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A B S T R A C T

Identifying the ship’s maneuvering dynamics can build models for ship maneuverability predictions with a
wide range of useful applications. A majority of the publications in this field are based on simulated data.
In this paper model test data is used. The identification process can be decomposed into finding a suitable
manoeuvring model for the hydrodynamic forces and to correctly handle errors from the measurement noise.
A parameter estimation is proposed to identify the hydrodynamic derivatives. The most suitable manoeuvring
model is found using the parameter estimation with cross-validation on a set of competing manoeuvring
models. The parameter estimation uses inverse dynamics regression and Extended Kalman filter (EKF) with
a Rauch Tung Striebel (RTS) smoother. Two case study vessels, wPCC and KVLCC2, with very different
maneuverability characteristics are used to demonstrate and validate the proposed method. Turning circle
predictions with the robust manoeuvring models, trained on zigzag model tests, show good agreement with
the corresponding model test results for both ships.
1. Introduction

Ship manoeuvring performance can be assessed with varying accu-
racy, effort, and cost. The full-scale manoeuvring test during sea trials
is the most common method used to demonstrate compliance with the
International Maritime Organization (IMO) manoeuvring criteria (IMO,
2002), which all ships over 100 meters must fulfill. However before
ships are built, manoeuvring prediction methods are needed. The free
model test (ITTC, 2008b) is often recognized as the most accurate
prediction method (ITTC, 2008c), which can also be conducted with
high accuracy in CFD (Araki et al., 2012). These methods are expensive
and they also have the drawback of obtaining only results for one
specific maneuver at the time. Some complex maneuvers, such as
harbor maneuvers, are also very hard to conduct in this way. The
system-based manoeuvring model is a more cost-efficient solution with
many applications such as the maneuverability requirement for ship
design and construction, the design of advanced ship autopilot systems,
unmanned surface vehicles (USVs) (Bai et al., 2022) or master mariners’
training simulators.

Captive model tests (ITTC, 2008a), planar motion mechanism tests
(PMM) (ITTC, 2008a) or virtual captive tests (VCT) (Liu et al., 2018)
can be conducted as input to the manoeuvring model. These tests are
also costly, and the increased flexibility of the mathematical model
gives lower accuracy (ITTC, 2008c).

∗ Corresponding author at: Dept. of Mechanics and Maritime Sciences, Division of Marine Technology, Chalmers University of Technology, Hörsalsvägen 7A,
Gothenburg, 41296, Sweden.

E-mail address: maralex@chalmers.se (M. Alexandersson).

System identification methods applied on recorded ship trajectories
from free model tests, CFD free running trials (Araki et al., 2012) or full
scale ship operation offers a more cost-efficient way to develop system-
based manoeuvring models. Some of the publications within this field
are summarized in Table 1. The methods identifies models that can
be categorized into three groups: white-box (WB), grey-box (GB) or
black-box models (BB) (Miller, 2021). The white-box models are deter-
ministic and are not data driven by applying only physical principles,
for instance with semi-empirical formulas which have very low cost
but also very low accuracy (ITTC, 2008c). The black-box models are
stochastic and data driven. No knowledge about the system structure
and parameters is required (Miller, 2021). The grey-box modeling is
a combination of white-box and black-box modeling methods, so that
both a physical model and data is used.

The system identification can be applied on full scale data (Åström
and Källström, 1976; Perera et al., 2015; Revestido Herrero and Ve-
lasco González, 2012) which has the highest uncertainty, both in terms
of model uncertainty and measurement uncertainty which is therefore
the hardest task, but also the most relevant. The uncertainty can be
reduced by instead using model test data as in Araki et al. (2012), He
et al. (2022), Xue et al. (2021), Miller (2021) and Luo et al. (2016). The
uncertainty can be further reduced by using simulated data as in Shi
et al. (2009), Zhu et al. (2017), Wang et al. (2021) which can show
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Table 1
System identification references.

Method BB GB Data Reference

Genetic algorithm ✓ Lake test Miller (2021)
Neural network ✓ Model test He et al. (2022)
Gaussian process ✓ Model test Xue et al. (2021)
Kalman filter maximum likelihood ✓ Full scale Åström and Källström (1976)
Unscented Kalman filter ✓ Full scale Revestido Herrero and Velasco González (2012)
Extended Kalman filter ✓ Full scale Perera et al. (2015)
Extended Kalman filter ✓ Simulated Shi et al. (2009)
Constrained least squares ✓ Model test, CFD Araki et al. (2012)
Support vector regression ✓ Simulated Zhu et al. (2017) and Wang et al. (2021)
Support vector regression ✓ Model test Luo et al. (2016)
g

the potential of new methods with the benefit that the true model is
known, but one also has to remember that the objective is to identify
real objects, not its mathematical model (Miller, 2021).

Black-box modeling was used in He et al. (2022), using neural
network, and in Xue et al. (2021), using gaussian process. The nonpara-
metric models are related, where the system structure is known but no
parameters are required as seen in Pongduang et al. (2020). However,
most of the system identification methods for ship manoeuvring models
use the grey-box modeling by assuming a predefined mathematical
model, which reduces the problem to a parameter estimation. The
Kalman filter (KF) combined with maximum likelihood estimation was
proposed already in 1976 (Åström and Källström, 1976) to develop a
linear manoeuvring model based on manually recorded data in 1969
onboard the Atlantic Song freighter. The Extended Kalman filter (EKF)
can also estimate parameters if the parameters are represented as states
of the state space model. This technique was used on a nonlinear
Nomoto model (Perera et al., 2015) and a 3 degree of freedom model
(3DOF) (Shi et al., 2009). EKF was used in Araki et al. (2012) with
constrained parameters based on physical reasoning and prior knowl-
edge using constrained least squares regression. Unscented Kalman
filter (UKF), which has been proposed as an improvement to the EKF
in handling nonlinear systems, was used in Revestido Herrero and
Velasco González (2012). Support vector regression (SVR) has been
investigated in Zhu et al. (2017), Wang et al. (2021) and Luo et al.
(2016). A genetic algorithm was used in Miller (2021) for the system
identification of model test performed on a lake.

The drift effect of the hydrodynamic coefficients is inevitable in
modeling of ship manoeuvring motions by using the system identifica-
tion. The drifts of hydrodynamic coefficients result from the so-called
multicollinearity, meaning that if the input variables of a regression
model are firmly linearly dependent on each other, the regression
results of their coefficients may be incorrect (Luo et al., 2016). The
identified coefficients within the mathematical model do not have to
be physically correct but mathematically correct (ITTC, 2008c). Many
nonlinear hydrodynamic coefficients in the mathematical model of
ship manoeuvring motions have no apparent physical meaning (Luo
et al., 2016). Multicollinearity can be reduced by reducing the number
of parameters in the model, either by simplification or adding more
deterministic parts by including hydrodynamic relations. For instance,
slender body theory can be added (Hwang, 1982). Simplification can
be based on hydrodynamic reasoning where the number of parameters
can be reduced (Luo et al., 2016).

