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NEUROSC I ENCE

Blind identification of the spinal cord output in humans
with high-density electrode arrays implanted inmuscles
Silvia Muceli1*, Wigand Poppendieck2, Aleš Holobar3, Simon Gandevia4, David Liebetanz5,
Dario Farina6*

Invasive electromyography opened a new window to explore motoneuron behavior in vivo. However, the tech-
nique is limited by the small fraction of active motoneurons that can be concurrently detected, precluding a
population analysis in natural tasks. Here, we developed a high-density intramuscular electrode for in vivo
human recordings along with a fully automatic methodology that could detect the discharges of action poten-
tials of up to 67 concurrently active motoneurons with 99% accuracy. These data revealed that motoneurons of
the same pool receive common synaptic input at frequencies up to 75 Hz and that late-recruited motoneurons
inhibit the discharges of those recruited earlier. These results constitute an important step in the population
coding analysis of the human motor system in vivo.
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INTRODUCTION
The introduction of intramuscular needles and wires for electromy-
ography (EMG) by Adrian and Bronk (1) and Basmajian and Stecko
(2) opened a window to explore the neural underpinning of move-
ment control. By recording muscle fiber action potentials, intra-
muscular EMG reveals the timing of the action potentials
discharged by the innervating spinal motoneurons (MNs). The
analysis of motor units (MUs) from decomposition of intramuscu-
lar EMG signals recorded with needle and fine wire electrodes
rapidly became the standard approach to study MN behavior in
vivo in humans and other species (3).

Nonetheless, the use of EMG to assess MNs also imposes some
constraints. Some intramuscular electrodes are highly selective to
detect the electrical activity of a small number of muscle fibers.
This makes it easy to identify the discharge times of a few MUs
through EMG decomposition, which is conventionally based on
spike sorting of action potentials with similar morphology (4).
However, the electrode selectivity implies that only a small fraction
of the hundreds of active MNs can be studied concurrently. To in-
crease the number of sampled MUs, investigators have serially re-
corded single MU activity. While serial recordings have unraveled
patterns of MN discharges, a MN population analysis is still
missing, which limits our understanding of the process of genera-
tion of the neural output of the spinal cord. Now, there is no robust
method that provides simultaneous decoding of a large portion of
the active MNs in natural tasks.

The identification of large populations of concurrently active
MUs is necessary to characterize the synaptic inputs received by
MNs. Coherence among discharge patterns of the homonymous
MN pool reflects the common synaptic input at various frequency
bands. The expression “discharge pattern” is used in this study to

indicate the series of discharge times of eachMU. Note that this ter-
minology does not imply stationarity of the time series of the MU
discharge times. A single MN cannot accurately sample an input
with a frequency greater than half its average discharge rate (5, 6),
which is usually in the range of 10 to 40 Hz (7). As a result, sampling
by few MNs limits the frequency range at which coherence (and
thus common synaptic input) can be observed. However, as the
common synaptic input is spread to the whole MN pool (8),
pooling the discharge patterns extracted from large populations of
MUs allows sampling at higher frequencies.

As a further example, analysis of the output of a population of
MNs is also a way to investigate connectivity among MNs, e.g., due
to Renshaw inhibition (9, 10). Renshaw cells receive collateral pro-
jections from MN axons and synapse on MNs mediating recurrent
inhibition back to the MN pool. However, the distribution of recur-
rent inhibition throughout the MN pool is unknown in humans
(11). Most knowledge about recurrent inhibition stems from exper-
iments on anesthetized animal preparations, and direct translation
of findings to human studies of intact MNs during natural behavior
is challenging. Again, technological advances for sampling large
populations of MUs in vivo in humans are necessary (11).

A way to increase the number of concurrently detected MUs in
natural tasks uses decomposition of activity recorded with high-
density grids of surface electrodes (12). However, surface EMG
only detects the activity of superficial MUs (13). As an alternative
approach to increase the number of sampled MUs, we previously
introduced multichannel intramuscular electrodes based on thin-
film technology (14, 15), which provide a large and unbiased
sample of MUs from both deep and superficial muscles. These elec-
trodes comprise a linear array of detection points in a flexible wire
that can record across the muscle cross section. Tens of MUs can be
concurrently detected with these systems (15). However, these
systems are limited to only 16 electrode sites, and they require par-
tially manual spike sorting. Spike sorting software for multichannel
intramuscular EMG now relies on human oversight to edit the
results (16).

When increasing the number of recorded signals, the EMG de-
composition process must be applied to each recorded EMG
channel. With conventional spike sorting, this increases
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computation time and manual editing of the results (17). Alterna-
tive to spike sorting, blind source separation (BSS) methods can be
applied to separate sources (i.e., to decompose EMG signals into the
constituent trains of MU action potentials) when a large number of
observations (EMG channels) are available (18). However, classic
BSS limits the maximum number of extracted sources to the
number of observations (in practice to less than the observations).

Here, we describe two breakthroughs in the technology to inves-
tigate MN behavior in vivo. First, we designed, manufactured, and
tested a novel implantable electrode array for human studies with a
much greater number of recording sites and higher site density than
any previous systems. The novel design allowed the implantation of
the array acutely with needles of similar size to those used in con-
ventional concentric needle recording. Second, we used a fully au-
tomatic decomposition algorithm (no manual editing) that enabled
the decoding of the high-density multiunit recordings with accura-
cy comparable to that achieved by extensive manual editing of each
trace by an expert operator. Furthermore, with these new technol-
ogies, we addressed two fundamental open questions in MN phys-
iology. We found that a MN pool receives common synaptic input
in a frequency range up to 75 Hz, much greater than previously
thought (19). We then analyzed the effect of individual MU dis-
charges on theMNpopulation output to determine the connectivity
among MNs.

