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Abstract

We show that entropy is globally concave with respect to energy for a rich class
of mean field interactions, including regularizations of the point vortexmodel in the
plane, plasmas and self-gravitating matter in 2D, as well as the higher-dimensional
logarithmic interactions appearing in conformal geometry and power laws. The
proofs are based on a corresponding “microscopic” concavity result at finite N ,

shown by leveraging an unexpected link to Kähler geometry and plurisubharmonic
functions. Under more restrictive homogeneity assumptions, strict concavity is
obtained using a uniqueness result for free energy minimizers, established in a
companion paper. The results imply that thermodynamic equivalence of ensembles
holds for this class of mean field models. As an application, it is shown that the crit-
ical inverse negative temperatures—in the macroscopic as well as the microscopic
setting—coincide with the asymptotic slope of the corresponding microcanonical
entropies. Along the way, we also extend previous results on the thermodynamic
equivalence of ensembles for continuous weakly positive definite interactions, con-
cerning positive temperature states, to the general non-continuous case. In particu-
lar, singular situations are exhibited where, somewhat surprisingly, thermodynamic
equivalence of ensembles fails at energy levels sufficiently close to the minimum
energy level.

1. Introduction

1.1. General Setup

Let X be a topological space, W a symmetric lower semi-continuous (lsc)
function on X2 (the pair interaction potential) and V a lsc function on X (the
exterior potential), both taking values in ]−∞,∞]. The corresponding N -particle
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mean field N -particle Hamiltonian is defined by

H (N )(x1, ..., xN ) := 1

2

1

N

∑

i �= j≤N

W (xi , x j ) +
N∑

i=1

V (xi ). (1.1)

The self-interactions have, as usual, been excluded in order to render H (N ) gener-
ically finite in the case when W is singular on the diagonal. The corresponding
(macroscopic) energy E(μ) of a probability measure μ on X, i.e., μ ∈ P(X), is
defined by

E(μ) := 1

2

∫

X
Wμ ⊗ μ +

∫

X
Vμ ∈] − ∞,∞] (1.2)

when X has compact support. The definition can be extended to non-compactly
supported measures (see Sect. 4.2), but for most purposes it will be enough to
consider the restriction of E(μ) to the space of all probability measures on X with
compact support, denoted by P(X)0.

Now, fix also a measure μ0 on X ( the “prior”). Following [15,16,29,30], the
entropy S(e) (at energy e) is the function on R defined by −∞ in the case that
{E(μ) = e} is empty, and otherwise,

S(e) := sup
μ∈P(X)0

{S(μ) : E(μ) = e} , S(μ) := −
∫

X
log(μ/μ0)μ, (1.3)

where S(μ) is the entropy of μ relative μ0, which, by definition, is equal to −∞
if μ is not absolutely continuous wrt μ0. A measure μe maximizing S(μ) above is
called a maximum entropy measure. In the case when μ0 is a probability measure,
we shall focus on,

max
e∈R S(e) = S(e0) = 0, e0 := E(μ0)

(since S(μ) ≤ 0 with equality iff μ = μ0). This setup is modeled on repulsive
Hamiltonians (as in the case of identical point vortices described below), but an
equivalent setup of “attractive” Hamiltonians is obtained by replacing H (N ) with
−H (N ) and e with −e.

1.2. Background: Concavity of S(e) and Thermodynamic Equivalence of
Ensembles

In the case when E(μ) is linear on P(X) (i.e., W = 0), it follows directly
from the concavity of S(μ) on P(X) that the entropy S(e) is concave with respect
to e (see Sect. 5.1). This is the standard setup in information theory and statistical
inference, going back to Shannon and Jaynes [38], but here we will be concerned
with the case when E(μ) is quadratic, motivated by mean field models in statistical
mechanics (see 7.2 for a comparison between the classical linear setup and the
quadratic setup appearing in the context of plasmas). General, nonlinear E(μ) also
appear naturally in engineering optimization [4]. The concavity properties of the
entropy S(e) for mean field models and other systems with long-range interactions
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have been studied extensively from various points of views in the last decades:
theoretical as well as experimental and numerical [15,16,21,29,31]. As stressed
in [16], the unusual properties of these systems stem from the lack of additivity
(i.e., lack of linearity of E(μ)). In particular, the question whether S(e) is globally
concave is crucial in connection with negative temperature states in Onsager’s point
vortex model for the large time limit of turbulent incompressible non-viscous 2D
fluids: classical fluids [15,29], as well as quantum fluids [35,39]. In the case of
vortices of equal circulation moving in the whole plane R2, the vortex–vortex pair
interaction potentialW (x, y) is proportional to theGreen function for the Laplacian
in R2,

W (x, y) = − log(|x − y|). (1.4)

As emphasized in [16,30,55], the relevance of the global concavity of S(e) stems
from the fact that it equivalently means that S(e)may (under appropriate regularity
assumptions discussed in Sect. 3) be expressed as the Legendre–Fenchel transform
of the Helmholtz (scaled) free energy F(β) at inverse temperature β :

S(e) = inf
β∈R(−F(β) + βe). (1.5)

Here F(β) is defined as the following infimumof the (scaled) free energy functional
Fβ(μ) :

F(β) = inf
μ∈P(X)0

Fβ(μ), Fβ(μ) := βE(μ) − S(μ) (1.6)

(where F(μ) is defined to be equal to +∞ if S(μ) = −∞). Accordingly, when
S(e) is globally concave thermodynamic equivalence of ensembles is said to hold
[16,30,55] (since it amounts to the equivalence between the microcanonical en-
semble at a fixed energy e and the canonical ensemble at a corresponding fixed
inverse temperature β, in the large N -limit). More generally, this duality fits into
primal–dual formulations of nonlinear optimization problems, where the free en-
ergy functional appears as the augmented Lagrangian [4]. If thermodynamic equiv-
alence of ensembles holds, then S(e) is differentiable at almost any energy level e
and, by the concavity of F(β), the infimum over the β in formula 1.5 is attained
precisely at the inverse temperature

β(e) = dS(e)

de
,

Remarkably, as stressed already by Onsager in the late 40 s [48], this means, since
S(e) is decreasing for e > E(μ0), that in the “high-energy regime”

E(μ0) < e, (1.7)

an energy level e should correspond to a negative inverse temperature β. As a
consequence, the repulsive vortex interaction should then become effectively at-
tractive, resulting in the aggregation of microscopic vortices of equal circulation
into large-scale coherent clusters (as observed in oceanic and atmospheric fluids,
notably Jupiter’s famous great red spot). A few years after Onsager’s prediction
the existence of negative temperature states was experimentally verified in nuclear
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spin systems [50], while the original prediction was quantitatively experimentally
demonstrated only very recently in a 2D quantum superfluid (a Bose Einstein con-
densate [35,39]). Note that the high-energy region only exists if

E(μ0) < ∞.

This is automatically the case if X is compact and W and V are locally integrable,
but it also holds in many non-compact situations, for example, the vortex model in
R
2,whenμ0 is taken as aGaussian probabilitymeasure (incorporating conservation

of angular momentum).
As shown in [29], ifW (x, y) defines a weakly positive definite kernel, as in the

point vortex model, then the concavity of S(e) holds in the “low-energy regime”

e ≤ E(μ0),

which corresponds to positive inverse temperature β (more precisely, in [29] it is
assumed thatW is continuous; the general case is discussed in Sect. 5.1). However,
the concavity may fail in the “high-energy regime,” and thus, the correspondence
with negative temperature then breaks down (leading to the peculiar phenomenon of
negative heat capacity [16,44]). This is illustrated by themean field Blume–Emery–
Griffiths spin model in [16, Section 4.2.4]. In the case of the point vortex model,
the global concavity of S(e) has been established when X is the unit disk inR2 [15]
(or a sufficiently small deformation of the unit disk) or all of R2 [15,19,42], while
shown to fail for some domains X (e.g., a sufficiently thin rectangle). The proofs in
[15,19] exploit that in the case of the point vortex model any minimizer μβ of the
free energy functional Fβ(μ) satisfies a second-order PDE (the Joyce-Montgomery
mean field equation/the Liouville equation). This opens the door for the application
of various PDE techniques (uniqueness results, concentration/compactness alter-
natives, symmetrization arguments, etc.).

1.3. Summary of the Main Results

To the best of the author’s knowledge, there are, apart from a few special cases—
such as the BEG model and the vortex model recalled above—no general global
concavity results for mean field Hamiltonians. Even in the case of the regularized
vortex model [29], the question of global concavity of S(e) raised in [29] appears
to have been left open. Similar questions have also been put forward in the context
of self-gravitating matter, where regularizations appear naturally [40]. Allowing
regularizations is also crucial when comparing theoretical results with numerical
simulations (such as [26,53]) to ensure that the concavity of S(e) is a robust feature
of the models in question. The main aim of the present work is to establish the
concavity of S(e) for a rich class of potentials W, V and priors μ0, including the
point vortex model in R

2, as well as its regularizations and regularized plasmas
and self-gravitating systems in 2D and power laws. However, since neither explicit
calculations, nor PDE techniques are available for such interactions W we take a
different route. First it is shown that the (upper) microcanonical entropy (at energy
e).

S(N )
+ (e) := 1

N
logμ⊗N

0 {H (N )/N > e} (1.8)
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is concave for any finite N . (In the context of the point vortex model, this mi-
crocanonical entropy appears in [15, Theorem 4.2].) Then, letting N → ∞, and
using the asymptotics for S(N )

+ (e) from [29], the concavity of the upper entropy
S+(e) is obtained (defined by replacing the condition E(μ) = e in the definition
1.3 of S(e) with the condition E(μ) ≥ e). Hence, the concavity of S(e) in the
high-energy region, e > E(μ0), results from the observation that S+(e) = S(e)
there. This derivation of the concavity of S(e) is in the spirit of statistical mechan-
ics; the macroscopic property in question emerges from a microscopic one. The
proof of the concavity of S(N )

+ (e) leverages some developments in Kähler geome-
try [10,11], centered around complex analogs of the Brunn–Minkowski inequality.
Under more restricted assumptions, S(e) is shown to be strictly concave, using a
different (macroscopic) approach—which is more in the spirit of [15]—based on a
uniqueness result for free energy minimizers of independent interest.

Before turning to a more precise description of the main present results, it
may be worth emphasizing that the concavity of S(N )

+ (e) is considerably stronger
than the concavity of S(e) and does not require the mean field scaling (nor the
permutation symmetry). Thus, it also applies to the microcanonical study of small
systems, considered in the physics literature (see, for example, [28,33,52]). The
relation to the setup in [28,52] becomes clearer in the equivalent setup of “attractive”
Hamiltonians obtained by replacing the H (N ) with the Hamiltonian −H (N ) and e
with −e. The concavity of S(N )

+ (e) then translates into the concavity of

S(N )
− (e) := 1

N
logμ⊗N

0 {H (N )/N < e}, (1.9)

called the bulk entropy in [52] and the microcanonical Gibbs entropy in [28]. In
recent years, it has been debated whether this microcanonical entropy is physically
more relevant than the microcanonical Boltzmann entropy, obtained by replacing
the volume μ⊗N

0 {H (N )/N < e} with its derivative with respect to e (the surface
area of the level set H (N )/N = e); see the discussion in [36] and references therein.
The present results may, perhaps, be interpreted as a case for bulk/Gibbs entropy
as this entropy is shown to be concave in our class of “attractive” Hamiltonians,
while the Boltzmann entropy is not always concave in this class (as discussed in
connection with Theorem 6.7). On the other hand, in the case when μ0 is Lebesgue
measure on R

2n the bulk/Gibbs and the Boltzmann entropy coincide in the limit
when N → ∞. (In the classical thermodynamical limit, this is discussed in [37,
Section 6.2], and in the present mean field setup, it can be shown that both limits
coincide with S(e).)

Let now X be a (possible non-compact) subset of R2n and let φ be a defining
function for X, i.e., a continuous function such that

X = {φ ≤ 0}.
Endow X with aprobabilitymeasureμ0 which is absolutely continuouswrtLebesgue
measure dλ :

μ0 = e−�0dλ



776 R. J. Berman

on R
2n . We will identify R

2n with C
n in the usual way and denote by (z1, ..., zn)

the standard holomorphic coordinates on C
n .

1.3.1. Concavity of S(N )
+ (e) and S(e) in the high-energy region e > e0 The

main results, saying that upper microcanonical entropy S(N )
+ (e) and the entropy

S(e) are concave in the high-energy regime 1.7 (Theorem 6.7 and Theorem 6.9),
are shown to hold under appropriate plurisubharmonicity and symmetry properties
of the data. Denoting by PSHa the class of all plurisubharmonic functions which
are invariant under the action

(z1, ..., zn) 	→ (eia1θ z1, ..., e
ianθ zn) (1.10)

for any θ ∈ R, for a given “weight vector” a ∈]0,∞[n, the main results hold under
the following:
Main Assumptions: φ,�0,−V are in the class PSHa(C

n) and −W is in
PSHa,a(C

n × C
n) for some a ∈]0,∞[n

The definition of plurisubharmonicity is recalled in Sect. 2.3. For the moment,
we just point out that the class PSHa is very rich. For example, when the weights
ai are positive integers the class PSHa contains the functions

ψ(z) = log

⎛

⎝
r∑

j=1

|Pj (z)|2
⎞

⎠ (1.11)

where Pj is a polynomial in z1, .., zn,which is homogeneous wrt the scaling action
by C

∗ on C
n with weights a. In particular, for any a the class PSHa contains

ψ(z) = log |z| as well as �0(z) := ∑n
i=1 λi |zi |2, for any positive λi . Hence, the

Main Assumptions apply to the corresponding Gaussian measures

μ0 = e−∑n
i=1 λi |zi |2dλ. (1.12)

In the case when the data are invariant under rotations of the zi -variables, this
is—from a physical point of view—the most natural choices of priors, as they in-
corporate preservation of angular momentum in the zi -variables (see the discussion
in Sect. 3.3).

An important general feature of the class PSHa(C
n) is that is closed under

scaling by positive numbers, taking sums and maxima, as well as under composi-
tion with a complex linear map on C

n or an increasing convex function, defined
on the range of a given ψ ∈ PSHa(C

n). This means, in particular, that the Main
Assumptions are stable under a range of different regularizations of the data. For
example, the Main Assumptions apply to the point vortex model in X := R

2 (for-
mula 1.4) endowed with a centered Gaussian measure. But the Main Assumptions
also apply to the standard continuous regularization and smooth regularization of
the point vortex model where, for a given positive number δ, the pair interaction
W (x, y) is, in the continuous case, modified so that it is constant on |x − y| ≤ δ,

while the smooth regularization is defined by

Wδ(x, y) = − 1

2π
log(|x − y| + δ).
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Moregenerally, they apply to the regularizations obtainedbyconvolutionof− log |x |
with a positive sufficiently rapidly decreasing density on R

2, as used in the vortex
blobmodel [45, Section 6.2.1] (ormore generally to the convolution of− log |x−y|
with a smooth density on R

2 × R
2). An abundance of other examples in PSHa

may be obtained by replacing ψ in formula with χ ◦ ψ for any convex increasing
function χ.

Imposing translational and rotational symmetry the Main Assumptions apply,
in particular, under the
Homogeneous Assumptions:

• X is either a ball of radius R centered at the origin in R2n or equal to all of R2n

• W (x, y) = w(|x − y|), V (x) = v(|x |) and �0(x) = ψ0(|x |) with w(r), v(r)
and −ψ0(r) concave functions of log r (when 0 < r ≤ 2R) and bounded from
below as r → 0.

In fact, the special assumptions imply that w(r) is decreasing in r. In other
words, the Homogeneous Assumptions equivalently mean that the pair interaction
W (x, y) is repulsive and a concave function of log |x−y|.The special assumptions,
apply, for example, to the continuous repulsive power laws

Wα(x, y) := −|x − y|α, α > 0. (1.13)

Note that the Homogeneous Assumptions apply, in particular, to the standard
centered Gaussian probability measureμ0 onR2n .However, one virtue of theMain
Assumptions is that they, as pointed out above, apply to the more general Gaussian
measures 1.12 incorporating conservation of angular momentum in the zi -variables
(as discussed in Sect. 3.3).