However, system identification methods must handle imperfections
in the data from measurement noise and model uncertainty of the
manoeuvring model, which will always be present since the model
can never perfectly capture all fundamental physics. When developing
a manoeuvring model with model test data for manoeuvring predic-
tion, preprocessing of data and a method to choose an appropriate
manoeuvring model is needed (Alexandersson et al., 2022). This paper
proposes an innovative approach to address those issues for ship ma-
noeuvring system identification based on actual noise test data. First,
a parameter estimation method is proposed to study the capability of
2

several candidate manoeuvring models. Model test data in all degrees of
freedom is recorded as ship trajectories, including position and heading
and thrust, where a model for propeller thrust is also proposed and
further developed. In this method, the inverse dynamics regression
and Extended the Kalman filter (EKF) with a Rauch Tung Striebel
(RTS) smoother (Rauch et al., 1965) are proposed for the necessary
data cleaning before feeding into the manoeuvring model. An iterative
approach is adopted to determine the most appropriate manoeuvring
model. The multicollinearity problem is addressed by identifying a
ship manoeuvring system with proper parameters in the manoeuvring
model. The proposed approach is verified by identifying a selected
manoeuvring model and predicting turning circle manoeuvres for two
different test vessels.

For the completeness of this paper, different manoeuvring models
and propeller models are briefly introduced in Section 2. Then the
proposed parameter estimation method is presented in Section 3, where
each subcomponent is also described. The robust model development
process is described in Section 3.2. The parameter estimation is ap-
plied to two case study ships which are introduced in Section 4 and
corresponding results are presented in the Section 5 with discussions,
followed by conclusions. All code to reproduce this paper is open
source (Alexandersson, 2022b).

2. Vessel manoeuvring models

Ship manoeuvring is a simplified case of seakeeping. The encoun-
tering waves have been removed, assuming calm water conditions.
This simplification allows the ship dynamics to be expressed with only
four degrees of freedom: surge, sway, roll, and yaw, where the roll
is often excluded. Surge, sway, and yaw have very low frequencies
during manoeuvres, so added masses and other hydrodynamic deriva-
tives can be assumed as constants (Fossen, 2021). Three manoeuvring
models are used in this paper: the Linear (LVMM) (Matusiak, 2021),
the Abkowitz (AVMM), Abkowitz (1964) and the modified Abkowitz
(MAVMM), proposed in this paper. Fig. 1 shows the reference frames
used in the manoeuvring models where 𝑥0 and 𝑦0 and heading 𝛹 are the
lobal position and orientation of a ship fix reference frame 𝑂(𝑥, 𝑦, 𝑧)

(or rather 𝑂(𝑥, 𝑦) when heave is excluded) with origin at midship. 𝑢,
𝑣, 𝑟, 𝑋, 𝑌 and 𝑁 are velocities and forces in the ship fix reference
frame. The acceleration can be solved from the manoeuvring equation
Eq. (1) (Fossen, 2021) to obtain Eq. (2),
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Fig. 1. Reference frames.
where 𝑆 is a helper variable:

𝑆 = −𝐼𝑧𝑌�̇� + 𝐼𝑧𝑚 +𝑁�̇�𝑌�̇� −𝑁�̇�𝑚 −𝑁�̇�𝑌�̇� +𝑁�̇�𝑚𝑥𝐺 + 𝑌�̇�𝑚𝑥𝐺 − 𝑚2𝑥2𝐺 (3)

A state space model for manoeuvring can now be defined with six
states:

𝐱 =
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The time derivative of this state �̇� can be defined by a state transition
𝑓 (𝐱, 𝐜) using geometrical relations how global coordinates 𝑥0, 𝑦0 and 𝛹
depend on 𝑢, 𝑣, and 𝑟 viz.,
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where 𝐜 is control inputs (rudder angle 𝛿 and thrust); the last three
derivatives: �̇�, �̇�, �̇� are calculated with Eq. (2). 𝐰 is the process noise,
i.e., the difference between the predicted state by the manoeuvring
model and the true state of the system. 𝐰 is unknown when the
manoeuvring model is used for manoeuvre predictions and therefore
normally assumed to be zero, but it is an important factor when
the manoeuvring model is used in the EKF, see Section 3.4. The
manoeuvring simulation can now be conducted by numerical inte-
gration of Eq. (5). The main difference between the manoeuvring
models lies in how the hydrodynamic functions 𝑋𝐷(𝑢, 𝑣, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡),
𝑌𝐷(𝑢, 𝑣, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡), 𝑁𝐷(𝑢, 𝑣, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡) are defined. These expressions
are denoted below for the various manoeuvring models: LVMM, AVMM
and MAVMM.

Linear Vessel Manoeuvring Model (LVMM) (Matusiak, 2021):

XD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑋𝛿𝛿 +𝑋𝑟𝑟
′ +𝑋𝑢𝑢

′ +𝑋𝑣𝑣
′ (6)

YD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= 𝑌𝛿𝛿 + 𝑌𝑟𝑟′ + 𝑌𝑢𝑢′ + 𝑌𝑣𝑣′ (7)

ND
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑁𝛿𝛿 +𝑁𝑟𝑟
′ +𝑁𝑢𝑢

′ +𝑁𝑣𝑣
′ (8)

Abkowitz Vessel Manoeuvring Model (AVMM) (Abkowitz, 1964):

XD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑋𝛿𝛿𝛿
2 +𝑋𝑟𝛿𝛿𝑟

′ +𝑋𝑟𝑟𝑟
′2 +𝑋𝑇 𝑡ℎ𝑟𝑢𝑠𝑡

′

+𝑋𝑢𝛿𝛿𝛿
2𝑢′ +𝑋𝑢𝑟𝛿𝛿𝑟

′𝑢′ +𝑋𝑢𝑟𝑟𝑟
′2𝑢′ +𝑋𝑢𝑢𝑢𝑢

′3

+ 𝑋𝑢𝑢𝑢
′2 +𝑋𝑢𝑣𝛿𝛿𝑢
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′𝑢′𝑣′ +𝑋𝑢𝑣𝑣𝑢
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+𝑋𝑢𝑢
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(9)
3

YD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= 𝑌0𝑢𝑢𝑢′2 + 𝑌0𝑢𝑢′ + 𝑌0 + 𝑌𝛿𝛿𝛿𝛿3 + 𝑌𝛿𝛿 + 𝑌𝑟𝛿𝛿𝛿2𝑟′

+ 𝑌𝑟𝑟𝛿𝛿𝑟′2 + 𝑌𝑟𝑟𝑟𝑟′3

+ 𝑌𝑟𝑟
′ + 𝑌𝑇 𝛿𝛿𝑡ℎ𝑟𝑢𝑠𝑡′ + 𝑌𝑇 𝑡ℎ𝑟𝑢𝑠𝑡′ + 𝑌𝑢𝛿𝛿𝑢′

+ 𝑌𝑢𝑟𝑟′𝑢′ + 𝑌𝑢𝑢𝛿𝛿𝑢′2 + 𝑌𝑢𝑢𝑟𝑟′𝑢′2 + 𝑌𝑢𝑢𝑣𝑢′2𝑣′

+ 𝑌𝑢𝑣𝑢
′𝑣′ + 𝑌𝑣𝛿𝛿𝛿2𝑣′ + 𝑌𝑣𝑟𝛿𝛿𝑟′𝑣′ + 𝑌𝑣𝑟𝑟𝑟′2𝑣′

+ 𝑌𝑣𝑣𝛿𝛿𝑣′2 + 𝑌𝑣𝑣𝑟𝑟′𝑣′2 + 𝑌𝑣𝑣𝑣𝑣′3 + 𝑌𝑣𝑣′

(10)

