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Abstract
Numerical fluid-structure interaction (FSI) methods for the prediction of aeroelastic
phenomena are important within aerospace. The continuous development of com-
puter technologies has enabled the use of more advanced FSI methods. The use of
advanced methods has the potential to provide more accurate predictions. It also
enables simulation of applications for which engineers traditionally have relied upon
wind tunnel testing and flight testing, and still do to a large extent. Hence, the use
of more advanced FSI methods would limit the need for wind tunnel testing and
flight testing, and in extension reduce the lead time and cost of aircraft development.

High Reynolds number flows, involving separated flow, are very challenging to
simulate. Hybrid Reynolds-averaged Navier-Stokes (RANS)-large-eddy simulation
(LES) techniques provide the possibility to simulate such flows for industrial pur-
poses. Hybrid RANS-LES methods are employed in this thesis for two applications
which require turbulence-resolving techniques.

First, the effects of elastic walls on the aeroacoustics in transonic cavity flow are
investigated. The prediction of structural vibrations is also important since vibra-
tions may endanger the structural integrity, additionally, vibrations may negatively
affect other apparatuses. The features of cavity flow appear in weapon bays and
landing gear bays in an aircraft. In a deep cavity, the flow constitutes of broadband
and tonal noise, referred to as Rossiter modes. The cavity structure is simulated
with a modal-based approach and with a non-modal approach where the equation of
motion is solved for all degrees-of-freedom of a reduced order finite element model.
The results evince that the aeroacoustic field is altered by the elastic walls. For
the investigated case, the energy of the 4th Rossiter mode is depleted and a strong
tone is induced at a frequency below the 4th Rossiter mode, which is absent in the
rigid cavity; these observations are made with both the structural simulation meth-
ods. However, with the non-modal approach, a second strong tone is induced at a
frequency above the 4th Rossiter frequency.

The second investigated application is the aeroelastic prediction of a wing at
Mach numbers ranging from subsonic to supersonic speeds. The viscous effects be-
come significant at transonic speeds and may provoke shock induced flow separation.
It is shown that the viscous effects play an important role under such circumstances
and that both static and dynamic structural responses differ significantly depending
on whether hybrid RANS-LES or unsteady RANS is employed for the flow simula-
tion.

Keywords: Hybrid RANS-LES, cavity flow, aeroacoustics, aeroelastics, FSI,
CFD, CSD
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Chapter 1

Introduction

F luid-structure interaction (FSI) plays an important role in aerospace applica-
tions. Numerical simulations of FSI problems in aerospace are traditionally
limited to relatively simple flows, such as attached flows with weak viscous

effects. Aeroelastic simulations of flows involving flow separation or strong viscous
effects have not been computationally viable. Engineers have, to a large extent
relied upon wind tunnel testing and, perhaps foremost, upon flight testing. Wind
tunnel testing of aeroelastic models is generally not undertaken without difficulties.
Downscaled aeroelastic models must be used, which may also inflict undesirable
Reynolds number effects due to the scaling; moreover, measurement obstructions
are prevalent. Wind tunnel testing and especially flight testing are expensive and
time consuming. Moreover, for flight testing, a prototype must take to the air be-
fore the engineers can fully analyse the design. For example, aeroelastic flutter at
transonic speeds is difficult to predict with numerical methods and must often be
verified by extensive flight testing campaigns, which involve some risks. It is desir-
able to substitute wind tunnel and flight testing with numerical simulations to be
able to assess the design in early stages and to a high level of granularity.

Decades of continuous development of computer technologies has enabled exten-
sive use of numerical simulations. The development of computational fluid dynamics
(CFD) and turbulence modelling has followed. Hybrid Reynolds-averaged Navier-
Stokes (RANS)-large-eddy simulation (LES) techniques are employed as the main
tool for the flow simulations presented in this thesis. Two different cases where so-
phisticated FSI methods are required are studied. Firstly, the effects of elastic walls
on the aeroacoustics in transonic cavity flow. Secondly, the aeroelastics of a wing at
transonic speeds. The ensuing sections give a further introduction to these topics.
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1. Introduction

1.1 Cavity Flow

Internal weapon bays are integral to the stealth operation of combat aircraft. An-
other example that gives rise to a similar flow field is landing gear bays. The flow
in a weapon bay or a landing gear bay is typically what, within the field of fluid
dynamics, is referred to as cavity flow. A significant difference between a weapon
bay and a landing gear bay is the operational envelope. The landing gears are only
intended to be extended at low Mach numbers, whereas the operational envelope
for a weapon bay may extend from low subsonic speeds to supersonic speeds.

