerges from a microscopic one. The
proof of the concavity of SiN) (e) leverages some developments in Kéhler geome-
try [10,11], centered around complex analogs of the Brunn—Minkowski inequality.
Under more restricted assumptions, S(e) is shown to be strictly concave, using a
different (macroscopic) approach—which is more in the spirit of [15]—based on a
uniqueness result for free energy minimizers of independent interest.

Before turning to a more precise description of the main present results, it
may be worth emphasizing that the concavity of S(+N) (e) is considerably stronger
than the concavity of S(e) and does not require the mean field scaling (nor the
permutation symmetry). Thus, it also applies to the microcanonical study of small
systems, considered in the physics literature (see, for example, [28,33,52]). The
relation to the setup in [28,52] becomes clearer in the equivalent setup of “attractive”
Hamiltonians obtained by replacing the H™) with the Hamiltonian —H ™ and e
with —e. The concavity of SSFN) (e) then translates into the concavity of

1
SN ey = + log uENHM /N < e}, (1.9)

called the bulk entropy in [52] and the microcanonical Gibbs entropy in [28]. In
recent years, it has been debated whether this microcanonical entropy is physically
more relevant than the microcanonical Boltzmann entropy, obtained by replacing
the volume ,u? N (H™M /N < e} with its derivative with respect to e (the surface
area of the level set HY) /N = ¢); see the discussion in [36] and references therein.
The present results may, perhaps, be interpreted as a case for bulk/Gibbs entropy
as this entropy is shown to be concave in our class of “attractive” Hamiltonians,
while the Boltzmann entropy is not always concave in this class (as discussed in
connection with Theorem 6.7). On the other hand, in the case when 1 is Lebesgue
measure on R?* the bulk/Gibbs and the Boltzmann entropy coincide in the limit
when N — oo. (In the classical thermodynamical limit, this is discussed in [37,
Section 6.2], and in the present mean field setup, it can be shown that both limits
coincide with S(e).)

Let now X be a (possible non-compact) subset of R*" and let ¢ be a defining
function for X, i.e., a continuous function such that

X ={¢ =<0}

Endow X with a probability measure 1o which s absolutely continuous wrt Lebesgue
measure d :

o = e~ Yoda
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on R?". We will identify R?" with C" in the usual way and denote by (z1, ..., z,)
the standard holomorphic coordinates on C".

1.3.1. Concavity of SEFN) (e) and S(e) in the high-energy region ¢ > ¢y The

main results, saying that upper microcanonical entropy SiN) (e) and the entropy
S(e) are concave in the high-energy regime 1.7 (Theorem 6.7 and Theorem 6.9),
are shown to hold under appropriate plurisubharmonicity and symmetry properties
of the data. Denoting by P S H, the class of all plurisubharmonic functions which
are invariant under the action

(215 e 2n) B> (@921, 1, @0 2,) (1.10)

forany 6 € R, for a given “weight vector” @ €]0, oo[”, the main results hold under
the following:
MAIN ASSUMPTIONS: ¢, Vo, —V are in the class PSH,(C") and —W is in
PSH, ,q(C" x C") for some a €]0, co[”

The definition of plurisubharmonicity is recalled in Sect. 2.3. For the moment,
we just point out that the class PSH, is very rich. For example, when the weights
a; are positive integers the class P S H, contains the functions

Y@ =log [ Y 1P (1.11)
j=1

where P; is a polynomial in z1, .., z,, which is homogeneous wrt the scaling action
by C* on C" with weights a. In particular, for any a the class PSH, contains
¥ (z) = log|z| as well as Wy(z) := Y |, Ailzil?, for any positive ;. Hence, the
Main Assumptions apply to the corresponding Gaussian measures

o = e~ Zim1kilail gy (1.12)

In the case when the data are invariant under rotations of the z;-variables, this
is—from a physical point of view—the most natural choices of priors, as they in-
corporate preservation of angular momentum in the z;-variables (see the discussion
in Sect.3.3).

An important general feature of the class PSH,(C") is that is closed under
scaling by positive numbers, taking sums and maxima, as well as under composi-
tion with a complex linear map on C" or an increasing convex function, defined
on the range of a given ¥ € PSH,(C"). This means, in particular, that the Main
Assumptions are stable under a range of different regularizations of the data. For
example, the Main Assumptions apply to the point vortex model in X := R? (for-
mula 1.4) endowed with a centered Gaussian measure. But the Main Assumptions
also apply to the standard continuous regularization and smooth regularization of
the point vortex model where, for a given positive number &, the pair interaction
W (x, y) is, in the continuous case, modified so that it is constant on |[x — y| < §,
while the smooth regularization is defined by

1
Ws(x, y) = —5—log(lx — y[ +9).
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More generally, they apply to the regularizations obtained by convolution of — log |x|
with a positive sufficiently rapidly decreasing density on R?, as used in the vortex
blob model [45, Section 6.2.1] (or more generally to the convolution of — log |x — |
with a smooth density on R? x R?). An abundance of other examples in PSH,
may be obtained by replacing ¥ in formula with x o i for any convex increasing
function y.

Imposing translational and rotational symmetry the Main Assumptions apply,
in particular, under the
HOMOGENEOUS ASSUMPTIONS:

e X is either a ball of radius R centered at the origin in R>* or equal to all of R>"

o Wix,y) =w(x —yD, V(x) = v(lx]) and Wo(x) = Yo(lx]) with w(r), v(r)
and —(r) concave functions of log r (when 0 < r < 2R) and bounded from
below as r — 0.

In fact, the special assumptions imply that w(r) is decreasing in r. In other
words, the Homogeneous Assumptions equivalently mean that the pair interaction
W (x, y) is repulsive and a concave function of log |x — y|. The special assumptions,
apply, for example, to the continuous repulsive power laws

We(x,y) == —|x —y|¥ a>0. (1.13)

Note that the Homogeneous Assumptions apply, in particular, to the standard
centered Gaussian probability measure .o on R?>". However, one virtue of the Main
Assumptions is that they, as pointed out above, apply to the more general Gaussian
measures 1.12 incorporating conservation of angular momentum in the z;-variables
(as discussed in Sect. 3.3).