1.3.2. Global Concavity of S(e) and Thermodynamic Equivalence of Ensem-
bles In Sect. 6, it is shown that if the assumption thatW (x, y) be weakly positive
definite is added to the Main Assumptions, then S(e) is globally concave, i.e.,
concave on all of R (Theorem 7.1) and finite on ]emin, emax [. For example, as ex-
plained in Sect. 7.1, this applies to the logarithmic interaction inR2n, as well as the
continuous power laws 1.13 when a ∈]0, 2] and to the exponential pair potential

W (x, y) = e−a|x−y|, a > 0,

when X is taken to be a disk centered at the origin with radius at most 1/2a (known
as the Born–Mayer potential in chemistry). It should be stressed that neither the
power laws with a ∈]0, 1[, nor the exponential pair potential is concave wrt (x, y).
(Otherwise, the concavity of S(N )

+ (e) could also be deduced from the ordinary
Brunn–Minkowski inequality; compare Remark 6.6.)

We then deduce that thermodynamic equivalence of ensembles holds for any
energy level e in ]emin, emax [ using a general result (Theorem 5.4), saying that
for a general lower semi-continuous convex energy functionals E(μ) and prior μ0
thermodynamic equivalence of ensembles holds in the low-energy region ]emin, e0[
iff E(μ) andμ0 satisfy a certain compatibility property (the “energy approximation
property”). This property has previously appeared in connection with the study of
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large deviation principles for the corresponding canonical ensembles at positive
inverse temperatures β [7,17].

We also show that the global concavity of S(e) holds for singular repulsive
power laws (Prop 5.5). However, in contrast to the continuous power laws 1.13
(and the repulsive logarithmic interaction) the singular power laws do not satisfy the
Main Assumptions. In fact, in this case the global concavity of S(e) in high-energy
region e ≥ e0 holds for a bad reason: S(e) ≡ S(e0) and, as a consequence, there are
no maximum entropy measures μe when e > e0. This means that the equivalence
of ensembles at the level of macrostates then breaks down (see Sect. 4). Similarly,
regularized singular power laws are expected to yield non-equivalent ensembles,
and thus, the corresponding entropies are expected to be non-concave (as discussed
in [40, Page 252]).

1.3.3. Critical Negative Inverse Temperatures and Existence ofMaximumEn-
tropyMeasures The singularity structure of a pair interactionW (x, y) satisfying
theMainAssumptions can be very complicated, even ifW (x, y) is taken to be trans-
lationally invariant, i.e.,

W (x, y) = −�(x − y) (1.14)

for a function � in the class PSHa(C
n). Still, as shown in Section Sect. 8.3, the

singularities are mild enough to ensure that both the microscopic critical inverse
temperature

βc,N :=
{
β ∈ R : ZN ,β :=

∫

XN
e−βH (N )

μ⊗N
0 < ∞

}

and the macroscopic critical inverse temperature

βc := inf :
{
β ∈ R : inf

μ
Fβ(μ) > −∞

}

are strictly negative. As a consequence, we deduce that, when X is compact, there
exists a maximum entropy measure μe for any e ∈]emin, emax [. The concavity of
S(N )
+ (e) and S(e) is exploited to establish “dual” formulas for βc,N and βc, which

hold under the Main Assumptions (Corollary 8.1 and Corollary 8.4):

βc,N = lim
e→supXN EN

dS(N )(e)

de
, βc = lim

e→supP(X) E(μ)

dS(e)

de
(1.15)

(which are decreasing limits when using either left or right derivatives). The deriva-

tive dS(N )(e)
de corresponds to the inverse Gibbs temperature at energy e in the context

of small systems [28,36] (when H (N ) is replaced by −H (N )and e with −e so that
dS(N )(e)

de is positive).
Applied to the regularized vortex model Wδ in R

2, the second formula in
1.15 confirms the expectations expressed in [29, Page 855], concerning the slope
dSδ(e)/de of the corresponding entropy: on the one hand, as e converges to the
maximum (finite) value of the corresponding regularized energy Eδ(μ) the entropy
Sδ(e) and its slope dSδ(e)/de both converge toward −∞. On the other hand, for
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a fixed e the slope dSδ(e)/de converges, as δ → 0, to the slope dS0(e)/de for the
point vortex model, which, in turn, is close to −4 for large e (with our normaliza-
tions).
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1.5. Organization

We start in Sect. 2 by introducing a very general setup and provide some back-
ground on concavity and on plurisubharmonic functions ( appearing in the Main
Assumptions). In Sect. 3, general properties of the entropy S(e) are studied. In par-
ticular, finiteness and monotonicity properties of S(e) are established and relations
to the notion of thermodynamic equivalence of ensembles are explored. In Sect. 4,
the notion ofmacrostate equivalence of ensembles is discussed and existence results
for maximum entropy measures are provided. Then, in Sect. 5 we consider the case
when E(μ) is convex and show that thermodynamic equivalence of ensembles holds
in the low-energy region {e > e0} iff the energy approximation property holds. In
the remaining sections, we specialize to the Main Assumptions. First in Sect. 6, we
deduce the concavity of the upper microcanonical entropy S(N )

+ (e) (Theorem 6.7)
from a complex analog of the Brunn–Minkowski inequality. Then, letting N → ∞
the concavity of the entropy S(e) in the high-energy region {e > e0} (Theorem
6.9) is deduced. In Sect. 7, this is shown to yield global concavity of S(e) when the
Main Assumptions are complemented with weak positive definiteness and some
examples are exhibited. In Sect. 8, applications to slope formulas of critical inverse
temperatures are given and some connections to algebraic geometry are explained.
In Sect. 9, a strict concavity result for S(e) is deduced under the Homogeneous
Assumptions from a uniqueness result for free energy minimizers, established in
the companion paper [8].

2. Setup and Preliminaries

2.1. Very General Setup and Notation

Avery general formulation of the setup that we shall consider, henceforth called
the Very General Setup may be formulated as follows. Let X be a topological space
endowed with a probability measure μ0 and E(μ) a lsc functional E(μ) on the
space P(X) of all probability measures on X. We then define the corresponding
entropy S(e) and free energy F(β) as in formula 1.3 and formula 1.6, respectively.
Occasionally, when specializing to the General Setup introduced in Sect. 1.1 the
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notation EW,V (μ) will designate an energy functional E(μ) of the particular form
1.2.

We set

emin := inf
P0(X)

E(μ), e0 := E(μ0), emax := sup
P0(X)

E(μ)

(recall thatP0(X) denotes the space of all probability measures on X with compact
support).

Wewill mainly consider the case when X � R
2n and theMain Assumptions (or

the Homogeneous Assumptions) introduced in Sect. 1.3 hold. These assumptions
will be recalled in Sect. 6.1, but we first provide some preliminaries on concavity
and plurisubharmonicity.

2.2. Concave Preliminaries

We will be discussing concavity properties of the entropy S(e), and we provide
some general preliminaries on concave functions. First recall that a function φ on
a convex subset C of Rd taking values in ] − ∞,∞] is said to be convex on C if,
for any given two points x0 and x1 and t ∈]0, 1[,

φ(t x0 + (1 − t)x1) ≤ tφ(x0) + (1 − t)φ(x1)

and is strictly convex on C if the inequality above is strict for any t ∈]0, 1[. A
function f on C is (strictly) concave if − f is (strictly) convex. Here we will be
mainly concerned with the case when d = 1. In this case, if f is concave and finite
on a closed interval C ⊂ R, but not strictly convex, then there exist two points
x0 and x1 in C such that f is affine on [x0, x1]. In Sects. 3, 7, we will use some
standard properties of convex functions recalled below, translated into the setup of
concave functions (for further background see [51] and [56, Section 2.1.3]). If φ is
a convex function on Rd , then itssubdifferential (∂φ) at a point x0 ∈ R

d is defined
as the convex set

(∂φ)(x0) :=
{
y0 : φ(x0) + y0 · (x − x0) ≤ φ(x) ∀x ∈ R

d
}

(2.1)

In particular, ifφ(x0) = ∞, then (∂φ)(x0) is empty. Similarly, if f is concave onRd

then its superdifferential (∂ f )(x0) is defined as above, but reversing the inequality.
In other words, (∂ f )(x0) := −(∂(− f )(x0). In the case when f is concave on R

and finite in a neighborhood of x0

(∂ f )(x) = [ f ′(x+), f ′(x−)],
where f ′(x+) and f ′(x−) denote the right and left derivatives of f at x, respec-
tively. In particular, f is differentiable at x iff (∂ f )(x) consists of a single point. If
f is a function on R

d taking values in [−∞,∞] its (concave) Legendre–Fenchel
transform is the usc and concave function on R

d (taking values in [−∞,∞[ )
defined by

f ∗(y) := inf
x∈R (x · y − f (x)) .
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It follows readily from the definitions that

y ∈ ∂ f (x) ⇐⇒ x ∈ ∂ f ∗(y). (2.2)

Moreover, it is well known that

∂ f ({ f > −∞}) = ∂ f ∗({ f ∗ > −∞}). (2.3)

Note that, in general, f ∗∗ is the concave envelope of f :
( f ∗∗)(x) = inf

a affine
{a(x) : a ≥ f } = inf

g concave,finite
{g(x) : g ≥ f } . (2.4)

Indeed, the first equality follows directly from the definition and the second one is
shown by, for a fixed x, taking a(x) to be any affine function coinciding with g at
x and with gradient in ∂g(x).

We will also make use of the following lemmas (which are without doubt
essentially well known, but for completeness proofs are provided in appendix):

Lemma 2.1. Let f be a concave function onR and assume that f is differentiable in
a neighborhood of [x0, x1]. Then f ∗ is strictly concave in the interior of [y0, y1] :=
[ f ′(x1), f ′(x0)].

Note that, in general, f ∗∗ ≥ f. Concerning the strict inequality we have the
following

Lemma 2.2. Let f be a function on R such that supR f < ∞ and U � R an open
set where f is finite and usc. Then { f ∗∗ > f } ∩ U is open in U and f ∗∗ is affine
on { f ∗∗ > f } ∩U.

2.3. Background on Plurisubharmonicity and the Class PSHa

The Main Assumptions introduced in Sect. 1.3 involve the notion of plurisub-
harmonicity. While this notion is central in the fields of several complex variables
and complex geometry, it may not be familiar to readers lacking background in
these fields. We thus recall the main definitions and properties that we shall use and
refer to [23, Section 5.A.] for further background. We will identify R2n with Cn in
the standard way. A function ψ on C

n is said to plurisubharmonic (psh, for short)
if ψ is upper semi-continuous (usc) taking values in [−∞,∞[ and subharmonic
along complex lines, i.e., if ζ 	→ ψ(z0 + ζa0) is a local subharmonic function on
C for any given z0, a0 ∈ C

n, or equivalently that

ψ(z0) ≤ 1

2π

∫
ψ(z0 + eiθa0)dθ.

In particular, ψ is then subharmonic on R
2n . If ψ is smooth, then it is psh iff the

complex Hessian ∂∂̄ψ of ψ is a semi-positive Hermitian matrix at any z :

∂∂̄ψ(z) :=
(

∂2ψ(z)

∂zi∂ z̄ j

)
≥ 0,

∂

∂zi
:= 1

2

∂

∂xi
− i

2

∂

∂yi
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Equivalently, a function ψ is psh if, locally, it can be expressed as a decreasing
limit of smooth psh functions ψ j . In fact, ψ j may be taken as a convolution of ψ

with any suitably scaled smooth probability density with compact support. If −u is
plurisubharmonic, then u is called plurisuperharmonic. An open set� inCn is said
to be pseudoconvex if � admits a continuous psh exhaustion function ρ, i.e., ρ is
psh on � and such that {ρ ≤ C} is a compact subset of �. We recall the following
essentially standard lemma (see appendix for a proof):

Lemma 2.3. Let φ be a psh function on a pseudoconvex open set �. Then {φ <

0} ∩ � is also pseudoconvex.

Wealso recall that the following standard facts [23, Theorem5.5.], which allows
one to construct a range of different types of psh functions:

Lemma 2.4. If ψ1, ..., ψr are psh functions and χ(t1, ..., tr ) is a convex function
on R

r which is increasing in each ti , then χ(ψ1, ..., ψr ) is psh. In particular, if
α1, ..., αr are nonnegative functions, then

r∑

i=1

αiψi , log
r∑

i=1

eαiψi and max{ψ1, ..., ψr }

are psh functions.

In particular, if ψ is psh and χ is a convex increasing function on R, then the
composed function χ(φ) is psh. Since | f (z)|2 is psh for any holomorphic function
f (z) on Cn (as follows, for example, directly from the characterization), it follows
form the previous lemma that

ψ(z) := log

(
r∑

i=1

| fi (z)|2
)

is psh for any given holomorphic functions f1, ..., fr . In particular, log |z|2 is psh.
Moreover, if a function ψ only depends on the absolute values of zi , then ψ(z) is
psh iff it is convex with respect (log |z1|, ..., log |zn|) ∈ R

n .

2.3.1. The Class PSHa Given a = (a1, .., am) ∈]0,∞[n , we denote by Va the
vector field on C

n defined by

Va :=
m∑

i=1

ai
∂

∂θi
, (2.5)

where ∂
∂θi

denotes the generator of the S1-action on C
n which rotates the zi -

coordinate and leaves the other coordinates invariant (i.e., eiθ · z :=
(z1, ..., eiθ zi , ..., zn)). In other words, Va is the Hamiltonian vector field corre-
sponding to the Hamiltonian

ha(z) :=
m∑

i=1

1

2ai
|zi |2 (2.6)
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on R2n, endowed with its standard symplectic form. Note that the Hamiltonian ha
is plurisubharmonic onCn (since |zi |2 is). Now ifU is an open connected subset of
C
n then the class PSHa(U ) is defined as the class of all psh functions ψ onU, not

identically −∞, such that Va(ψ) = 0. More generally, if X is closed connected
subset of Cn we denote by PSHa(X) the class of all functions ψ such that ψ is in
PSHa(U ) for some open subset U containing X (depending on ψ).

Example 2.5. (The “algebraic and quasi-homogeneous” case). If P(z1, ..., zn) is
a quasi-homogeneous polynomial, i.e., there exists exist positive integer weights
a1, ..an such that P is homogeneous of degree d wrt the corresponding R+-action

P(ca1 z1, ..., λ
an zn) = cd F(z1, ..., zn) (2.7)

for any c ∈ R+, then log |P(z)| is in PSHa(C
n). More generally, if Pj are poly-

nomials on C
n which are quasi-homogeneous of degree d j for the same weighs

a1, ..., an and αi > 0, then

ψ(z) := log

⎛

⎝
r∑

j=1

|Pj (z)|α j

⎞

⎠ ∈ PSHa(C
n) (2.8)

In the particular case when all αi = 1 and di = d, we call d the degree of ψ .

By composing the previous examples with convex increasing functions χ onR,
one may fabricate an abundance of examples of functions in the class PSHa(C

n).

For example,
∑M

j=1 |Pj (z)|α j is in PSHa if Pj (z) is a homogeneous polynomial
(wrt a) and α j > 0.

3. General Properties of S(e) and Thermodynamic Equivalence of Ensembles

In this section, general properties of the entropy S(e) are studied and the notion
of thermodynamic equivalence of ensembles introduced in [30] is recalled. The
main new feature in this section, as compared to the setup in [30], is that E(μ) is
not assumed to be continuous. This leads to some subtle aspects that do not seem
to have been addressed before. Throughout the section, we will consider the Very
General Setup introduced in Sect. 2.1.

3.1. Monotonicity of S(e)

The following lemma generalizes [15, Prop 2.2] (with a similar proof) and
involves the following ad hoc property:

Definition 3.1. Assume that X is compact. Then a functional E(μ) on P(X) has
the affine continuity property if for any μ1 ∈ P(X) such that E(μ1) < ∞ and
S(μ1) > −∞ the function t 	→ E(μ0(1− t) + tμ1) is continuous on [0, 1]. For a
general X , the affine continuity property is said to hold if it holds for all compact
subsets of X.
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Lemma 3.2. (monotonicity of S(e)). Assume that X is compact and e0 := E(μ0) <

∞.

