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Abstract
Recent advances in machine learning enable new, intel-

ligent applications in the Internet of Things. For example,
today’s smartwatches use Deep Neural Networks (DNNs) to
detect and classify human activities. The training of DNNs,
however, is done offline with previously collected and la-
beled datasets using extensive computational resources such
as GPUs on cloud services. Once being quantized and de-
ployed on an IoT device, a DNN commonly remains un-
changed.

We argue that this static nature of trained DNNs strongly
limits their flexibility to adapt to requirements that change
dynamically. For example, the device may need to adjust on
the fly to the limited memory and energy resources, but only
the retraining or pruning of the DNN in the cloud can ad-
dress these issues. Moreover, the user may need to add new
classes or refine existing ones, due to different problem do-
mains materializing dynamically. Retraining DNNs requires
a high volume of data collected from IoT devices and trans-
mitted to the cloud. However, IoT devices depend on energy-
efficient communication with limited reliability and network
bandwidth. In addition, cloud storage of extensive IoT data
raises significant privacy concerns.

This paper introduces MiniLearn that enables re-training
of DNNs on resource-constrained IoT devices. MiniLearn
allows IoT devices to re-train and optimize pre-trained,
quantized neural networks using IoT data collected during
deployment of an IoT device. We show that MiniLearn
speeds up inference by a factor of up to 2 and requires up
to 50% less memory compared to original DNN. In addition,
MiniLearn increases classification accuracy for a sub-set by
3% to 9% of the original DNN.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Deep Learning, Measurement, Performance

Keywords
TinyML, On-Device Learning, Low-Power

1 Introduction
Compression methods for Deep Neural Networks

(DNNs) like quantization and pruning [35, 16] enable intel-
ligent applications on resource-constrained devices [16, 21,
28]. Today, smartwatches and fitness-tracker employ DNNs
to detect and classify the activities of their users (Human
Activity Recognition [18]) and voice-controlled virtual as-
sistants such as Amazon’s Alexa utilize DNNs on IoT de-
vices to spot keywords [7]. However, training, optimization,
and compression of DNNs are commonly conducted before
deployment. The training process uses previously collected
and labeled datasets and often employs vast computational
resources like GPUs or even cloud services. Once deployed,
DNNs commonly remain unchanged.

Should the underlying tasks change during deployment
due to, for example, problem domain shifts or just the need
for additional classes in a classifier, DNNs are commonly
re-trained in the cloud. In addition, the device may need to
adjust on the fly to the limited memory and energy resources,
but only the re-training or pruning of the DNN in the cloud
can address such issues. For example, when a user uses her
smartwatch only for one or two activities, it would be better
to act proactive and optimize the DNN for a subset of activi-
ties (and have low demand for resources) than instead disable
the DNN when the battery is low, or memory is almost full.

The re-training of DNNs follows the traditional offline
training approach and commonly requires uploading new
datasets to cloud devices and training a new model, which
is deployed on the IoT device. This is due to the follow-
ing two reasons: (A) Training and refinement are both ex-
pensive in terms of memory and computation, and thus, to-
day, avoided on resource-constrained IoT devices. Deep neu-
ral networks have millions of trainable parameters, while
resource-constrained IoT devices have constrained memory,
such as 64-256 KBs of RAM, run at a speed of 32-64 MHz
CPU, and often operate on batteries, which rules out the
training of an entire neural network from scratch. (B) Many
optimization methods such as pruning [20] and quantiza-
tion [14] consider deep neural network compression as the
final step and make re-training of the network prohibitively



hard: typically deployed low-bit, integer networks on IoT
devices (i.e., 8-bit quantization) work very well for inference
but face challenges such as vanishing gradient problems on
gradient descent learning algorithms [3, 14]. Offline training
leads to significant communication overhead and often also
privacy concerns, when personal data is uploaded as part of
the training data to, for example, GPUs in the cloud.

In this paper, we argue that in many application settings,
the privacy-preserving way of re-training on the constrained
IoT device is beneficial for the device and user, outweigh-
ing the common approach of uploading data to the cloud
for training. We introduce MiniLearn, an open-source archi-
tecture training DNNs on constrained microcontrollers, filter
pruning, and fine-tuning. It addresses the above challenges
as follows: First, MiniLearn stores intermediate compressed
outputs of quantized layer(s) as training samples to reduce
memory requirements. Second, MiniLearn uses pre-trained
quantized neural networks to initialize floating-point hidden
layer(s) and reduces their size with static pruning. Third, af-
ter training, we quantize and fine-tune the layer(s) back to
integers. A (re)trained neural network in MiniLearn consists
of re-trained, quantized, and pruned layer(s).

In summary, this paper makes the following key contribu-
tions:

• We show that low-power IoT devices can re-train and
optimize pre-trained networks using data locally with-
out the need for privacy-sensitive and communication
intense data-upload to, i.e, cloud services for training.
Moreover, we reduce memory consumption and infer-
ence latency with increased accuracy when re-training
for a subset of classes.

• We design and implement MiniLearn, an open-source1

on-device learning system for low-power IoT devices,
and present the challenges and trade-offs regarding on-
device learning on resource-constrained devices.

• We quantify the performance of MiniLearn in terms of
accuracy, computation, memory, and energy consump-
tion. Notably, we find that after MiniLearn, we can re-
duce the neural network’s inference time up to 48% and
memory up to 50%, with increased accuracy by 3% to
9% for a subset of the original network.