ND
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑁0𝑢𝑢𝑢
′2 +𝑁0𝑢𝑢

′ +𝑁0 +𝑁𝛿𝛿𝛿𝛿
3 +𝑁𝛿𝛿

+𝑁𝑟𝛿𝛿𝛿
2𝑟′ +𝑁𝑟𝑟𝛿𝛿𝑟

′2 +𝑁𝑟𝑟𝑟𝑟
′3

+ 𝑁𝑟𝑟
′ +𝑁𝑇 𝛿𝛿𝑡ℎ𝑟𝑢𝑠𝑡

′ +𝑁𝑇 𝑡ℎ𝑟𝑢𝑠𝑡
′ +𝑁𝑢𝛿𝛿𝑢

′

+𝑁𝑢𝑟𝑟
′𝑢′ +𝑁𝑢𝑢𝛿𝛿𝑢

′2 +𝑁𝑢𝑢𝑟𝑟
′𝑢′2 +𝑁𝑢𝑢𝑣𝑢

′2𝑣′

+ 𝑁𝑢𝑣𝑢
′𝑣′ +𝑁𝑣𝛿𝛿𝛿

2𝑣′ +𝑁𝑣𝑟𝛿𝛿𝑟
′𝑣′ +𝑁𝑣𝑟𝑟𝑟

′2𝑣′

+𝑁𝑣𝑣𝛿𝛿𝑣
′2 +𝑁𝑣𝑣𝑟𝑟

′𝑣′2 +𝑁𝑣𝑣𝑣𝑣
′3 +𝑁𝑣𝑣

′

(11)

Modified Abkowitz Vessel Manoeuvring Model (MAVMM), where only
the most relevant coefficients in AVMM are included.)

XD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑋𝛿𝛿𝛿
2 +𝑋𝑟𝑟𝑟

′2 +𝑋𝑇 𝑡ℎ𝑟𝑢𝑠𝑡
′ +𝑋𝑢𝑢𝑢

′2

+𝑋𝑢𝑢
′ +𝑋𝑣𝑟𝑟

′𝑣′
(12)

YD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= 𝑌𝛿𝛿 + 𝑌𝑟𝑟′ + 𝑌𝑇 𝛿𝛿𝑡ℎ𝑟𝑢𝑠𝑡′ + 𝑌𝑇 𝑡ℎ𝑟𝑢𝑠𝑡′

+ 𝑌𝑢𝑟𝑟′𝑢′ + 𝑌𝑢𝑢′ + 𝑌𝑣𝑣𝛿𝛿𝑣′2 + 𝑌𝑣𝑣′
(13)

ND
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

=𝑁𝛿𝛿 +𝑁𝑟𝑟
′ +𝑁𝑇 𝛿𝛿𝑡ℎ𝑟𝑢𝑠𝑡

′ +𝑁𝑇 𝑡ℎ𝑟𝑢𝑠𝑡
′

+𝑁𝑢𝑟𝑟
′𝑢′ +𝑁𝑢𝑢

′ +𝑁𝑣𝑣𝛿𝛿𝑣
′2 +𝑁𝑣𝑣

′ (14)

The hydrodynamic functions above are expressed using nondimen-
sional units with the prime system, denoted by the prime symbol (′).
The quantities are expressed in the prime system, using the denomina-
tors in Table 2. For instance, surge linear velocity 𝑢 can be expressed
in the prime system as seen in Eq. (15) using the linear velocity
denominator.

𝑢′ = 𝑢
𝑉 (15)

Equations can either be written in the prime or regular SI system. The
hydrodynamic derivatives are always expressing forces in the prime
system as function of state variables. The (′) sign is therefore implicit
and not written out as seen in Eq. (16).

𝑌 ′
𝛿′ =

𝜕𝑌 ′
𝐷

𝜕𝛿′
∶= 𝑌𝛿 (16)

The exceptions are the added masses (𝑋�̇�, 𝑌�̇�, 𝑌�̇�, 𝑁�̇� and 𝑁�̇�) which are
expressed in both Prime system or the regular SI system where the (′)
sign is therefore explicitly stated. There is however a great benefit in
expressing the hydrodynamic forces in the prime system. The forces are
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Prime system denominators.

Denominators

Angle 1
Angular acceleration 𝑉 2

𝐿2

Angular velocity 𝑉
𝐿

Area 𝐿2

Density 𝜌
2

Force 𝐿2𝑉 2𝜌
2

Frequency 𝑉
𝐿

Inertia moment 𝐿5𝜌
2

Length 𝐿
Linear acceleration 𝑉 2

𝐿
Linear velocity 𝑉
Mass 𝐿3𝜌

2

Moment 𝐿3𝑉 2𝜌
2

Time 𝐿
𝑉

Volume 𝐿3

often nonlinear due to a quadratic relation to the flow velocity, as seen
in Eq. (17).

𝑌𝐷 = 𝑌𝛿 ⋅ 𝛿 ⋅
𝐿2𝑉 2𝜌

2
(17)

hich becomes linear when expressed in the prime system as seen in
q. (18).

′
𝐷 = 𝑌𝛿 ⋅ 𝛿

′ (18)

.1. The propeller model

The propeller model is developed based on Manoeuvring Modeling
roup (MMG) model (Yasukawa and Yoshimura, 2015) where the

hrust is expressed as:

ℎ𝑟𝑢𝑠𝑡 = 𝐷4𝐾𝑇 𝑛
2𝜌 (19)

nd the thrust coefficient 𝐾𝑇 is modeled as a second order polynomial:

𝑇 = 𝐽 2𝑘2 + 𝐽𝑘1 + 𝑘0 (20)

he advance ratio 𝐽 is calculated as:

=
𝑢
(

1 −𝑤𝑝
)

𝐷𝑛
(21)

here 𝐷 is propeller diameter, 𝑛 is propeller speed and 𝑤𝑝 is the wake
raction at an oblique inflow to the propeller from the drift angle and
he yaw rate. A semi-empirical formula for 𝑤𝑝 is provided in the MMG
odel. As an alternative, a simple polynomial is proposed in Eq. (22).

𝑝 = 𝐶1𝛿 + 𝐶2𝛿
2 + 𝐶3𝛽

2
𝑝 + 𝐶4𝑢 +𝑤𝑝0 (22)

𝑝 is modeled as a function of rudder angle 𝛿, to include wake influence
rom the rudder and ship speed 𝑢, to include a speed dependency.
he influence from drift angle 𝛽 and yaw rate 𝑟 is expressed by 𝛽𝑝 in
q. (23).

𝑝 = 𝛽 − 𝑟
𝑉

⋅ 𝑥𝑝 (23)

where 𝑥𝑝 is the propeller longitudinal position and 𝑤𝑝0 is the regular
Taylor wake fraction, applicable to straight ahead steaming with no
rudder angle. Similar to the MMG propeller model, two sets of parame-
ters 𝐶1-𝐶4 should be used in the propeller model depending on the sign
of 𝛽 .
4

𝑝 t
3. Method

An efficient approach to build the manoeuvring model for a ship’s
manoeuvres is presented in this paper. In this procedure, an initial
manoeuvring model is used to solve the reversed manoeuvring prob-
lem, i.e., predicting unknown forces from known ship manoeuvres.
Then, the hydrodynamic derivatives in the manoeuvring model can be
identified with regression of the force polynomials on forces predicted
with inverse dynamics. The ordinary least square (OLS) method is used
to regress the hydrodynamic derivatives in the proposed parameter
estimation method. The OLS is known to be extremely sensitive to noise
and outliers inevitably associated with both experimental and full-scale
test data. Thereby, the focus in the present parameter estimation is on
pre-processing data with filtering rather than the regression method
itself. Both the Extended Kalman filter (EKF) and Rauch Tung Striebel
(RTS) smoother are used to perform the data-processing for building a
proper manoeuvring model.