1.3.2. Global Concavity of S(¢) and Thermodynamic Equivalence of Ensem-
bles In Sect. 6, it is shown that if the assumption that W (x, y) be weakly positive
definite is added to the Main Assumptions, then S(e) is globally concave, i.e.,
concave on all of R (Theorem 7.1) and finite on Je;in, emax[. For example, as ex-
plained in Sect. 7.1, this applies to the logarithmic interaction in R?", as well as the
continuous power laws 1.13 when a €]0, 2] and to the exponential pair potential

Wix, y) = e_alx_yl, a>0,

when X is taken to be a disk centered at the origin with radius at most 1/2a (known
as the Born—Mayer potential in chemistry). It should be stressed that neither the
power laws with a €]0, 1[, nor the exponential pair potential is concave wrt (x, y).
(Otherwise, the concavity of SJEM(e) could also be deduced from the ordinary
Brunn—-Minkowski inequality; compare Remark 6.6.)

We then deduce that thermodynamic equivalence of ensembles holds for any
energy level e in lenin, emax[ using a general result (Theorem 5.4), saying that
for a general lower semi-continuous convex energy functionals £ (x) and prior 1o
thermodynamic equivalence of ensembles holds in the low-energy region Je,, iy, eol
iff E () and pg satisfy a certain compatibility property (the “energy approximation
property”). This property has previously appeared in connection with the study of
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large deviation principles for the corresponding canonical ensembles at positive
inverse temperatures 8 [7,17].

We also show that the global concavity of S(e) holds for singular repulsive
power laws (Prop 5.5). However, in contrast to the continuous power laws 1.13
(and the repulsive logarithmic interaction) the singular power laws do not satisfy the
Main Assumptions. In fact, in this case the global concavity of S(e) in high-energy
region e > ¢ holds for a bad reason: S(e) = S(ep) and, as a consequence, there are
no maximum entropy measures ©° when e > eg. This means that the equivalence
of ensembles at the level of macrostates then breaks down (see Sect.4). Similarly,
regularized singular power laws are expected to yield non-equivalent ensembles,
and thus, the corresponding entropies are expected to be non-concave (as discussed
in [40, Page 252]).

1.3.3. Critical Negative Inverse Temperatures and Existence of Maximum En-
tropy Measures The singularity structure of a pair interaction W (x, y) satisfying
the Main Assumptions can be very complicated, even if W (x, y) is taken to be trans-
lationally invariant, i.e.,

Wkx,y)=—-¥(x —y) (1.14)

for a function W in the class PSH,(C"). Still, as shown in Section Sect. 8.3, the
singularities are mild enough to ensure that both the microscopic critical inverse
temperature

_ (N)
IBC,N = {,3 cR: ZN,ﬁ = /Ne BH /’L(?N - OO}
X

and the macroscopic critical inverse temperature

B :=inf : {,B eR: i;rifFﬂ(M) > —oo}

are strictly negative. As a consequence, we deduce that, when X is compact, there
exists a maximum entropy measure ¢ for any e €le,in, €max[- The concavity of
SiN) (e) and S(e) is exploited to establish “dual” formulas for B, y and S, which
hold under the Main Assumptions (Corollary 8.1 and Corollary 8.4):

dS™ (e) dS(e)

= lim = lim 1.15
'BC’N e—>supyy En de Pe e—suppy) E(1) de ( )

(which are decreasing limits when using either left or right derivatives). The deriva-

. (N) . . .
tive % corresponds to the inverse Gibbs temperature at energy e in the context

of small systems [28,36] (when H™) is replaced by —H ™) and e with —e so that
‘% is positive).

Applied to the regularized vortex model W in R?, the second formula in
1.15 confirms the expectations expressed in [29, Page 855], concerning the slope
dSs(e)/de of the corresponding entropy: on the one hand, as e converges to the
maximum (finite) value of the corresponding regularized energy Es(w) the entropy
Ss(e) and its slope dSs(e)/de both converge toward —oo. On the other hand, for
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a fixed e the slope d S5(e)/de converges, as § — 0, to the slope dSyp(e)/de for the
point vortex model, which, in turn, is close to —4 for large e (with our normaliza-
tions).
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by grants from the Knut and Alice Wallenberg foundation, the Goran Gustafsson
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1.5. Organization

We start in Sect. 2 by introducing a very general setup and provide some back-
ground on concavity and on plurisubharmonic functions ( appearing in the Main
Assumptions). In Sect. 3, general properties of the entropy S(e) are studied. In par-
ticular, finiteness and monotonicity properties of S(e) are established and relations
to the notion of thermodynamic equivalence of ensembles are explored. In Sect. 4,
the notion of macrostate equivalence of ensembles is discussed and existence results
for maximum entropy measures are provided. Then, in Sect. 5 we consider the case
when E () is convex and show that thermodynamic equivalence of ensembles holds
in the low-energy region {e > e} iff the energy approximation property holds. In
the remaining sections, we specialize to the Main Assumptions. First in Sect. 6, we
deduce the concavity of the upper microcanonical entropy SEFN) (e) (Theorem 6.7)
from a complex analog of the Brunn—Minkowski inequality. Then, letting N — oo
the concavity of the entropy S(e) in the high-energy region {¢ > ep} (Theorem
6.9) is deduced. In Sect. 7, this is shown to yield global concavity of S(e) when the
Main Assumptions are complemented with weak positive definiteness and some
examples are exhibited. In Sect. 8, applications to slope formulas of critical inverse
temperatures are given and some connections to algebraic geometry are explained.
In Sect.9, a strict concavity result for S(e) is deduced under the Homogeneous
Assumptions from a uniqueness result for free energy minimizers, established in
the companion paper [8].

2. Setup and Preliminaries

2.1. Very General Setup and Notation

A very general formulation of the setup that we shall consider, henceforth called
the Very General Setup may be formulated as follows. Let X be a topological space
endowed with a probability measure o and E(u) a Isc functional E(u) on the
space P(X) of all probability measures on X. We then define the corresponding
entropy S(e) and free energy F(B) as in formula 1.3 and formula 1.6, respectively.
Occasionally, when specializing to the General Setup introduced in Sect. 1.1 the
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notation Ew, v (1) will designate an energy functional E(u) of the particular form
1.2.
We set

emin »= _inf E(u), eo:= E(10), emax = sup E(n)
Po(X) Po(X)
(recall that Py (X) denotes the space of all probability measures on X with compact
support).

We will mainly consider the case when X & R?" and the Main Assumptions (or
the Homogeneous Assumptions) introduced in Sect. 1.3 hold. These assumptions
will be recalled in Sect. 6.1, but we first provide some preliminaries on concavity
and plurisubharmonicity.