High Reynolds number cavity flows are inherently unsteady and highly turbu-
lent. Cavity flows are divided into two main categories based on fundamental flow
characteristics, namely open and closed cavity flows. The dividing streamline, that
is the streamline that separates the re-circulation region from the main flow, in open
cavity flow spans the entire cavity length from the leading to the trailing edge, as
shown in Figure 1.1 (a).

Seperation
point

Dividing
streamline

(a) Open cavity flow.

Seperation
point

Reattachment
point

Dividing streamlinesSeperation
point

(b) Closed cavity flow.

Figure 1.1: Open and closed cavity flow. Green lines depict streamlines and red
vectors depict typical streamwise velocity profiles.

A large re-circulation area is formed inside the cavity and a shear layer is present
between the re-circulation area and the free-stream flow. In closed cavity flow,
Figure 1.1 (b), the flow separates at the leading edge and then reattaches on the
cavity floor. The flow then separates once again further downstream and reattaches
at the trailing edge. Two re-circulation areas are formed, one in the front and the
other in the rear part of the cavity. The distinction between open and closed cavity
flow is not necessarily sharp; a third transitional flow state occurs in between. In
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1. Introduction

transitional cavity flow the dividing streamline bends down into the cavity, but it
does not reach the cavity floor; accordingly, the flow does not attach.

As implied in Figure 1.1, closed cavity flow is more likely to occur in a shallow
cavity. However, it does not solely depend on the cavity depth. The influence of
length-to-depth ratio L/D, width-to-depth ratioW/D, and Mach numbers 0.20–0.95
on the cavity flow characteristics was experimentally investigated by Plentovich et al.
[1]. The boundary between open and transitional flow was found at L/D ≈ 6–8. The
boundary between transitional and closed flow was found to be highly dependant on
Mach number, L/D, andW/D; the transition boundary was between approximately
9 and 15 in terms of L/D for the investigated cases. It was also found that increasing
D or reducing W with constant L/D gives a cavity floor pressure distribution more
akin to the distribution in a closed cavity. Furthermore, increasing the Mach number
extends the range for L/D for which transitional cavity flow occurs for a given cavity
geometry [1].

The length-to-depth ratio for a weapon bay is generally less than 6, and the
operational envelope for a weapon bay in a modern combat aircraft, stretches at
least up to transonic Mach numbers. Hence, the flow type in a weapon bay is in
many cases open cavity flow. The investigated case in this thesis is on open cavity
flow.

Cavity flows have been extensively investigated since the 1950s, some early stud-
ies were by Roshko (1955) [2], Krishnamurty (1955) [3], Dunham (1962) [4], Plumblee
et al. (1962) [5], Rossiter (1964) [6], and East (1966) [7]. It was observed that the
flow in an open cavity generates broadband and tonal noise. The tonal noise is also
known as Rossiter modes, named after the work by Rossiter [6]. In 1962, Plumblee
et al. [5] suggested that the observed tones were due to cavity resonance. They com-
puted the acoustic resonance and compared with experiments. They also suggested
that the spectrum of boundary layer fluctuations upstream of the cavity is driving
the acoustic resonance. Come 1964, Rossiter [6] deemed this hypothesis untenable,
partly because of the findings by Krishnamurty [3] who showed that the tonal noise
was present even though the approaching boundary layer is laminar. Rossiter con-
cluded that acoustic resonance appears to be integral to the explanation of the tonal
noise, but the driving force is the shear layer spanning the cavity, rather than the
boundary layer upstream of the cavity. Rossiter investigated a whole host of cav-
ities with varying geometrical parameters and Mach numbers. Based on the data,
he could formulate an semi-empirical formula to determine the frequency f of the
n-th mode:

fn = U∞(n− γ)
L( 1

κ
+M∞) , 0 ≤ γ < 1, 0 < κ ≤ 1 (1.1)