3.1. Overview of the proposed procedure

After choosing a proper manoeuvring model to describe a ship’s
manoeuvring performance, the coefficients in those manoeuvring mod-
els can be estimated by the proposed parameter estimation method
composed of two basic steps similar to Revestido Herrero and Ve-
lasco González (2012) as shown in Fig. 2. The measurement noise
needs to be removed if the regression of hydrodynamic derivatives
in the manoeuvring model should work well. However, filtering with
the EKF also needs an accurate manoeuvring model as the system
model. Therefore the accurate manoeuvring model is both the input
and output of the parameter estimation. The system model in the
EKF is guessed to solve this dilemma. A linear manoeuvring model
with hydrodynamic derivatives estimated with semi-empirical formulas
is used as the initial guess. Once the regressed manoeuvring model
has been obtained, the parameter estimation can be rerun using the
regressed manoeuvring model as the system model in the EKF, to obtain
an even better manoeuvring model. This procedure can be repeated
several times for improved accuracy. Using semi-empirical formulas for
the initially guessed manoeuvring model adds prior knowledge about
the ship dynamics to the regression. When used with the recursive EKF,
this method is an innovation compared to other parameter estimation
methods.

The iterative process is composed of two basic steps:

(1) First, hydrodynamic derivatives of a predefined format of ma-
noeuvring model are initially guessed. The derivatives are es-
timated with semi-empirical formulas for a linear manoeuvring
model to make an initial guess. The manoeuvring model is used
in the EKF and RTS smoother to filter all the model tests. The
manoeuvring models are assumed to have Markov property,
meaning that future states depend only on the current state.
Then the filtered data with estimated hidden states from all the
model tests can be joined into a time-independent dataset passed
to the regression. The hydrodynamic derivatives are regressed on
quasi-static forces from inverse dynamics giving the identified
nonlinear manoeuvring model.

(2) Re-run the iteration in the previous step with EKF that use the
identified manoeuvring model from the previous step to replace
the guessed system model in the initial stage, such as with
AVMM or MAVMM. There should be more trust in this model
than in the guessed model, so the covariance matrices should be
updated.

n example with simulation results from the steps in the iterative EKF
s shown in Fig. 3 In the following section, the methods of inverse
ynamics, regression and EKF used in the proposed PIT method, and

heir connections, are presented in detail.
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3.2. Model development process

The general aim of developing a manoeuvring model with param-
eter estimation is to develop a model that can generalize outside the
known data. The method presented in this paper is evaluated with
the holdout evaluation (Sammut and Webb, 2017) where the data is
divided into three sets: training set, validation set and test set as seen
in Fig. 4

Fig. 4. Model development process with holdout evaluation.
The purpose with the training set is to train all the candidate models

sing the proposed parameter estimation method. The validation set is
hen used to select which one of the candidate models is the best. The
raining and validation sets are then joined to train the selected model
s the final model, to be used in predicting the test set, which is used
o evaluate the accuracy of the model. These three sets are not divided
andomly, but rather to assess the model’s extrapolation ability. The
atasets are therefore split to have the smallest: yaw rates, drift- and
udder-angles in the training set, the medium values in the validation
et and the largest values in the test set which for instance can be seen
n Fig. 8 in the next section.
5

3.3. Inverse dynamics and regression

Each manoeuvring model has some hydrodynamic functions 𝑋𝐷(𝑢,
, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡), 𝑌𝐷(𝑢, 𝑣, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡), 𝑁𝐷(𝑢, 𝑣, 𝑟, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡) that are defined as
olynomials. The hydrodynamic derivatives in these polynomials can
e identified with force regression of measured forces and moments.
he measured forces and moments are usually taken from captive
odel tests (CMT), planar motion mechanism (PMM) tests or virtual

aptive tests (VCT). When the ship is free in all degrees of freedom, as
n the present model tests, only motions are recorded however. Hence,
orces and moments causing ship motions need to be estimated by
olving the inverse dynamics problem. The inverse dynamics is solved
y restructuring the system equation (Eq. (1)) to get the hydrodynamics
unctions on the left-hand side. If the mass and inertia of the ship
ncluding added masses: 𝑋�̇�, 𝑌�̇�, 𝑌�̇�, 𝑁�̇� and 𝑁�̇�, are known, the forces
n Prime system can be calculated using Eqs. (24), (25) and (26).

D
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= −𝑋′
�̇��̇�

′ + �̇�′𝑚′ − 𝑚′𝑟′2𝑥′𝐺 − 𝑚′𝑟′𝑣′ (24)

YD
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= −𝑌 ′
�̇� �̇�

′ − 𝑌 ′
�̇� �̇�

′ + �̇�′𝑚′𝑥′𝐺 + �̇�′𝑚′ + 𝑚′𝑟′𝑢′ (25)

ND
′(𝑢′, 𝑣′, 𝑟′, 𝛿, 𝑡ℎ𝑟𝑢𝑠𝑡′

)

= 𝐼 ′𝑧 �̇�
′ −𝑁 ′

�̇� �̇�
′ −𝑁 ′

�̇��̇�
′ + �̇�′𝑚′𝑥′𝐺 + 𝑚′𝑟′𝑢′𝑥′𝐺 (26)

An example of forces calculated with inverse dynamics from motions
in a turning circle test can be seen in Fig. 5. The forces have been
converted to SI units.

Finding the hydrodynamic derivatives can be defined as a linear
regression problem:
𝑦 = 𝑋𝛾 + 𝜖 (27)
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Fig. 5. Example of forces and moments calculated with inverse dynamics on data from a turning circle test.
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he model for the hydrodynamic forces must first be assumed. The label
ector 𝑦 and feature matrix 𝑋 in the regression problem in Eq. (27) can
ow be inserted. As an example: the labels in the regression of the surge
egree of freedom for the MAVMM can be calculated using the inverse
ynamics force, expressed with primed units:

= −𝑋�̇��̇�
′ + �̇�′𝑚′ − 𝑚′𝑟′2𝑥𝐺′ − 𝑚′𝑟′𝑣′ (28)

he feature matrix 𝑋 is expressed as:

=
[

𝑡ℎ𝑟𝑢𝑠𝑡′ 𝑢′ 𝛿2 𝑟′2 𝑢′2 𝑟′𝑣′
]

(29)

he regressed hydrodynamic derivatives are stored in the 𝛾 vector:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋𝑇
𝑋𝑢
𝑋𝛿𝛿
𝑋𝑟𝑟
𝑋𝑢𝑢
𝑋𝑣𝑟

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(30)

he hydrodynamic derivatives in the manoeuvring model are consid-
red Gaussian random variables when conducting the ordinary least
quares (OLS) regression. The hydrodynamic derivatives in the ma-
oeuvring model are usually taken as the mean value of each regressed
andom variable, being the most likely estimate. The regression result
an be described with a multivariate Gaussian distribution, defined
y the regression’s mean values and covariance matrix. Monte Carlo
imulations can be conducted with this distribution to study alternative
ealizations of the regression.