RESULTS
Intramuscular thin-film electrode array
We designed and manufactured a high-density intramuscular array
with 40 platinum electrodes with an area of 5257 μm2 each (Fig. 1A),
linearly distributed over a length of 2 cm. Figure 1B shows the com-
plete layout of the double-sided thin-film structure. The structure is
built on a polyimide substrate, has a total length of 7 cm, and is U-
shaped with two filaments with a width of 655 and 150 μm (Fig. 1C)
and a thickness of 20 μm. The wider filament contains two linear
arrays of 20 oval electrodes each (Fig. 1A), with a 1-mm interelec-
trode distance on the top (cyan) and bottom (green) sides of the
polyimide (Fig. 1C). The two arrays have a shift of 0.5 mm
(Fig. 1C). Because the double-sided structure is only 20 μm thick,
it is equivalent to a linear array of electrodes with an interelectrode
distance of 0.5 mm. The number of electrodes is limited by the
number of interconnection lines fitting on the filament. The advan-
tage of two arrays on the two sides of the structure is that the fila-
ment width can be reduced for a given number of electrodes. In
addition, the occurrence of short circuits during manufacturing is
reduced. The narrower filament is inserted into a 25-gauge needle

(100 Sterican, B. Braun, Melsungen, Germany) to introduce the
thin-film structure into a muscle, with a procedure similar to that
used in classic fine wire EMG. The needle is withdrawn, leaving the
array inside the muscle.

Signal quality and MU yield
The electrode array was tested in three healthy men [subject 1 (S1)
to subject 3 (S3)]. Two arrays were inserted in the tibialis anterior of
subject S1, while one array was implanted in the other two subjects.
S1 performed a steady contraction at 20% of maximal voluntary
contraction (MVC), whereas subject 2 (S2) and S3 contracted the
tibialis at 30% MVC. The electrodes recorded high-quality signals,
with a baseline noise of 15.8 ± 9.9 μV (average ± SD across four
arrays of 40 channels each). Figure 1D displays representative
signals recorded from S1 to show the signal-to-noise ratio.
Figure 1E shows the discharge patterns of the MUs extracted via
manual decomposition from the signals recorded from array 1 in
S1. In the raster plot, each row represents a different MU, and
each vertical line represents the discharge time of an action poten-
tial. Within the selected time frame (5 s), 45 MUs were consistently
detected as active, 1 MUwas recruited during the contraction, and 1
MU had a few isolated discharges. Figure 1F shows a representative
example of a MU action potential detected across several electrodes
of the 40-channel array.

The recorded signals were decomposed independently into the
constituentMUdischarge patterns by two expert investigators (S.M.
and A.H.) using two decomposition approaches. We refer to them
as manual and automatic decomposition. For manual decomposi-
tion, intramuscular EMG signals from each thin-film system were
decomposed channel by channel using spike sorting software (16)
and manually edited for resolving missed discharges and superim-
positions. As the territory of each MU [i.e., the anatomical cross-
sectional area occupied by the muscle fibers belonging to the
same MU (20, 21)] extended over multiple channels, the discharge
pattern of a certain MU was identified from different channels (see
the next paragraph). This redundant information was exploited to
increase the decomposition accuracy. After manually resolving dif-
ferences in the discharge patterns of the same MU extracted from
different channels, only one discharge pattern per MU was retained
(for details, see the “Signal decomposition” section) so that each
MU activity was represented by a unique discharge pattern. For au-
tomatic decomposition, all signals from the same array were decom-
posed with the BSS method [see Materials and Methods and (22)].
We then compared the MU discharge patterns extracted by the two
decomposition procedures (manual and automatic) via the rate of
agreement (RoA). The RoA ranges from 0 to 100%, with 0%

Table 1. Decomposition performance for the high-density intramuscular signals: Manual versus automatic decomposition. PNR, pulse-to-noise ratio.

Identifier Number of
MUs (manual)

Number of MUs
(automatic)

Number of
MUs (common)

RoA
(means ± SD, %)

Sensitivity
(means ± SD, %)

Precision
(means ± SD, %)

PNR
(automatic,

dB)

S1 array 1 50 40 39 99 ± 3 99 ± 2 99 ± 1 40.5 ± 7.4

S1 array 2 36 27 27 98 ± 4 99 ± 2 99 ± 2 41.1 ± 6.7

S2 39 27 27 100 ± 1 100 ± 1 100 ± 0 42.0 ± 5.3

S3 36 30 30 99 ± 4 99 ± 2 99 ± 2 44.9 ± 8.5
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indicating no discharge in common between two discharge patterns
(within a set tolerance; see the “Assessment of the automatic de-
composition accuracy” section) and 100% indicating all discharges
in common.

Table 1 reports the data obtained via the decomposition process.
The activity of 161MUs was manually decomposed from the signals
recorded from the four arrays, yielding 38,735 unique discharges in
20 s. The RoA between all possible pairs of MUs detected from the
same array (1225, 630, 741, and 630 for S1 array 1, S1 array 2, S2,
and S3, respectively) ranged from 0 to 11% (median: 2%). This value
is perfectly in agreement with the expected number of synchronized
discharges among MUs (23) and therefore indicates that all identi-
fied MU discharge patterns were unique. The number of channels
in which the peak-to-peak amplitude of the corresponding action
potential exceeded 10 times the root mean square (RMS) baseline
noise ranged from 4 to 40 (median: 18) for all MUs but 3 (148
MUs in total). The presence of the sameMU over multiple channels
contributed to the accurate extraction of the MU discharge patterns
(24). The average discharge rates were 14.8 ± 1.7 Hz (S1), 14.1 ± 1.6
Hz (S1 array 1), 15.8 ± 1.3 Hz (S1 array 2), 11.0 ± 1.2 Hz (S2), and
12.7 ± 1.9 Hz (S3), in agreement with previous studies (25, 26). Most
MUs were active for the whole 20-s interval, but 10 of 161 dis-
charged less than 50 times each and were excluded from the

above calculation of the average discharge rate and number of chan-
nels exceeding baseline to increase the reliability of the estimates.
There were no MUs in common between array 1 and array 2 of
S1 [RoA between all possible pairs (1800) ranged between 0 and
5%; median: 2%]. The cross-array spike triggered averaging proce-
dures produced averages at the baseline noise level, further confirm-
ing that there were noMUs in common between array 1 and array 2.