• If E(μ) is convex on P(X), then S(e) is increasing for e ≤ e0 and strictly
increasing in the subinterval where S(e) > −∞. In particular,

S−(e) := sup
E(μ)≤e

S(μ)

• If E(μ) has the affine continuity property, then S(e) is decreasing for e ≥ e0
and strictly decreasing in the subinterval where S(e) > −∞. In particular,

S+(e) := sup
E(μ)≥e

S(μ)

More precisely, in the second point there is no need to assume that E is lsc on
P(X), and thus, it also follows that S(e) is increasing for e ≤ E(μ0).

Proof. To prove the first point first observe that, since E is lsc and X is compact
{E(μ) ≤ e} is compact (or empty). We may assume that S(μ) is not identically
equal to −∞ on {E(μ) ≤ e}. (Otherwise, we are done.) Since S(μ) is usc, the
sup of S(μ) on the set {E(μ) ≤ e} is thus attained at some μ1 in the set. Assume
in order to get a contradiction that E(μ1) < e. Consider the affine segment μt in
P(X) connecting μ0 andμ1; μt := μ0(1− t)+ tμ1 for t ∈ [0, 1]. By the assumed
convexity of E(μ)

E(μt ) ≤ (1 − t)E(μ0) + t E(μ1) < e

for t sufficiently small, using that E(μ0) < ∞. But, as is well known, S(μ) is
strictly concave on {S(μ) > −∞} ⊂ P(X) and attains its maximum at μ0, and
hence, S(μt ) < S(μ1) for any t ∈ [0, 1[ (as follows from Jensen’s inequality).
This contradicts the assumption that μ1 is a maximizer, and hence, it must be that
E(μ1) = e, as desired.

To prove the second point, it will be enough to show that for any μ1 ∈ P(X)

such that E(μ1) ≥ e and S(μ1) > −∞ there exists μ ∈ P(X) such that E(μ) = e
and S(μ) ≥ S(μ1). To this, it will, in the light of the previous argument, be enough
to show that there exists some t ∈ [0, 1] such that E(μt ) = e. But, by assumption
E(μ0) ≤ e and E(μ1) ≥ e. We can thus conclude by invoking the assumption
that E(μt ) is continuous. Since we have not used that E is lsc on P(X), the same
argument applies to −E, which proves the last statement of the lemma. ��

3.2. Thermodynamic Equivalence of Ensembles

In this section, we consider the Very General Setup. It follows readily from the
definitions that the Legendre–Fenchel transform S∗ of S coincides with the free
energy F(β) :

S∗ = F.

Following [30,55], we make the following
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Definition 3.3. Thermodynamic equivalence of ensembles is said to hold globally
if

S = F∗

and thermodynamic equivalence of ensembles is said to hold atan energy level e if
S(e) > −∞ and

S(e) = F∗(e).

Recall that, in general, a function S(e) is usc and concave iff S∗∗ = S. It was
shown in [30, Prop 3.1a] that S is always usc under the assumption that X is compact
and E(μ) is continuous wrt the weak topology on P(X). (This is the case ifW and
V are continuous.) In this case, global thermodynamic equivalence thus holds iff S
is concave. But here we need consider the case when the continuity assumptions are
not satisfied (and moreover X may be non-compact). We will impose the following
compatibility property between μ0 and E(μ).

Definition 3.4. Ameasureμ0 in X is said to has theEnergyApproximationProperty
if for any compactly supported probability measure μ there exists a sequence μ j ∈
P(X), supported in the same compact set, converging weakly toward μ with the
following properties:

• μ j is absolutely continuous with respect to μ0
• lim j→∞ E(μ j ) = E(μ)

Remark 3.5. This property was introduced in the context of large deviation theory
in[17] and studied from a potential-theoretic point of view in [7] (see the discussion
in the end of Sect. 5.2).

The energy approximation property ensures that S(e) is finite on ]emin, emax [:
Lemma 3.6. Assume that μ0 has the energy approximation property and the affine
continuity property on compact subspaces of X. Then S(e) is finite on ]emin, emax [.
Proof. By Lemma 3.2, we just have to verify the claim that there exists some
μ ∈ P(X)0 such that E(μ) ≤ e and S(μ) > −∞. To this end, take δ > 0 such that
e−δ > emin .By the verify definition of emin , there existsμ such that E(μ) ≤ e−δ.

Moreover, by themonotone convergence theoremμmay be chosen to have compact
support. Now take a sequence μ j (= ρ jμ0) converging weakly toward μ with the
energy approximation property. Replacing ρ j with max{ρ j , R}/ ∫ {ρ j , R}μ0 for a
given R > 0 and using a diagonal argument, we may as well assume that ρ j ∈ L∞.

In particular,

E(μ j ) ≤ e, S(μ j ) > −∞
for j sufficiently large, proving the claimwhen e ∈]emin, e0[.A similar approxima-
tion argument applies if instead e ∈]e0, emax )[ (again using Lemma 3.2). Finally,
if e = E(μ0) then S(μ) ≥ S(μ0) = 0, which concludes the proof of the claim
above. ��
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Proposition 3.7. In the Very General Setup, the following holds:

• If the entropy S(e) is concave on ]emin, emax [ and μ0 has the energy approx-
imation property and the affine continuity property, then S(e) is continuous
on ]emin, emax [ and thermodynamic equivalence of ensembles holds for any
e ∈]emin, emax [.

• If the entropy S(e) is concaveand continuous on [e0, emax [, then thermodynamic
equivalence of ensembles holds for any e ∈ [e0, emax [ and moreover for any
e ∈ [e0, emax [

S(e) = inf
β≤0

(βe − F(β)) (3.1)

• If the entropy S(e) is concave and continuous on ]emin, e0], then thermodynamic
equivalence of ensembles holds for any e ∈]emin, e0]

Proof. In order to show that S(e1) = S∗∗(e1) at a given point e1 in ]emax , emin[, it
is enough to find an affine function s on R such that s ≥ S and s(e1) = S(e1) (by
formula 2.4). But since s is concave and finite on ]emin, emax [ its superdifferential
∂S is non-empty, i.e., contains some β ∈ R. This means that the affine function

s(e) := β(e − e1) + S(e1) (3.2)

coincides with S at e and has the property that s ≥ S on ]emin, emax [. Hence, by
Lemma 3.2, s ≥ S on all of R, which proves the first point.

To prove the second point in the proposition, fix e1 ∈]E(μ0), emax [.By formula
2.4, it will be enough to find an affine function s on R such that s ≥ S and
s(e1) = S(e1). To this end, first define the function f (e) to be equal to S(e) on
[e0, emax [ and e0 when e < e0. Thus, f (e) = max{e0, S(e)} is continuous and
convex on ] − ∞, emax [.We then obtain the desired affine function s by picking an
element β in the superdifferential ∂ f of f at e1 and again defining s(e) by formula
3.2. Finally, to prove the last formula we have to show that the infimum in formula
3.1 is attained for some β ≤ 0. But this follows from the fact that, in the previous
step, β in formula 3.2 is non-positive, since f is decreasing (by Lemma 3.2). The
third point is shown in essentially the same way as the second one. ��
Remark 3.8. If emax < ∞, then it could happen that S(emax ) �= S∗∗(emax ) in the
first point of the previous proposition. Also note that in the case when E(μ) is
of the form E = EW,V (as in formula1.2) then emax = ∞ holds if either there
exists x0 such that V (x0) = ∞ or (x0, y0) such that W (x0, y0) = ∞. Indeed, then
E(μ) = ∞ for μ = δx0/2 + δx1/2.

As shown in Theorem 5.4, the energy approximation property is not merely a
technical assumption, but essential.

3.3. Priors Versus Linear Constraints

Now consider the Very General Setup in the case when X is a domain in R
d

and μ0 = dx . Given a continuous function ψ0 and λ ∈ R, we may then replace μ0
with the prior defined by the probability measure

μλ := e−λψ0dx/Zλ, Zλ :=
∫

X
e−λψ0dx,
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assuming that Zλ < ∞. The corresponding entropy function Sμλ(e) is closely
related to the multivariable entropy function S(e, l) on R

2 defined by

S(e, l) := sup
μ∈P(X)0

{S(μ) : E(μ) = e, L(μ) = l} , L(μ) :=
∫

X
ψ0μ,

obtained by imposing the linear constraint L(μ) = l (where S(μ) denotes the
entropy of μ relative to dx). Indeed, it follows readily from the definition that, for
a fixed e, the Legendre–Fenchel transform of the function λ 	→ Sμλ(e) is given by
−S(e, l) − log Zλ. Hence, under the hypothesis that S(e, l) is concave and lower
semi-continuous wrt l, inverting the Legendre–Fenchel transform gives

S(e, l) = inf
λ

(
Sμλ(e) + λl + log Zλ

)
.

As a consequence, if Sμλ(e) is globally concave with respect to e, for any fixed λ

such that Zλ is finite, then S(e, l) is globally concave on R2. Multivariable entropy
functions are studied in [30], from the point of view of equivalence of ensembles,
but here we will focus on one-variable entropy functions defined with respect to
appropriate priors. Note that in the non-compact case when X = R

d the inclusion
of a function ψ0 with sufficient growth at infinity is crucial in order to get a prior
measure with finite total mass. In the presence of rotational symmetry, the standard
choice of a prior is a centered Gaussian measure.

Remark 3.9. More generally, given r functions ψ1, ..., ψr on R
d and λ1, ..., λr ∈

R
d one can consider the prior μλ = e−∑

λiψi /Zλ and the corresponding entropy
function S(e, l) on R

1+d . Then the previous considerations still apply if λl is
replaced by the scalar product between λ and l.

4. Macrostate Equivalence of Ensembles and Existence of Maximum
Entropy Measures

An important motivation for the notion of thermodynamic equivalence of en-
sembles is that it implies that any maximum entropy measure μe (representing an
equilibriummacrostate in the microcanonical ensemble) minimizes the free energy
Fβ(μ) at an inverse temperature β corresponding to the energy level e.This is made
precise by the following result (essentially contained in [30]):

Lemma 4.1. (macrostate equivalence of ensembles). Consider the Very General
Setup. Assume that S∗∗(e) = S(e) > −∞ and assume that ∂S(e) is non-empty
(this is the case if, for example, S∗∗ = S > −∞ in a neighborhood of e ). If μe is
a maximal entropy measure with energy e, i.e., S(μe) = S(e), then μe minimizes
the free energy functional Fβ(μ) for any β ∈ ∂S(e).

Proof. By assumption S(e) > −∞. Hence, the assumption that β ∈ ∂S(e) means
that β ∈ (∂F∗)(e). Since F = (F∗)∗ it follows from the definition of ∂F∗ that

F(β) = −F∗(e) + βe
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(since 0 ∈ ∂(−F∗(e) + βe)). In other words,

inf
μ∈P(X)

Fβ(μ) = −S(μe) + βE(μe),

which means that μe minimizes Fβ(μ), as desired. ��
Remark 4.2. Without the property that S(e) = S∗∗(e) a maximal entropy measure
μe will, in general, not minimize Fβ(μ). This is discussed in the context of BEG
model in the final section of [31] (where it is pointed out that μe may be merely a
local minimizer of Fβ(μ) or even a saddle point). Moreover, even if S(e) = S∗∗(e)
there may, in general, exists minimizers of Fβ(μ),for β ∈ ∂S(e), which are not
maximum entropy measures (at energy e), unless S(e) is strictly concave at e (see
[30]).

As shown in [30], the existence of μe is automatic for any e ∈]e0, emax [, when
X is compact and E(μ) is a continuous functional on P(X). However, since we
do not impose these assumptions in the Main Assumptions we next provide some
general existence result for μe that will be applied to the Main Assumptions in
Sect. 8.4.

4.1. Existence of μe when X is Compact

We start with the low-energy region:

Proposition 4.3. Consider the Very General Setup. Assume that X is compact and
that the energy approximation property and the affine continuity property holds.
Then, for any e ∈]emin, e0] there exists a maximum entropy measure μe.

Proof. Fix e ∈]emin, e0]. First recall that by Lemma 3.6 S(e) is finite. Next, by
Lemma 3.2 (and its proof) it is enough to prove that the functional S(μ) admits
a maximizer on {E(μ) ≤ e}. But since E is lsc, {E(μ) ≤ e} is closed in the
compact space P(X), hence compact. The existence of μe thus follows from the
upper semi-continuity of S(μ) on P(X). ��
In order to ensure the existence of maximum entropy measures in the high-energy
region, we introduce the following stability property:

Definition 4.4. In the Very General Setup, the thermal stability property is said to
hold if there exists β0 < 0 such that

inf
P(X)

(β0E − S) > −∞.

In other words, this property says that the critical inverse temperature βc (discussed
in Sect. 8) is strictly negative. Turning to the General Setup, we will use the follow-
ing result, shown in the course of the proof of [6, Lemma 2.13, formula 2.12]):

Lemma 4.5. Consider the General Setup and assume that X is compact. If the
thermal stability property holds, then the functional EV,W is continuous on {μ :
S(μ) ≥ −C} � P(X) for any given constant C > 0.
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The following result generalizes the existence result in [15], concerning the
case when W (x, y) has a logarithmic singularity along the diagonal:

Proposition 4.6. Consider the General Setup. Assume that X is compact and that
the energy approximation property and the thermal stability property hold. Then
S(e) is usc on ]emin, emax [, and for any e in ]emin, emax [, there exists a maximum
entropy measure μe.

Proof. Take e j → e ∈]emin, emax [ and let μ j be a sequence in P(X) such that
E(μ j ) = e j and S(μ j ) ≥ s(e j ) − 1/j. In particular, there exists a constant C
such that S(μ j ) ≥ −C. By the previous lemma, we may, after perhaps passing to
a subsequence, assume that μ j → μ∞ in P(X) and E(μ j ) → E(μ∞). Hence,
E(μ∞) = e and since S is usc on P(X) S(μ∞) ≥ lim sup j→∞ S(μ j ). This
shows that S(e) ≥ S(μ∞) ≥ lim sup j→∞ S(e j ), i.e., that S is usc. Similarly,
the existence of μe also follows from the previous lemma, since it shows that
{E(μ) = e} ∩ S(μ) ≥ −C is closed (and thus S attains its maximum value there
for C sufficiently large). ��

If the thermal stability property does not hold, then there may not be no maximum
entropy measures,where S(e) is globally concave. In fact, we have the following
converse to the previous proposition when S(e) is concave and continuous on
[e0, emax [.

Proposition 4.7. Consider the Very General Setup and assume that X is compact
and that there exists a maximum entropy measure μe for some e ∈]e0, emax [. Then
the thermal stability property holds.