Strong multicollinearity is a known problem for the manoeuvring
odels (Luo et al., 2016; Wang and Zou, 2018). The thrust coefficient
𝑇 in the hydrodynamic function 𝑋𝐷 in Eq. (9) introduces multi-

ollinearity to the regression. This coefficient can instead be calculated
rom the thrust deduction factor 𝑡𝑑𝑓 :

𝑇 = 1 − 𝑡𝑑𝑓 (31)

he 𝑋𝑇 coefficient is excluded from the regression by moving it to the
eft-hand side of the regression equation Eq. (27):

−𝑋𝑇 ⋅ 𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑋𝛾 + 𝜖 (32)

udder coefficients (𝑌𝑅) from 𝑌𝐷 equation Eq. (10) such as 𝑌𝛿 , 𝑌𝛿𝑇 etc.
ave been excluded in the same way by assuming a connection with
heir 𝑁𝐷 equation counterpart through the rudder lever arm 𝑥𝑟:

𝑌𝑅 =
𝑁𝑅 (33)
6

𝑥𝑟′
.4. Extended Kalman filter (EKF)

It is possible to do an exact parameter identification on perfect
simulated) data with no noise (see Section 5.1). However, such data
rom physical experiments does not exist in reality. The measured data
ill always contain process noise and measurement noise. In order

o mitigate this, the data is preprocessed using an Extended Kalman
ilter (EKF) and Rauch Tung Striebel (RTS) smoother which are both
resented below.

.4.1. The EKF recursive algorithm
EKF is an extension of the Kalman filter (KF) to work on nonlinear

ystems such as the manoeuvring models. The basic idea is that noise
an be disregarded if it does not make sense from a physical point
f view. If noisy measurement data were perfectly correct, this would
ean that the ship has many vibrations that must have originated

rom tremendous forces, considering the large mass of the ship. The
rior understanding of model tests suggests that these forces are not
resent during the test. Therefore, the noise should be considered as
easurement noise and should be removed. Low-pass filtering is a

ommon way to remove noise, where motions above some cut-off fre-
uencies are regarded as unphysical measurement noise. The problem
ith low-pass filter is that it is hard to know what cut-off frequency

o choose, either too low: removing part of the signal, or too high:
eeping some unfiltered measurement noise in the data. The Kalman
ilter has a system model that continuously estimates the system’s state
hat is run in parallel with the measurement data. The filter estimates
he current state as a combination of the measurement data and the
ystem model estimate based on belief in the data and the model. If the
ata has low noise, the estimate turns toward that data. Conversely, if
he model gives very good predictions, then that estimate turns towards
he model.

The system’s inverse dynamics require the entire states, including
ositions, velocities, and accelerations, to be known. Only positions
re known from the measurements, which means that velocities and
ccelerations are hidden states that the EKF should estimate. The state
ransition 𝑓 (𝐱, 𝐜) is taken from the manoeuvring model (Eq. (5)) to use

the manoeuvring model as the EKF predictor. The state of the system
is observed (measured) with a linear observation model (Eq. (34))
where 𝐲 is the measured data 𝐇 is the observation matrix and 𝜂 is
measurement noise.
𝐲 = 𝐇𝑥 + 𝜂 (34)
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The used EKF recursive algorithm used is summarized in the pseu-
docode below (Brown and Hwang, 1997).

Algorithm 3.1 (Discrete-time extended Kalman filter)

Inputs Initial values: 𝑥0, 𝑃0, 𝐶𝑑 , 𝑅𝑑 , 𝑄𝑑 , 𝐸𝑑
utput Estimated states: �̂�, estimated state covariances 𝑃

1. Initial values:

1. �̂�[0] = 𝑥0
2. 𝑃 [0] = 𝑃0

2. For 𝑘 in 𝑛 measurements (time steps)

1. KF gain

1. 𝐾[𝑘] = 𝑃 [𝑘]𝐶𝑇𝑑
(

𝐶𝑑𝑃 [𝑘]𝐶𝑇𝑑 + 𝑅𝑑
)−1

2. 𝐼𝐾𝐶 = 𝐼𝑛 −𝐾[𝑘]𝐶𝑑

2. Update

1. State corrector �̂�[𝑘] = �̂�[𝑘] +𝐾[𝑘](𝑦 − 𝐶𝑑 �̂�[𝑘])
2. Covariance corrector 𝑃 [𝑘] = 𝐼𝐾𝐶 ⋅ 𝑃 [𝑘]𝐼𝑇𝐾𝐶 +

𝐾[𝑘]𝑅𝑑𝐾𝑇

3. Predict

1. State predictor �̂�[𝑘 + 1] = �̂�[𝑘] + ℎ ⋅ 𝑓 (�̂�[𝑘], 𝑐[𝑘])
2. Covariance predictor 𝑃 [𝑘+1] = 𝐴𝑑 [𝑘]𝑃 [𝑘]𝐴𝑑 [𝑘]𝑇 +

𝐸𝑑𝑄𝑑𝐸𝑇𝑑

where 𝑛 is number of states (6 in this case), 𝐼𝑛 is an 𝑛 ⋅𝑛 identity matrix.
The transition matrix is calculated for each iteration using a Jacobian
of the transition model:

𝐴𝑑 [𝑘] = 𝐼 + ℎ
𝜕𝑓 (𝑥[𝑘], 𝑐[𝑘])

𝜕𝑥[𝑘]
|

|

|

|𝑥[𝑘]=�̂�[𝑘]
(35)

This part and the fact that the nonlinear transition model is used
directly as the predictor are the extension part of the EKF compared to
the linear KF. Please note the linear approximation in Eq. (35) around
the current state. This approximation can cause stability problems if the
real system and the linearized system deviates too much, when large
time steps are used on a very nonlinear system. The unscented Kalman
filter, which was used in Revestido Herrero and Velasco González
(2012), is an alternative that can be used in these situations.

The output from the filter contains the estimated states: �̂� and esti-
mated state covariance matrix 𝑃 . �̂� represent the most likely estimates,
but the estimates have uncertainty that is expressed in 𝑃 . The state of
he system is described by the ships position, heading, velocities and
aw velocity:

= [𝑥0, 𝑦0, 𝜓, 𝑢, 𝑣, 𝑟]𝑇 (36)

he initial state 𝑥0 is taken as the mean value of the first five measure-
ents, where the velocities are estimated with numeric differentiation.
𝐶𝑑 selects the measured states (𝑥0, 𝑦0, 𝜓):

𝑑 = ℎ
⎡

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤

⎥

⎥

⎦

(37)

𝑑 selects the hidden states (𝑢, 𝑣, 𝑟):

𝑑 = ℎ

⎡

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(38)
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here ℎ is the discrete time step, 𝑅𝑑 describes the covariance matrix
of the measurement, 𝑄𝑑 is the covariance matrix of the process model,
and 𝑃0 is the initial state covariance. Selecting good values for these
three matrices is the most complicated part of getting the EKF to work
well. The amount of expected measurement noise in the data should
be inserted in to 𝑅𝑑 , and the amount of error generated by the process
model (manoeuvring model) needs to be estimated in 𝑄𝑑 . The choices
or these matrices depend on the reliability of the present data and the
resent process model.

.4.2. The Rauch Tung Striebel (RTS) smoother
The EKF is recursive and can be run online, continuously making

ew estimates as new measurements arrive. The EKF uses passed
easurements to estimate states in the near future. This prediction is
elpful for online applications such as autopilots or autonomous ships
USVs). This restriction is unnecessary for the parameter estimation on
lready existing data where a whole time series of existing measure-
ents are available. The fact that both past and future data are known

an be used to improve the filter. An EKF filter can include future time
teps by adding a smoother after the filter. The parameter estimation
ses a Rauch Tung Striebel (RTS) smoother (Rauch et al., 1965), which
s an algorithm that runs the EKF backward to also account for future
ime steps. The EKF and RTS have been run on simulated data with
aussian noise added to see if the real states can be identified. Results

rom this can be seen in Fig. 6. This figure shows that the RTS smoother
s also needed to get an accurate estimate of the yaw acceleration.