Decomposition accuracy
Table 1 includes the comparison between the output of the manual
and automatic decomposition procedures. From the 161MUs iden-
tified by manual decomposition, 123 (76%) were identified by the
automatic decomposition. Only one MU identified by automatic
BSS did not match a MU extracted by manual decomposition.
The investigator who performed the manual decomposition initial-
ly identified the unmatched MU, but she discarded it from further
analysis because of lack of confidence in the decomposition accura-
cy due to the low amplitude of its action potentials. Eight of the 38
MUs (21%) that were not extracted by the automatic decomposition
discharged less than 50 times.

The average RoA across the 123MU discharge patterns that were
identified by both procedures (manual and automatic) was 99 ± 3%.
Of those 123 discharge patterns, 64 matched the automatic results

Fig. 1. Design of the double-sided electrode array and representative recordings. (A) Close-up of an oval electrode. (B) Whole structures with the tracks running
toward the connection pad. (C) Close-up of the electrode array tip. Electrodes represented in cyan are located on the top side of the thin-film array, and those in green are
located on the bottom side of the wider filament. (D) Representative recordings obtained from the tibialis anterior of subject 1 (S1) during a contraction at 20% of the
maximal force [maximal voluntary contraction (MVC)]. (E) Discharge pattern of 47 motor units (MUs) extracted from the signal shown in (D). (F) Multichannel action
potentials of a representative MU obtained by averaging the red-colored EMG channels in (D) with the discharge pattern of the same color in (E) as a trigger. ch, channel.
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with a 100%RoA, and another 36 had a RoA of ≥99%.We inspected
the disagreement between the output of the two procedures and
found that only three common MUs had a RoA in the range of
80 to 85% due to misalignments in discharge timings, which was
greater than our strict threshold of 0.5 ms. One of the three MUs
had a satellite action potential. The satellite potential is an action
potential that follows the main one tightly linked in time (with
small jitter) (27). Among the common MUs, 16 discharges identi-
fied by the manual decomposition and missed by the automatic de-
composition were doublets. The doublet is an action potential that
follows the main one with a variable interval, and it is followed by a
longer-than-average interspike interval (27). In our study, we iden-
tified a total number of 17 doublets with time interval between the
two MU action potentials constituting the doublet inferior to 30%
of the average interspike interval (7.0 to 22.1 ms), according to the
definition in (28).Together, these results indicate that the high-
density intramuscular array yields high MU sampling and the activ-
ity of most of the MUs can be reliably extracted by a fully automatic
procedure with comparable accuracy to manual decomposition.

The manual decomposition of each channel (20 s of recording)
took >8 hours by the expert operator. The fully automatic decom-
position of each array (40 channels, length of 22 s) took 2 hours and
9 min of computational time on average across the four arrays (Intel
CORE i9 vPro 9Gen Processor with 32-Gb RAM).

MU population coherence
We calculated the coherence between groups of MU discharge pat-
terns of increasing size (Fig. 2). Figure 2A shows 20 s of discharge
patterns extracted from S1. Figure 2B shows the corresponding co-
herence for groups of MUs with numerosity ranging from 1 to 34
MUs. The coherence was statistically significant [i.e., above the 95%
confidence level (CL)] for frequencies of up to about 75 Hz, proving
that the synaptic input bandwidth goes well beyond the β band.
Similarly, the coherence was still significant at ~75 Hz for S3
(Fig. 2D). In both cases, an increase of coherence in the γ band
with the number of MUs is clear. On the contrary, for S2, the coher-
ence bandwidth was limited to 40 Hz (Fig. 2C).

Effect of MN discharges on the homonymous pool
The discharge of a MN depends on supraspinal and spinal inputs,
including from interneurons. A particular class of interneurons, the
Renshaw cells, causes recurrent inhibition of the homonymous MN
pool (29). Renshaw cells are facilitated during weak contractions
and inhibited during strong contractions (30). We expected to see
the effects of recurrent inhibition in our recordings when the
subject exerted forces of 20 or 30% MVC. As there are opposing
views on the distribution of recurrent inhibition between early-
and late-recruited MUs within the same MN pool (31–33), we sep-
arately investigated MUs discharging at higher (R1) and lower (R2)
rates. Discharge rate was considered a surrogate of recruitment
order, in that early-recruited MUs discharge faster, at a given mod-
erate level of force, than those recruited later (34). Results are re-
ported in Fig. 3 as synchronization cross-histograms. As can be
observed in both S1 and S3, a MU discharge inhibited the discharge
of the other MUs at ~15 ms (dip in Fig. 3, A and C). On the other
hand, for S2 (Fig. 3B), inhibition continued up to ~30 ms. Late-re-
cruited MNs caused more inhibition of the discharges of the early-
recruited MNs (R2 → R1, Fig. 3) than the converse (R1 → R2). The
Kolmogorov-Smirnov test confirmed that the distribution of the

discharge count was different (P < 0.05) for the bins, 9 to 19 ms
(S1), 19 to 29 ms (S2), and 8 to 18 ms (S3). No dips were observed
in the cross-histograms obtained by applying different perturba-
tions (see the “Connectivity among MNs” section and figs. S1 to
S3) to the original discharge patterns andmaintaining the discharge
rate unchanged (control condition), implying that the latter did not
influence the results presented. Dips in the cross-histograms can
also reflect a periodicity resulting from common drive. We calculat-
ed the output of 70 MNs receiving a common synaptic input at 33
Hz. The two cross-histograms (R1 → R2 and R2 → R1) for this sim-
ulation showed a dip at 15 to 16 ms (fig. S4), but the distribution of
the discharge count in the two cases (R1 → R2 and R2 → R1) was
similar according to the Kolmogorov-Smirnov test (15 ms, P = 0.07;
16 ms, P = 0.12).

DISCUSSION
We have presented the development of a high-density electrode
array for intramuscular recordings that enables the automatic accu-
rate extraction of tens of MUs concurrently active. We have shown
representative examples of MU population analysis enabled by
our system.