Paper outline. The rest of the paper is organized as fol-
lows. Section 2 provides the necessary background and
related work. Section 3 overviews the main challenges for
on-device learning. Section 4 explains the architecture of
MiniLearn and shows how we address the challenges of on-
device learning. Section 5 describes the methodology of our
experiments. Section 6, presents our experimental results
Section 7, presents the related work, and Section 8 concludes
the paper.

2 Background
A typical deep neural network consists of the input and

several hidden layers, with a final linear output providing the
class prediction. While many types of neural networks exist
(i.e., recurrent and convolutional), convolutional layers have
prevailed since they can also solve traditional tasks of re-

1available after publication
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Figure 1. A representative architecture of a Convolution
Neural Network (CNN) typically found on low-power IoT
devices. The CNN consists of several layers stacking to-
gether: convolution kernels, max pooling, and fully con-
nected (flatten & dense). The final layer is the output for
the classification task.

current networks. For example, a problem of audio recog-
nition can be classified using a 2D-convolutional hidden
layer(s) [11], and Human Activity Recognition (HAR) can
be classified using 1D-convolutional hidden layers [18]. An
example of a typical Convolutional Neural Network (CNN)
for IoT devices is illustrated in Figures 1.

Optimizing and compressing deep neural networks be-
fore embedded system deployment is common due to oth-
erwise high memory, computational, and energy require-
ments. A common compression method is int-8 quantiza-
tion [35] by using an 8-bit fixed-point representation of orig-
inal floating-point values. It reduces the size without chang-
ing the original architecture of the network. Quantization
typically rescales the min-max range of the neural network’s
weights and introduces a shifting offset for the zero-point as
it may be different from real numbers after quantization. The
pre-quantized network still needs to be trained in high-level
libraries on high-end computers. This has led to two main
variations of quantization: post-training and quantization-
aware training.

Post-training quantization. With this method [16, 21,
8], the deep neural network is trained as usual in floating-
point using a standard available library (e.g., Tensorflow, Py-
Torch). After the training period, we can use quantization
statically on the network by finding a new min-max range
for integer weights based on already-trained layers. This
method may need a representative data set to calibrate and
fine-tune the weights based on the outputs of the activation
layers. This fine-tuning is a one-time process before the de-
ployment on the IoT device.

Quantization-aware training. Quantization aware train-
ing method [14] simulates the quantization by making it part
of the training process to learn the quantization values au-
tomatically. The method requires the duplication of weights
for each layer in two formats. One format is in the regular
32-bit floating-point, and the other is the equivalent quan-
tized 8-bit values. During the forward pass, it uses the integer
precision layers to calculate the output of the network to sim-
ulate the deployment on the IoT device. However, during the
backward pass, it uses the floating-point values to calculate
the gradients and updates of the network. Then, it quantizes
the floating-point weights and replaces the previous integer
values. As the quantization error becomes part of the learn-
ing process, the method can lead to increased accuracy of
the final quantized network. However, with this method, the
quantization parameters become part of the training hyper-
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Figure 2. The main structure of MiniLearn and how to ad-
dress the three main challenges. First, during the forward
pass, it stores the output of the first layer in int-8 format,
while during training, it dequantizes one batch at a time to
floating point. Second, it dequantizes the filters to float-
ing point and applies static pruning to reduce the number of
trainable parameters. Third, it trains the convolutional layers
and fine-tunes the Fully Connected (FC) layers.

parameter that we need to manually tune and expect different
results depending on the training process.

Pruning. Another compression method is the pruning of
either the weights or filters [20, 22] of the network. The main
idea is to identify and remove redundant parts of the net-
works, categorized in two different methods: weight pruning
and filter pruning. Weight pruning [22] targets redundant ze-
roes and model sparsity by creating more dense layers. In
contrast, filter pruning [20] considers convolutional filters as
blocks and removes filters that do not contribute enough to
each layer’s output.

Inference. Inference with IoT devices has become widely
available, for example, ARM CMSIS-NN [16] and Tensor-
flow Micro [8] offer libraries for quantized neural network
inference on low-power devices. The libraries can optimize
the neural networks for low-power inference hardware (e.g.,
Cortex-M, ESP), and may increase performance by utiliz-
ing available on-board DSP accelerator. However, the neural
networks are trained and quantized in the cloud (typically
with post-training quantization as described above).
3 MiniLearn Overview

This section describes the motivation behind MiniLearn.
First, we introduce a motivational application scenario where
we need on-device learning. Second, we present the data
flow, training steps, and system challenges to enable training
and fine-tuning on low-power IoT devices.
3.1 Application Scenario

As a motivating scenario, we consider a smartwatch ap-
plication tracking users’ health and fitness progress from ex-
ercise. In the past, most of the data analysis happened in
the cloud, but with recent advances, we see parts of infer-
ence happen locally on the device. The smartwatch has a
pre-trained network based on generic data engaging in var-
ious activities and sports. With MiniLearn, we envision a
scenario where the local user shifts her activities to a smaller
group of activities after using the device for a while. While
the user engages in activities, the device creates a training
set using the hidden layer outputs and labeling either by us-
ing another sensor or asking the user through user interac-

tion. When the training set is filled with enough data (typi-
cally 100-600), it initiates the retraining and fine-tuning of
the neural networks with appended Fully Connected (FC)
layer(s). The local training set never leaves the device, and
the cloud provider does not acquire any personal data, pre-
serving the privacy of the user.
3.2 Data Flow

In Figure 2, we illustrate the flow of data collection and
training process. First, a device sensor or user provides the
label during the forward pass, and MiniLearn stores the pair
of the label/output of the last hidden layer in a local data set.
The process continues as long the device has enough stor-
age for the training samples. In the second step, MiniLearn
initiates the training process after collecting enough training
data.
3.3 Training Steps