2.2. Concave Preliminaries

We will be discussing concavity properties of the entropy S(e), and we provide
some general preliminaries on concave functions. First recall that a function ¢ on
a convex subset C of R? taking values in | — 0o, oo] is said to be convex on C if,
for any given two points xg and x1 and 7 €]0, 1[,

¢(txo + (1 —1)x1) <t¢(xo) + (1 — )¢ (x1)

and is strictly convex on C if the inequality above is strict for any ¢ €]0, 1[. A
function f on C is (strictly) concave if — f is (strictly) convex. Here we will be
mainly concerned with the case when d = 1. In this case, if f is concave and finite
on a closed interval C C R, but not strictly convex, then there exist two points
xo and x1 in C such that f is affine on [xg, x1]. In Sects. 3, 7, we will use some
standard properties of convex functions recalled below, translated into the setup of
concave functions (for further background see [51] and [56, Section 2.1.3]). If ¢ is
a convex function on R?, then itssubdifferential (d¢) at a point xq € R? is defined
as the convex set

09)(x0) = {30 #G0) + 30+ (v —x0) =B VxeRY} @)

In particular, if ¢ (xg) = oo, then (d¢)(xp) is empty. Similarly, if f is concave on R4
then its superdifferential (3f)(xg) is defined as above, but reversing the inequality.
In other words, (3f)(xg) := —(3(— f)(x0). In the case when f is concave on R
and finite in a neighborhood of xg

@NH @) = [f (x+), f(x-)],

where f’(x+) and f’(x—) denote the right and left derivatives of f at x, respec-
tively. In particular, f is differentiable at x iff (3f)(x) consists of a single point. If
f is a function on R? taking values in [—o0, oo] its (concave) Legendre—Fenchel
transform is the usc and concave function on R?¢ (taking values in [—o0, oo[ )
defined by

fr) = igﬂ(x cy—f).
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It follows readily from the definitions that
y €df(x) < x €df*"(y). (2.2)

Moreover, it is well known that

af {f > —oo}) = af*({f* > —oo}). (2.3)
Note that, in general, f** is the concave envelope of f :
(f")(x) = inf {a(x): a> f}= inf  {gx): g=>f}. (24
a affine g concave, finite

Indeed, the first equality follows directly from the definition and the second one is
shown by, for a fixed x, taking a(x) to be any affine function coinciding with g at
x and with gradient in dg(x).

We will also make use of the following lemmas (which are without doubt
essentially well known, but for completeness proofs are provided in appendix):

Lemma 2.1. Let f be a concave function on R and assume that f is differentiable in
aneighborhood of [xo, x1]. Then f* is strictly concave in the interior of [ yo, y1] :=

Lf'(x1), f/(x0)].

Note that, in general, f** > f. Concerning the strict inequality we have the
following

Lemma 2.2. Let f be a function on R such that supy f < oo and U € R an open
set where f is finite and usc. Then { f** > f}N U is open in U and f** is affine
on{f* > f1NU.

2.3. Background on Plurisubharmonicity and the Class PSH,

The Main Assumptions introduced in Sect. 1.3 involve the notion of plurisub-
harmonicity. While this notion is central in the fields of several complex variables
and complex geometry, it may not be familiar to readers lacking background in
these fields. We thus recall the main definitions and properties that we shall use and
refer to [23, Section 5.A.] for further background. We will identify R>" with C" in
the standard way. A function ¢ on C" is said to plurisubharmonic (psh, for short)
if ¢ is upper semi-continuous (usc) taking values in [—o0o, co[ and subharmonic
along complex lines, i.e., if £ +— ¥ (zo + ¢ap) is a local subharmonic function on
C for any given zo, ap € C", or equivalently that

1 .
Vi) < 5 / V(20 + e%a0)d6.

In particular, ¥ is then subharmonic on R?". If 4 is smooth, then it is psh iff the
complex Hessian 00 of i is a semi-positive Hermitian matrix at any 7 :

2 .
81#(_1))20’ o 19 i 0
0z;07; i

0y (2) == <
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Equivalently, a function i is psh if, locally, it can be expressed as a decreasing
limit of smooth psh functions v ;. In fact, ¥; may be taken as a convolution of v
with any suitably scaled smooth probability density with compact support. If —u is
plurisubharmonic, then u is called plurisuperharmonic. An open set 2 in C" is said
to be pseudoconvex if Q2 admits a continuous psh exhaustion function p, i.e., p is
psh on €2 and such that {p < C} is a compact subset of 2. We recall the following
essentially standard lemma (see appendix for a proof):

Lemma 2.3. Let ¢ be a psh function on a pseudoconvex open set Q2. Then {¢ <
0} N Q is also pseudoconvex.

We also recall that the following standard facts [23, Theorem 5.5.], which allows
one to construct a range of different types of psh functions:

Lemma 2.4. If {1, ..., Y, are psh functions and x (t1, ..., t;) is a convex function
on R” which is increasing in each t;, then x (Y1, ..., ¥y) is psh. In particular, if
a1, ..., 0 are nonnegative functions, then

r r
Zombi, logze"‘“pf and max{y, ..., Yr}

i=1 i=1
are psh functions.

In particular, if ¥ is psh and x is a convex increasing function on R, then the
composed function y (¢) is psh. Since | £ (z)|? is psh for any holomorphic function
f(z) on C" (as follows, for example, directly from the characterization), it follows
form the previous lemma that

¥ (z) == log <Z |ﬁ(z>|2>

i=1

is psh for any given holomorphic functions fi, ..., f,. In particular, log |z|* is psh.
Moreover, if a function i only depends on the absolute values of z;, then ¥/ (z) is
psh iff it is convex with respect (log |z1], ..., log |z,|) € R".

2.3.1. The Class PSH, Givena = (ay, .., ay) €]0, oo[", we denote by V, the
vector field on C" defined by

m
3
Vg = Zai—, (2.5)
o 90

where % denotes the generator of the S'-action on C" which rotates the z;-
coordinate and leaves the other coordinates invariant (i.e., €? - z =
(21, ..., €92;, ..., z,)). In other words, V, is the Hamiltonian vector field corre-
sponding to the Hamiltonian

ha(2) =) 51l (2.6)
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on R?", endowed with its standard symplectic form. Note that the Hamiltonian 4,
is plurisubharmonic on C” (since |z;|? is). Now if U is an open connected subset of
C" then the class PSH,(U) is defined as the class of all psh functions ¥ on U, not
identically —oo, such that V, (/) = 0. More generally, if X is closed connected
subset of C" we denote by PSH,(X) the class of all functions v such that ¥ is in
PSH,(U) for some open subset U containing X (depending on ).

Example 2.5. (The “algebraic and quasi-homogeneous” case). If P(z1, ..., z,) 1S
a quasi-homogeneous polynomial, i.e., there exists exist positive integer weights
ai, ..a, such that P is homogeneous of degree d wrt the corresponding R -action

P21, o X 2,) = U F (21, oo Z0) 2.7)

for any ¢ € R, then log|P(z)| is in PSH,(C"). More generally, if P; are poly-
nomials on C" which are quasi-homogeneous of degree d; for the same weighs
ai, ...,a, and o; > 0, then

¥(z) ==log | Y |P;(2)|* | € PSHa(C") (2.8)
j=l

In the particular case when all ; = 1 and d; = d, we call d the degree of .