Intramuscular array
Our electrode array configuration consists of polymer (35) and
metal that are micromachined (36) into a thread containing 40 elec-
trodes. The materials and minimal thickness (20 μm) confer the re-
quired flexibility to interface the muscle without being unpleasant
for the subject. Each electrode has an area of 5257 μm2. Such small
electrodes inevitably present high electrical impedance, which
reduces the signal-to-noise ratio. The contacts were therefore
coated with microrough platinum that increases the active surface
and reduces the impedance by 10 times compared to an untreated
electrode (15, 37). The array has electrodes manufactured on both
sides of the substrate (38) to enable increased spatial resolution and
to reduce the likelihood of short circuits. This improvement in the
technology allowed us to build 40 electrodes in a 2-cm long
filament.

MU decomposition yield
Four intramuscular electrode arrays were tested in three subjects.
Electrodes were inserted into the tibialis anterior and used to
acquire EMG during isometric contractions at moderate force.
Each array yielded an average number of 40 concurrently active
MUs. Eighty-six MUs could be extracted from a contraction at
20% MVC with two high-density electrode arrays in S1. The
number of MUs in the tibialis anterior has been estimated to be
in the range from 122 to 445 [reviewed in (39)]. Therefore, given
the relatively low muscle force exerted by S1, the identified 86
MUs represent a relatively large proportion of those that were
active during the contraction. The number of identified discharge
patterns per electrode varied in the range of 36 to 50. This variation
across subjects could be related to anatomical differences, e.g., to the
ratio between the muscle section covered by the electrode and the
muscle thickness, which varies along the muscle, and the relative
angle between the electrode and muscle fibers. Moreover, we
cannot exclude a variability in the attempts to exert the maximal
force, which is known to depend on the subject’s motivation (40,
41). The difference in average discharge rate between array 1 and
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array 2 of S1 was 1.7 Hz, which was comparable to the difference
between the subjects S1 and S3 (2.1 Hz), so that anatomical
factors may have played the major role.

On average, 31 MUs per array could be automatically decom-
posed with an accuracy of 99% when compared with manual
expert decomposition. Compared to previous systems with fewer
electrodes (15), the number of automatically extracted MUs with
the proposed high-density electrode is two to three times greater,
and the accuracy is substantially higher (18). For example, our pre-
vious attempt at automatic decomposition of EMG recorded with
two arrays of 16 channels each yielded 22 of 53, 24 of 57, and 21
of 60 (i.e., 42, 42, and 35%, respectively) manually detected MUs
at different force levels, with an average RoA of 94%. Our high-
density system enabled automatic decomposition of 76% of the
manually detected MU action potential trains constituting the in-
terference EMG with a 99% RoA. Eight MUs identified by
manual decomposition discharged less than 50 times, which was in-
sufficient for the automatic identification. The yield of MUs per
channel was also superior to that achieved by BSS of high-density
surface EMG data from the tibialis anterior (21 MUs per 64 chan-
nels) (42) that in any case can only detect MUs with large action
potentials at the skin surface.

Despite the high yield, some discharge patterns identified by the
manual decomposition could not be extracted automatically. BSS
algorithms, as used in this study for automatic decomposition,
require a number of observations (EMG channels) equal or superior
to the number of sources (MUs). In this condition, theoretically, all
sources can be recovered. When the number of MUs exceeds the
number of channels, the automatic decomposition procedure may
miss some of the sources. In this study, we used a conservative
threshold on the segmentation step of the decomposition (43).
This resulted in the accurate detection of the MU discharge pat-
terns, although the number was inferior to the theoretical
maximum. In keeping with this, it is commonly reported that BSS
extracts only MUs with large action potentials at the electrode sites
(highest energy) (13).

MU decomposition accuracy
The automatic decomposition was validated against the manually
decomposed dataset. The RoA between the two procedures was
99% on average (across 123 MUs). This value is high and can be
attributed to the high density of channels. The comparison
between the two decomposition procedures is a conservative ap-
proach for estimating accuracy. As signals were decomposed inde-
pendently by two decomposition methods and operators, the
likelihood that the same mistake is made in the two cases is very
low (24). Therefore, the procedure of validation of the automatic
decomposition in this study is robust. In addition, the average
pulse-to-noise ratio across the 124 MUs automatically extracted
was 42 dB (Table 1), greater than values reported for surface
EMG decomposition (44), further confirming the high accuracy
of the automatic decomposition procedure.

We inspected the disagreement between the two decomposition
procedures and identified two sources of errors (doublets and mis-
alignments). Some of the doublets could not be identified by the
automatic BSS decomposition. This is to be expected, as doublets
may have an action potential with different amplitude and shape
compared to the main action potential (45). This is mainly due to
the velocity recovery function of muscle fibers (46). The

Fig. 2. Coherence between populations of MUs. (A) Discharge pattern of 68MUs
active during a contraction at 20% MCV (S1, two arrays). Coherence between com-
binations of cumulative discharge patterns was obtained by pooling an increasing
number ofMUs from subjects S1 (B), S2 (C), and S3 (D). Black dashed horizontal line
is the 95% confidence level (CL). Coherence increased with the size of the MU
groups, and the population coherence was significant up to 40 Hz in S2 and up
to 75 Hz in S1 and S3, respectively. Note that 60 s of data were used for S1 and
20 s for S2 and S3. Only the MUs active for whole selected interval (60 or 20 s)
were included in the coherence estimation.
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propagation of the second action potential in a doublet is facilitated
by the occurrence of the first potential within a short time interval,
and, therefore, the propagation velocity increases for the second po-
tential. The change in propagation velocity depends on the interval
between the two action potentials and determines a variation in the
second action potential waveform (47). As the BSS algorithm can
only identify action potentials with a similar shape, a change in am-
plitude/shape prevented the BSS from associating the doublet to the
same MU as the main action potential. Nonetheless, an adaptive
change in threshold for detection may solve this problem in
the future.