Proof. The assumed concavity of S(e) implies that the right derivative of S(e)
tends to βc as e → emax (see Cor 8.4 and its proof). Hence, if we assume that
the thermal stability property does not hold, i.e., that βc = 0 it follows, since S(e)
attains its maximum at e and is assumed continuous and concave on [e0, emax ] that
S(e) ≡ S(e0). But S(μ) = S(μ0) iff μ = μ0 (which implies E(μ) = e0), and
hence, there exists no maximum entropy measure μe when e > e0. ��

Theprevious proposition is illustratedby the case of singular power laws inSect. 5.3.
Before turning to the non-compact case, we point out that the following concrete
bound implies the thermal stability property (see Lemma 8.5):

sup
x∈X

∫
e
−β0

(
1
2W (x,y)+V (y)

)

μ0(y) < ∞,

∫

X
e−β0Vμ0 < ∞, (4.1)

for some β0 < 0, which will turn out to be satisfied if the Main Assumptions
are complemented with the assumption that W is translationally invariant, up to a
bounded term.
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4.2. Existence of μe when X is Non-compact

In order to discuss maximum entropy measures in the case when X is non-
compact, we first need to replace the space P(X)0 of all probability measures with
compact support, appearing in the definition1.3 of S(e), with probability measures
satisfying an appropriate growth assumption “at infinity.” Indeed, if, for example,
E = EV for a lsc function V which is unbounded both from above and from below
(say, V (x) = − log |x | inRd), then it is not a priori clear how to define EV (μ) if μ

have unbounded support. To handle this issue, we will make the following growth
assumption: exists a continuous nonnegative function φ0 of X such that

−W (x, y) − 1

2
V (x) − 1

2
V (y) ≤ 1

2
φ0(x) + 1

2
φ0(y) + C0. (4.2)

Then we can decompose

E(μ) = Eφ0(μ) −
∫

μφ0, Eφ0(μ)

:=
∫ (

W (x, y) + 1

2
V (x) + 1

2
V (y) + 1

2
φ0(x) + 1

2
φ0(y)

)
μ ⊗ μ (4.3)

where the first term has a well-defined value in ]−∞,∞], since the corresponding
integrand is bounded from below. This means that if we replace P(X) with the
subspace

Pφ0(X) :=
{
μ ∈ P(X) :

∫

X
φ0μ < ∞

}

then S(e) may be expressed as

S(e) := sup
μ∈Pφ0 (X)

{S(μ) : E(μ) = e} , (4.4)

where E(μ) is defined by formula4.3. According to the following result the exis-
tence of a maximizer μe is guaranteed if φ0 has slower growth then an appropriate
exhaustion function ψ0 of X (i.e., the sublevel sets {ψ0 ≤ R} are compact and
exhaust X when R → ∞):

Proposition 4.8. Consider the General Setup and assume that there exists a con-
tinuous exhaustion function ψ0 of X such that the following growth properties
hold:

• ∫
eδψ0μ0 < ∞ for some δ > 0

• The growth assumption 4.2 holds for a φ0 such that φ0/ψ0 → 0 uniformly as
ψ0 → ∞ (e.g., for φ0 = ψ

(1−ε)
0 for some ε ∈]0, 1[).

If the thermal stability property holds (i.e., βc < 0), then there exists a measure μe

realizing the sup in formula 4.4 for any given e ∈ [e0, emax [.
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Proof. Setting W̃ (x, y) := W (x, y) + 1
2V (x) + 1

2V (y) − 1
2φ0(x) + 1

2φ0(y), we
can express Eφ0(μ) = ∫

W̃ (x, y)μ ⊗ μ. Now fix e ∈ [e0, e[ and recall that S(e) is
finite. Since, by assumption, W̃ (x, y) is lsc on X × X and bounded from below it
extends to a lsc function on X̃× X̃ ,where X̃ denotes the one-point compactification
of X. Moreover, we identify ψ0 with a lsc function on X̃ , taking the value ∞ at
the point at infinity and μ0 with a probability measure on X̃ , not charging the
point at infinity. Accordingly, we can identify Eφ0(μ) and S(μ) with functionals
on P(X̃). Denote by S̃(e) the corresponding entropy function. Since

∫
X̃ μψ0 < ∞

implies that μ does not charge the point at infinity, it will, in order to prove the
proposition, be enough to show that the sup defining S̃(e) is attained. To this end,
take a sequence μ j ∈ P(X) such that E(μ j ) = e and S(μ j ) increases to S̃(e).
Decompose μ = e−δ�0μδ for δ > 0 such that μδ := eδ�0μ0 has finite total mass.
Then there exists a constant C such that

S(μ j ) = Sμδ (μ) − δ

∫
�0μ j ≥ −C. (4.5)

Since Sμδ (μ) is uniformly bounded from above on P(X) (using that μδ has total
finite mass), this means that there exists a finite constant Cδ such that

∫
ψ0μ j ≤ Cδ < ∞. (4.6)

Now, since X̃ compact we may, after perhaps passing to a subsequence, assume
that μ j → μ∞ weakly in P(X̃) for some μ∞ (which, by the bound 4.6, does not
charge the point at infinity). Moreover, combining the bound 4.6 with the growth
assumption on the continuous function φ0 gives (using Markov’s inequality) that

lim
j→∞

∫
φ0μ j =

∫
φ0μ∞.

Since S(μ) is usc on P(X̃), all that remains is to verify that

lim
j→∞ Eφ0(μ j ) = Eφ0(μ∞) (4.7)

To this end, we rewrite the assumed thermal stability property as

β0Eφ0(μ) − β0

∫
φ0μ − S(μ) ≥ −C0, β0 < 0 (4.8)

Note that

−β0

∫
φ0μ − S(μ) = −Sμβ0

(μ), μβ0 := eβ0φ0μ0, (4.9)

where the measureμβ0 has finite mass (since β0 ≤ 0 and φ ≥ 0) and thus identifies
with a measure on X̃ . Accordingly, can view 4.8 as an inequality on P(X̃), saying
that lsc functional Eφ0(μ) has the thermal stability property wrt the measureμβ0 on
the compact space X̃ . Thus, it follows from Lemma 4.5 that Eφ0 is continuous on
{Sμβ0

(μ) ≥ −C}. Finally, combining 4.9, 4.6 and 4.5 reveals that Sμβ0
(μ j ) ≥ −C

for some constant C , and hence, the desired convergence 4.7 follows. ��
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Remark 4.9. To see that the growth properties in the previous proposition are es-
sential consider the case when X = R

d , μ0 = e−|x |dx and V (x) = −|x |p for
p > 0. Then the thermal stability property does hold (in fact, βc = −∞, since
Zβ := ∫

e−βVμ0 < ∞ for any β < 0). Moreover,
∫
eδψ0μ0 < ∞ for ψ0 := |x |2.

However, for e ≤ e0 a maximum entropy measure μe only exists under the as-
sumption that p < 2, i.e., precisely when −V/ψ0 → ∞ (indeed, if μe exists, then
μe = e−βV /

∫
e−βVμ0 for some β > 0 (see Sect. 5.1.1).

5. Concavity of S(e) in the Low-energy Region for Convex E(μ)

5.1. Concavity and Monotonicity of S(e) in the Low-energy Region e ≤ e0 when
E(μ) is Convex.

We now consider the entropy S(e) in the low-energy region e ≤ e0 under the
assumption that E(μ) is convex. By way of motivation, we start with the case when
E(μ) is affine.

5.1.1. The Case of E(μ) Affine In the case when E(μ) is affine on P(X) it
follows directly from the definition of S(e) that S(e) is globally concave, using the
concavity of S(μ) on P(X). Moreover, if X is compact and E(μ) = 〈V, μ〉 for
V ∈ C0(X), then a duality argument reveals that S(e) is finite and strictly concave
on ]emin, emax [. In fact,

S(e) = F∗
V (e), FV (β) = − log

∫

X
e−βVμ0,

where FV (β) < ∞ for all β, since X is compact and V is bounded. Indeed, in this
case it follows from Jensen’s inequality that the free energy F(β) is of the form
FV (β) above.1 Since FV (β) is differentiable on all of R and its derivative tends to
inf X V (= emin) and supX V (= emax ) as β → ∞ and β → −∞, respectively, it
thus follows from Lemma 5.2 that SV (e) is strictly concave on ]emin, emax [. How-
ever, if X is non-compact, then the strict concavity of SV (e) may fail as illustrated
by the following simple example:

X = R, μ0 = e−|x |dx, V (x) = |x |2.
In this case, E(μ0) < ∞, but

∫
e−βVμ0 < ∞ iff β ≥ 0. It follows that S(e) =

S(e0) = 0 for e > e0, and thus, S(e) is not strictly concave. Indeed, applying the
second point in Prop 3.7, we get, for e ≥ e0,

S(e) = inf
β≤0

(βe − FV (β)) .

However, since FV (β) = ∞ for β < 0 the right-hand side above is attained at
β = 0, showing that S(e) = 0. Also note that replacing V with −V yields an
example where S(e) fails to be strictly concave in the low-energy region. Note

1 This is an instance of the classical Gibbs variational principle.
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also that in this example, the sup defining S(e) is not attained in the region where
S(e) = S(e0), if e �= e0. Indeed, if the sup is attained at μe satisfying E(μ) = e,
then S(μe) = S(μ0), and hence, μe = μ0, which forces e = E(μ0) := e0.

5.1.2. The Case of E(μ) Convex Using Lemma 3.2, we observe that similar
arguments apply in the low-energy regionwhen E(μ) is convex, under some further
regularity assumptions.

Proposition 5.1. Let X be a topological space and E(μ) a lsc convex functional
on P(X) and μ0 ∈ P(X).

• If X is compact and e0 := E(μ0) < ∞, then S(e) is concave on ] − ∞, e0].
• If X isσ -compact (i.e., a countable union of compact space) and E(1Kμ0) < ∞
for any compact subspace K of X, then, if the energy approximation property
holds, S(e) is concave, increasing and finite (hence continuous) on ]emin, e0[.

Proof. Given e1 and e2 in ] − ∞, e0] and t ∈ [0, 1] set et := (1 − t)e0 + te1.
Let μ1 and μ2 be contenders for the sup defining S(e1) and S(e2), respectively.
Set μt := (1 − t)μ1 + tμ2. Since E(μ) is assumed convex, E(μt ) ≤ et . Hence,
if X is compact and E(μ0) < ∞, then Lemma 3.2 gives, S(et ) ≥ S(μt ) ≥
(1− t)S(μ1)+ t S(μ2), using that S is concave onP(X). This proves the first point.
To prove the second one, we write X is an increasing union of compact subspaces
XR . Denoting by SR the entropy corresponding to XR , it follows directly from
the definition that SR(e) ≤ S(e). Now, by the energy approximation property in
Lemma 3.6, −∞ < SR(e) ≤ S(e). A slight variant of the argument in the end of
the proof of Theorem 6.9 then shows that SR(e) increases toward S(e) as R → ∞.

Hence, we can conclude by invoking the first point. ��
Next, a different duality argument yields strict concavity and continuity up to e = e0
when X is compact. The proof uses the following duality criterion:

Lemma 5.2. Consider the Very general setup and assume that X is compact and
that the energy approximation property holds. If F(β) is differentiable in a neigh-
borhood of [β0, β1] and [F ′(β1), F ′(β0)] ⊂]emin, emax [, then S(e) is strictly con-
cave and equal to F∗ on [F ′(β1), F ′(β0)]. Moreover, in general, if F is differen-
tiable at β, then F ′(β) = E(μβ) for any minimizer of Fβ.

Proof. Since F(β) is concave and F = S∗ Lemma 2.1 implies that S∗∗ is strictly
concave on [F ′(β1), F ′(β0)]. Next, by Prop 4.1 S is usc on U :=]emin, emax [, and
hence, Lemma 2.2 forces S∗∗ = S on [F ′(β1), F ′(β0)], which concludes the proof
of the first statement. The last statement follows directly from letting δ tend to zero
(from left and from right) in the inequality

F(β + δ) − F(β) ≤ Fβ+δ(μβ ) − Fβ(μβ) = δE(μβ). (5.1)

��
Proposition 5.3. Assume that X is compact, E(μ) is lsc and convex on P(X).

Then S(e) is strictly concave and S(e) = F∗(e) on ]emin, e0[. Moreover, S(e) is
continuous on ]emin, e0].
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Proof. The concavity was shown in [29] under the extra assumption that E(μ)

be continuous on P(X). Here we note that an alternative argument yields strict
concavity under the more general assumptions in the proposition. The starting
point is the observation that Fβ(μ) is convex on P(X) for β ≥ 0 and strictly
convex on {Fβ < ∞}. Indeed, since E(μ) is assumed convex this follows directly
from the corresponding property of −S(μ) (i.e., from the case β = 0), which is
well known [22]. It then follows from general principles that F(β) is differentiable
with derivative at β given by e(β) := E(μβ), where μβ is the unique minimizer
of Fβ. Indeed, this follows from the general statement in appendix of [9], using
that E(μβ) is continuous in β by the argument below. Hence, by Lemma 5.2 S(e)
is strictly concave and equal to F∗ on the interval ] limβ→∞ e(β), limβ→0 e(β)[.
By the concavity of F(β) the function e(β) is decreasing. Moreover, the energy
approximation property implies, in a rather straightforward manner, that

lim
β→0

e(β) = emin

(see [7]). All that remains is thus to verify that

lim
β→0

e(β) = e0.

But since e(β) is decreasing, this follows readily from the lower semi-continuity of
E(μ) (see [7]). To prove that that S(e) is continuous on ]emin, e0] it will be enough,
by the previous step, to show that F∗(e) is continuous on ]emin, e0] and F∗(e0) = 0.
Since F∗ is concave it is enough to show that F∗(e) is finite on ]emin, emax [. But

S ≤ S∗∗ = F∗ ≤ 0,

where the last inequality follows from restricting the inf defining F∗ to β = 0.
Since S is finite (by the previous proposition) it follows that is F∗ is also finite
and thus continuous on ]emin, emax [. Hence, by the continuity of F∗ at e0 we get
S(e) → F∗(e0) as e → e0. But

F∗(e0) = inf
β∈R (βe0 − F(β)) , F(β) = inf

μ∈P(X)
βE(μ) − S(μ) ≤ βE(μ0) − S(μ0) = βe0

Hence,

F∗(e0) = inf
β∈R (βe0 − F(β)) ≥ inf

β∈R (βe0 − βe0) = 0.

which gives lim infe→e0 S(e) ≥ 0. Since, trivially, S(e) ≤ S(e0) = 0 it follows
that S(e) → 0 = S(e0), as desired. ��
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5.2. The Necessity of the Energy Approximation Property for Thermodynamic
Equivalence of Ensembles

We next show that the assumption that μ0 has the energy approximation prop-
erty, used in the previous section is necessary for having thermodynamic equiva-
lence of ensembles:

Theorem 5.4. Let X be a compact topological space endowed with a measure
μ0 such that E(μ0) < ∞ and assume that E(μ) is a lsc convex functional on
P(X) and V ∈ C0(X). Denote by SV (e) entropy SV (e) associated to EV (μ) :=
E(μ)+〈V, μ〉 and the measure μ0. Then SV (e) is concave and finite on ]emin, e0]
for any V ∈ C0(X) iff μ0 has the energy approximation property. In other words,
thermodynamic equivalence of ensembles holds in the low-energy regions ]emin, e0]
for all V ∈ C0(X) iff μ0 has the energy approximation property.

Proof. First assume that μ0 has the energy approximation property. Since EV (X)

is lsc and convex it then follows from the previous proposition that SV (e) is concave
on ]emin, e0[ for any V ∈ C0(X). To prove the converse first note that, by the third
point in Prop 3.7, the restriction of SV to ]emin, e0] is equal to the Legendre–Fenchel
transform of FV (β). Hence, since SV (e) is assumed finite on ]emin, e0[ it follows
from the property of gradient images in formula 2.3 that dFV (β)/dβ → emin as
β → ∞ (using either left or right derivatives). Since FV (β) is concave this means
that

lim
β→∞ FV (β)/β = inf

P(X)
E(μ).

Now, by definition, FV (μ)/β = E(μ) − S(μ)/β, and hence,

lim
β→∞ inf

P(X)
(E(μ) − S(μ)/β) = inf

P(X)
E(μ).

However, as shown in [7] the latter convergence holds for all V ∈ C0(X) iffμ0 has
the approximation property (briefly, the point is that the convergence in question is,
since E(μ) is convex equivalent to the �-convergence of E(μ) − S(μ)/β toward
E(μ), which, in turn, is equivalent to the energy approximation property of μ0). ��
In the casewhenW (x, y) is the repulsive logarithmic interaction inR2 orW (x, y) =
|x − y|−s in R

n for s ∈]d − 2, d[ (specializing to the Coulomb interaction when
s = d − 2) a potential-theoretic characterization of measures μ0 satisfying the
energy approximation property was given in [7]. In particular, it was shown that
any compact domain X with smooth boundary admits probabilitymeasuresμ0 with
support X and a density in L1(X, dx), for which the energy approximation property
fails. Hence, by the previous theorem thermodynamic equivalence of ensembles
also fails. On the other hand, Lebesgue measure on a compact domain X has the
energy approximation property, if X is non-thin at all boundary points, in the sense
of classical potential theory. For example, this is the case if any point x ∈ ∂X is
the vertex of a cone contained in X (e.g., if X is a Lipschitz domain).
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5.3. The Catastrophic Case of Singular Power Laws

Consider now the casewhen X is compact andW (x, y) is a repulsive power-law
singularity

W (x, y) := |x − y|−α + H(x, y), α > 0 (5.2)

for H continuous on X × X. In particular, e∞ = ∞. We will say that a compact
set X is strictly star-shaped if for any point x ∈ X and c ∈ [0, 1[ the scaled point
cx is contained in the interior of X.