. Presentation of case studies

The two case study model test results from the wPCC as shown in
ig. 7 and the well-known KVLCC2 are used to validate the proposed
ystem identification method. The models are developed following the
rocess as described in Section 3.2. Consequently, both test cases aim to
redict turning circle maneuvers. The main dimensions of the two case
tudy ship models are listed in Table 3, with explanations in Table 4.
he wPCC is a wind-powered car carrier tested at SSPA (Alexandersson,
022a). This twin screw ship with large rudders has good course sta-
ility and symmetric hydrodynamic manoeuvring forces. The KVLCC2
odel test data from the Hamburg ship model basin (HSVA) and
aritime Research Institute Netherlands (MARIN) was made available

y SIMMAN2008 conference (Stern et al., 2011). This single screw ship
s more course unstable than the wPCC test case, and manoeuvring
orces are unsymmetrical due to the single propeller. This instability
akes it good as the second test case with parameter estimation on an
nsymmetrical model.

The parameter estimation method requires an initial guessed linear
anoeuvring model. For these initial models for the two test cases,

heir hydrodynamic derivatives are calculated with semi-empirical for-
ulas (Eqs. (39)–(47)) taken from Brix (1993) and shown in Table 5.

𝑟 = −
𝜋𝑇 2

(

0.039𝐵
𝑇 − 0.56𝐵

𝐿 + 0.25
)

𝐿2
(39)

𝑁 ′
�̇� = −

𝜋𝑇 2
(

0.017𝐵𝐶𝐵
𝑇 − 0.33𝐵

𝐿 + 0.0833333333333333
)

𝐿2
(40)

𝑁𝑣 = −
𝜋𝑇 2

(

0.5 + 2.4𝑇
𝐿

)

𝐿2
(41)

𝑁 ′
�̇� = −

𝜋𝑇 2
(

− 0.04𝐵
𝑇 + 1.1𝐵

𝐿

)

𝐿2
(42)

𝑋′
�̇� =

2.0𝑚

𝐿3𝜌
(

𝜋
√

𝐿3

𝑣𝑜𝑙𝑢𝑚𝑒 − 14
)

(43)

𝑌 = −
𝜋𝑇 2

(

− 0.08𝐵
𝑇 + 2.2𝐵

𝐿 − 0.5
)

(44)

𝑟 𝐿2
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Fig. 6. EKF and RTS on simulated data (real) with Gaussian noise added (raw).
Table 3
main dimensions of test case ship models.

𝐵 [m] 𝐷 [m] 𝐿 [m] 𝐿𝐶𝐺 [m] 𝑁𝑝 𝑇 [m] 𝛼 ∇ [m3] 𝑘𝑧𝑧 𝑚 [kg] 𝑤𝑝0 𝑥𝑝 [m] 𝑥𝑟 [m]

WPCC 0.95 0.12 5.01 0.0 2 0.21 41.2 0.44 0.25 441 0.15 −2.42 −2.42
KVLCC2 (HSVA) 1.27 0.2 7.0 0.24 1 0.46 45.7 3.27 0.25 3272 0.4 −3.39 −3.5
Fig. 7. wPCC tested at SSPA. Copyright 2020 by SSPA Sweden AB.

Table 4
List of main dimensions symbols.

Symbol Description

𝐵 Beam
𝐷 Propeller diameter
𝐿 Length between perpendiculars
𝐿𝐶𝐺 Distance 𝐿∕2 to center of gravity
𝑁𝑝 Number of propellers
𝑇 Draught
𝛼 Scale factor
∇ Volume displacement
𝑘𝑧𝑧 Radius of gyration/𝐿
𝑚 Mass (excluding added mass)
𝑤𝑝0 Wake fraction
𝑥𝑝 Longitudinal position of propeller
𝑥𝑟 Longitudinal position of rudder

𝑌 ′
�̇� = −

𝜋𝑇 2
(

− 0.0033𝐵2

𝑇 2 + 0.67𝐵
𝐿

)

𝐿2
(45)

𝑌𝑣 = −
𝜋𝑇 2

(

0.4𝐵𝐶𝐵
𝑇 + 1

)

𝐿2
(46)

𝑌 ′ = −
𝜋𝑇 2

(

− 5.1𝐵2

𝐿2 + 0.16𝐵𝐶𝐵
𝑇 + 1

)

(47)
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4.1. The wPCC test scenarios

The wPCC test case focuses on predicting forces and moments
from the ship hull and rudders. The propeller force is not part of the
prediction model but is taken from the model test measurements. The
model test data used for modeling is split into training, validation and
test datasets, following the model development process as described in
Section 3.2. The training dataset contains self-propulsion, pull-out tests,
and zigzag10/10 tests to starboard and port. The validation dataset
consists of three zigzag20/20 tests and the turning circle test is left
for the test set as shown in Fig. 8. If the manoeuvring model built
by the proposed method based on a series of model tests including
ZigZag10/10, 20/20 to port and starboard as well as self-propulsion
and pull out test (IMO, 2002) can predict the turning circle maneuver,
then it is a capable model.

4.2. The KVLCC2 test scenarios

The proposed method is also validated using the KVLCC2 case study
ship model. The propeller is part of the manoeuvring model for this
test case, instead of only the hull and rudders, as in the wPCC test
case, so that the entire ship can be simulated without additional input.
The model development process as described in Section 3.2 is applied
for the KVLCC2 as well. Here the training dataset contains various
zigzag tests to starboard and port from model tests carried out at
HSVA for the SIMMAN2008 conference (Stern et al., 2011), where the
ZigZag35/5 test is kept for the validation set. The test set is taken from
turning circle model tests carried out at MARIN for the SIMMAN2008
conference (Stern et al., 2011) as seen in Fig. 9.

5. Results

The results motivating the choices of methods in the proposed
parameter estimation are presented below. Result with the inverse dy-
namics regression is presented in Section 5.1 for one ideal case without
measurement noise. A comparison between the proposed preprocessors,
EKF and RTS, and alternative low-pass filter is presented in Section 5.2.
Results with the parameter estimation for the turning circle test cases
are presented for both ships in Section 5.3 and 5.4. Results from the
KVLCC2 propeller model is also presented in Section 5.4.1.
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Table 5
Initial guessed derivatives in linear models (times 1000).

𝑁𝛿 𝑁𝑟 𝑁 ′
�̇� 𝑁𝑣 𝑁 ′

�̇� 𝑋′
�̇� 𝑌𝛿 𝑌𝑟 𝑌 ′

�̇� 𝑌𝑣 𝑌 ′
�̇�

WPCC −1.5 −1.719 −0.299 −3.184 −0.128 0.179 3.0 2.402 −0.303 −9.713 −6.109
KVLCC2 (HSVA) −1.5 −3.415 −0.822 −8.707 −1.166 1.05 3.0 4.305 −1.271 −25.266 −15.846
Fig. 8. wPCC training, validation and testing datasets.
Fig. 9. KVLCC2 training, validation and testing datasets.
5.1. Inverse dynamics

The hydrodynamic derivatives within the manoeuvring model can
be identified exactly at ideal conditions for the parameter estima-
tion with no measurement noise and a perfect estimator. For exam-
ple, artificial data from a turning circle test can be simulated by a
pre-defined/true manoeuvring model. The hydrodynamic derivatives
within the manoeuvring model can be identified with the same values.
Results from such a simulation is shown in Fig. 10 where the regression
has identified the true values precisely.