MiniLearn achieves on-device learning by filter pruning
and learning to low-power IoT devices in three steps, illus-
trated in Figure 2. First, it utilizes efficient memory storage
by collecting and storing the quantized hidden layer outputs
(suitable for de-quantization) in integer format. Second, it
uses floating-point hidden layers to allow training with gra-
dient descent algorithms. Third, it de-quantizes the training
data only during training, which combines a low memory
footprint and adequate gradients for learning.
3.4 System Challenges

We identify three main system challenges when design-
ing MiniLearn. First, common deep learning algorithms de-
pend on a significant number of training samples that re-
quire resources unavailable on common IoT devices. Sec-
ond, neural networks are typically quantized on low-power
IoT for efficiency, and reversing the quantization to enable
additional learning on existing neural networks is not well-
studied [9]. Third, even quantized neural networks have mil-
lions of parameters, and additional training requires signifi-
cant resources.

(1) Training samples. First, on-device learning needs
to optimize the data storage of training samples to address
memory limitations, together with computational and energy
trade-offs. For example, a typical batch of 32 images of the
popular CIFAR-10 data set will occupy 128 KB, a significant
amount for a low-power device. Typically most data sets are
collected with high-dimensional features on the cloud, where
data pre-processing and reduction may happen. Cloud ser-
vices have an abundance of resources, and they can utilize
pipelines and distributed nodes for data processing. In con-
trast, the local data of IoT has limited capabilities for pre-
processing high-dimensional data.

(2) Learning based on quantized layers. Second, deep
neural networks on low-power IoT are typically quantized
to address memory and computational constraints. Quanti-
zation is straightforward and is adequate for inference-only
tasks, but utilizing or reversing already quantized layers for
additional learning is an open challenge [9, 3, 14]. The main
reason is that after quantization, most hidden layers are re-
strained by the low dynamic range and precision. Since the
training process of neural networks commonly uses gradi-
ent descent algorithms [3], without applying a technique to
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Figure 3. MiniLearn reverses the quantization for training
purposes. The figure shows the forward pass on a quantized
layer and the dequantization operation over one sample. In
paractice MiniLearn applies the operation on a collection of
samples during training. The shift operator makes sure the
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reverse or extend parts of the quantization, it leads to inade-
quate results [14].

(3) Number of training parameters. Third, typically
deep neural networks have millions of parameters to be
trained. On-device learning needs to incorporate methods
to reduce the number of parameters without compromising
the model’s accuracy. However, standard methods (e.g., neu-
ral architecture search, pruning) for removing parameters are
iterative approaches [23, 20] that find the optimal configura-
tion through several possible architectures by storing check-
points and then choosing the one performing the best. This
is unfeasible using resource-constrained devices that depend
on KBs of memory and batteries to operate.

4 MiniLearn Design
MiniLearn’s main objective is to provide on-device learn-

ing using personalized IoT data. MiniLearn retrains neural
networks towards the end-user preferences without cloud in-
teraction by keeping the data on the device and preserving
the user’s privacy.

Our design is based on two key observations. First, we
can reduce the training memory requirements, by dynami-
cally collecting intermittent outputs of hidden layers in in-
teger precision and dequantize (see bellow) to floating-point
precision only during training. This approach provides a suf-
ficient dynamic range for calculating gradients during back-
propagation, avoiding duplicated weights. Second, training
hidden layers in floating precision while keeping the pre-
trained network in integer format reduces the demand for
computational and energy resources without affecting the
overall learning process.

Dequantization. To address the resource-constrained de-
vices, we enforce the optimization and the proper placement
of the dequantization process. In Figure 3, we present in de-
tail where we collect the intermittent outputs and which op-
erations are involved. We collect the output before applying
ReLU to avoid consecutive zeros. Due to quantization, the
pre-trained networks apply Q-shift, an offset of the differ-
ence between the integer domain’s zero-point and real num-

bers (as explained in Section 2). We need to reverse both the
min-max scale factors between integer and real numbers and
shift back and reverse the zero-point offset. A key observa-
tion is that the division is a power of 2 which can also be
done using bit-shifting, and most cross-compilers can highly
optimize and combine these operations.

4.1 MiniLearn Architecture
In this section, we explain in detail the main parts of

the MiniLearn architecture that address the three challenges
stated above.

(1) Sample Storage First, MiniLearn addresses mem-
ory constraints by collecting intermediate outputs of the first
layer(s) in their compressed quantized (int-8). We divide the
samples into a training set for the hidden layer(s) and a tun-
ing set for the fully connected layer(s) (see part 3a-b). The
samples are restored to floating-point only during training
using the scale factors from quantization.

(2) Network architecture. MiniLearn avoids dynamic
range and precision problems by trading-off memory for
floating-point precision for both the hidden layer(s) and fully
connected layers during training. The first step is to dequan-
tize the filters of hidden layers and prune them in case of
memory constraints. We apply proper static pruning to avoid
iterative approaches using standard filter ranking methods
(e.g., based on the L1 - L2 norm). We let the fully con-
nected layers compensate for the filter reduction by a final
fine-tuning for a few extra epochs. Finally, we modify the
fully-connected layers from the initial network to have the
number of neurons corresponding to the subset we want to
optimize.