By composing the previous examples with convex increasing functions x on R,
one may fabricate an abundance of examples of functions in the class P.SH,(C").
For example, Z?i] |P;(z)|% is in PSH, if P;(z) is a homogeneous polynomial
(wrta)and aj > 0.

3. General Properties of S(¢) and Thermodynamic Equivalence of Ensembles

In this section, general properties of the entropy S(e) are studied and the notion
of thermodynamic equivalence of ensembles introduced in [30] is recalled. The
main new feature in this section, as compared to the setup in [30], is that E(u) is
not assumed to be continuous. This leads to some subtle aspects that do not seem
to have been addressed before. Throughout the section, we will consider the Very
General Setup introduced in Sect.2.1.

3.1. Monotonicity of S(e)

The following lemma generalizes [15, Prop 2.2] (with a similar proof) and
involves the following ad hoc property:

Definition 3.1. Assume that X is compact. Then a functional E (1) on P(X) has
the affine continuity property if for any u; € P(X) such that E(u1) < oo and
S(u1) > —oo the function t — E(uo(1 —t) 4+ t/41) is continuous on [0, 1]. For a
general X, the affine continuity property is said to hold if it holds for all compact
subsets of X.
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Lemma 3.2. (monotonicity of S(e)). Assume that X is compact and ey := E(l1p) <
0.

o If E(u) is convex on P(X), then S(e) is increasing for e < ey and strictly
increasing in the subinterval where S(e) > —oo. In particular,

S—_(e) := sup S(u)
E(n)<e

o If E() has the affine continuity property, then S(e) is decreasing for e > e
and strictly decreasing in the subinterval where S(e) > —oo. In particular,

Si(e):= sup S(u)
E(u)=e
More precisely, in the second point there is no need to assume that E is lsc on
P(X), and thus, it also follows that S(e) is increasing for e < E (o).

Proof. To prove the first point first observe that, since E is Isc and X is compact
{E(u) < e} is compact (or empty). We may assume that S(u) is not identically
equal to —oo on {E(u) < e}. (Otherwise, we are done.) Since S(u) is usc, the
sup of S(u) on the set {E(u) < e} is thus attained at some 1 in the set. Assume
in order to get a contradiction that E(u1) < e. Consider the affine segment p; in
P(X) connecting (1o and pe1; py := po(l —¢)+tuq fort € [0, 1]. By the assumed
convexity of E(u)

E(u) < (A —=0E(uo) +1E(u) <e

for ¢ sufficiently small, using that E(up) < oo. But, as is well known, S(u) is
strictly concave on {S(n) > —oo} C P(X) and attains its maximum at pq, and
hence, S(u;) < S(u1) for any ¢ € [0, 1] (as follows from Jensen’s inequality).
This contradicts the assumption that 11 is a maximizer, and hence, it must be that
E(u1) = e, as desired.

To prove the second point, it will be enough to show that for any p; € P(X)
such that E(u1) > eand S(u1) > —oo there exists u € P(X) suchthat E(u) = e
and S(u) > S(u1). To this, it will, in the light of the previous argument, be enough
to show that there exists some ¢ € [0, 1] such that E(u;) = e. But, by assumption
E(up) < e and E(i1) > e. We can thus conclude by invoking the assumption
that E(u,) is continuous. Since we have not used that E is I1sc on P(X), the same
argument applies to — E, which proves the last statement of the lemma. O

3.2. Thermodynamic Equivalence of Ensembles

In this section, we consider the Very General Setup. It follows readily from the
definitions that the Legendre—Fenchel transform S* of S coincides with the free

energy F(f) :
S*=F.

Following [30,55], we make the following
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Definition 3.3. Thermodynamic equivalence of ensembles is said to hold globally
if

S=F*

and thermodynamic equivalence of ensembles is said to hold atan energy level e if
S(e) > —oo and

S(e) = F*(e).

Recall that, in general, a function S(e) is usc and concave iff $** = S. It was
shown in [30, Prop 3.1a] that S is always usc under the assumption that X is compact
and E () is continuous wrt the weak topology on P(X). (This is the case if W and
V are continuous.) In this case, global thermodynamic equivalence thus holds iff S
is concave. But here we need consider the case when the continuity assumptions are
not satisfied (and moreover X may be non-compact). We will impose the following
compatibility property between g and E ().

Definition 3.4. A measure w¢in X is said to has the Energy Approximation Property
if for any compactly supported probability measure u there exists a sequence u; €
P(X), supported in the same compact set, converging weakly toward p with the
following properties:

e /i is absolutely continuous with respect to 1o
o lim;_, o0 E(uj) = E(1)

Remark 3.5. This property was introduced in the context of large deviation theory
in[17] and studied from a potential-theoretic point of view in [7] (see the discussion
in the end of Sect.5.2).

The energy approximation property ensures that S(e) is finite on lemin, €max|:

Lemma 3.6. Assume that |1y has the energy approximation property and the affine
continuity property on compact subspaces of X. Then S(e) is finite on lemin, €max|.

Proof. By Lemma 3.2, we just have to verify the claim that there exists some
u € P(X)gsuchthat E(u) < eand S(u) > —o0. To this end, take § > 0 such that
e—38 > epin. By the verify definition of e,,;,,, there exists  such that £ () < e—34.
Moreover, by the monotone convergence theorem p« may be chosen to have compact
support. Now take a sequence (= pjo) converging weakly toward p with the
energy approximation property. Replacing p; with max{p;, R}/ [{pj, R}uo for a
given R > 0 and using a diagonal argument, we may as well assume that p; € L.
In particular,

E(uj) <e, S(u;)> —00

for j sufficiently large, proving the claim when e €]ep;y, eol. A similar approxima-
tion argument applies if instead e €]eq, enqx)[ (again using Lemma 3.2). Finally,
if e = E(uo) then S(u) > S(uo) = 0, which concludes the proof of the claim
above. O
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Proposition 3.7. In the Very General Setup, the following holds:

o [f the entropy S(e) is concave on lemin, emax| and o has the energy approx-
imation property and the affine continuity property, then S(e) is continuous
on lemin, emax| and thermodynamic equivalence of ensembles holds for any
e €lemin, emaxl|-

o [fthe entropy S(e) is concave and continuous on [ey, emnqx [, then thermodynamic
equivalence of ensembles holds for any e € [eq, emax| and moreover for any
e € [eo, emax|

S(e) = inf (Be — F(B)) (3.1)
B=0

o [fthe entropy S(e) is concave and continuous on lemin, €o), then thermodynamic
equivalence of ensembles holds for any e €lemin, o]

Proof. In order to show that S(e;) = S**(ey) at a given point ej in leyqyx, €minl, it
is enough to find an affine function s on R such that s > S and s(e;) = S(ey) (by
formula 2.4). But since s is concave and finite on Je;;in, emax| its superdifferential
aS is non-empty, i.e., contains some 8 € R. This means that the affine function

s(e) == Be —e1) + S(er) (3.2)

coincides with § at e and has the property that s > S on lenin, emax[- Hence, by
Lemma 3.2, s > S on all of R, which proves the first point.