5.2. Preprocessing

The low-pass filter is a prevalent alternative to preprocessing the
model test data, as opposed to the EKF used by the proposed parameter
9

estimation. In order to study which of the filters works best, the t
proposed parameter estimation has been run on the wPCC model test
data with the EKF + RTS smoother replaced by a Low-pass filter instead.
The low-pass filter applies a first-order linear digital Butterworth filter
twice, once forward and once backward, to get zero phase (Virtanen
et al., 2020). Fig. 11 shows the average simulation error 𝑅𝑀𝑆𝐸 with
low-pass filters at various cut-off frequencies for all wPCC model tests.
Corresponding error with parameter estimation using EKF + RTS is
also shown in the figure. The simulation error for each model test is
expressed as Root Mean Square Error 𝑅𝑀𝑆𝐸 (Eq. (48)) of the distance
between the position from the model test and simulation.

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑛=1(𝑑2𝑛 )
𝑁

(48)

where 𝑑𝑛 is the euclidean distance for each time step between the model
est positions (𝑥 , 𝑦 ) and the predicted positions.
0 0
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Fig. 10. True and regressed hydrodynamic derivatives in MAVMM identified with Inverse dynamics and OLS regression on a simulated turning circle with MAVMM.
Fig. 11. Average simulation error with MAVMM fitted on wPCC model test data using low-pass filters with various cut off frequency or EKF.
Even though high accuracy can be obtained using a low-pass filter
s the pre-processor, if an optimal cut-off frequency is selected, its
ccuracy decreases quickly at lower or higher frequencies. With higher
ut-off frequencies, too much of the measurement error remains in the
ata, resulting in poor performance of the OLS regression. In extreme
ases, it is like having no filter at all. Using too low of a cut-off
requency removes too much, including parts of the actual signal. The
esults show that the low-pass filter with a 7 Hz cut-off frequency has
he lowest error among the low-pass filters, but EKF + RTS in the
arameter estimation has an even lower error, which is why this is used
s the preprocessor in the proposed parameter estimation.

.3. The wPCC tests

The LVMM was ruled too simple, so only the AVMM and MAVMM
ere considered possible manoeuvring models in the cross-validation.
orces and moment predicted for the validation dataset with the ma-
oeuvring models fitted with proposed parameter estimation on the
raining set are shown in Fig. 12. It can be seen that the fitted AVMM
verpredicts the forces by far. Therefore, simulations of the validation
ases are only possible using the MAVMM, which is selected as the
uitable manoeuvring model for the wPCC. The simulations are shown
or one of the ZigZag20/20 validation cases in Fig. 13.

The over-prediction of forces with the AVMM can be explained
y the large problems with multicollinearity that were encountered
hen applying the parameter estimation method to the wPCC data. The
bsolute correlation coefficient between the features in the wPCC yaw
oment regression are shown in Fig. 14. It can be seen that most of the

oefficients have very high absolute correlation (indicated in black).
ome of the regressed hydrodynamic derivatives in the AVMM also
10

ave a substantial values and large uncertainty.
For the wPCC the prediction was conducted using simulation of the
turning circle by the trained MAVMM, and the prediction results are
presented in Figs. 15, 16. Monte Carlo simulations with alternative re-
alizations of the regression, considering the uncertainty in the regressed
parameters, are also shown in these figures. The alternative realizations
have similar simulation results to the model with mean values of the
regression (black line). Advance and tactical diameter (IMO, 2002)
differs 4% and 1% between prediction simulation and corresponding
results from the model tests (Table 6) which are acceptable deviations
for the wPCC considering the large margin to the limits of the IMO
standard (IMO, 2002).

The mean values and standard error (se) of the hydrodynamic
derivatives expressed with prime units for the wPCC obtained with
parameter estimation of MAVMM (Eqs. (12), (13), (14)) applied on all
the wPCC data (including the turning circle) are shown in Table 7.

5.4. The KVLCC2 tests

The propeller is part of the manoeuvring model for thr KVLCC2
test case. A propeller prediction model needs to be regressed, based
on thrust measurements from the model tests.

5.4.1. The KVLCC2 propeller model
The coefficients of 𝐾𝑇 (Eq. (20)) were regressed from the KVLCC2

propeller characteristics from SIMMAN2008 HSVA model tests (Stern
et al., 2011) (𝑘0: 0.32419, 𝑘1: −0.22091, 𝑘2: −0.14905). The Polyno-
mial propeller model was developed with polynomial regression and
cross-validation on the training and validation datasets to make the
best feature selection. A cross-validation study was carried out on the

three candidate propeller models: the MMG propeller model, the simple
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Fig. 12. Validation of force models for wPCC ZigZag20/20.
Fig. 13. Validation with simulations for wPCC ZigZag20/20.
Table 6
wPCC predicted turning circle advance and tactical diameter compared to SSPA model tests and IMO limit.

Advance [m] Advance (IMO) [m] Tactical diameter [m] Tactical diameter (IMO) [m]

Model test 12.82 22.57 14.76 25.07
Prediction 13.3 22.57 14.93 25.07
propeller model, and the Polynomial propeller model. The training and
validation sets were made of the entire model test time series from
the HSVA model tests. The model tests were divided into the test and
validation sets randomly. The random training and validation were
repeated 100 times. The Polynomial model was selected, having the
highest accuracy. Taylor wake 𝑤𝑝0 = 0.4 was used in all three models,
the MMG model used 𝐶1 = 2.0, 𝐶2 = 1.6 when 𝛽𝑝 > 0 and 𝐶2 = 1.1
when 𝛽𝑝 ≤ 0 (Yasukawa and Yoshimura, 2015). Fig. 17 shows a small
part of the cross-validation.

Table 8 shows coefficients of the polynomial propeller model fitted
on the training and validation dataset for KVLCC2.
11
5.4.2. KVLCC2 manoeuvring model
The LVMM was ruled too simple, for KVLCC2 as well, so only the

AVMM and MAVMM were considered possible manoeuvring models
in the cross-validation. The forces and moments applied on the hull,
rudder, and propeller predicted with the AVMM and MAVMM fitted
with the proposed parameter estimation on the training set are shown
in Fig. 18. The forces are well predicted with both manoeuvring models.
The AVMM is not giving the large over predictions that were seen for
wPCC (see Section 5.3). However, the MAVMM is still slightly better
and is therefore selected as the suitable manoeuvring model for the
KVLCC2.
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Fig. 14. Absolute correlation between the features in the wPCC yaw moment regression of AVMM.

Fig. 15. Turning circle test case for wPCC, track plots from model test and simulation.

Fig. 16. Turning circle test case for wPCC, time series from model test and simulation.



Ocean Engineering 266 (2022) 112940M. Alexandersson et al.

o
p

i
w
C
s
m

d
P
b
l
t
e

d
p
t

Fig. 17. Validation of MMG, Simple and Polynomial propeller models for KVLCC2.
Fig. 18. Validation of force models for KVLCC2.
Simulations of the validation cases with the MAVMM is shown for
ne of the ZigZag20/20 validation cases in Figs. 19 and 20 where the
redicted thrust is also shown.

Results from the final prediction of the turning circle test are shown
n Figs. 21, 22 and 23. The prediction is conducted using simulation
ith the MAVMM trained on the training and validation dataset. Monte
arlo simulations with alternative realizations of the regression are also
hown in this figure. The alternative realizations are very similar to the
odel with mean values of the regression (black line).

For KVLCC2 comparisons of turning circle advance and tactical
iameter compared to the model test result is shown in Table 9.
redicted advance and tactical diameter differ 2% and 5%, which can
e considered acceptable, considering the margin to the IMO standard
imits, which are also shown in this table. The results are also closer
o the model tests than a similar study conducted for the KVLCC2 (He
t al., 2022).