Proposition 5.5. Consider a repulsive power-law singularity W on a compact
strictly star-shaped subset X of Rd and let μ0 be proportional (or comparable)
to Lebesgue measure on X. Then S(e) is concave on R and finite (hence continu-
ous) on ]emin,∞[. Moreover, S(e) = S(e0) for any e ≥ e0, and as a consequence,
there exists no maximum entropy measure μe when e > e0.

Proof. For simplicity we will assume that H = 0, but the general case is shown in
essentially the same way. First observe that E has the energy approximation prop-
erty. Indeed, using that X is assumed strictly star-shaped and W (et ) is monotone
in t it is, by the argument in the proof of Lemma 6.3, enough to show this when the
support of μ is contained in the interior of X. Let με be defined as in formula 6.2.
First using that E is convex and then that E is translationally invariant gives

E(με) ≥
∫

a∈Bε

σεE ((Ta)∗μ) =
∫

a∈Bε

σεE (μ) = E(μ).

The reversed asymptotic inequality follows directly from the lower semi-continuity
of E, resulting from the assumed lower semi-continuity of w. Next note that the
affine continuity property appearing inLemma3.2 holds, as is seen bymodifying the
proof of Lemma6.2. Indeed, using theCauchy–Schwartz inequality the finiteness in
formula 6.1 follows from the positive definiteness ofW (x, y) and thatW ∈ L1(X2).

Hence, by Prop 5.1 S(e) is concave and continuous on ]emin, e0] and S(e) > −∞
for all e ∈]emin,∞[.

Next, we will show that S(e) = S(e0) for any e > e0. To this end it will, thanks
to Lemma 3.2, be enough to show that there exists a family νε ∈ P(X) parametrized
by ε > 0 such that, as ε → 0,

(i) E(νε) → ∞, (i i) S(νε) → S(μ0) = 0. (5.3)

We will take νε = εα/4(Tε)∗μ0 + (1 − εα/4)μ0, where, as before, Tε denotes the
scaling map x 	→ εx . First observe that since S((Tε)∗μ0) = d log ε for some (as
seen by making the change of variables x 	→ Tε(x) in the integrals) we get, using
the concavity of S(μ) on P(X),

S(νε) ≥ εα/4S((Tε)∗μ0) + (1 − εα/4)S(μ0) ≥ εα/4d log ε + 0,

which verifies the second item in formula 5.3. To prove the first one, observe
that, making the change of variables x 	→ Tε(x) in the integrals, reveals that
E((Tε)∗μ0) = ε−αE(μ0), andhence, E(νε) = εα/2E((Tε)∗μ0) = εα/2ε−αE(μ0),
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which proves the first item in formula 5.3. Hence, S(e) = S(e0) for any e > e0.
Since we have shown that S(e) is concave, increasing and continuous on ]emin, e0]
and S(e) = S(e0) it follows that S(e) if concave and continuous on ]emin, e0].
Moreover, since S(μ) = S(μ0) iff μ = μ0 (which implies E(μ) = e0) it follows
that there exists no maximum entropy measure for e > e0. ��
More precisely, the proof of the previous proposition reveals that, for any given
e > e0 there exists μ ∈ P(X) with energy e, i.e., E(μ) = e, whose entropy S(μ)

can be taken to be arbitrarily close to the maximal entropy and such that μ has a
“core–halo” structure, i.e., μ is a convex combination

(1 − λ)μ0 + λμ1

for some λ ∈]0, 1[, where μ1 (the “core”) can be taken to be a uniform measure of
arbitrarily large density on a ball with arbitrarily small radius, centered at a given
point in the interior of X.

Remark 5.6. The assumption the X be star-shaped was imposed to ensure the en-
ergy approx property and can certainly be relaxed. For example, if W (x, y) is the
Coulomb interaction in R

n, then, as pointed out in Sect. 5.2, the energy approxi-
mation property in question holds if the interior of X is non-thin at all boundary
points.

The previous proposition also applies to the corresponding singular power laws
obtained by switching the sign ofW, if at the same time e is replaced by −e (using
that S(e) is concave iff S(−e) is). In the case of the Newtonian pair interaction in
R
3, the nonexistence of the corresponding maximum entropy measure is closely

related to the gravitational catastrophe (Antonov instability) which plays a central
role in astrophysics [13, Section 4.10.1].

6. Concavity in the High-Energy Region under the Main Assumptions

We start by recalling the Main/Homogeneous Assumptions stated in the intro-
duction of the paper.

6.1. The Main and Homogeneous Assumptions

Let X is a (possible non-compact) subset ofR2n , and letφ be a defining function
for X, i.e., a continuous function such that

X = {φ ≤ 0}.
Endow X with a measureμ0 which is absolutely continuous wrt Lebesgue measure
dλ :

μ0 = e−�0dλ.
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onR2n .Aspointedout above,wewill identifyR2n withCn anddenote by (z1, ..., zn)
the standard holomorphic coordinates on C

n .

MainAssumptions:φ ∈ PSHa(C
n),�0,−V ∈ PSHa(X) and−W ∈ PSHa,a(X×

X) for some a ∈]0,∞[n
The class PSHa(X) was defined in Sect. 2.3 and the class PSHa,a(X × X) is

defined similarly, by identifying C
n × C

n with C
2n and using the weight vector

(a, a). Recall that we also introduced the Homogeneous Assumptions in Sect. 1.3,
which according to the following lemma is a special case of theMain Assumptions:

Lemma 6.1. If the Homogeneous Assumptions are satisfied, then so are the Main
Assumptions.

Proof. First note that −v(r) is increasing in r. Indeed, since φ(t) := v(et ) is
convex in t the limit, denoted by φ̇(−∞), of the one sided derivative φ′(t+) exists
as t → ∞. Since φ(t) is assumed bounded from above as t → −∞ it follows
that φ̇(−∞) ≥ 0. Hence, by convexity, φ′(t+) ≥ 0 for all t, showing that φ(t) is
increasing in t, as desired. Since log |z| is psh this means that V (z) is an increasing
convex function of the psh function log |z| when z �= 0 and bounded from above in
a punctured neighborhood of the origin inCn .But any psh function which is locally
bounded from a above on the complement of a pluripolar set A (i.e., a set which is
locally the −∞-set of a psh function) extends over A to a unique psh function [23,
Thm 5.24]. Thus, −V indeed defines a psh function on X and the same argument
applies to �0(z). Similarly since (z, ζ ) 	→ (z − ζ ) is holomorphic, the function
log |z − ζ | is psh on C

2n , and thus, −W (z, ζ ) is an increasing convex function of
a psh function when log |z − ζ | �= −∞ and thus psh. All in all this means that the
Main Assumptions are satisfied with, for example, a0 = ... = an = 1. ��
We next show that the “affine continuity property” and energy approximation prop-
erty introduced in Sect. 3 both hold under the Main Assumptions.

Lemma 6.2. Under the Main Assumptions the affine continuity property holds.

Proof. Since X may be assumed compact and W is lsc we may after perhaps
replacing W with W + C , i.e., E with E + C, as well assume that W ≥ 0 on
X × X. Hence, by the dominated convergence theorem it is enough to verify that
if E(μ) < ∞, then ∫

X×X
Wμ ⊗ μ0 < ∞. (6.1)

Set uμ(x) := ∫
X W (x, y)μ(y). Since −W is psh on a neighborhood of X × X the

function−uμ(x) psh on X.Now since X is connected, as shown in the course of the
proof of Theorem 6.7, any psh function (or more generally, subharmonic function)
is either identically equal to −∞ or in L1

loc (as follows from the submean property
of subharmonic functions). But, by assumption,

∫
X uμμ = E(μ) < ∞, and hence,

−uμ cannot be identically −∞. Since μ0 = e−�0dλ 6.1 thus follows directly in
the case when �0 is bounded. In the general case we can use that by Cor 8.1, there
exists q > 1 such that

∫
X e−qψdλ < ∞ for any psh function ψ (not identically

−∞) and apply Hölder’s inequality to conclude. ��
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Lemma 6.3. Assume that the Main Assumptions hold. Then the corresponding en-
ergy approximation property is satisfied.

Proof. First consider the case when the support of μ is contained in the interior of
X. Set

με :=
∫

a∈Bε

σε(Ta)∗μ, (6.2)

where, for a given a ∈ R
d , Ta is the map x 	→ x + a and Bε denotes the ball

of radius ε centered at the origin. For ε sufficiently small με is also supported in
X. It is a standard fact that με is absolutely continuous wrt Lebesgue measure and
με → μ weakly as ε → 0. Moreover,

lim
ε→0

E(με) = E(μ). (6.3)

Indeed, setting� := −W (x, y)+V (x)+V (y) and changing theorder of integration
gives

−E(με) =
∫

Bε×Bε

σε ⊗ σε

∫

X×X
�(Ta)∗μ ⊗ (Tb)∗μ

=
∫

X×X
μ(x) ⊗ μ(y)

∫

Bε×Bε

σε ⊗ σε�(x + a, x + b).

Recall that, in general, if ψ(x) is a subharmonic function, then
∫
Bε

σεψ(x + a)

decreases to ψ(x), as ε decreases to 0. Hence, the convergence 6.3 follows from
the monotone convergence theorem. Finally, for a general μ ∈ P(X) we consider
for τ ∈ C the holomorphic action τ � z defined by formula 6.6. If z ∈ X and
�τ < 0, then it follows readily from the definitions that τ � z is contained in the
interior of X (compare the proof of Theorem 6.7). Hence, fixing t < 0 and setting
Ft (z) := t � z the probability measure μt := (Ft )∗μ is supported in the interior
of X. Moreover, μt converges weakly toward μ when t → 0 and

lim
t→0

E(μt ) = E(μ). (6.4)

Indeed, proceeding as above

−E(μt ) =
∫

�(et x, et y)μ(x) ⊗ μ(y)

where t 	→ �(et x, et y) is increasing (as shown in the course of the proof of
Theorem 6.7). Hence, the convergence 6.4 follows from the monotone convergence
theorem. We can thus conclude the proof by combining the convergence in 6.3 and
6.3, using a standard diagonal argument.

Combining the previous two lemmaswithLemma3.6,we arrive at the following
��

Proposition 6.4. Under the Main Assumptions S(e) is finite on ]emin, emax [.
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6.2. Concavity of the Microcanonical Entropy S(N )
+ (e)

The following result is a slight generalization of a result shown in the course of
the proof of [10, Theorem 2.3], which, in turn, is based on the main result in [11].

Proposition 6.5. Let Y be a pseudoconvex domain,� a psh function on Y andμ0 a
measure on Y such that μ0 = e−ψ0dλ for a psh function ψ0 on Y. Assume that Y is
endowed with a holomorphic action of by compact group G such that If � and μ0
are G-invariant and assume also that for any t ∈ R any G-invariant holomorphic
function on {� < t} is constant. Then either the function

t 	→ logμ0 {� < t}

is identically equal to +∞ or concave. In particular, if μ0 is moreover assumed to
have finite total mass, then the concavity in question holds.

Proof. First recall the main result in [11]. Consider Cn+1 with holomorphic co-
ordinates (z, t) ∈ C

n × C. Let D be a pseudoconvex domain in C
n+1 endowed

with a psh function ψ(z, t). Denote by Dt the subset of D obtained by fixing the
t-coordinate. According to the main result of [11] the function Bt (z) on D defined
by

Bt (z) := sup

{
| f (z)|2 : f holomorphic on Dt and

∫

Dt

| f |2e−ψ(·,t)dλ ≤ 1

}

(6.5)
has the property that either log Bt (z) is subharmonic in t or identically equal to
−∞. In the present case, we take

D := {�(z) − �(t) < 0} ⊂ Y × C

and ψ(z, t) = ψ0(z). Note that D is a pseudoconvex domain in Cn+1. Indeed, this
follows from Lemma 2.3, using that �(z) − �(t) is psh in Y × C and Y × C is
pseudoconvex (since Y is). Now, by assumption, the group G acts holomorphically
on Dt . In particular, if dG denotes aG-invariantmeasure onG (i.e., Haarmeasures)
and f is holomorphic on Dt then the function

fG(z) :=
∫

g∈G
f (g · z)dG

is holomorphic andG-invariant. Hence, replacing f with fG and using the “triangle
inequality” the sup in formula 6.5 may as well be restricted to all G-invariant
holomorphic functions f. But, by assumption, any such functions is constant, and
hence, we may as well take f to be identically equal to 1. But this means that
Bt (z) = 1/

∫
Y∩{�(z)<t} e

−ψ0dλ. The theorem thus follows from the main result of
[11], recalled above (also using that if φ(t) is subharmonic in t and only depends
on �(t) then φ(t) is convex wrt t ∈ R). ��
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Remark 6.6. (Brunn–Minkowski inequality) This proposition can be viewed as a
generalization of the classical fact that the logarithm of the volume μ0 ({φ ≤ t})
is concave if φ is a convex function on R

n and μ0 is a log concave measures, i.e.,
μ0 = 1Ce−φ0(x)dλ for C ⊂ R

n a convex body and φ0 a convex function. This
is a consequence of the Brunn–Minkowski inequality, but it also follows from the
previous proposition by considering the map L(z) = (log |z1|, ..., log |zn|) from
(C−{0})n ontoRn which has the property that φ(x) is convex iffψ := L∗φ is psh,
and hence, C is convex iff Y := L−1(C) is pseudoconvex in Cn (using that L∗φ is
bounded from above and this extends to a psh function on C

n). The classical fact
in question then follows by taking G as the n-dimensional compact torus, acting
on C

n in the standard way (and thus preserving the fibers of the map L).

It should be stressed that plurisubharmonicity alone is not enough to ensure the
concavity in the previous proposition, as illustrated by the case when Y is the unit
disk inC and�(z) is the Green function for the Laplacian with a pole atw ∈ Y, for
a given nonzero w in the interior of Y, i.e., �(z) = log |(z −w)/(1− w̄z)| Indeed,
as shown in the proof of [10, Thm 2.3] the concavity in question is then equivalent
to the subharmonicity of the Schwartz symmetrization of �(z), which only holds
when a is zero, i.e., when � is S1-invariant, as pointed out in the introduction of
[10].

We next apply the previous proposition to the case when the N -particle Hamil-
tonian H (N ) on XN comes from a pair interactionW and exterior potential V such
that −W and −V and also φ and �0 satisfy the Main Assumptions (but there is no
need to assume that W (x, y) is symmetric or that the indices i, j range over all of
{1, 2, ..., N }):
Theorem 6.7. If theMainAssumptions hold and H (N ) is the function on XN defined
by

H (N )(x1, ..., xN ) :=
∑

(i, j)∈I
ai jW (xi , x j ) +

∑

j∈J
bi V (x j )

for some subsets I of {1, .., N }2 and J of {1, ..., N ] and nonnegative constants ai j
and bi . Then

S(N )
+ (e) := logμ⊗N

0

{
H (N ) > e

}

is concave in e and finite when e > supXN H (N ). In particular, S(N )
+ (e) is concave

when H (N ) is the mean field Hamiltonian 1.1.

Proof. It is a standard fact that the closure of the orbits of the vector field Va

2.5 coincides with the orbits of a compact torus G acting holomorphically on C
n .