To prove the second point in the proposition, fix e; €]E (ig), €max[- By formula
2.4, it will be enough to find an affine function s on R such that s > S and
s(e1) = S(ey). To this end, first define the function f(e) to be equal to S(e) on
[eo, emax| and ey when e < eg. Thus, f(e) = max{ep, S(e)} is continuous and
convex on | — 00, e, [. We then obtain the desired affine function s by picking an
element g in the superdifferential df of f at e; and again defining s(e) by formula
3.2. Finally, to prove the last formula we have to show that the infimum in formula
3.1 is attained for some 8 < 0. But this follows from the fact that, in the previous
step, B in formula 3.2 is non-positive, since f is decreasing (by Lemma 3.2). The
third point is shown in essentially the same way as the second one. O

Remark 3.8. If e;,4x < 00, then it could happen that S(eqx) # S™ (€max) in the
first point of the previous proposition. Also note that in the case when E(u) is
of the form £ = Ew, y (as in formulal.2) then e,,,, = oo holds if either there
exists xg such that V (xg) = oo or (xg, yo) such that W(xq, yg) = o0o. Indeed, then
E(u) = oo for pp = 8yy/2 + 6x,/2.

As shown in Theorem 5.4, the energy approximation property is not merely a
technical assumption, but essential.
3.3. Priors Versus Linear Constraints

Now consider the Very General Setup in the case when X is a domain in RY
and g = dx. Given a continuous function ¥y and A € R, we may then replace g
with the prior defined by the probability measure

Wy = efw"dx/Z;\, Z; ::/ e My,
X
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assuming that Z; < oo. The corresponding entropy function S, (e) is closely
related to the multivariable entropy function S(e, /) on R? defined by

S(e,l):= sup {S(uw): E(n)=e, L(n)=1}, L(p) :=/ You,
1eP(X)o X

obtained by imposing the linear constraint L(x) = [ (where S(u) denotes the
entropy of u relative to dx). Indeed, it follows readily from the definition that, for
a fixed e, the Legendre-Fenchel transform of the function A — §,,, (e) is given by
—S(e, 1) — log Z,. Hence, under the hypothesis that S(e, /) is concave and lower
semi-continuous wrt I, inverting the Legendre—Fenchel transform gives

S(e, ) = iI;f (SM(e) + Al + log Z;L) .

As a consequence, if Sy, (e) is globally concave with respect to e, for any fixed A
such that Z, is finite, then S(e, [) is globally concave on R%. Multivariable entropy
functions are studied in [30], from the point of view of equivalence of ensembles,
but here we will focus on one-variable entropy functions defined with respect to
appropriate priors. Note that in the non-compact case when X = R? the inclusion
of a function vy with sufficient growth at infinity is crucial in order to get a prior
measure with finite total mass. In the presence of rotational symmetry, the standard
choice of a prior is a centered Gaussian measure.

Remark 3.9. More generally, given r functions ¥y, ..., ¥, on RY and A,y Ay €
R? one can consider the prior ) = e~ 2 hivi /Zy and the corresponding entropy
function S(e, 1) on R'*?. Then the previous considerations still apply if Al is
replaced by the scalar product between A and [.

4. Macrostate Equivalence of Ensembles and Existence of Maximum
Entropy Measures

An important motivation for the notion of thermodynamic equivalence of en-
sembles is that it implies that any maximum entropy measure ;¢ (representing an
equilibrium macrostate in the microcanonical ensemble) minimizes the free energy
Fg(w) atan inverse temperature B corresponding to the energy level e. This is made
precise by the following result (essentially contained in [30]):

Lemma 4.1. (macrostate equivalence of ensembles). Consider the Very General
Setup. Assume that S**(e) = S(e) > —oo and assume that 3S(e) is non-empty
(this is the case if, for example, S** = S > —o0 in a neighborhood of e ). If ¢ is
a maximal entropy measure with energy e, i.e., S(u) = S(e), then u® minimizes
the free energy functional Fg(u) for any B € 9S(e).

Proof. By assumption S(e) > —oo. Hence, the assumption that 8 € 9S(e) means
that B € (0F*)(e). Since F = (F*)* it follows from the definition of 9 F* that

F(B) = —F"(e) + Be
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(since 0 € d(—F*(e) + Be)). In other words,

Meigfx) Fp(u) = =S(u) + BE(1®),

which means that 11 minimizes Fg(u), as desired. |

Remark 4.2. Without the property that S(e¢) = $**(e) a maximal entropy measure
w® will, in general, not minimize Fg(u). This is discussed in the context of BEG
model in the final section of [31] (where it is pointed out that ¢ may be merely a
local minimizer of Fg () or even a saddle point). Moreover, even if S(e) = §**(e)
there may, in general, exists minimizers of Fg(u),for 8 € 0S(e), which are not
maximum entropy measures (at energy e), unless S(e) is strictly concave at e (see
[30D).

As shown in [30], the existence of ©¢ is automatic for any e €]eg, €;,;4x[, When
X is compact and E () is a continuous functional on P(X). However, since we
do not impose these assumptions in the Main Assumptions we next provide some
general existence result for u¢ that will be applied to the Main Assumptions in
Sect. 8.4.

4.1. Existence of u¢ when X is Compact

We start with the low-energy region:

Proposition 4.3. Consider the Very General Setup. Assume that X is compact and
that the energy approximation property and the affine continuity property holds.
Then, for any e €lepin, eo] there exists a maximum entropy measure ji°.