(3a) Filter training. MiniLearn is able to use standard
training algorithms and reduce the number of parameters
with a two-step approach. We represent convolutional filters
and fully connected layers with 32-bit floating-point, but we
apply pruning on the filters. This way, we can train with
back-propagation and min-batch stochastic gradient descent,
and at the same time reduce the number of trainable param-
eters. For calculating the loss of the network, we use cross-
entropy. We use small batches to dequantize and temporarily
store the input samples (collected from the first layer) in a 32-
floating point. After training, we quantize the convolutional
filters back to integer so as to address the device’s memory
and computational limitation during inference.

(3b) Fine-tuning. MiniLearn compensates for filter prun-
ing quantization with a final fine-tuning on the fully con-
nected layer(s). This step is necessary as prior pruning and
quantization introduce some loss of information. The previ-
ous layers are frozen during this step, and the only trainable
parameters are from the fully connected layers. The com-
plete algorithm is presented in Algorithm 1, explained in de-
tail in the next section. The final network consists of un-
changed pre-trained layers(s), the re-trained and quantized
convolutional layer(s), and floating-point fully connected
layers.

4.2 MiniLearn Stages
In this section, we explain in detail the MiniLearn learn-

ing algorithm stage by stage. There are three main compo-
nents involved: a) Pruning and filter selection, b) Re-training



Algorithm 1: MiniLearn Algorithm
Data: Training Set, Fine-tuning Set

1 Stage-I:Pruning
2 for Convolutional-layer in Network do
3 for Filter in Convolutional-layer do
4 FilterScores[i] ¡- Norm L2 (Filter) ; //select filters
5 end
6 Pruning (Percentage, FilterScores)
7 end
8 Stage-II: Training Filters
9 for epoch e = 1, ... , E do

10 for Sample in Training Set do
11 // 32-bit floating point format
12 Y (i),X (i) := de-quantize (Sample, Q-factors);
13 Y ( j) := Forward (Hidden-layers, X (i));

14 delta := −
m

∑
i=1

yilog(y j) // cross entropy loss

15 Back propagation (Hidden-layers, delta);
16 end
17 end
18 for Filter in Convolutional-layer do
19 Quantize (Filter, Q-factors) ; //quantize filters back to int
20 end
21 Stage-III: Fine-Tuning
22 FC := Randomized Fully Connected Layer(s)
23 Freeze (Hidden-Layers) // no updates prior to FC
24 for epoch e = 1, ... , E do
25 for batch b in Fine-Tuning Set do
26 // 32-bit floating point format
27 Y (i),X (i) := de-quantize (b, Q-factors);
28 Y ( j) := Forward (FC, X (i));

29 delta := −
m

∑
i=1

yilog(y j) // cross entropy loss

30 Back propagation (FC, delta);
31 end
32 end

and adjusting the filters, and c) Final fine-tuning.

4.2.1 Dequantizing and pruning of filters (Stage-I)
The primary purpose of pruning is to address the mem-

ory constraints of the device. We use the L1 norm of each
filter-matrix as a static method for selecting the convolution
filters. Other options include L2 and Max norm. In the case
of dequantized weights, filters with smaller L1 norm result
in relatively small activations implying that they are less sig-
nificant for the networks [20].

We keep intact the first convolution layer(s) in integer for-
mat to retain compressed inputs for the network. The choice
of which layer to freeze and re-train is a hyperparameter of
the algorithm. Next, we define a floating-point hidden con-
volutional layer(s) and initialize their weights by convert-
ing the quantized values back to float-point using their scale
factors. Similarly, we define floating-point fully connected
layer(s) based on the pre-trained network, but we reduced
the output neurons to the number of sub-classes we want to
optimize.

Filter pruning has a cascade effect, where pruning a prior
layer reduces the input dimension of the next layer. This
creates two implicit memory reductions. First, we reduce
memory space from the fully connected layer(s), as they di-

rectly multiply their weights with the input. Second, the size
of intermittent hidden layer(s) results is reduced due to filter
dimension reduction.

4.2.2 Training the filters (Stage-II)
The second step is to train the floating-point convolutional

filters using the training set collected by the IoT device. The
samples consist of pre-computed outputs of the first convo-
lution filter(s) in int-8 format. We convert each sample to
a floating-point format during training per batch size. This
way, we do not have to store the complete training data in
floating-point. We train using the standard backpropagation
algorithm with mini-batch stochastic gradient descent. We
keep a small learning rate, and we need to use a small train-
ing set in this stage. The filters are initialized based on pre-
trained weights, and we only need to tune the filters for the
subset of classes we want to optimize.

4.2.3 Fine-tuning (Stage-III)
The final step is to quantize back the pruned convolu-

tional filters from floating-point to int-8 to utilize optimized
libraries during inference. We use the scale factors used in
Stage-I in reverse order to convert them back to int-8 val-
ues for each filter. Together with the prior pruning, this step
introduces some loss of information. To compensate, we per-
form a final fine-tuning using only the fully connected layer
that we keep in floating-point for the final deployment. How-
ever, we randomly initialize the weights to find a new min-
imum as the network weights have shifted. The training al-
gorithm is the same as Stage-II, with the difference that we
train only the fully connected layer with the fine-tuning set,
and we forward-pass through the new weights of the convo-
lutional filters. The final network consists of the pruned and
quantized convolutional filters with the newly trained fully
connected layer(s).

5 Experimental Methodology
In this section, we describe the methodology of our ex-

periments. Connecting with the application scenario in Sec-
tion 3, the goal of the evaluation is to show the trade-offs of
optimizing a pre-trained neural network (e.g., activity recog-
nition with a smartwatch) to a sub-set of classes (two or three
activities) and reducing the demand for resources of the IoT
device. We start with software and hardware implementa-
tion, and then we present the datasets, baselines, and pre-
trained network architectures.