The assumptions imply that φ, V,W and μ0 are invariant under the action of G
(using the diagonal action on X × X). By assumption, X admits a continuous
psh exhaustion function ρ. By the construction in Lemma 2.3, ρ may as well be
assumed to be G-invariant. Since the maximum of a finite number of psh functions
is still psh, the function ρN on XN defined by

ρ(z1, ..., zN ) := max
i=1,...,N

ρ(zi )
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is psh and G-invariant wrt the diagonal action of G on XN and thus defines a G-
invariant continuous psh exhaustion function of XN . The corollary will thus follow
from the previous theorem applied to XN , �N := −H (N ) and the measure μ⊗N

0
if XN , once the assumptions on G have been verified. To this end, consider the
holomorphic action of the additive group C on Cn defined as follows: given τ ∈ C

and z ∈ C
n

τ � z := (ea1τ z1, ..., a
anτ zn). (6.6)

Note that, for z fixed, τ � z → 0 as the real part �τ → −∞. Moreover, if φ is a
psh function on C

n then

φ(τ � z) ≤ φ(z) if �τ ≤ 0 (6.7)

To see this, first observe that since φ is psh and the orbits of the C-action define
holomorphic curves the function φ(τ) := φ(τ � z) is subharmonic for a fixed z.
Moreover, since φ ∈ PSHa the function φ(τ) is independent of the imaginary
part �τ , and hence, φ(τ) is convex wrt the real part t of �τ. Since φ is bounded
from above close to the origin it follows that there exists a constant C such that
φ(τ) ≤ C as�τ → −∞.But then the convexity ofφ(t) implies thatdφ(t)/dt → 0
as τ → −∞ in R. Hence, by convexity, φ(τ) is increasing in the real part of τ,

proving the inequality. As a consequence, X is G-invariant, connected and the
origin 0 is contained in the interior of X (using that the action by C is locally free).
Moreover, the same thing goes for the sublevel sets {�N (z1, ..., zN ) < t}. Indeed,
by the previous argument �N (τ � zN , ..., τ � zN ) is increasing wrt the real part of
τ. In particular, the minimum of � is attained at the origin in XN , which implies
that 0 is an interior point of {�N (z1, ..., zN ) < t}, as long as t > infXN �N . Thus,
if f is a holomorphic function on {�N (z1, ..., zN ) < t}, then in order to verify
that f is constant on {�N (z1, ..., zN ) < t} it is enough to verify that its Taylor
expansion at the origin 0 in C

nN is a constant. To simplify the notation, we will
prove this when N = 1 (but the general case if the same up to a change of notation).
Using multinomial notation the action of νa on f (z) close to the origin inCn gives,
by Taylor expansion of f,

νa( f ) = νa

⎛

⎝
∑

αi≥0

cαz
α1
1 · · · zαnn

⎞

⎠ =
∑

αi≥0

ia · αcαz
α1
1 · · · zαnn .

Since ai > 0 the scalar product a · α is nonvanishing for α �= 0.Hence, νa f = 0
can only hold if the Taylor coefficients cα vanish for α �= 0. Since X is connected
it follows that f is identically constant (by the identity principle for holomorphic
functions).

As for the finiteness of S+
N (e), for e > supXN H (N ), it follows directly from

the fact that any psh function is usc, hence the subset where H (N ) > e is open. ��
When H (N ) is replaced by the “attractive” Hamiltonian −H (N ) the previous theo-
remalso shows that S(N )

− (e) (formula 1.9) is concave. The following simple example
illustrates the relevance of the plurisubharmonicity assumption in the previous the-
orem. Consider the “attractive” Hamiltonian obtained by taking W = 0 in formula
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1.1 and assume that V is S1-invariant. Then V is psh iff V = φ(log |z|) for a convex
increasing function φ on R. Assuming that φ(x) is strictly increasing and N = 1
we get

μ⊗N
0

{
H (N ) ≤ e

}
= Cne

2n f (e), (6.8)

where f (e) is the function defined, on the image of φ, as the inverse of φ(x) and
CnN is the volume of the unit-ball inR2n .Hence, the logarithm ofμ⊗N

0

{
H (N ) ≤ e

}

is concave iff f is concave iff its inverse φ is convex iff V is psh. In the case when
N ≥ 1 an illustrative class of “attractive” Hamiltonians is given by the case when V
is a power law, V = |z|α for α > 0 (i.e., φ(x) is the convex function = eαx ). Then
a simple scaling argument reveals that the volume μ⊗N

0

{
H (N ) ≤ e

}
is of the form

6.8 for f (e) = log e when n is replaced by nN/α, if e ≥ 0. Hence, the logarithm
of μ⊗N

0

{
H (N ) ≤ e

}
is indeed concave. Note that in this example the logarithm of

the surface area of {H (N ) = e}, i.e., of the derivative of μ⊗N
0

{
H (N ) ≤ e

}
, is not

concave unless N is taken sufficiently large; N ≥ α/2n. (Otherwise, it is convex.)

Remark 6.8. In the case of the mean field Hamiltonian H (N ), the concavity of
S(N )
+ (e) holds more generally if the assumptions on W and V are replaced by

the weaker assumption that the negative of W (x, y) + N
N−1 (V (x) + V (y)) is in

PSHa,a(X × X). Indeed, rewriting

H (N )(x1, ..., xN ) = 1

2

1

N

∑

i �= j≤N

(
W (xi , x j ) + N

N − 1

(
V (xi ) + V (x j )

))
,

we can then apply the previous theorem to the mean field Hamiltonian correspond-
ing to the pair interaction W (x, y) + N

N−1 (V (x) + V (y)).

6.2.1. Incorporating Constraints Prop 6.5 may be generalized by replacing �

with a finite number of functions ψ1, ..., ψr on Y satisfying the same assumptions
as � and replacing the sublevel {�(< t} with the intersection of the sublevel sets
{ψ1 < t1}, ...., {ψr < tr } for a given t = (t1, ..., tr ) ∈ R

r . Then the logarithm of
the corresponding volume defines a concave function of t ∈ R

r . Indeed, one sim-
ply replaced the domain D in the proof with the intersection of the pseudo-convex
domains {ψ1(z)−�(t1) < 0} inCn ×C

r . Since the intersection of pseudo-convex
domains is pseudo-convex, the main result in [11] then implies that the corre-
sponding function log B(t) is a psh function of t ∈ C

r , and thus, by translational
invariance in the imaginary arguments, it defines a convex function on R

r . As a
consequence, if one assumes given ψ1, ..., ψr as above then Theorem 5.4 may be
generalized to the statement that the “constrained microscopic entropy”

logμ⊗N
0

{
H (N )(z1, ..., zN ) > e,

N∑

i=1

ψ1(zi ) ≤ l1, ...,
N∑

i=1

ψr (zi ) ≤ lr

}

is a concave function of (e, l1, ..., lr ) ∈ R
1+r . In particular, when X ⊂ C

n this
applies to ψi (z1, .., zn) = λi |zi |2 for given positive numbers λ1, ..., λn, as in the
Gaussian case discussed in Sect. 3.3. Anyhow, in this paper we will, for simplicity,
stick to the non-constrained setup. On the other hand, as pointed out in Sect. 3.3,
the constraints may be incorporated in the prior measure.
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6.3. Concavity of the Entropy S(e) when e0 ≤ e

Now assume that X � R
2n that we identify with C

n, as usual.

Theorem 6.9. If the Main Assumptions holds, then the entropy S(e) is a decreasing
concave continuous function on [e0, emax [

In order to prove this, we first assume that X is compact and invoke the following

Proposition 6.10. [29] Assume that W and V are continuous and X is compact.
Then

lim
N→∞ S(N )

+ (e) = S+(e) := sup
E(μ)≥e

S(μ)

Proof. Consider the open interval� := {t > e} inR. By [29, Thm 2.1], the limsup
and liminf of S(N )

+ (e) is equal to the sup of S(μ) over all μ ∈ P(X) such that
E(μ) ∈ � and E(μ) ∈ �, respectively. But by Lemma 3.2, both these quantities
are equal to S+(e). ��
When W and V are continuous and X is compact Theorem6.7 thus shows that
S+(e) is a limit of concave functions on R and thus concave onR. Next, we invoke
the monotonicity properties shown in Lemma 3.2 which show that

S+(e) = max{e0, S(e)}
and hence, max{e0, S(e)}is is concave. But by Lemmas 3.6, 6.3 S(e) is finite for
any e ∈]emin, emax [. Hence, max{e0, S(e)} is concave and finite on ]emin, emax [
and thus concave and continuous on ]emin, emax [. This proves the theorem in the
case when W and V are continuous and X is compact.

6.3.1. Conclusion of the Proof of Theorem 6.9 Still assuming that X is compact
we will next show that S(e) is decreasing, concave and continuous when e ∈
[e0, emax [, i.e., when

E(μ0) ≤ e < sup
P(X)

E(μ) (6.9)

We will proceed by an approximation argument and exploit that S(e) > −∞
(Prop 6.4). Take a sequence Wδ(x, y) of continuous pair interactions increasing
to W satisfying the Main Assumptions. For example, Wδ may be defined as a
convolution of W with a compactly supported smooth density ρδ. First observe
that since, by assumption, E(μ0) < e, we get Eδ(μ0) < e for δ sufficiently small
(by the monotone convergence theorem). Thus, by the concavity and continuity of
S+,δ(e) on R established in the previous section, we just have to verify that

lim
δ→0

Sδ(e) = S(e) (6.10)

for any fixed e satisfying the inequalities in formula 6.9. To this end, first note that

Sδ(e) ≤ S(e). (6.11)
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Indeed, by Lemma 3.2, it is enough to prove the corresponding inequality for the
upper entropies,where it followsdirectly from the assumption that Eδ(μ) ≤ E0(μ).

Now fix a candidate μ for the sup defining S0(e) and set eδ := Eδ(μ). Then

S0(μ) ≤ Sδ(eδ) = S(μδ),

whereμδ realizes the sup defining Sδ(eδ).Moreover, fixing a positive number ε we
have

eδ ≥ e − ε

for δ sufficiently small (δ < δε). Hence, since Sδ is decreasing when e > Eδ(μ0)

(by Lemma 3.2), we get

S0(μ) ≤ Sδ(e − ε)

for δ < δε. Using that Sδ(e) is concave, we thus deduce that

Sδ(eδ) ≤ Sδ(e) + ε| d
de

Sδ(e)|.

Combining the latter inequalitywith the inequality 6.11 reveals that all that remains,
in order to prove the convergence 6.10, is to verify that

| d
de

Sδ(e)| ≤ C (6.12)

as δ → 0. To this end first observe that, using again that Sδ(e) is decreasing and
concave yields for any fixed e′ > e

| d
de

Sδ(e)| = − d

de
Sδ(e) ≤ Sδ(e) − Sδ(e′)

e′ − e
≤ −Sδ(e′)

e′ − e
.

In particular, if e′ is a fixed number satisfying e < e′ < supP(X) E(μ) we get (by
Lemma 3.2) that

Sδ(e
′) ≥ S(μ′)

for any μ′ ∈ P(X) such that Eδ(μ
′) ≥ e′. Now, by Lemmas 3.6, 6.3 μ′ can be

chosen, independently of δ, so that E(μ′) ≥ e′ + ε and S(μ′) > −∞. We then
get, for any δ sufficiently small, that Eδ(μ

′) ≥ e′ (by the monotone convergence
theorem), and thus, the uniform bound 6.12 follows.

This concludes the proof of Theorem 6.9 in the case when X is compact. In the
general case we fix R > 0 and denote by XR the intersection of X with a ball BR

of radius R centered at the origin. Then XR is also pseudoconvex (as follows from
Lemma2.3 applied to φ(z) = |z|2 − R). Thus, as shown in the previous section,
the entropy SR(e) associated to the restrictions to BR of W, V and μ0 is concave
in e for e > E(μ0). Hence, all that remains is to verify that

lim
R→∞ SR(e) = S(e) (6.13)
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for any fixed e satisfying the inequalities 6.9. To this end, first note that, since
XR ⊂ X, it follows immediately that SR(e) ≤ S(e). Now assume that e > E(μ0)

and fix a candidate μ for the sup defining S(e). Set

μR := 1BRμ/μ(BR).

Then

S(μ) ≤ SR(eR), eR := E(μR).

By the monotone convergence theorem, E(μR) → E(μ). Hence, using that SR(e)
is decreasing and concave for R sufficiently large (by the previous step) we can
proceed essentially as when approximating W with Wδ above, to get

S(μ) ≤ lim sup
R→∞

SR(e),

which concludes the proof of the convergence 6.13 and thus the concavity in The-
orem 6.9.

7. Global Concavity of S(e) and Examples

Recall that, in classical terminology, a symmetric functionW (x, y) is a weakly
positive definite kernel, i.e., that for any positive integer N

∑

i, j≤N

W (xi , x j )aia j ≥ 0 ∀(ai ) ∈ R
N :

N∑

i=1

ai = 0

If the first inequality holds for any sequence (ai )Ni=1, then W (x, y) is called a
positive definite kernel. 2

Now assume that W (x, y) is weakly positive definite and satisfies the Main
Assumptions in a neighborhood of X × X. ThenW can be expressed as increasing
limit of continuous (and even smooth) such functions Wδ(x, y). Indeed, if ρ is a
smooth compactly supported probability density on R2n × R

2n we can take

Wδ := (W ∗ρδ) :=
∫

W (·+a, ·+b)ρδ(a, b)dλ(a)dλ(b), ρδ(x, y) = ρ(δ−1x, δ−1x)δ4n .

(7.1)
Since −W is psh, Wδ indeed increases to W. Moreover, since W (· + a, · + b) is
weakly positive definite and satisfies the Main assumptions for any (a, b) so does
Wδ.

Theorem 7.1. If the Main Assumptions hold and moreover W (x, y) is assumed
weakly positive definite, then the entropy S(e) is globally concave, and hence,
thermodynamic equivalence of ensembles holds for any e ∈]emin, emax [.

2 W (x, y) is a weakly positive kernel iff −W (x, y) is a negative definite kernel in the
terminology of [5].
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Proof. By Theorem 6.9 S(e) is concave and continuous on [e0, emax [. Next, recall
the classical fact that a weakly positive definite kernel defines a convex functional
EW (μ) on P(X) (and vice versa). Hence, by Prop 5.3 S(e) is concave and con-
tinuous on ]emin, e0] when X is compact and W is continuous. The theorem thus
follows, in the compact and continuous case, from the second and third point in Prop
3.7. Next assume that X is still compact and define Wδ to be a regularization as in
formula 7.1. Then the corresponding entropy Sδ(e) is concave on ]emin,δ, emax,δ].
Moreover, by the approximation argument used in the proof of Theorem 6.9 and
the finiteness of S(e) the function Sδ(e) converge point-wise to S(e) on ]emin, e0[.
Thus, S(e) is also concave on ]emin, e0[. Finally, the general non-compact case is
deduced from the compact case using again the approximation arguments in the
proof of Theorem 6.9 and the finiteness of S(e). ��
Recall that, by Bochner’s classical theorem, a translationally invariant kernel
W (x, y) = W(x − y) is positive definite iff the function W on R

d is the Fourier
transform of a (positive) measure onRd . In the case of translationally and rotation-
ally invariant kernels, the following classical result holds [5]:

Lemma 7.2. (Bernstein+Schoenberg). Letw(r) be a continuous function on [0,∞[
which is smooth on ]0,∞[. Then W (x, y) := w(|x− y|) is a positive definite kernel
iff f (r) := w(r1/2) is completely monotone, i.e., (−1)m∂m f (r)/drm ≥ 0 for all
nonnegative integers m.

The previous lemma implies that if w is nonnegative on [0,∞[ (but possibly
equal to∞ at r = 0) andw(r1/2) is completelymonotone for r > 0, thenw(|x−y|)
is still positive definite. Indeed, one can apply the previous lemma to

wε(r) := w
(
(r2 + ε)1/2

)

and then let ε → 0.

Corollary 7.3. Under theHomogeneous Assumptions together with the assumption
thatw(r1/2) is completely monotone for r > 0, the entropy S(e) is globally concave
and thermodynamic equivalence of ensembles holds at all energies.

It should be pointed out that assumptions in the previous corollary are preserved
if w is replaced by wε(r) above (using that log(|z|2 + ε) is psh) and similarly for
v and ψ0. This gives a convenient explicit regularization procedure preserving the
property that S(e) is globally concave.