Proof. Fix e €leyin, eg]. First recall that by Lemma 3.6 S(e) is finite. Next, by
Lemma 3.2 (and its proof) it is enough to prove that the functional S(u) admits
a maximizer on {E(u) < e}. But since E is Isc, {E(u) < e} is closed in the
compact space P(X), hence compact. The existence of ¢ thus follows from the
upper semi-continuity of S(x) on P(X). O

In order to ensure the existence of maximum entropy measures in the high-energy
region, we introduce the following stability property:

Definition 4.4. In the Very General Setup, the thermal stability property is said to
hold if there exists By < O such that

inf (BoE — §) > —o0.
PX)

In other words, this property says that the critical inverse temperature . (discussed
in Sect. 8) is strictly negative. Turning to the General Setup, we will use the follow-
ing result, shown in the course of the proof of [6, Lemma 2.13, formula 2.12]):

Lemma 4.5. Consider the General Setup and assume that X is compact. If the
thermal stability property holds, then the functional Evy w is continuous on {j :
S(u) = —C} € P(X) for any given constant C > 0.
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The following result generalizes the existence result in [15], concerning the
case when W (x, y) has a logarithmic singularity along the diagonal:

Proposition 4.6. Consider the General Setup. Assume that X is compact and that
the energy approximation property and the thermal stability property hold. Then
S(e) is usc on lemin, emax|, and for any e in lemin, emax|, there exists a maximum
entropy measure [i°.

Proof. Take e; — e €lemin, emax| and let u; be a sequence in P(X) such that
E(uj) = ej and S(uj) = s(e;j) — 1/j. In particular, there exists a constant C
such that S(u ;) > —C. By the previous lemma, we may, after perhaps passing to
a subsequence, assume that j1; — oo in P(X) and E(uj) — E(eo). Hence,
E(so) = e and since S is usc on P(X) S(oo) > lim SUP 00 S(wj). This
shows that S(e) > S(uoo) > lim SUP o0 S(ej), ie., that S is usc. Similarly,
the existence of u° also follows from the previous lemma, since it shows that
{E(un) = e} N S(u) > —C is closed (and thus S attains its maximum value there
for C sufficiently large). O

If the thermal stability property does not hold, then there may not be no maximum
entropy measures,where S(e) is globally concave. In fact, we have the following
converse to the previous proposition when S(e) is concave and continuous on
[eo, emaxl.

Proposition 4.7. Consider the Very General Setup and assume that X is compact
and that there exists a maximum entropy measure (¢ for some e €leq, epax|. Then
the thermal stability property holds.

Proof. The assumed concavity of S(e) implies that the right derivative of S(e)
tends to B, as e — epqy (see Cor 8.4 and its proof). Hence, if we assume that
the thermal stability property does not hold, i.e., that 8. = 0 it follows, since S(e)
attains its maximum at e and is assumed continuous and concave on [eq, €, ] that
S(e) = S(ep). But S(u) = S(uo) iff u = o (which implies E(u) = ¢p), and
hence, there exists no maximum entropy measure ©° when e > e. O

The previous proposition is illustrated by the case of singular power laws in Sect. 5.3.
Before turning to the non-compact case, we point out that the following concrete
bound implies the thermal stability property (see Lemma 8.5):

_Bo(1
sup/e ﬁo(ZW(x,y)+V(y)>M0(y) < 00, / e—ﬂovuo < 00, (41)
xeX X

for some By < 0, which will turn out to be satisfied if the Main Assumptions
are complemented with the assumption that W is translationally invariant, up to a
bounded term.
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4.2. Existence of u¢ when X is Non-compact

In order to discuss maximum entropy measures in the case when X is non-
compact, we first need to replace the space P(X)g of all probability measures with
compact support, appearing in the definition1.3 of S(e), with probability measures
satisfying an appropriate growth assumption “at infinity.” Indeed, if, for example,
E = Evy for alsc function V which is unbounded both from above and from below
(say, V(x) = —log|x]|in R?), thenitis nota priori clear how to define Ey (w) if n
have unbounded support. To handle this issue, we will make the following growth
assumption: exists a continuous nonnegative function ¢ of X such that

1 1 1 1
—Wi(x,y) — EV(X) - EV()’) < §¢0(x) + §¢0(y) + Co. 4.2)

Then we can decompose

E(n) = Egy (1) — / weo,  Eg, (1)
1 1 1 1
= / (W(x, y) + EV(X) + EV()’) + §¢0(X) + §¢0()’)> n® p (4.3)

where the first term has a well-defined value in | — 0o, oo], since the corresponding
integrand is bounded from below. This means that if we replace P(X) with the
subspace

Py (X) 1= {M e P(X): / dop < oo}
X
then S(e) may be expressed as

S(e):= sup {S(u): E(n) =e}, 4.4)
nePyy (X)

where E(u) is defined by formula4.3. According to the following result the exis-
tence of a maximizer u° is guaranteed if ¢ has slower growth then an appropriate
exhaustion function ¥y of X (i.e., the sublevel sets {y9 < R} are compact and
exhaust X when R — 00):

Proposition 4.8. Consider the General Setup and assume that there exists a con-

tinuous exhaustion function o of X such that the following growth properties
hold:

o [eVouy < oo for some § > 0
o The growth assumption 4.2 holds for a ¢q such that ¢o/o — 0 uniformly as

Yo — oo (e.g., for po = w(()l_e)for some € €]0, 1]).

If the thermal stability property holds (i.e., B, < 0), then there exists a measure (1°
realizing the sup in formula 4.4 for any given e € [eq, emax|.
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Proof. Setting W (x,y) := W(x,y) + $V(x) + 3V — 1o (x) + Ido(y), we
can express Eg, (1) = f W(x VIu ® . Now fix e € [eg, e[ and recall that S(e) is
finite. Since, by assumption, W(x y) islsc on X x X and bounded from below it
extends to a Isc function on X x X, where X denotes the one-point compactification
of X. Moreover, we identify ¥ with a Isc function on X, taking the value oo at
the point at infinity and o with a probability measure on X, not charging the
point at infinity. Accordingly, we can identify Eg, (1) and S(u) with functionals
on P(X). Denote by S(e) the corresponding entropy function. Since f 5 Mo < 00
implies that u does not charge the point at infinity, it will, in order to prove the
proposition, be enough to show that the sup defining S(e) is attained. To this end,
take a sequence p; € P(X) such that E(u;) = e and S(i;) increases to S(e).
Decompose p = e %05 for § > 0 such that us := €®¥0 10 has finite total mass.
Then there exists a constant C such that

S(1) = Sy (1) — 8 / Wopj = —C. 4.5)

Since S,,; (1) is uniformly bounded from above on P(X) (using that p5 has total
finite mass), this means that there exists a finite constant Cg such that

/WO,U«j < (s < 00. (4.6)

