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Abstract. We investigate the use of supervised machine learning on
data from ski-poles equipped with force sensors, with the goal of auto-
matically identifying which sub-technique the skier is using. Our first
contribution is a demonstration that sub-technique identification can be
done with high accuracy using only sensors in the pole. Secondly, we also
compare different machine learning algorithms (LSTM neural networks
and random forests) and highlight their respective strengths and weak-
nesses, providing practitioners working with sports data some guidance
for choice of machine learning algorithms.
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1 Introduction

In cross-country skiing, the proportion of power generated through the poles de-
pends on which sub-technique the skier is using, which can be measured through
sensor-equipped ski poles. In double poling, all force is applied through the poles,
whereas in the skating sub-techniques (referred to as “gears 1-5”, following the
notation in [5]) an increasing proportion is generated by the legs. To estimate
the total work, it is therefore of interest to automatically identify which sub-
technique has been used. Furthermore, the most effective sub-technique will de-
pend on features of the terrain, the snow conditions and the individual strengths
of the skier. As such, sub-technique identification is of interest for athletes and
coaches for several reasons: Firstly, it can directly be used to estimate power to
steer intensity in interval training. This is already used in practice by some long-
distance specialists, who tend to use only the double poling technique, where
all force is applied via the poles. With accurate technique classification, this can
also be adapted to conventional cross-country skiers, using other sub-techniques.
Secondly, it will also allow to analyse the proportion of time a skier spends in
each gear over the course of a race or training session, even without the use of
cameras covering the entire course.

Previous work on gait analysis in skiing typically use multiple sensors (ac-
celerometers, IMUs, gyroscopes) attached to the body and/or skis [4, 9, 7, 8, 6,
2]. A more light-weight and flexible system with sensors built into the poles was
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investigated in the small pilot study by Johansson et al. [3], showing high accu-
racy in classifying skating sub-techniques using an LSTM neural network model.
We use the same ski-pole sensors, provided to us by Skisens AB3, and extend
previous work by training machine learning models on larger datasets, including
more individuals and also covering experiments with both classical and skating
techniques. Furthermore, we train, evaluate and contrast both neural network
models as well as random forest models.

2 Methods and Data

We conduct two separate case studies: one on freestyle skating techniques, and
one on classical sub-techniques. In both settings we pre-process the data to
identify force peaks representing individual strokes, each labelled with its asso-
ciated sub-technique. We considered two machine learning models with different
properties: a LSTM neural network model, which takes the time-series of sensor
readings representing a stroke directly as input, and a random forest classifier,
which uses derived features as inputs to learn from (e.g., stroke length, frequency
and peak power).These techniques were chosen as they represent two of the main
families of machine learning algorithms.

Random forests are ensembles of decision trees, a simple idea working well
for tabular data, looking at one feature at the time to decide the classification
of a datapoint. However, for data collected as a time-series of sensor readings,
such features must first be computed. This feature engineering step relies on
domain expertise, it is by no means always obvious what the best features to
use for separating the classes are. If the wrong ones are chosen, the model may
not perform as well as one would have hoped. Neural networks on the other
hand, work directly on the data (time series in our case). During training, the
network adapts and updates its internal parameters to maximise accuracy on
the classification task, without the need for a feature engineering step. The
network learns whatever features that best helps it to solve the task at hand,
however these features are not in general human interpretable, so we may not
know why a certain label was picked. Still, neural networks have outperformed
earlier methods on a wide range of tasks such as natural language processing
and computer vision. The implementations of the machine learning models use
standard Python libraries and are described in more detail in [1].

We used two datasets described below, each collected using Skisens handles
sampled at 100Hz. At each time-step, the force in both the left and right pole
was recorded. Unlike earlier work this new version of the Skisens handles only
record force, and does not include angular data as in [3]. For the LSTM models,
the time series was split into separate pole-pushes and zero padded to the same
length.