Software & hardware setup. We use deep neural net-
works pre-trained in PyTorch and Python 3.8. We use the
PyTorch MinMax Quantization to extract the 8-bit integer
weights. We implement MiniLearn in C, and we compile
our code using the Arm-GCC 9.2.1. for Cortex-M hardware.
Finally, we utilize the CMSIS-NN [16] library for inference
on IoT devices. We evaluate MiniLearn on nRF-52840 SoC
featuring: a 32-bit ARM Cortex-M4 with FPU at 64 MHz,
256 KB of RAM, and 1 MB of Flash. We use the Nordic-
Semiconductors Power Profiler Kit (PPK) shield [27] to ac-
curately measure the power consumption.

Data sets. We use three representative datasets, one for
audio recognition, one for color-image recognition, and one
for human activity recognition.



Table 1. Networks used in the experiments. The table shows the shape size, computations in terms of multiply-accumulate
(MAC), and the layer output in Bytes for each layer.

Pre-trained Network on KWS

Layer Shape MAC Output

Input (62, 12, 1) - 744
Conv1D (58, 8, 16) 0.19M 7,424
MaxPool (29, 8, 16) 0.06M 3,712
Conv1D (27, 6, 32) 0.75M 5,184
MaxPool (13, 6, 32) 0.03M 2,496
Conv1D (11, 4, 64) 0.81M 2,816
Conv1D (9, 2, 32) 0.33M 576
FC (576, 35) 0.03M 35

Pre-trained Network on CIFAR-10

Layer Shape MAC Output

Input (32, 32, 3) - 3,072
Conv2D (30, 30, 32) 1.55M 28,800
MaxPool (15, 15, 32) 0.07M 7,200
Conv2D (13, 13, 32) 1.11M 5,408
MaxPool (6, 6, 32) 0.02M 1,152
Conv2D (4, 4, 32) 0.73M 512
FC (512 , 10) 0.03M 10

Pre-trained Network on WISDM

Layer Shape MAC Output

Input (90, 3, 1) - 270
Conv1D ( 90, 32 ,1 ) 0.03 2,880
Conv1D ( 90, 32 , 1 ) 0.03M 2,880
Conv1D ( 90, 32 ,1 ) 0.03M 2,880
FC (96, 128) 0.03M 12,288
FC (128, 6) 0.03M 6
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Figure 4. Average accuracy using MiniLearn with different pruning percentages on KWS 4a, CIFAR 4b, and WISDM 4c. The
original baseline is the pre-trained network test on the sub-set, and cloud represents sending data and retraining in the cloud.
The shaded area represents the standard deviation.

CIFAR-10: A widely used image classification dataset.
The dataset consists of 60,000 32x32 color images, where
50,000 are for training and 10,000 for testing. There are
ten classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

Google Keyword Spotting (KWS) [33] (v2): The dataset
contains 110,000 audio samples with a total of 35 classes.
Each audio sample is a keyword recorded as a speech com-
mand of a small duration. We make the following common
pre-processing to create images from audio files [11]. We
generate 2D images by taking the time window of the audio
(timestamp) as the width and Mel-frequency cepstral coeffi-
cients (MFCC [11]) as height. The window size is 31.25 ms
with a moving step at 16.125 ms. The data set is divided into
85,000 training samples and 11,000 test samples in total.

WISDM-HAR. Wireless Sensor Data Mining
(WISDM) [15] is a human activity recognition data
set. The data are collected and labeled by using accelerom-
eters of Android-based cell phones. It has six classes
(activities) stored as time series: 1) walking, 2) jogging,
3) walking upstairs, 4) walking downstairs, 5) sitting, 6)
standing. The data type is a time series of signals needing
pre-processing before use. Our experiments parse the data
per 128 time-step and apply min-max normalization over the
nine-axis (final dimension 128x9), leading to 7,300 training
samples and 3,000 testing samples.

Class subsets. We generate subsets from the initial classi-
fication domains for our experiments as follows. For CIFAR-
10, we reduce from 10 to 3 classes. For KWS, we reduce

from 35 to 5 classes. For WISDM-HAR, we reduce from
6 to 3 classes. The number of classes reflects the memory
constraints of the device; for more classes, we will need
to extend the device’s hardware capabilities. We kept data
samples (100 - 600) data separate while training the baseline
network and we use the separate data for retraining and fine-
tuning with MiniLearn. We repeat our experiments over 30
times, randomly drawing a subset of unique (with no replace-
ment) 3-classes for CIFAR, 3-classes for WISDM-HAR, and
5-classes for KWS subsets, respectively. The training sets
on the device (MiniLearn) are used by 10% for filter train-
ing and 90% for fine-tuning across all experiments. We re-
port the average accuracy as percent (%) over the test-set and
standard deviation as ±.

Baselines. We compare the accuracy of MiniLearn on
IoT devices with two baselines. a) Accuracy we would have
obtained if we used the Original pre-trained network tested
on the subset classes. This baseline represents the current
approach of pre-deployed neural networks on IoT devices
without learning capabilities. b) Accuracy we would have
obtained if we retrain and download a new model from the
cloud services optimized for the 3-class and 5-class subset,
respectively. This cloud baseline represents the ideal case
where the cloud has access to previous models and as well
all-new personal IoT data sent by the device, and it acts as
an upper bound, as arguably, the cloud service has access to
a wide range of training and optimization methods.

Pre-trained neural networks Our experiments use three
pre-trained and quantized neural networks [11] reported in



Table 1. We report the shape size for each layer: Convolu-
tional 1D & 2D, MaxPooling, and Fully Connected. We also
report the Multiply-Accumulate operations (MAC) per cycle
(in Millions) and the size of the layer output in Bytes.