Three MUs found by both decomposition procedures had mis-
alignment for discharges of >0.5 ms, and this influenced the RoA
for those MUs. These misalignments are not necessarily errors.
The MU discharge pattern, detected at a certain electrode, not
only produces time-locked discharge patterns in other electrodes
that fall in that MU territory but can also exhibit some jitter from
discharge to discharge due to fluctuations in muscle fiber conduc-
tion velocity (48). In retaining only one discharge pattern per MU,
we discarded this information on the jitter. In addition, one of the
three MUs had a satellite potential that showed some size and tem-
poral jitter. The two algorithms may have used either the main po-
tential or the satellite potential as a reference for the alignment,
which may then cause misalignments. Note that the results of the
automatic decomposition did not undergo any postprocessing.
Otherwise, some mistakes could have been easily corrected by plot-
ting the discharge rate against time to detect any inconsistencies.

This work validated the BSS decomposition on a very large
number of MUs. Previous validation via comparison between
surface and intramuscular data was limited to an average of 1 MU
per contraction commonly found in the two datasets (49). In this
study, rather than two datasets, we compared the decomposition
performance when the same signals were independently analyzed
by two operators using two different procedures. The total
number of common MUs was 123, i.e., 31 per electrode array.

Automatic decomposition required much less time compared to
manual decomposition. However, there were some discharge pat-
terns identified by the manual decomposition that could not be ex-
tracted automatically. A hybrid decomposition approach could
maximize the MU yield and minimize the decomposition time.
The approach would consist in running a first step of automatic de-
composition and then inspecting the residual signal (obtained by
subtracting the template waveform of the previously identified
MUs from the raw EMG signal) to complete the decomposition
manually. A better option could be to extract manually only
enough discharges perMU to obtain a reliable average action poten-
tial waveform and from that average to extract the filters to complete
the decomposition automatically.

MU population coherence
Our coherence analysis showed that the synaptic input common to
the MN pool may have frequency content of up to 75 Hz (Fig. 2, B
and D) and that the estimated coherence increases with the number
of MUs included in the analysis. Therefore, large populations of
concurrently active MUs are necessary to infer characteristics of
the neural drive. For a certain frequency of the synaptic input to
be detected as common (i.e., statistically significant in the coherence
plot), the synaptic input has to be sampled at least twice as fast as
that frequency component (6). Each MN integrates the supraspinal
and afferent inputs and discharges an action potential when the net
input exceeds the recruitment threshold. Under the assumption of a
common input uniformly distributed to the whole MN pool (8), the
effective sampling frequency of the synaptic input is the cumulative
discharge rate of all active MNs, obtained by pooling all discharge
patterns together. In voluntary sustained contractions, aMNusually
discharges less than 40 action potentials per second (7). As a result,
sampling by few MNs limits the maximal frequency of the signal
recorded from the output of the spinal cord, while large populations
allow the synaptic input to be reconstructed more accurately from
the MN output.

Fig. 3. Analysis of MU synchronization. Left panels show the average discharge rate of the MUs in a 20-s time interval. Central R1 → R2 (R2 → R1) panels display the
influence of MUs with higher (lower) discharge rate on the discharge timing of the MUs with lower (higher) discharge rate via pooled cross-histograms between pairs of
MU discharge patterns. The two rightmost columns represent the same values in logarithmic scale so that the inhibition can be more readily visualized. The three rows
represent subjects S1 (A), S2 (B), and S3 (C). Only the MUs active for whole selected interval (20 s) were included in the pooled cross-histogram calculation.
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The very large frequency content identified for the neural drive
from the spinal cord to muscles is unexpected, as muscles can only
contract within a narrow bandwidth (<10 Hz) (50). The issue of the
mismatch between the bandwidth of the neural drive and of the
muscle dynamics has been previously discussed in relation to the
β band (51). It has long been known that β oscillations are
present in MN output (52) while they are filtered out by the
muscle contractile properties. The new observation of a much
greater frequency content than the β oscillations indicates the
variety of common inputs received by the MN pool. γ-range corti-
comuscular coherence has been observed during strong isometric
voluntary contractions (53) and during dynamic contractions
(54), suggesting that the γ band rhythmic drive from the cortex con-
tributes, at least in part, to the EMG activity at that frequency band.
Our results show that human muscles can manifest rhythmic elec-
trical oscillations in the γ band also during low-intensity isometric
contractions. This phenomenon is not necessarily related to the
movement itself. It could be due to movement preparation and to
cortical or subcortical oscillations that are transmitted to
the muscle.

There was a large difference in coherence frequency content
between S2 and the other two subjects. S2 and S3 performed the
same task. In addition, coherence was estimated from a similar
number of discharge patterns. However, we cannot exclude that
the proportion of common input varied across the identified
MNs at high frequencies. It is possible that we detected MNs in
S2 that shared a smaller proportion of common input with
respect to the MNs detected in the other subjects. Unfortunately,
now, there are no methods to estimate the proportion of common
input shared by MNs at high frequency, and, therefore, we cannot
support this explanation directly.

Influence of MN discharges onto the homonymous pool
Our study included the analysis of the influence of the discharges of
MUs with higher discharge rates on those with lower discharge rates
(R1 → R2; Fig. 3) and vice versa (R2 → R1; Fig. 3). We observed that
the highest value of the six cross-histograms was obtained at 0 s,
indicating the common drive received by the MN pool (34). MUs
were less likely to discharge after about 50 (S1), 75 (S2), and 70 ms
(S3). These values are inversely proportional to the respective
average discharge rates for the three subjects, i.e., 14.8 (S1), 11.0
(S2), and 12.7 Hz (S3). The pooled cross-histograms decreased in
values for intervals above the respective average interpulse intervals,
as expected from the calculation of these values based on the dis-
charge following the reference one (see the “Connectivity among
MNs” section). MUs were less likely to fire for about 15 (S1 and
S3; Fig. 3, A and C) or 30 ms (S2; Fig. 3B) after the discharge of
both MUs discharging at higher (R1 → R2) or lower (R2 → R1) dis-
charge rate. This observation is in agreement with recurrent inhibi-
tion by Renshaw cells, which occurs with similar timing (55). The
dips in the R2 → R1 histograms were deeper than in the R1 → R2
counterpart, suggesting that MUs with lower discharge rate cause
more inhibition on those with higher discharge rate than the
opposite.