7.1. Examples where S(e) is Globally Concave

We next provide some examples where Theorem 7.1 applies, and thus, S(e) is
globally concave. More examples may, for example, be obtained by taking con-
volutions (as in formula 7.1). Note also that if the entropy SW,V (e) correspond-
ing to the interactions W and V is globally concave, then so is S−W,−V (e), since
S−W,−V (e) = SW,V (−e). In this way, onemay thus go from a situation of repulsive
interactions to attractive ones.
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Theorem 7.1 applies to the case when W (x, y) = − log |z − w| when, for
example, μ0 is Lebesgue measure on for example a ball in R

2n or a centered
(possibly nonstandard) Gaussian measure inR2n (as in formula 1.12). Indeed, then
W satisfies the Homogeneous Assumptions and the positive definiteness follows,
for example, from the fact that W is the Green kernel on R

2n of the n th power
of the Laplacian, which is positive definite as a formally self-adjoint operator.
More generally, the ball may be replaced with any domain X satisfying the Main
Assumptions, for example,

X = {z ∈ R
2n :

r∑

i=1

|Pi (z)|αi ≤ 1},

for a quasi-homogeneous polynomials P1, ..., Pr and αi > 0 (see Example 2.5).
Theorem 7.1 also applies to the continuous repulsive power lawswith exponent

in ]0, 2]
W (x, y) = −|x − y|a, a ∈]0, 2],

as well as to

W (x, y) = e−α|x−y|a , a ∈]0, 2]
when X is taken to be a disk centered at the origin with radius at most (1/2α)1/a .

Indeed, a direct computation reveals thatw(r) satisfies the Homogeneous Assump-
tions for any a, α > 0 (by a scaling it is enough to verify the case when a = α = 1)
Moreover, by [5, Cor 3.3] (and its proof) the kernels in question are weakly pos-
itive definite when a ∈]0, 2]. Note that in the case of the repulsive logarithmic
interaction, as well as for repulsive power laws with a ∈]0, 2[, Prop 4.8 ensures
the existence of maximum entropy measures μe, when μ0 is a centered Gaussian
measure (by taking ψ0 = |x |2).

7.1.1. The Point Vortex Model Consider the point vortex model (for vortices
with identical circulations) on a domain X in R2. In the case when X = R

2,

W (x, y) = − log |x − y|, V (x) = 0

(with our normalizations). As discussed in the previous section, S(N )
+ (e) and S(e)

are both globally concave (and thermodynamic equivalence of ensemble holds) if
μ0 is taken to be a centered Gaussian measure. As indicated in [15, Section 5], the
concavity of S(e) also follows from the results in [15], using completely different
techniques (see also[42] where the concavity of the corresponding multivariable
entropy S(e, l), discussed in Sect. 3.3, is shown). But, as discussed in the introduc-
tion of the paper, the main point of the present technique is that it also applies to
regularizations of W.

In the case of when X is a compact domain with smooth boundary, W (x, y) is
defined as the negative of Green function GX (x, y) for the Laplacian on X with
Dirichlet boundary conditions and V (x) = γ (x)/N where γ is the restriction to
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the diagonal of GX (x, y)+ log |x − y| [14,15,46]. In particular, when X is the unit
disk

W (z, w) = − log
|z − w|
|1 − zw̄| , V (x) = 1

N
log |1 − |z|2| (7.2)

In this case, Theorem 6.7 implies that S(N )
+ (e) is globally concave when N ≤ 3, as

follows from combining Remark 6.8with the following lemma, proved in appendix.

Lemma 7.4. Denote by D the interior of the unit disk in C and set

ψ(z, w) := log
(
|z − w|2/|1 − zw̄|2

)
, φ(z) = − log

(∣∣∣1 − |z|2
∣∣∣
2
)

The function ψ(z, w) + λ (φ(z) + φ(w)) is psh in D × D iff λ ≥ 1/2.

We leave open the question whether S(N )
+ (e) is concave also when N > 3. As

for S(e), it was shown to be concave in [15], using a completely different method.
In the case when a rotationally invariant exterior potential Ve is added to V (x) in
formula 7.2, the previous lemma shows that S(N )

+ (e) is concave for any N (and
hence also S(e)) if −∂∂̄Ve ≥ ∂∂̄φ/2 in D, i.e., if the Laplacian of Ve is sufficiently
negative:

1

4
�Ve(z) ≤ − 1

(1 − |z|2)2 .

This should be contrasted with the fact that the global concavity of S(e) may fail if
the Laplacian is positive, e.g., in the case when Ve(z) = ω|z|2, for ω > 0, studied
in [54] and [15, Lemma 8.2].

7.1.2. Insulated Plasmas and Self-Gravitating Matter in 2D The point vor-
tex model on a compact domain X is physically equivalent to a one-component
Coulomb plasma if inertial effects are ignored (i.e., the limit of infinite damping
is considered) and the boundary of X is assumed to be conductive [54]. On the
other hand, the case when the boundary of X is non-conducting, i.e., X is insulated,
corresponds to the mean field Hamiltonian on X with Coulomb pair interaction
− log |x − y| (and V ≡ 0) [32]. In this case the Main Assumptions apply when
μ0 is the uniform measure on the X unit disk X, as discussed in the beginning of
Sect. 7.1. More generally, the Main assumptions apply when the exterior potential
V is radial and �V ≤ 0, i.e., V is the potential induced by a distribution of fixed
particles with the same charge as the plasma. Switching the sign of the Coulomb
interaction yields a system of self-gravitating matter, studied in [1] with inertial
effects included.

8. Critical Inverse Temperatures and Existence of Maximum Entropy
Measures

In the Very General Setup, the macroscopic inverse temperatures is defined by

βc := inf

{
β ∈ R : inf

μ
Fβ(μ) > −∞

}
. (8.1)
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The microscopic inverse temperature βc,N is, in the General Setup, defined by

βc,N :=
{
β ∈ R : ZN ,β :=

∫

XN
e−βH (N )

(e−�0dx)⊗N < ∞
}

,

and, respectively, where H (N ) denotes the mean field Hamiltonian 1.1 correspond-
ing to W and V .

8.1. Dual Expressions for the Critical Inverse Temperatures

We start with the following dual “slope formula” for βN ,c, under the Main
Assumptions, which also shows that βN ,c < 0.

Corollary 8.1. Under the same assumptions as in Prop 6.5, the following holds if
μ0 has finite mass on Y and � is not identically constant:

c(Y,μ0)(�) := − inf

{
β ∈] − ∞, 0] :

∫

Y
eβ�μ0 < ∞

}

= lim
e→− infY �

d

de
log (μ0 {� < −e}) ,

using either right or left derivatives in the right-hand side. As a consequence, the
set of all negative β such that

∫
Y eβ�μ0 < ∞ is open. In particular, under the

Main Assumptions

βN ,c = lim
e→supXN EN

dS(N )(e)

de
< 0, ZN ,βNc

= ∞

Proof. By Prop 6.5 (and Theorem6.7) the function

φ(t) := − logμ(t), μ(t) := (μ0 {� < −t})
is convex wrt t ∈ R. Consider first the case when t0 := infY � > −∞. Then,
trivially, βc = −∞. Moreover, φ(t) is convex and finite for t > t0 and φ(t) → ∞
as t decreases to t0.But this forces dφ(t)/dt → −∞ as t decreases to t0. Indeed, by
the convexity of φ the limit of dφ(t)/dt decreases toM0 ∈ [−∞,∞[ as t decreases
to t0. Assume, to get a contradiction, that M0 > −∞. Then, fixing t1 > t0 gives
φ(t) ≤ φ(t1) + |M ||t1 − t0| < ∞ as t → t0, which contradicts that φ(t) → ∞ as
t decreases to t0.

Next, assume that infY � = −∞. Since β ≤ 0 we have
∫

Y
eβ�μ0 ≤

∫

{�<0}
eβ�μ0 + μ0(Y ),

where, by assumption, the second term is finite. Pushing forward the measure μ0
on Y to R under the map z 	→ �(z) gives
∫

{�<0}
eβ�μ0 =

∫ 0

−∞
eβt dV (t)

dt
dt= − βZ(β) + V (0), Z(β) :=

∫ 0

−∞
eβt V (t)dt,
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where the second equality follows from integrating by parts.Wemay then conclude
the proof of the first formula in the corollary by expressing

Z(β) :=
∫ 0

−∞
eβt−φ(t)dt

and applying Lemma 8.3 to the convex function � = βt − φ(t), which implies
that ∫

Y
eβ�μ0 < ∞ ⇐⇒ −β < lim

t→∞
dφ

dt
, (8.2)

concluding the proof of formula in question. To prove that βN ,c < 0, note that
φ(t) → ∞ as t → −∞ and φ(t) → 0 as t → ∞. Since φ(t) is convex if
follows that, using either left or right derivatives, limt→−∞ dφ(t)/dt ≤ 0 and
limt→−∞ dφ(t)/dt = 0. But if βN ,c = 0, then, by the previous step,
limt→−∞ dφ(t)/dt = 0, and hence, by convexity, φ(t) is constant. But this can
only happen if� is constant,which is excluded by the assumptions. Thus,βN ,c < 0,
as desired. Finally, to prove the last openness statement we just have to verify that
if

∫
Y eβ�μ0 < ∞, then there exists δ > 0 such that

∫
Y e(β−δ)�μ0 < ∞. But this

follows directly from the strict inequality in the right-hand side of formula 8.2. ��
Remark 8.2. In the casewhen Y is compact and�0 = 0 (or, equivalently, bounded),
the number cY (�) is called the integrability threshold of � on Y (or the complex
singularity exponent) in the complex geometry literature (whose inverse is the
Arnold multiplicity) [24]. It follows from Skoda’s local integrability inequality that
cY (�) > 0 for any functionwhich is psh on a neighborhood of Y and not identically
−∞.Moreover,

∫
Y eβ�dλ = ∞ in the critical case β = −cY (�), by the resolution

of the openness conjecture in [12] (see also [34] for the resolution of the strong
openness conjecture). The proof above yields a simplification of the proof in [12]
under the symmetry assumption that � ∈ PSH(Y )a (anyhow, just like [12], it is
based on [11]).

In the above proof, the following elementary fact was used:

Lemma 8.3. Let �(t) be a convex function on ]−∞, 0[ such that �(t) is bounded
as t → 0. Then

∫ 0

−∞
e−�(t)dt < ∞

iff limt→−∞ d�(t)/dt < 0, using either left or right derivatives.

Corollary 8.4. Consider the Main Assumptions and assume also that S(emax ) =
−∞, if emax < ∞. Then, as e increases strictly toward emax

βc = lim
e→emax

dS(e±)

de
, (8.3)

where dS(e±)/ds denotes either the left or the right derivative of the concave
function S(e±).
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Proof. By Theorem 6.9, S(e) is concave and continuous on [e0, emax [. Denote by
F̃ the usc concave function defined as F when β ≤ 0 and as −∞ when β > 0. By
Prop 3.7 S = (F̃)∗ on [e0, emax [. Set g := (F̃)∗. Thus, g is constant for e ≤ e0
and on [e0, emax [ it coincides with S(e) (by 3.7). Moreover, g∗ = F̃ , and hence,
{g∗ < ∞} = [βc,∞[. Thus, by formula 2.3,

[βc,∞[= ∂g({g > −∞}) = ∂S(]e0, emax [),
which proves formula 8.3, using that dS(e+)/ds ≤ dS(e−)/ds and dS(e+)/ds
and dS(e−)/ds are both decreasing (by concavity). ��

8.2. Concrete Expressions in the Homogeneous Case

It seems natural to expect that, under rather general assumptions, βN ,c → βc

as N → ∞. Here we will show that this is the case under the Homogeneous
Assumptions; in fact, βN ,c = βc for any N . The starting point is the following
essentially well-known consequence of the Gibbs variational principle (compare
[6,14,41]):

Lemma 8.5. Let H (N ) be a mean field Hamiltonian of the form 1.1. Then

ZN ,β ≤
∫

X
e−βV (x)μ0(x)

(∫
e
−β

(
1
2W (x,y)+V (y)

)

μ0(y)

)N−1

and

− 1

Nβ
log ZN ,β(N−1)N ≤ inf

μ∈P0(X)
F (β) =: F(β) (8.4)

As a consequence, βc ≤ lim supN→∞ βN ,c and if there exists β0 < 0 such that

sup
x∈X

∫
e
−β0

(
1
2W (x,y)+V (y)

)

μ0(y) < ∞,

∫

X
e−β0Vμ0 < ∞ (8.5)

then βN ,c < β0 and βc < β0.

Proof. First observe that it will be enough to consider the case when V = 0.
(Otherwise, we just replaceμ0 with e−βVμ0.) Decompose−βH (N ) = 1

N

∑N
i=1 fi ,

where fi is the sum of 1
2W (xi , x j ) over all j such that j �= i. The arithmetic–

geometric means inequality gives

∫

XN
e−βH (N )

μ⊗N
0 ≤

N∑

i=1

1

N

∫

XN
e fi μ⊗N

0 =
∫

X
μ0

(∫
e−β 1

2W (x,y)μ0(y)

)N−1

.

Hence, estimating the latter integral over X with the sup over X proves the first
inequality in the proposition. To prove the second one first note Gibbs variational
principle (Jensen’s inequality) gives: for any given μ ∈ P(X)

− 1

Nβ
log ZN ,β :=

∫

XN
e−βNE (N )

μ⊗N
0 ≤ β

∫

XN
E (N )μ⊗N − S(μ), E (N ) := H (N )/N
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as long as the right-hand side is well defined. In the case when H (N ) is of the form
in the lemma

∫

XN
E (N )μ⊗N = 1

N

1

(N − 1)
N (N − 1)E(μ) = N − 1

N
E(μ),

which proves 8.4, by taking the infimum over μ. ��
The following result generalizes the case of the logarithmic interaction considered
in [14,41].

Proposition 8.6. Under the Homogeneous Assumptions in R
d (but allowing d to

be odd)

βc = βc,N = 2d

ẇ
, ẇ := lim

t→−∞
dw(et )

dt
= lim

t→−∞
w(et )

t

if v and ψ0 are assumed bounded in a neighborhood of 0. Moreover, ZN ,β = ∞
when β = 4n

ẇ
.

Proof. To simplify the notation, we will prove the proposition in the case when
V = 0 (but the proof in the general case is essentially the same). First observe that

sup
X

∫

X
e− β

2 W (x,y)μ0(y) < ∞ ⇐⇒
∫ 1

0
e− β

2 w(r)rd
dr

r
< ∞ ⇐⇒ β >

2d

ẇ
(8.6)

Indeed, since w is decreasing, w(r) ≤ C if r ≥ 1, and hence, using that μ0 is a
probability measure,

∫

X
e−

β
2 W (x,y)μ0(y) =

∫

X
e−

β
2 w(|x−y|)μ0(y) ≤

∫

X∩{|x−y|≤1
e−

β
2 w(|x−y|)μ0(y) + e−

β
2 C

Changing variables in the integral above and setting γ := −β yields

∫

X∩{|x−y|≤1
e

γ
2 w(|x−y|)

μ0(y) =
∫

{|z|≤1}
e

γ
2 W (|z|)e−ψ0(x+z)dλ(z) ≤ C ′

∫

{|z|≤1}
e

γ
2 W (|z|)dλ(z)

using that ψ0 is bounded from below. This proves 8.6, using Lemma 8.3 in the last
equivalence (by setting t := log r). Hence, applying the previous lemma gives

βN ,c <
2d

ẇ
(8.7)

To prove that βN ,c ≥ 2d/ẇ, we restrict the integration over XN to a ball BR of
radius R centered at the origin and use that w is decreasing to get

ZN ,β ≥
∫

BN
R

e− N (N−1)
2N w(R)μ⊗N

0 ≥ Ce− βN
2 w(R)(Rd)N ≥ C ′

Setting R = et thus gives

(ZN ,β)1/N ≥ C1/Ne
−t

(
β
2

1
2t w(et )−d

)
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Hence, ifβ < 2d/ẇ, then as R → 0, i.e., t → −∞we get (ZN ,β)1/N ≥ C1/Ne−tδ

for some δ > 0. This means that ZN ,β = ∞, which proves βN ,c = 2d/ẇ.