Data & code availability. We provide the source code
and evaluation data of MiniLearn in a public repository.2

6 Results & Discussion
This section presents the results of our MiniLearn evalu-

ation on low-power IoT devices. We answer the following
questions. (a) Is it feasible to re-train and improve existing
deployed deep learning networks with on-device learning?
(b) What is the performance of on-device learning applied to
low-power devices? (c) What is the overhead of MiniLearn
in terms of computation, memory, and energy consumption?

6.1 MiniLearn Accuracy Results
In Figure 4, we compare the average accuracy of the base-

lines Cloud and Original to MiniLearn using different per-
centages of filter pruning with the different number of train-
ing samples. We prune by using a 25% step for each ex-
periment, while the architecture of Cloud and Original are
unchanged. None refers to no pruning at all.

In Figure 4a, we present the accuracy of the 5-subclasses
on the KWS with different pruning percentages. In Fig-
ure 4b, we present the accuracy of the 3-subclasses from
the CIFAR-10, and in Figure 4c, we present the accuracy
of the 3-subclasses on WISDM-HAR. We observe that with-
out pruning, we can immediately increase the accuracy on
the device and reach equivalent accuracy with the Cloud, by
using 600 samples locally instead of retraining and down-
loading a new model from the Cloud. With aggressive prun-
ing (e.g., 75%), even though we can save significant memory
and energy for the device (see Subsection 6.2), the capacity
of the network decreases, and with 100 samples, the accuracy
is less than the original one. However, increasing the train-
ing samples to 400 and 500, respectively, even the pruned
neural networks have better accuracy than the original. We
observe a similar trend for all data sets in Figure 4. However,
we need more training samples on the KWS date set to com-
pensate for the loss of accuracy due to the pruning compared
to the CIFAR-subset and WISDM-subset. The main reason
is that KWS-subset has more classes than the other data sets.

Communication Cost. For the approach of the cloud-
based baseline, we calculate the communication cost for
sending training samples from the device to the cloud by uti-
lizing short-range Low-Power Bluetooth (BLE) commonly
available on low-power IoT devices. We report the transmis-
sion time using the standard throughput of 700 kbps (pay-
load) using the default 1 Mbps mode [24]. For the en-
ergy communication cost, we report the energy required by
BLE [24] using the PPKv1. by applying 3 V, which is 7.5
mA.

With the cloud baseline, in order to train a new neural
network optimized for the sub-set classes, we need to upload
training samples from the device to the cloud. After training
and optimizing a new neural network, we need to download
the model from the cloud to the device. With 600 samples,

2available after publication

the device needs to send to the cloud a total of 446 KB per-
sonal data and download a network update of 45 KB, for the
KWS sub-set. For the CIFAR sub-set, it is 1,842 KB for
personal data and 96 KB for the network. For the WISDM
sub-set, it is 162 KB for personal data and 18 KB for the
network. Using BLE communication, it will take 2 seconds
and consume 45 mJ for the WISDM sub-set, 22 seconds and
consume 462 mJ for CIFAR-3, 5,6 seconds and consumes
210 mJ for KWS. Even though sending the data to the cloud
and downloading a new model will consume less energy than
retraining with MiniLearn (See Table 2), the difference is not
significant to justify the sacrifice of user’s privacy with the
cloud approach.
6.2 MiniLearn Performance on IoT Devices

In this part, we present the performance in terms of mem-
ory, computational, and energy consumption. We repeat each
experiment 30 times, and we report the following results:
The memory allocation for RAM and Flash on nRF-52840
SoC. The average inference time is based on the cycle clock
register. The average energy consumption, based on the av-
erage electric current draw in mA, by applying 3 V, and we
report the standard variation as ±, when significant.

Memory Footprint. We present two aspects of the mem-
ory consumption on the device using MiniLearn. First, we
report the consumption that is needed to retrain and opti-
mize the neural network. We use flash memory only during
training to store and read the training sets. In Table 2, we
see the flash memory consumption. MiniLearn needs only
a small batch of data, and each epoch reads them from the
flash memory. For a sample size of 100, flash consumption
is 42% with KWS, 23% with CIFAR, and 6% with WISDM-
HAR However, for a sample size of 600, the consumption
reaches 92% with KWS, 83% with CIFAR, and 20% with
WISDM-HAR.

Figure 5 illustrates the parts of the RAM being used: a)
The constant-size training batch (de-quantized each epoch)
is read from the flash. b) Memory for the training of the con-
volutional filters. For example, on KWS-subset, the mem-
ory reaches 196 KB of RAM without pruning, while on
CIFAR-subset reaches 128 KB of RAM, and on WISDM-
subset reaches 92 KB. Each percentage of pruning reduces
the RAM consumption accordingly. c) Memory for fine-
tuning the fully connected layer(s). Fine-tuning takes sig-
nificantly smaller memory than the overall training. For ex-
ample, without pruning, on KWS-subset, fine-tuning takes
12 KB , while on CIFAR-subset takes 10 KB, and 6 KB on
WISDM-HAR-subset.

Second, we report the memory consumption we save af-
ter retraining with MiniLearn during inference. In Figure 7,
we illustrate the memory consumption during inference of
neural networks with different pruning optimization of the
network. We illustrate the RAM consumption with the cor-
responding accuracy after MiniLearn using 600 samples.
The original memory consumption of the KWS network is
61 KB, the CIFAR network is 23 KB, and WISDM-HAR is
12 KB. With progressive pruning (75%), the KWS network
consumption is reduced to 31 KB, the CIFAR network is re-
duced to 11.6 KB, and the WISDM-HAR network is reduced
to 6 KB, which is almost 50% less memory than the origi-
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(c) MiniLearn train on WISDM-HAR.