Recurrent inhibition has been studied in isolated cells in in vitro
experiments or in anesthetized animal preparations. The main
method to test homonymous recurrent inhibition in humans is in-
direct and relies on changes in H-reflex modulation caused by pre-
sumed recurrent effects (56). An elegant method to evaluate

recurrent inhibition in humans at individualMN level has been pro-
posed by Özyurt et al. (57). However, this method can only be used
to assess the impact of the largest on smaller MUs, as it evaluates the
effect of electrical stimulation on the background discharges of
small MUs. On the contrary, our method can be applied in both
directions across the MN pool during voluntary contractions.
Özyurt et al. (57) reported an average latency for recurrent inhibi-
tion of 37.7 ms from a peripheral stimulus for the soleus muscle,
which is compatible with the dips at ~30 ms visible in the cross-his-
tograms of S2 (Fig. 3B). For S1 and S3, inhibition occurred earlier
than for S2 (Fig. 3, A and C).

Phenomena other than recurrent inhibition may account for the
dips observed in the pooled cross-histograms. The dips could have
originated also from any inhibitory interneurons, which are syn-
chronized in part with the MNs. Moreover, the cross-histograms
in Fig. 3A (S1) present two dips spaced about 30 ms apart. This
could reflect a periodicity with 30-ms period that may result from
a common input at about 33 Hz, in agreement with the peak ob-
served in the coherence plot in Fig. 2B at that frequency. To verify
this, we simulated the output of 70 MNs that received a common
synaptic input at 33 Hz and discharged at rates in the same range
as S1. The common input resulted in a dip at 15 to 16 ms, followed
by two dips spaced 30 ms apart, as expected [1/(30 ms) = 33 Hz].
However, the depth was statistically similar in the two cross-histo-
grams (R1 → R2 and R1 → R2; fig. S4), while the distributions of the
discharge count were different for the bins around the dip in the
experimental data. While this may lean support to the hypothesis
that the cross-histograms obtained from experimental data also
reflect Renshaw inhibition, the common synaptic input received
by the pool may have also played a role in the appearance of the
dips. Future modeling and experimental work is needed to
further our understanding of the interplay between common
drive and inhibition. The discharge rate per se cannot be considered
as the only determinant of the dips; in that the control conditions,
where we simulated discharge patterns with the same discharge rate
as the experimental ones, the cross-histograms did not show any dip
(see the Supplementary Materials).

Conclusions
In conclusion, we present a novel high-density intramuscular array
along with a methodology that fully automatically identifies the dis-
charge patterns of relatively large number of MUs, unveiling new
knowledge behind MN population coding. We demonstrated that
the number of automatically identified MUs is high enough to
reveal the presence of significant coherence between groups of
MNs in the frequency range of up to 75 Hz and the effect of
Renshaw inhibition on the homonymous MN pool. These results
constitute an important step forward in the in vivo population
coding analysis of the humanmotor system. Future work will inves-
tigate MU behavior during dynamic contractions and high
force levels.

MATERIALS AND METHODS
Manufacturing process
The thin-film electrode array structure was built using microfabri-
cation processes. The electrode array was built over a silicon wafer
used as a platform for the production. The structure was built layer
by layer with layers of metal for tracks sandwiched between three
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layers of polyimide. Metals were patterned using a photolithogra-
phy process.

First, a platinum etch mask was deposited and liftoff structured
on a 4-inch silicon wafer. In the next step, a 5-μm polyimide layer
(PI2611, HD MicroSystems) was spun on the wafer and cured at
350°C. The lower platinum electrode contacts and tracks were
then sputtered and liftoff structured. Another 10-μm polyimide
layer was deposited, followed by the upper platinum electrode
tracks and contacts, which were sputtered and liftoff structured, fol-
lowed by a final 5-μm polyimide layer for insulation. To reach the
contacts on the lower side, the silicon wafer was etched from the
backside using reactive ion etching. In a second reactive ion
etching step, the lower electrode contacts were opened using the
previously deposited platinum layer as etch mask. An aluminum
etch mask was then deposited on the top side and used for reactive
ion etching of the polyimide to open the contacts on the upper side.
After removal of the aluminum mask, the microfabrication process
was completed, and the separated double-sided electrode arrays
were removed from the wafer using tweezers. The electrode contacts
were coated withmicrorough platinum using electroplating from an
aqueous solution of hexachloroplatinic acid (58). This reduced the
electrode impedance by about one order of magnitude so that the
resulting values of impedance spectroscopy were ~10 kilohms at 1
kHz. A plug (Harwin M50-4902045 connector) was soldered to the
adapter as the interface with external hardware. Each electrode array
was inserted into a hypodermic needle with the bevel smoothed
with a laser (PICCOLASER, O.R. Lasertechnologie, DE).

Subjects
Three healthy men (age range, 29 to 39 years) participated in the
experiment, which was approved by the Ethical Committee of the
University Medical Center of Göttingen and conducted according
to the Declaration of Helsinki (2008).

Experimental procedure
The subject was seated in the chair of a Biodex System 3 (Biodex
Medical Systems Inc., NY, USA) with the right leg and foot stably
fixated. He was asked to perform two brief MVCs with a 5-min in-
terval in between to recover from fatigue. The peak of the two was
considered as the MVC. Electrode array placement was followed by
five extra minutes of rest. The skin was cleaned with alcohol. For
subjects S2 and S3, one thin-film electrode array was inserted into
the middle of the proximal half of the tibialis anterior muscle, per-
pendicular to the skin with the tip of the needle to a depth of 2.5 cm
below the fat layer as estimated by ultrasound (Telemed Ltd.,
Vilnius, Lithuania). For subject S1, two electrode arrays were insert-
ed at distance from each other of approximately 3 and 1 cm in the
longitudinal and transversal direction of the muscle, respectively.
The first array was inserted in S1 in a position 0.5 cm medial and
1.5 proximal with respect to the position of the array in subjects S2
and S3. The second array inserted in S1 was approximately 0.5 cm
lateral and 1.5 distal with respect to the position of the array in S2
and S3.