Dataset 1: Freestyle techniques. The dataset for freestyle skiing was provided
by Skisens, and contain data collected from ten junior elite skiers (7 male, 3

3 www.skisens.se
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female) skiing on an indoor treadmill with sub-technique, speed and slope varied
according to a set protocol. The sub-techniques considered were double poling
(DP) and skating gears 2, 3 and 44 (G2, G2, G4). In total this dataset contains
16 007 pole pushes, however not evenly distributed between the gears, with DP
and G3 being twice as frequent as G2 and G4.

Dataset 2: Classical techniques Unlike the Dataset 1, the protocol for data col-
lection of classical techniques was designed by the authors, specifically with
machine learning in mind to ensure roughly the same amount of time in each
sub-technique (double poling (DP), step double poling (SDP) and diagonal stride
(DS)). Data was again collected from junior elite skiers (9 male, 5 female) on an
indoor treadmill. In addition, some data was also collected from outdoor roller
skiing (3 male subjects). In total the dataset contains 33 519 pole pushes roughly
evenly distributed between the three classical sub-techniques.

3 Results

Case Study 1: Freestyle techniques. Both models were evaluated using 10-fold
cross validation with seven skiers used for training the models and data from
three skiers held out as a test-set. Smaller classes (G2 and G4) were over-sampled
in an attempt to compensate for the class imbalance in the dataset. The random
forest model reached an average accuracy of 78% (DP 69 %, G2 87%, G3 70%,
G4 63%), while the LSTM model reached only 63% (DP 60%, G2 52%, G3 65%,
G4 86%). While the LSTM did seemingly well for gear 4, it often misclassified
gears 2 and 3 into this category (20% and 10% respectively). The Random Forest
on the other hand, most often mistook gear 4 for double poling (23% of samples).
We noticed that there were some data-issues where the time series from the left
and right handle were not always in sync. This, in combination with the unbal-
anced classes of sub-techniques might have contributed to the comparatively low
performance for the LSTM model, while the Random Forest was less affected.

Case Study 2: Classical techniques. Evaluation of the models trained for classical
techniques were again evaluated using 10-fold cross validation. The Random
Forest model achieved an average accuracy of 74% (DP 72,5%, DS 86%, SDP
69%), while the LSTM model performed considerably better with an average
accuracy of 86% (DP 83%, DS 92.5%, SDP 84%). The most common mistake
in both Random Forest and LSTM models was between double poling and step
double poling (Random Forest: 15% and 19% respectively, LSTM: 13% and
10%), which was not surprising, as hand movements are very similar.

4 Discussion and Conclusion

We have shown that using only data from force sensors in the skipole handles
it is possible to accurately classify cross-country skiing sub-techniques, both in

4 Gears 1 and 5 were not included as gear 1 is almost never used in practice, and gear
5 only uses the legs.
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the classical and freestyle cases. The Random Forest model appears to be less
sensitive to the size and quality of the dataset, as it shows similar performance
in both case-studies. We hypothesise that the relatively poor performance of the
LSTM model on freestyle techniques was primarily due to data quality issues, as
better results have been achieved in a previous smaller study [3]. In Case Study
2, on classical techniques, the LSTM model outperforms the Random Forest.
We believe this is because the training dataset is larger, of better quality and
class balanced. Note that for DP, which appear in both case studies, the LSTM
accuracy increases from 60% to 83%, which would support this hypothesis.

The Random Forest model can be sensitive to which features it is passed,
in an earlier experiment where additional features were present, these proved
decremental to performance (see [1] for details). Choosing and computing the
right features for learning is both important and highly non-trivial, and should
ideally also involve a domain expert. On the other hand, an attractive aspect
of neural networks, such as LSTMs, is that they do not need to be explicitly
told what features to look for in the raw time-series data for the pole push.
Given enough labelled examples the neural network will adapt and discover
some distinguishing features of the sub-techniques itself. However, as learned
information is encoded in the network’s many trainable parameters (the weights),
it is not obvious to a human user what these distinguishing features are.
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