Figure 5. MiniLearn performance during training in terms of time and memory consumption (using 600 samples). We apply
different pruning percentages with a 25% step.
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Figure 6. Electric current drawn during training on nRF-
52840-DK, by applying at 3 V, during a complete training
with 100 samples on CIFAR-subset.

nal, while the accuracy has slightly increased compared to
the original network (see Figure 4).

Performance. We present two aspects of the device’s
performance. First, we report the time to retrain and opti-
mize the neural network using MiniLearn. In Table 2, we
report the performance during complete training (including
fine-tuning) with different data sizes and no pruning, while
in Figure 5, with different percentages of pruning using 600
samples. The training time is significantly reduced as prun-
ing removes training parameters. The time for fine-tuning is
reduced with higher degrees of pruning due to the cascade ef-
fect: the number of neurons for the fully connected layers is
reduced with smaller filters. For example, on CIFAR-subset,
applying 75% pruning MiniLearn takes 45% less time to re-
train the network.

Second, we report the time we save after retraining the
network, measuring the time to perform inference. In Fig-
ure 7, we illustrate the inference time after applying re-
training with MiniLearn. The initial inference time of the
KWS network (with no pruning) takes 1890 ms, the CI-

FAR network takes 1110 ms, and the WISDM-HAR takes
992 ms. However, with 75% pruning, the KWS network
takes 945 ms, the CIFAR network takes 577 ms, and the
WISDM-HAR takes 477 ms, respectively, which is almost
48% less time compared to the original.

Energy Consumption. In Figure 6, we illustrate the
electric current draw during training with 100 samples on
CIFAR-subset. The average current is 7.6 mA, drawn mainly
by the FPU unit. Compared to inference using CMSIS-NN,
the average current is 8 mA drawn mainly by the DSP unit.
In Table 2, we report the energy consumption of MiniLearn
without pruning and data sizes from 100 to 600. Energy
consumption is related to the training time. As we in-
crease the data size from 100 to 200, the algorithm takes
more time which consumes more energy. For example, to
achieve an accuracy of 88.5% close to Cloud baseline on the
KWS-subset, we need to train with 600 samples and spend
1486 mJ.
6.3 Discussion and Limitations

In this section, we provide an overview of the remaining
challenges of on-device learning for low-power devices and
discuss the main limitations of our approach.

Number of classes. With MiniLearn, we can reduce the
number of classes on the fly for resource efficiency and per-
sonalization of the neural network on the end-user. However,
due to resource constraints, we can only apply MiniLearn
for a subset of the original classes. If we want to increase the
number of classes or personalize the network to more classes
for the end user, we need to increase the memory and energy
capabilities of the IoT device.

Convolutions filters. A major trade-off we face is the
number of convolutions filters we want to prune. The neural
network needs to have an adequate number of filters to parse
the input data and extract significant features. However, the
number of filters we can train with MiniLearn is limited by
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ing MiniLearn on WISDM-HAR subset.

Figure 7. Inference time and memory consumption of the neural network after applying MiniLearn with corresponding accuracy
(trained on 600 samples). We apply different pruning percentages with a 25% step.

the memory of the device.
Energy. It is not necessary to apply pruning with

MiniLearn if we want to increase the accuracy for a particu-
lar subset of classes. However, without pruning, MiniLearn
requires an increase in energy consumption for retraining the
filters. We can reduce the energy consumption for training by
applying pruning, but this will reduce the accuracy, indicat-
ing a significant trade-off between energy and accuracy.

Privacy. Besides reducing the dependency on cloud ser-
vices, which usually have a subscription, one of the main
benefits of MiniLearn is that we keep the user’s personal data
on the device. If privacy and communication reliability are
not such issues, the cloud will be preferable to optimize the
neural network.

7 Related Work
This section lists the related work starting with previous

work on quantization and pruning, which are the primary
methods for compressing DNNs. Next, we present other
work on-device for edge devices compared to our method for
low-power devices. The related work includes edge learning
and federating learning. Finally, we present other methods
that do not consider learning on the device.

Quantization Previous works focused on
quantization[35] assume the process takes place in the
cloud, and disregard any further optimization after deploy-
ment on the device. Contrary, MiniLearn utilizes on-device
learning using data available after deployment. On the
other hand, training with quantized networks [3] or using
so-called quantize-aware training [14], are not applicable
for low-power devices as they assume powerful devices,
for example, storing both the floating-point and integer
representation of the network.

Pruning Pruning on convolutional filters [20] has been
shown to be computationally more efficient than targeting
the overall network. One of the reasons is that in large neu-
ral networks, the fully connected layer occupies most of the

space, while the convolutional filters [22, 13] require repet-
itive computations. However, current pruning methods are
part of cloud training without targeting learning opportuni-
ties with on-device learning. In contrast, MiniLearn targets
low-power IoT devices for learning opportunities on existing
deployed DNN without cloud interaction.