Intramuscular EMG signals were recorded with a multichannel
amplifier (EMG-USB2, OT Bioelettronica, Torino, Italy) with a gain
of 200 to 500 and band-pass–filtered (eighth-order Bessel filter,
high-pass cutoff frequency of 10 to 100 Hz and low-pass cutoff fre-
quency of 4400 Hz), before being sampled at 10,240 Hz, using a 12-
bit analog-to-digital converter. The EMG signals were acquired in a

unipolar derivation with reference and ground electrodes at
the ankle.

The subject was then asked to perform a brief contraction at 20
and 30% MVC during which the experimenters judged the signal
quality. Following these trials, S1 was asked to perform a steady con-
traction at 20% MVC, whereas S2 and S3 were given 30% MVC as
the target force level. Subjects were asked to perform a steady con-
traction lasting at least 1 min. The subject was provided with real-
time force feedback displayed on a screen. The target force level was
represented as straight line on the computer screen and the force
exerted by the subject as a running dot. The subject was instructed
to keep the position of the dot as close as possible to the straight line.
He was allowed to complete the 1-min contraction at once or in
multiple contractions with rest at will in between.

Signal quality assessment
EMG signals were band-pass–filtered in the bandwidth of 100 to
4400 Hz (third-order Butterworth, zero-lag filter) so that the fre-
quency content was the same for all signals. We quantified the base-
line noise as the average across 160 channels (four electrode arrays ×
40 channels per array) of the RMS of a 4-s segment of data recorded
at rest.

Signal decomposition
To assess signal decomposition, 20 s of data were selected on the
basis of visual inspection of the force trace as soon as the subject
reached the target force and maintained it relatively stable for a
20-s time interval. The recorded signals were independently manu-
ally and automatically decomposed into the constituent MU action
potential trains by two expert investigators (S.M. and A.H., respec-
tively). In both cases, signals were high-pass–filtered at 250 Hz
before decomposition. In case of manual decomposition, intramus-
cular EMG signals from each thin-film array were decomposed
using the decomposition software EMGLAB (16), which relies on
spike sorting to detect MU action potentials. Each channel was de-
composed independently, and the series of discharges of a single
MU were manually edited for resolving missed discharges and su-
perimpositions. This process was conducted for each MU identified
from the same channel until the residual signal, obtained by sub-
tracting all averaged MU action potentials from the raw signal,
was comparable in power with the raw signal baseline noise, indi-
cating that all MU activity had been accounted for. As the sameMU
could be detected in adjacent channels, the decomposition results
from all channels were then merged by automatically identifying
the MUs detected at more than one electrode. Discharge patterns
with more than 75% discharges closer than 1 ms were considered
to belong to the same MU identified on different channels. Differ-
ences in the discharge patterns of the same MU extracted from dif-
ferent channels were examined and resolved by the investigator in
charge, so that at the final stage of the manual decomposition, each
MU was represented by a unique discharge pattern.

A second investigator (A.H.) automatically decomposed the 22-s
long signals (with the 20-s long interval selected for manual decom-
position put in the center) using the convolution kernel compensa-
tion (CKC) algorithm (22). The two extra seconds were removed
when comparing the discharge patterns extracted by the two differ-
ent algorithms after time alignment of the common discharge pat-
terns. To briefly summarize the algorithm working principle,
assuming the absence of noise, we can express the intramuscular
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EMG signal xc[k] recorded at channel c as the sum of trains of action
potentials (one train for each active MU)

xc k½ � ¼
XM

i¼1

XL� 1

l¼0
hci l½ �si k � l½ � with si k½ � ¼

X

r
d k � fir½ �

k ¼ 1; . . .; fST

c ¼ 1; . . .;N ð1Þ

where k is the discrete time variable, fS is the sampling frequency, T
is the signal duration, hci[l] is the action potential of the ith MU as
recorded at the cth channel, si[k] = ∑rδ[k − ϕir] is the source pulse
train (discharge pattern) of the ith MU with discharges at times ϕir,
L is the duration of the action potentials, M is the number of active
MUs, and N is the number of EMG channels.

The convolutive mixture model of Eq. 1 can be rewritten as an
instantaneous mixture of an extended vector of sources that in-
cludes the original sources and their delayed versions (22)

~x½k� ¼ ~H ~s½k�

with

~s½k� ¼ ½~s1½k�;~s2½k�; . . .;~sM½k��T

~si½k� ¼ ½si½k�; si½k � 1�; . . .; si½k � ðLþ R � 1Þ��; i ¼ 1; . . .;M

~x½k� ¼ ½~x1½k�; ~x2½k�; . . .; ~xN ½k��T

~xc½k� ¼ ½xc½k�; xc½k � 1�; . . .; xc½k � R��; c ¼ 1; . . .;N

~H ¼

~h11 � � � ~h1M
..
. . .

. ..
.

~hN1 � � � ~hNM

2

6
4

3

7
5

~hci ¼

hci½0� � � � hci½L � 1� 0 � � � 0
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. . .
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.
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0

0 � � � 0 hci½0� � � � hci½L � 1�
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6
6
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3
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7
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5
ð2Þ

where R is the extension factor and ½��T denoting the transpose of
a matrix.

Once the mixing matrix (eH) is identified, the source pulse trains
can be extracted by multiplying the EMG signals (ex) by the inverse
of eH (unmixing matrix). Note that the CKC algorithm (22) identi-
fies the source pulse trains si[k] in a sequential manner (i.e., one
after the other), using the source deflation technique to prevent
the reidentification of already identified pulse trains. The
maximal number of identified pulse trains is a CKC’s parameter
(22) and was set to 150 in our study. The estimated pulse trains
are then segmented into MU discharges and the cross-talk from

other active MUs. In this study, we used a segmentation algorithm
that considers the discharge pattern regularity and the pulse-to-
noise ratio (43). The pulse-to-noise ratio is a signal-based metric
that has been validated to assess the decomposition accuracy of
BSS-based decomposition algorithms (44) and has been used in
this study to assess the reliability of the automatic decomposition.

Assessment of the manual decomposition accuracy
For each electrode array (three subjects, four arrays), we report the
number of MUs identified by the manual and automatic decompo-
sition and those commonly identified by both approaches. We first
inspected the results of the manual decomposition. We calculated
the RoA (49) between each pair of MU discharge patterns identified
from the same 40-channel array to ensure that they were unique.
The RoAwas defined as the ratio between the number of discharges
that were present in both discharge patterns (common) and the sum
of the number of common discharges and the number of discharges
present in only one of the two discharge patterns. A tolerance of 10
sample (<1 ms) was used when identifying common discharges.