The mean values and standard error (se) of the hydrodynamic
erivatives expressed with prime units for the KVLCC2 obtained with
arameter estimation of MAVMM (Eqs. (12), (13), (14)) applied on all
13

he HSVA data are shown in Table 10.
Table 7
wPCC MAVMM derivatives (prime units times 1000).

name mean se name mean se name mean se

𝑋𝛿𝛿 −2.927 0.011 𝑌𝑢𝑟 −65.507 0.082 𝑁𝛿 −1.993 0.002
𝑋𝑣𝑟 −7.737 0.066 𝑌𝑣 −20.347 0.016 𝑁𝑇 𝛿 −5.392 0.599
𝑋𝑟𝑟 −1.413 0.026 𝑌𝑢 −0.027 0.001 𝑁𝑟 −37.341 0.096
𝑋𝑢𝑢 20.124 0.137 𝑌𝑟 64.14 0.083 𝑁𝑢 −0.003 0.0
𝑋𝑢 −20.948 0.137 𝑁𝑢𝑟 35.525 0.096

𝑁𝑣 −0.05 0.004
𝑁𝑣𝑣𝛿 −19.051 0.054

Table 8
KVLCC2 propeller model.

𝛽𝑝 > 0 𝛽𝑝 ≤ 0

𝐶1 −0.1735 −0.1066
𝐶2 0.4589 0.0771
𝐶3 −1.8865 1.2958
𝐶4 0.0515 0.0514
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Fig. 19. Validation with simulations for KVLCC2.
Fig. 20. Validation error (prediction-model test) with simulations for KVLCC2.
Table 9
KVLCC2 Predicted turning circle advance (A) and tactical diameter (TD) compared to
MARIN model tests and IMO limit.

delta A (model
test) [m]

A
(prediction)
[m]

A (IMO)
[m]

TD
(model
test) [m]

TD
(prediction)
[m]

TD (IMO)
[m]

35.0 21.59 21.21 31.5 21.72 23.07 35.0
−35.0 22.54 22.1 31.5 23.55 24.29 35.0

5.5. Discussion

Using inverse dynamics in the proposed parameter estimation can
find the parameters in a manoeuvring model precisely when there is no
measurement noise, and the selected manoeuvring model is a perfect
model. This type of result can be seen when identifying parameters
in a manoeuvring model on data from simulations with the same
manoeuvring model. In order to succeed in system identification on
actual model test data, measurement noise as well as model uncertainty
need to be handled, and a manoeuvring model as close as possible to
14
Table 10
KVLCC2 MAVMM derivatives (prime units times 1000).

name mean se name mean se name mean se

𝑋𝑣𝑟 −11.454 0.272 𝑌𝑇 77.34 1.23 𝑁𝛿 −1.274 0.003
𝑋𝑟𝑟 −1.406 0.068 𝑌𝑟 256.065 0.654 𝑁𝑟 −105.618 0.179
𝑋𝛿𝛿 −2.719 0.013 𝑌𝑣 −24.467 0.02 𝑁𝑇 −32.523 0.274
𝑋𝑢𝑢 80.508 0.618 𝑌𝑢𝑟 −252.991 0.658 𝑁𝑢 0.063 0.001
𝑋𝑢 −81.415 0.618 𝑌𝑢 −0.119 0.003 𝑁𝑣 −7.156 0.016

𝑁𝑇 𝛿 −391.596 0.941
𝑁𝑣𝑣𝛿 −19.257 0.089
𝑁𝑢𝑟 102.252 0.183

the real system should be used. The proposed parameter estimation
method requires that the model test data is preprocessed to remove
measurement noises. The proposed iterative EKF and RTS smoothers
gives higher accuracy and avoids finding the optimal cut-off frequency
for using a low-pass filter. The linearization in the EKF did not cause
any stability problems, with the high frequency model test data used
(100 Hz), which can be a problem for more sparse time series, with
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Fig. 21. Comparison between predicted Turning circle test with MAVMM trained on HSVA data and MARIN model test results for KVLCC2.

Fig. 22. Comparison between predicted Turning circle test with MAVMM trained on HSVA data and MARIN model test results for KVLCC2.

Fig. 23. The prediction error (prediction-model test) for Turning circle test with MAVMM trained on HSVA data and MARIN model test results for KVLCC2.
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longer time steps. In this case, unscented Kalman filter (UKF) can be
considered as an alternative.

Multicollinearity was a significant problem with the AVMM for
both the wPCC and KVLCC2 data. Consequently, some of the regressed
hydrodynamic derivatives in the AVMM have unphysically large values
and substantial uncertainties. The model is still mathematically cor-
rect, where the regressed polynomials fit the training data well. The
regressed polynomial is the sum of large counteracting coefficients.
The model works as long as the states are similar to the training data.
However, when extrapolating, it is easy to imagine that the balance
between these massive derivatives is disturbed, giving significant ex-
trapolation errors very quickly. This behavior was seen when predicting
forces and moments with the AVMM on unseen validation data and is
a well known problem (ITTC, 2008c).

The MAVMM has fewer hydrodynamic derivatives with lower multi-
collinearity and minor extrapolation errors. Including propeller thrust
in the manoeuvring model made it possible to obtain high accuracy
with fewer hydrodynamic derivatives. Another problem with a too
complex model is that the standard manoeuvres used in this paper does
not follow the aspect of persistence of excitation, so that some of the
hydrodynamic derivatives might not be identifiable (Revestido Herrero
and Velasco González, 2012). During zigzag tests, the model is for
instance exposed to only two rudder angles for a majority of the data.
A series of step responses as used in Miller (2021) gives a better excita-
tion, but requires a lot of space, which is possible at lake experiments,
but not in a narrow basin.

The close integration with the EKF makes this method very conve-
nient to use in online applications. The hydrodynamic derivatives are
however not updated online. The regression needs to be rerun, which
is a rapid procedure with the OLS regression. The entire time series
history or more recent parts, can be used depending on how much the
model should remembered.

6. Conclusions

This paper presented a new method for system identification of
ship manoeuvring dynamics using a new parameter estimation method
applied to manoeuvring models. The proposed method includes:

• A model development process for robust models with good gener-
alization, where the validation set should have larger yaw rates,
drift angles and rudder angles compared to the training set.

• A new parameter estimation method which includes:

– Preprocess measurement data with EKF + RTS run in itera-
tion with initial guess from semi-empirical formulas.

– Inverse dynamics regression

It was shown that:

• The new method can predict Turning circles with less than 5%
error in advance and tactical diameter for the wPCC and KVLCC2
test cases, which should be considered sufficient considering the
margin to the corresponding limits in the IMO standard for both
ships.

• For the KVLCC2 case with the manoeuvring model trained on
zigzag model test data from the towing tank at HSVA, it was
possible to reproduce the turning circle model test data from
MARIN with reasonable accuracy. This example is one exciting
application where the new method can be used to extend the
model test from a narrow towing tank to predict turning circles.

• The inverse dynamics regression had higher accuracy when the
proposed preprocessor was used instead of low-pass filters.

Finally, it is concluded that the proposed method can potentially
improve the system identification of ship manoeuvring dynamics. The
KVLCC2 test case results with the new method are closer to the model
16

tests compared to a similar study (He et al., 2022). Adding the prior
knowledge from semi-empirical formulas as the initial guess into the
EKF iteration, adding the thrust model and adopting the complexity
of the manoeuvring model by reducing the number of hydrodynamic
derivatives are all contributing to the improved performance. Even
though the method has been validated by two very different ships,
further validations with more ships is needed to strengthen the belief
in the method.
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