Now, since X compact we may, after perhaps passing to a subsequence, assume
that u; — oo weakly in 77(5( ) for some i (Which, by the bound 4.6, does not
charge the point at infinity). Moreover, combining the bound 4.6 with the growth
assumption on the continuous function ¢q gives (using Markov’s inequality) that

lim /¢0M,/ = /¢0Moo-
]—)OO

Since S(u) is usc on P(f(), all that remains is to verify that
Lim Eg (u;) = Egy(too) 4.7
J—>00

To this end, we rewrite the assumed thermal stability property as

BoEgy (1) — /30/050# —S(u) = —=Co, Bo<0 (4.8)

Note that
—PBo / Gor — S(1) = =S (1), gy = €™, 4.9)

where the measure p1 g, has finite mass (since By < 0 and ¢ > 0) and thus identifies
with a measure on X. Accordingly, can view 4.8 as an inequality on P(X), saying
that Isc functional Eg, (1) has the thermal stability property wrt the measure j, on
the compact space X. Thus, it follows from Lemma 4.5 that E, is continuous on
{Suﬂ0 (u) = —C}. Finally, combining 4.9, 4.6 and 4.5 reveals that Sug, (uj)=-C
for some constant C, and hence, the desired convergence 4.7 follows. m]
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Remark 4.9. To see that the growth properties in the previous proposition are es-
sential consider the case when X = R?, o = e ™ldx and V(x) = —|x|? for
p > 0. Then the thermal stability property does hold (in fact, 8, = —o0, since
Zg = [e PV 1y < oo for any B < 0). Moreover, [ V0 < oo for ¥ := |x|?.
However, for e < ep a maximum entropy measure ¢ only exists under the as-
sumption that p < 2, i.e., precisely when —V /¢9 — oo (indeed, if u° exists, then
pe =ePV/ [ e PV g for some B > 0 (see Sect.5.1.1).

5. Concavity of S(e) in the Low-energy Region for Convex E (1)

5.1. Concavity and Monotonicity of S(e) in the Low-energy Region e < ey when
E () is Convex.

We now consider the entropy S(e) in the low-energy region e < ep under the
assumption that E(u) is convex. By way of motivation, we start with the case when
E () is affine.

5.1.1. The Case of E(u) Affine In the case when E(u) is affine on P(X) it
follows directly from the definition of S(e) that S(e) is globally concave, using the
concavity of S(u) on P(X). Moreover, if X is compact and E(n) = (V, u) for
V e C%(X), then a duality argument reveals that S(e) is finite and strictly concave
on |emin, €max|. In fact,

S(e) = Fy(e), Fv(p) = —log/xefﬂvuo,

where Fy (B) < oo for all 8, since X is compact and V is bounded. Indeed, in this
case it follows from Jensen’s inequality that the free energy F(B) is of the form
Fy(B) above.! Since Fy (B) is differentiable on all of R and its derivative tends to
infx V(= enin) and supy V(= e€yqx) as B — oo and B — —o0, respectively, it
thus follows from Lemma 5.2 that Sy (e) is strictly concave on le;,ip, €max[. How-
ever, if X is non-compact, then the strict concavity of Sy (e) may fail as illustrated
by the following simple example:

X =R, po=eMdax, vix) = |x|*

In this case, E () < o0, but [ PV oy < oo iff B > 0. It follows that S(e) =
S(eg) = 0 for e > ¢, and thus, S(e) is not strictly concave. Indeed, applying the
second point in Prop 3.7, we get, for e > ey,

S(e) = ;rg) (Be — Fy(B)) .

However, since Fy(8) = oo for § < 0 the right-hand side above is attained at
B = 0, showing that S(e) = 0. Also note that replacing V with —V yields an
example where S(e) fails to be strictly concave in the low-energy region. Note

! This is an instance of the classical Gibbs variational principle.
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also that in this example, the sup defining S(e) is not attained in the region where
S(e) = S(ep), if e # eg. Indeed, if the sup is attained at u° satisfying E(u) = e,
then S(u®) = S(uo), and hence, u® = o, which forces e = E () := eo.

5.1.2. The Case of E(i) Convex Using Lemma 3.2, we observe that similar
arguments apply in the low-energy region when E (1) is convex, under some further
regularity assumptions.

Proposition 5.1. Let X be a topological space and E (i) a lsc convex functional
on P(X) and pgy € P(X).

o If X is compact and ey := E(uug) < 00, then S(e) is concave on ] — 00, eg].

e [f X iso-compact (i.e., a countable union of compact space) and E (1 g ug) < 00
for any compact subspace K of X, then, if the energy approximation property
holds, S(e) is concave, increasing and finite (hence continuous) on lepin, eol.

Proof. Given e; and e¢; in | — 00, ¢g] and r € [0, 1] set ¢; := (1 — t)eg + te;.
Let 1 and po be contenders for the sup defining S(e;) and S(ey), respectively.
Set wu; := (1 — )1 + tuo. Since E(w) is assumed convex, E(u;) < e;. Hence,
if X is compact and E(ug) < oo, then Lemma 3.2 gives, S(e;) > S(ur) >
(1—1)S(1)+1S(2), using that S is concave on P (X). This proves the first point.
To prove the second one, we write X is an increasing union of compact subspaces
XRg. Denoting by Sg the entropy corresponding to Xg, it follows directly from
the definition that Sg(e) < S(e). Now, by the energy approximation property in
Lemma 3.6, —oo < Sr(e) < S(e). A slight variant of the argument in the end of
the proof of Theorem 6.9 then shows that Sk (e) increases toward S(e) as R — oo.
Hence, we can conclude by invoking the first point. O

Next, a different duality argument yields strict concavity and continuity up toe = eg
when X is compact. The proof uses the following duality criterion:

Lemma 5.2. Consider the Very general setup and assume that X is compact and
that the energy approximation property holds. If F () is differentiable in a neigh-
borhood of [Bo, B1] and [F'(B1), F'(B0)] Clemin, €max [, then S(e) is strictly con-
cave and equal to F* on [F'(B1), F'(Bo)]. Moreover, in general, if F is differen-
tiable at B, then F'(B) = E(ug) for any minimizer of Fg.