Each MU discharge pattern was accurately estimated from the
comparison between the discharge patterns of that MU in multiple
channels. To assess the robustness of the estimation, we calculated
the multichannel MU action potentials by spike-triggered averaging
(59), i.e., by averaging the EMG of each channel on the intervals of
[−10, +10] ms around the MU discharges obtained from decompo-
sition. For each MU, we then counted the number of channels
where the peak-to-peak amplitude of the action potential was
greater than 10 times the average RMS of the baseline noise
across the 40 channels. The higher the number of channels exceed-
ing the threshold, the higher the likelihood that the discharge
pattern was accurately estimated (24).

The RoA was also used to check whether there were MUs in
common between array 1 and array 2 of S1. As a further check,
we performed cross-array spike-triggered averaging by averaging
the EMG of each channel of array 1 (array 2) using the discharges
obtained from decomposition of the EMG from array 2 (array 1) as
triggers. A temporal support of 20 ms (centered about the MU dis-
charge) was used in the spike-triggered averaging procedure to
account for the propagation delay between the positions of the elec-
trode arrays, which were about 3 cm apart. For MUs in common
between the two arrays, the cross-array averaging procedure will
yield an action potential with higher amplitude than the base-
line noise.

Assessment of the automatic decomposition accuracy
We then compared the MU discharge patterns extracted by the two
decomposition procedures (manual and automatic) using three
metrics: RoA, sensitivity, and precision. For eachMU, we identified:
true positive (TP) as the number of discharges identified by manual
decomposition that the automatic algorithm identified within ±0.5
ms, false positive (FP) as the number of discharges identified by the
automatic algorithm that did not match any manually identified
discharge within ±0.5 ms, and false negative (FN) as the number
of the manually identified discharges that the automatic algorithm
failed to identify within ±0.5 ms. Here, RoAwas defined as the ratio
between the matched discharges resulting from the comparison of
the two procedures and the sum of matched and unmatched
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discharges, which can be expressed as

RoA ¼
TP

TPþ FNþ FP
ð3Þ

Discharge patterns with more than 75% discharges closer than
0.5 ms were considered to belong to the same MU identified by
the manual and automatic procedure (common MUs).

Sensitivity and precision were defined as follows

Sensitivity ¼
TP

TPþ FN
ð4Þ

Precision ¼
TP

TPþ FP
ð5Þ

All three indices were expressed as a percentage, with 100% in-
dicating the best performance.

MU population coherence
The discriminated discharge patterns were used to compute spectral
coherence between groups of MUs, with numerosity ranging from 1
to half of the maximum number of identified MUs, which was se-
lected as the number of MUs obtained from the manual decompo-
sition that fired for the entire duration of the selected interval (60 s
for S1 and 20 s for S2 and S3). The random allocation of MUs into
groups was repeated 25 times for each group size (i.e., 1, 2, 3,…MU
discharge patterns), and the average coherence across the 25 repeti-
tions was calculated. For each MU, discharge patterns were repre-
sented with binary vectors of 0 and 1 [time resolution = 1/sampling
frequency = 1/(10,240 Hz)], with 1 indicating the occurrence of a
discharge. Within each MU group, the discharge patterns were
summed to provide a cumulative discharge pattern. Coherence
analysis was performed on 0.5-s nonoverlapping Hanning
windows of the cumulative discharge patterns with a length of the
fast Fourier transform equal to the sampling rate. To define the sig-
nificance threshold for coherence peaks, the CL was calculated as
(60)

CL ¼ 1 � ð1 � aÞ
1

N� 1 ð6Þ

whereN and α represent the number of segments used in the coher-
ence calculation (data length/number of windows) and the CL
(95%), respectively.

Connectivity among MNs
Connectivity among MNs was estimated by the pooled cross-histo-
gram of the discharge of pairs of MUs (resolution of 1 ms). To con-
sider the opposing views on the distribution of recurrent inhibition
between early- and late-recruited MUs within the homonymous
MN pool (31–33), we separately investigated MUs discharging at
higher and lower rates. MUs were ordered by discharge rate based
on the fact that, at a given force, earlier-recruited MUs discharge
faster than later-recruited ones (34). For each subject, for each
MU, and for each discharge (referred to as “reference”), we calculat-
ed the time difference between the first subsequent discharge of
each of the MUs with lower (higher) discharge rate and the refer-
ence discharge to obtain the R1 → R2 (R2 → R1) pooled cross-his-
tograms. We considered in the estimation only the MUs that
discharged for the entire duration of the selected time interval (20

s). We used the Kolmogorov-Smirnov test to compare the distribu-
tion of the discharge count in the two cross-histograms (R1 → R2
versus R2 → R1). As we were only interested in comparing the dip,
we applied the statistical test only to the 10 bins centered around the
dip. Statistical significance was set to P < 0.05.

As control conditions, we generated three types of discharge pat-
terns with the same number of discharges as the detected MUs in
the same time interval and (i) uniformly distributed discharge
times, (ii) equal interpulse intervals, and (iii) discharged times ob-
tained from the experimental ones by applying a time shift of 0 to 70
ms to the whole MU action potential train (different for the differ-
ent MUs, but the same for all action potentials of the same MU).
These three control conditions share the same discharge rate with
the original discharge patterns. Last, we simulated the output of 70
MNs (as in Fig. 3A) using an integrate-and-fire model (20 s). The
peaks in the coherence plot reflect common synaptic input. For in-
stance, in the experimental data, it is evident from Fig. 2B that the
MN pool received a common synaptic input at approximately 33
Hz. To model this, we fed the integrate-and-fire MN model with
a sinusoidal signal at 33 Hz and independent Gaussian noise to
each neuron (control condition iv). We expect this to result in
dips that are apart by 1/(33 Hz) = 30 ms.

Supplementary Materials
This PDF file includes:
Figs. S1 to S4
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