On-device learning. The majority of Machine Learn-
ing (ML) methods primarily occur in cloud services, but re-
cently we see a shift from the classic cloud-based training
and inference in the cloud towards collecting data and train-
ing on edge devices. One example is TensorFlow Lite [32]
which utilizes smartphones and other edge devices for ma-
chine learning training close to the end-user. However, other
proposals exist for on-device and online learning in the liter-
ature. To start with, incremental learning [1], transfer learn-
ing [25], and few-shot learning [31] are some alternatives.
With these methods, the existing models may retrain and add
new classes by using a small number of training samples.
TinyOL [29] utilizes online learning using encoder-decoders.
However, TinyOL never reduces the size of the network and
uses mean square error (MSE) as a loss function, commonly
used for regression problems. MiniLearn proposes an archi-
tecture for on-device training of convolutional networks us-
ing the cross-entropy loss function suitable for classification
problems, also reducing the size of the network.

Federated learning. A distributed version of on-device
learning is Federated Learning (FL). With FL, multiple de-
vices participate in training a global model. Each device uses
its own datasets and needs to exchange only the training pa-
rameters with each other, for example, in FedHome [34] and
FedHealth [6]. In order to ensure the privacy of the users,
federated learning needs to make heavy use of cryptographic
protocols such as Secure Multiparty Computation (SMC) [4]
and Homomorphic Encryption (HE) [12]. Currently, feder-
ated learning is available only on edge devices. MiniLearn
complements federating learning by bringing parts of train-
ing on low-power devices. Federated learning can utilize



Table 2. MiniLearn training evaluation, without pruning, on
CIFAR and KWS subsets. We report the RAM and Flash
memory footprints, the average training time, and average
energy consumption during the complete training (including
fine-tuning).

MiniLearn on KWS-subset.
Data- RAM Flash Time Energy Accuracy
Size (KB) (KB) (s) (mJ) (%)

100 196 439 10±0.2 254±0.2 83.8±0.3
200 196 580 16±0.1 406±0.1 84.7±0.2
300 196 620 25±0.1 635±0.1 86.3±0.2
400 196 761 36±0.1 914±0.1 87.7±0.2
500 196 840 47±0.1 1194±0.1 88.2±0.1
600 196 950 56±0.1 1486±0.1 88.5±0.1

MiniLearn on CIFAR-subset.
Data- RAM Flash Time Energy Accuracy
Size (KB) (KB) (s) (mJ) (%)

100 128 240 8±0.2 203±0.2 76.8±0.5
200 128 370 16±0.2 406±0.2 78.8±0.3
300 128 510 23±0.2 584±0.2 82.1±0.2
400 128 660 30±0.2 762±0.2 83.1±0.2
500 128 790 35±0.2 890±0.2 84.3±0.1
600 128 857 40±0.2 1016±0.2 84.6±0.1

MiniLearn on WISDM-HAR subset.
Data- RAM Flash Time Energy Accuracy
Size (KB) (KB) (s) (mJ) (%)

100 92 64 6±0.1 138±0.2 78.1±0.3
200 92 91 10±0.1 228±0.1 82.1±0.2
300 92 118 14±0.1 319±0.1 85.3±0.2
400 92 145 21±0.1 479±0.1 87.7±0.2
500 92 172 25±0.2 670±0.1 88.5±0.1
600 92 201 30±0.3 786±0.1 89.5±0.1

MiniLearn after creating a global model to personalize the
model for the end-user using her device only.

Multi-task Learning. Another method to alter classes
on the fly without retraining the complete neural network is
multi-task learning [19]. Another concept to optimize multi-
task learning is the virtualization of weight parameters to
share weights of a neural network across multiple networks
in the device[17]. However, low-power IoT devices have ex-
treme memory constraints, and in order to benefit, they need
to be equipped with a RAM capacity of MBs, compared to
KBs of RAM typically found on low-power devices. In con-
trast, MiniLearn has an immediate optimization on a low-
power device with memory and computational constraints.

Network architecture search. Another method typi-
cally used by cloud services in network architecture search
NAS [26, 2]. With NAS, the designing and training of opti-
mized neural networks are automated for the specific hard-
ware and application domain. NAS tries to search the space
of possible DNN architecture with a search strategy and per-
formance goal for the target hardware or application. NAS

provides a static optimization on an estimation of the de-
vice’s resource utilization, while MiniLearn compliments
NAS in that it can dynamically address changes in computa-
tional, memory, and energy requirements.

Offloading. Methods that do not utilizing re-training of
DNNs focus on partitions of networks between a IoT and
edge minimize execution latency [5], but increase the com-
munication cost. Similarly, distributed inference hierarchies
can offload inputs between cloud, edge, and IoT devices [30].
Adapting these methods on the fly for the IoT device will
need several updates with high communication costs. Other
frameworks [10] use offloading for forward propagation in
DNNs with a focus on battery energy optimization for mo-
bile devices. MiniLearn differs by focusing on learning op-
portunities on the device and avoiding cloud interaction.

8 Conclusion
As deep neural networks become available on-body sen-

sors and smartwatches, on-device learning opportunities be-
come relevant. Currently, conventional deep learning algo-
rithms rely on IoT devices to send an enormous amount of
data to the cloud leading to three main issues. First, IoT de-
vices depend on energy-efficient communication with lim-
ited reliability and network bandwidth, and they may skip
transmitting essential training samples to the cloud. Second,
cloud storage of extensive IoT data raises significant privacy
concerns. Third, IoT devices operate in open environments,
and the initial requirements for utilizing deep neural net-
works may change. This paper proposes MiniLearn to re-
train and improve pre-trained neural networks on resource-
constrained IoT devices. We show that MiniLearn can im-
prove the accuracy of a subset of classes using local data,
and it can reduce the memory and inference latency of the
initial network using filter pruning and fine-tuning. In de-
tail, it can take up to 48% less inference time and up to 50%
less memory, increasing at the same time the accuracy for a
classification sub-set by 3% to 9%.
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