Moreover, if β = 2d/ẇ then the argument shows that the integral of e−βNE (N )
μ⊗N
0

over BN
R does not tend to zero as R → 0. Since μ0 does not charge single points,

it follows that ZN ,β = ∞ (for d even this is a special case of the last statement in
Cor 8.1).

Next, thanks to the second inequality in Lemma 8.5 the inequality 8.7 implies
that

βc ≤ 2d

ẇ

All that remains is thus to verify the reversed inequality. To this end, fix β such that
F(β) > −∞, i.e., such that there exists a constant C such that

βE(μ) − S(μ) ≥ −C (8.8)

For ε > 0 set νε = (Tε)∗ν0 where ν0 is any fixed probability measure such that
S(ν0) > −∞. Then, on the one hand, as t := (log ε) tends to −∞

1

t
E(νet ) = 1

2

∫

X2

1

2t
w(et |x − y|)ν0(x)ν0(y) → 1

2
ẇ

by the monotone convergence theorem (using that the integrand is monotone in t,
by concavity). On the other hand,

S(νε) = S(ν0) + d log ε

Hence, applying the inequality 8.8 to νε and dividing both sides with t implies, by
letting t → −∞, that

β

2
ẇ − d ≤ 0.

This shows that βc ≥ 2d
ẇ

, as desired. ��
Remark 8.7. Remarkably, it is always the case that F(βc) < ∞when X is a compact
domain in R

d and W (x, y) = − log(|x − y|. Indeed, this follows from Adam’s
generalization of the Moser–Trudinger inequality in R

2, as discussed in [8] (see
also [14,41]). This finiteness should be contrasted with the general divergence
ZN ,βc = −∞ for any N (see Cor 8.1).

Note that if X is compact and W is finite, then βc = βc,N = −∞, but the
converse does not hold, as illustrated by an application of the previous proposition
to the case when

W (x, y) = log(log 1/|x − y|).
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8.3. The Anisotropic Case

Consider now the case when the Main Assumptions hold and W is translation-
ally invariant

W (z, w) = −�(z − w), � ∈ PSHa(C
n), (8.9)

but not necessarily isotropic. More generally, since we will only be concerned with
integrability properties we allow that 4.7 only holds up to a bounded term.

Proposition 8.8. Consider the Main Assumptions and assume moreover that W
is translationally invariant (up to a bounded term). Then there exists a positive
number γ such that

max{βN ,c, β} ≤ −γ < 0

Proof. First assume that V = 0. Then the first integral appearing in the uniform
integrability property 8.5 may, after making the change of variables z = y − z, be
estimated as

∫
e

β
2 �(y−x)e−�0(y)dy =

∫
e

β
2 �(z)e−�0(z+x)dz

≤
(∫

e
pβ
2 �(z)dz

)1/p (∫
e−q�0(z+x)dz

)1/q

, (8.10)

using Hölder’s inequality with conjugate exponents p and q. By the translational
invariance of Lebesgue measure the integral in the second factor is given by the
integral of

∫
e−q�0(y)dy and thus independent of x . Moreover, it follows from the

openness statement in Cor8.1 that the integral is finite for q sufficiently close to
1. Similarly, we can then make the integral in the first factor finite by taking β

negative, but sufficiently close to 0. Finally, in the case when V is not identically
zero we first apply the Cauchy–Schwartz inequality to estimate

(∫
e
−β

(
1
2W (x,y)+V (y)

)

μ0(y)

)2

≤
∫

e−2β 1
2W (x,y)μ0(y)

∫
e−2βV (y)μ0(y)

and then repeat the previous argument to both integrals appearing in the right-hand
side. ��
Next, consider the case when � has an isolated singularity at the origin, i.e., �

is locally bounded on the complement of the origin. Then one gets the following
concrete bound, expressed in terms of the integrability threshold c0(�) of � on
a ball Bε centered at the origin in C

n of sufficiently small radius ε (discussed in
Remark 8.2).

Proposition 8.9. Let X be a compact subspace of Cn and assume that � has an
isolated singularity at the origin and that V and �0 are bounded. Then, for any
sufficiently small ε

max
N≥2

{βN ,c, βc} = −1

2
c0(�) < 0.
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Proof. The assumptions ensure that the bounds 8.5 in Lemma 8.5 hold iff the sup

is replaced with an integral, i.e., iff Z2,β0 < ∞ iff
∫
Bε

eβ0
1
2ψdλ < ∞ (as seen by

changing variables as in the first equality in formula 8.10). Hence, we can conclude
using the very definition of c0(�). ��
In fact, as discussed in Remark 8.2 it is enough to assume that PSH(Cn). The
invariant c0(�) plays a key role in current complex geometry and can be estimated
from below in terms of certain multiplicities (expressed as local intersection num-
bers) [25]. In the “algebraic” case in formula 1.11, the integrability threshold c0(�)

coincides with the log canonical threshold at 0 ∈ C
n of the ideal in the polynomial

ring C[z1, .., zn] generated by the corresponding polynomials Pj (z) [47].

Example 8.10. The log canonical threshold canbe computedusing algebro-geometric
techniques. For example, when �(z) = log

(|z1|2α1 + ... + |zn|2αn
)
for positive

real numbers αi one gets c0(ψ) = 1/α1 + ... + 1/αn [47, Example 1.9].

In the simplest case when � is “algebraic quasi-homogeneous” of degree d
(Example 2.5) with an isolated singularity at the origin (i.e., the zero locus of cor-
responding polynomials Pj only intersect at the origin), we have, by homogeneity,
that

� = d log |z|2 + ϕ(z),

for a positive number d and a continuous functionϕ,which descends to the compact
quotient (Cn+1 + {0})/C∗

a and is thus bounded. In this case, it thus follows from
Prop 8.6 that

βN ,c = βc = 4n

d
.

A wide variety of such � may be obtained by taking Pi = ∂ f (z)/∂zi for given
quasi-homogeneous polynomial f with an isolated degenerate zero at the origin in
C
n . Then �(z) can be expressed in terms of a Ginzburg–Landau-type potential:

�(z) = log

(
∑

i

| ∂ f

∂zi
(z)|2

)
,

so thatW (z, w) is the standard logarithmic interaction precisely when f is propor-
tional z21 + ... + z2n .

8.4. Existence of Maximum Entropy Measures

Combining Prop 8.8 with the results in Sect. 4.1 yields the following existence
result:

Proposition 8.11. Consider the Main Assumptions when X is compact. Then, for
any e ∈]emin, e0[ there exists a maximum entropy measureμe. If moreover W (x, y)
is assumed translationally invariant (up to a bounded term), then there exists a
maximum entropy measure μe for any e ∈ [e0, emax [. In particular, this is the case
under the Homogeneous Assumptions.
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Turning to the non-compact case we recall that, under the Main Assumptions,

μ0 = e−�0dλ

for �0 ∈ PSHa(X). As a consequence, if �0 is also assumed to be a continuous
exhaustion function (which is automatically the case if�0 is rotationally invariant),
then Prop 4.8 implies the following

Proposition 8.12. Consider the Main Assumptions and assume that �0 is contin-
uous exhaustion function and that the growth assumption 4.2 holds for a φ0 such
that φ0/�0 → 0 uniformly as |x | → ∞. If W (x, y) is assumed translationally
invariant (up to a bounded term), then there exists a maximum entropy measure μe

for any e ∈]emin, emax [.
Proof. According to Prop 4.8, we just have to verify that

∫
eδ�0μ0 < ∞for some

δ > 0. But this follows from openness property in Cor 8.1. ��
For example, the previous proposition applies when X = R

2n endowed with a
centeredGaussianmeasure, V = 0 andW is of the “algebraic quasi-homogeneous”
form in Example 2.5.

9. Strict Concavity of S(e)

In this final section, we show how to deduce a stronger strict concavity result
for S(e) under the Homogeneous Assumptions, using a uniqueness result for mini-
mizers of Fβ shown in the companion paper [8]. The starting point is the following
criterion for the strict concavity of S(e) in the high-energy region:

Proposition 9.1. Assume that X is compact and that Fβ has a unique minimizer on
P(X) for anyβ ∈]βc, 0[. If the energy approximation property holds and E(μβ) →
emax as β → βc, then S(e) is strictly concave on ]e0, emax [ (in particular, this is
the case if E(μ) is continuous on P(X)).

Proof. As pointed out in the proof of Prop 5.3, the uniqueness assumption implies
that F(β) is differentiable. Thus, we can conclude by applying Lemma 1.1. ��
In the case of the point vortex model, the uniqueness assumption in the previous
proposition (and the energy approximation property) holds on any simply connected
compact domain X [15]. Moreover, by the concentration/compactness alternative
established in [15], the blow-up property holds iff μβ j converges weakly toward
a Dirac mass (such domains X are called domains of the first kind in [15]). The
following result is shown in [8]:

Theorem 9.2. (Uniqueness) Let X be a ball centered at the origin in R
2n or all

of R2n . Assume that W and V satisfy the Homogeneous Assumptions and that
v + βψ0 is strictly concave wrt logr when r > 0 for a given β < 0. Then any
minimizer of Fβ(μ) is uniquely determined. If the latter assumption is replaced
by the assumption that W (x, y) is a weakly positive definite kernel and that w(r)
is strictly increasing, then minimizers are uniquely determined modulo translation
when X = R

2n and unique when X is a ball.
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We finally arrive at the following

Theorem 9.3. Under the Homogeneous Assumptions, the entropy S(e) is concave
for e > E(μ0) and strictly concave if X is a ball and either v is strictly concave
wrt logr or w is strictly increasing for r ∈]0,∞[. If moreover W (x, y) is a weakly
positive definite kernel, then S(e) is strictly concave on ]emin, emax [.
Proof. First consider the case when X is compact and W, V and �0 are continu-
ous and v is strictly concave wrt logr, when r > 0. Then the strict concavity of
S(e) follows directly from combining the previous theorem with Lemma 5.2 (and
similarly if w is strictly increasing), using that the energy approximation property
holds under the Main Assumptions and hence also under the Homogeneous As-
sumptions. Next, if v is not assumed strictly concave wrt logr, we replace v with
v + εr. Then the corresponding entropy Sε(e) is concave and letting ε → 0 reveals
that S(e) is also concave. The general case is then deduced from the previous case
using the approximation arguments employed in the proof of Theorem 6.9. Finally,
ifW (x, y) is weakly positive definite, then by Prop 5.3 S(e) is also strictly concave
on ]emin, e0[ and continuous on ]emin, e0]. This means that S(e) is strictly concave
on both ]emin, e0[ and ]e0, emax [. Since S is continuous on ]emin, emax [ it follows
that S is strictly concave on ]emin, emax [. (Indeed, otherwise it would be affine on
some open interval in ]emin, emax [ which would contradict the strict concavity on
]emin, e0[ or ]e0, emax [.) ��

10. Appendix

In this appendix, we provide, for the convenience of the reader, some proofs of
essentially well-known results stated in Sect. 2 and the proof of Lemma 7.4.

10.1. Proof of Lemma 2.1

Assume that f is not strictly concave in the interior of [y0, y1]. Then there
exists an open interval I ⊂]y0, y1[ such that f ∗ is affine on I. In particular, there
exists a number a such that f ′(y) ≡ a on I. Note that a ∈ [x0, x1]. Indeed, since f
is concave (∂ f )(] − ∞, x0]) � {y ≥ f ′(x0)} and (∂ f )([x1,∞[) � {y ≤ f ′(x1)}.
Hence, by 2.2, x ∈ [x0, x1] and since a ∈ (∂ f )(y) for any y ∈ I it follows from
2.2 that I ⊂ (∂ f )(a), showing that f is not differentiable at a.

10.2. Proof of Lemma 2.2

First observe that f ∗∗ is continuous onU. Indeed, f ∗∗ is concave (since it is an
inf of affine functions), and hence, it is enough to check that f is finite on U. But
f ∗∗ ≥ f and by assumption f > −∞ onU. Moreover, by assumption there exists
a constant C such that f ≤ C. Since the constant function C is a contender for
the inf in formula 2.4 it follows that f ∗∗ ≤ C, showing that f ∗∗ is finite and thus
continuous onU. As a consequence, � := { f ∗∗ > f } ∩U is open inU. Now fix a
point x0 ∈ �. Since � is open there exists x0,± in � such that x0,− < x0 < x0,+.

Moreover, since f is uscwemay assume that the affine functiona(x) on [x0,−, x0,+]
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with prescribed boundary values a(x0,±) = f ∗∗(x0,±) satisfies f (x) < a(x) on
[x0,−, x0,+]. Hence, the continuous function f̃ defined as f on the complement of
[x0,−, x0,+] and as a(x) on [x0,−, x0,+] is concave on R and satisfies f̃ ≥ f. But
then it follows that f̃ = f, by formula 2.4.

10.3. Proof of Lemma 2.3

The function ρ := − log(−φ) on � is, clearly, an exhaustion function. More-
over, ρ is psh. Indeed, fix z0 ∈ � and z ∈ C

n and consider the restriction of ρ to
the complex line w 	→ z0 + wz, parametrized by w ∈ C. First assume that φ is
smooth at z0 and factorize the Laplacian on Cw in the standard way, � = 4∂w∂w̄.

We get

∂w∂w̄ρ = −∂w

(
∂w̄(−φ)

−φ

)
= ∂w

(
∂w̄φ

−φ

)

= ∂w∂w̄φ

−φ
− ∂w̄φ∂w(φ−1) = ∂w∂w̄φ

−φ
+ ∂w̄φ∂wφ ≥ 0 + 0.

Hence, w 	→ ρ(z0 + wz) is subharmonic close to z0. The subharmonicity in the
general case is shown in a similar way using either distributional derivatives or
a regularization argument. Finally, denoting by ρY a continuous psh exhaustion
function of Y the maximum of ρ and ρY defines a psh exhaustion function of
{φ < 0} ∩ Y. Indeed, in general, the maximum of two psh functions is still psh (as
follows from the corresponding standard result for subharmonic functions).

10.4. Proof of Lemma 7.4

Since ψ(z, w) is locally bounded from above, it will be enough to consider the
complement of the diagonal in D × D (using that the diagonal is pluripolar [23,
Thm 5.24]). In this region, log(|z−w|2) is pluriharmonic, i.e., its complex Hessian
vanishes (since log |ξ |2 is harmonicwhen ξ �= 0). Hence, the complexHessian ∂∂̄ψ

coincides with ∂∂̄ applied to − log |1− zw̄|2, i.e., to − log(1− zw̄)− log(1− z̄w).

Accordingly, a direct computation yields

∂∂̄ψ(z, w) =
(

0 (1 − z̄w)−2

(1 − zw̄)−2 0

)
,

∂∂̄ (φ(z) + φ(w)) =
(
2(1 − zz̄)−2 0

0 2(1 − ww̄)−2

)
.

In particular, when λ = 1/2 we get

∂∂̄ (ψ(z, w) + λ (φ(z) + φ(w))) =
(

(1 − zz̄)−2 (1 − z̄w)−2

(1 − zw̄)−2 (1 − ww̄)−2

)

Since the trace of this Hermitian matrix is manifestly nonnegative the matrix is
semi-positive definite iff its determinant is nonnegative. But the determinant is
nonnegative iff
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(1 − zz̄)2(1 − ww̄)2 ≤ (1 − zw̄)2(1 − z̄w)2 ⇐⇒ (1 − zz̄)(1 − ww̄) ≤ (1 − zw̄)(1 − z̄w),

which in turn is equivalent to−zz̄−ww̄ ≤ −zw̄ − zw̄ and hence also to the trivial
inequality 0 ≤ |(z − w)|2. The same computation also reveals that when λ < 1/2
the determinant is negative at (z, w) = (0, 0) and hence also at any point in the
complement of the diagonal in D × D which is sufficiently close to (0, 0).
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