Proof. Since F(B) is concave and F' = S* Lemma 2.1 implies that S$** is strictly
concave on [F’(B1), F'(Bo)]. Next, by Prop 4.1 S is usc on U :=lein, emax[, and
hence, Lemma 2.2 forces $** = Son [F'(81), F'(Bo)], which concludes the proof
of the first statement. The last statement follows directly from letting § tend to zero
(from left and from right) in the inequality

F(B+8) — F(B) < Fpas(ip) — Fp(ip) = SE(up). 5.1)
O

Proposition 5.3. Assume that X is compact, E(u) is Isc and convex on P(X).
Then S(e) is strictly concave and S(e) = F*(e) on lepin, eol. Moreover, S(e) is
continuous on leyin, €ol.
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Proof. The concavity was shown in [29] under the extra assumption that E(u)
be continuous on P(X). Here we note that an alternative argument yields strict
concavity under the more general assumptions in the proposition. The starting
point is the observation that Fg(u) is convex on P(X) for § > 0 and strictly
convex on {Fg < oo}. Indeed, since E () is assumed convex this follows directly
from the corresponding property of —S(u) (i.e., from the case 8 = 0), which is
well known [22]. It then follows from general principles that F () is differentiable
with derivative at B given by e(B8) := E(ug), where ug is the unique minimizer
of Fg. Indeed, this follows from the general statement in appendix of [9], using
that E(ug) is continuous in 8 by the argument below. Hence, by Lemma 5.2 S(e)
is strictly concave and equal to F* on the interval |limg_. e(B), limg_.q e(B)I.
By the concavity of F () the function e(f) is decreasing. Moreover, the energy
approximation property implies, in a rather straightforward manner, that

li = eni
ﬂILnO e(B) €min
(see [7]). All that remains is thus to verify that
li = ep.
ﬂl_r)l}) e(B) =ep

But since e(f) is decreasing, this follows readily from the lower semi-continuity of
E(w) (see [7]). To prove that that S(e) is continuous on Je,,;,, ep] it will be enough,
by the previous step, to show that F*(e) is continuous on Je,,i,,, 9] and F*(eg) = 0.
Since F* is concave it is enough to show that F*(e) is finite on |, €max[. But

S<S§*=F*"<0,

where the last inequality follows from restricting the inf defining F* to 8 = 0.
Since S is finite (by the previous proposition) it follows that is F* is also finite
and thus continuous on le;,in, enax[. Hence, by the continuity of F* at ey we get
S(e) — F*(ep) as e — ¢(. But

F*(eg) = ﬁlIElfR (Beo — F(B)), F(B)= uei%f(x)ﬂE(u) = S(w) = BE(no) — S(uo) = Beo
Hence,

F*(eg) = ;2& (Beo — F(B)) = ég« (Beo — Beo) = 0.

which gives liminf,_,., S(e) > 0. Since, trivially, S(e) < S(eg) = 0 it follows
that S(e) — 0 = S(ep), as desired. O
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5.2. The Necessity of the Energy Approximation Property for Thermodynamic
Equivalence of Ensembles

We next show that the assumption that p( has the energy approximation prop-
erty, used in the previous section is necessary for having thermodynamic equiva-
lence of ensembles:

Theorem 5.4. Let X be a compact topological space endowed with a measure
wo such that E(jog) < oo and assume that E(u) is a Isc convex functional on
P(X) and V € C°(X). Denote by Sy () entropy Sy (¢) associated to Ey (i) :=
E () 4+ (V, i) and the measure o. Then Sy (e) is concave and finite on lemin, €o)
forany V e C%(X) iff uo has the energy approximation property. In other words,
thermodynamic equivalence of ensembles holds in the low-energy regions lemin, €0l
forall Ve CO(X) iff no has the energy approximation property.

Proof. First assume that (1o has the energy approximation property. Since Ey (X)
is Isc and convex it then follows from the previous proposition that Sy (e) is concave
on lepin, eol forany Ve C 0 (X). To prove the converse first note that, by the third
pointin Prop 3.7, the restriction of Sy to Je,,in, eo] is equal to the Legendre—Fenchel
transform of Fy (B). Hence, since Sy (e) is assumed finite on Je;,in, o[ it follows
from the property of gradient images in formula 2.3 that d Fy (8)/dB — emin as
B — oo (using either left or right derivatives). Since Fy (8) is concave this means
that

ﬁlirr;o Fv(B)/B = 7;1(1)% E(p).
Now, by definition, Fy(n)/f = E(n) — S(u)/B, and hence,
ﬁli)n;oﬁ?)f) (E(n) —S(uw)/B) = 7;I(l)f()E(u)-

However, as shown in [7] the latter convergence holds forall V e CO(X ) iff o has
the approximation property (briefly, the point is that the convergence in question is,
since E(u) is convex equivalent to the I'-convergence of E(u) — S(u)/pB toward
E (), which, in turn, is equivalent to the energy approximation property of 1i0). O

Inthe case when W (x, y) is the repulsive logarithmic interaction in R? or W (x, y) =
|x — y|7* in R" for s €]d — 2, d[ (specializing to the Coulomb interaction when
s = d — 2) a potential-theoretic characterization of measures [ satisfying the
energy approximation property was given in [7]. In particular, it was shown that
any compact domain X with smooth boundary admits probability measures it with
support X and a density in L' (X, dx), for which the energy approximation property
fails. Hence, by the previous theorem thermodynamic equivalence of ensembles
also fails. On the other hand, Lebesgue measure on a compact domain X has the
energy approximation property, if X is non-thin at all boundary points, in the sense
of classical potential theory. For example, this is the case if any point x € 90X is
the vertex of a cone contained in X (e.g., if X is a Lipschitz domain).
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5.3. The Catastrophic Case of Singular Power Laws

Consider now the case when X is compact and W (x, y) is arepulsive power-law
singularity
Wx,y)=|x—y| “+H(x,y), a>0 (5.2)

for H continuous on X x X. In particular, eo, = 00. We will say that a compact
set X is strictly star-shaped if for any point x € X and ¢ € [0, 1[ the scaled point
cx is contained in the interior of X.

Proposition 5.5. Consider a repulsive power-law singularity W on a compact
strictly star-shaped subset X of R and let juo be proportional (or comparable)
to Lebesgue measure on X. Then S(e) is concave on R and finite (hence continu-
ous) on lemin, 00[. Moreover, S(e) = S(eo) for any e > eg, and as a consequence,
there exists no maximum entropy measure U when e > e.

Proof. For simplicity we will assume that H = 0, but the general case is shown in
essentially the same way. First observe that E has the energy approximation prop-
erty. Indeed, using that X is assumed strictly star-shaped and W (e’) is monotone
in ¢ it is, by the argument in the proof of Lemma 6.3, enough to show this when the
support of u is contained in the interior of X. Let u be defined as in formula 6.2.
First using that E is convex and then that E is translationally invariant gives

E(pe) = / 0 E (Ty)«pt) = / ocE (n) = E(w).
acBe acB,

The reversed asymptotic inequality follows directly from the lower semi-continuity
of E, resulting from the assumed lower semi-continuity of w. Next note that the
affine continuity property appearing in Lemma 3.2 holds, as is seen by modifying the