According to Rossiter’s formula, the n-th mode frequency depends on both the free-
stream velocity magnitude U∞ and the free-stream Mach number M∞, thus, the
free-stream sound speed. The constant γ is the phase shift between the vortex
shedding and the acoustic wave. The other constant, κ, is the travel speed of the
vortices, in terms of the proportion of the free-stream speed. Rossiter’s formula
can be used as a rough estimate of the Rossiter frequencies, the accuracy can vary
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1. Introduction

between the modes for a given cavity and flow conditions. The formula merely
include the most important parameters; the cavity depth is for example ignored,
which is more important for some cavity flows than others. Moreover, the formula
does not tell anything about the magnitude of the tones, or if a tone is active or
not.

The acoustic feedback loop in a cavity is complex, and a unified analytical theory
has not yet been presented. Several attempts have been made after Rossiter to
improve the prediction of Rossiter modes, often by including more variables, for
instance by Tam and Block [8]. The Rossiter mode frequencies and strength are
generally not constant over time. The time variance of the modes can be large
enough to change which mode is the dominant. This phenomenon is referred to as
mode switching, which means that the energy of a mode decreases whilst the energy
of another mode increases [9, 10]. Mode switching is related to the shape of the
shear layer.

Many of the fundamental studies are focusing on ideal cavities (perfectly rectan-
gular cavities), which is important for the understanding of cavity flows. Nonethe-
less, a cavity in a real-world application is seldom ideal. A weapon bay is generally
geometrically complex. The geometry does not have to be rectangular and it may
contain various apparatuses, such as electrical wiring, hydraulic lines, store ejectors,
and a weapon before its deployment. The complex shape requires experimental
and/or numerical investigations of the flow.

The energetic pressure fluctuations in a cavity interact with the structure. This
has several potential implications. Static and dynamic deformations may be detri-
mental to the structural integrity. The structure must withstand the static loads
and protracted vibrations may lead to acoustic fatigue. Furthermore, high vibration
levels may be detrimental to other apparatuses as the vibrations propagate in the
structure. The strong acoustic field generated by a cavity may also lead to unac-
ceptable noise levels, particularly for manned aircraft. The interaction may change
the acoustic field, moreover, the interaction between the structure and fluid is bidi-
rectional. This means that coupled CFD and computational structural dynamics
(CSD) simulations must be undertaken to investigate the potential implications.
This topic is not well-explored, at least not in the open literature. The appended
papers are novel investigations of transonic cavity flow with an elastic cavity. In
Paper A [11], B [12], and C [13] a cavity is studied at the same flow conditions
using hybrid RANS-LES, but different numerical methods are used for the struc-
tural simulation. Paper A is an extended version of Paper C. The methods for flow
simulation and structural simulation is presented in Chapter 2.

1.2 Classical Aeroelasticity
The aeroelasticity of a wing is a quintessential FSI problem within aerospace. Clas-
sical aeroelasticity has been studied since the dawn of aviation. Both static and
dynamic aeroelastic phenomena with ominous characteristics or with a catastrophic
failure as a result were observed early on, and engineers have been grappling with
these issues since. Nonetheless, even if the fundamental phenomena relating to
classical aeroelasticity are well understood, it is challenging to predict aeroelastic
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1. Introduction

behaviour under certain conditions. The presence of shock-waves on a wing surface
in a transonic flow makes viscous effects important. The shock wave/boundary-
layer interaction (SWBLI) [14] may affect the shock wave position and the shock
may provoke a shock induced flow separation. In the case of a flow separation,
turbulence-resolving techniques become essential for the prediction of aeroelastic
behaviour [15].

An aircraft is subjected to aerodynamic forces that deform the lifting surfaces.
Since the aircraft’s geometrical shape is changing, the flow over the lifting surfaces
will change and hence the aerodynamic forces are altered; the interaction is bidirec-
tional. To accurately predict the lift and drag of an elastic wing, the wing’s elasticity
must be considered. This is a classical static aeroelastic problem of aeroplanes.

Aerodynamic flutter is a self-excited dynamic instability, for which the aerody-
namic forces couple with the inertial and elastic forces of the wing [16]. The onset of
flutter is governed by the dynamic pressure. Flutter is detrimental to an airframe,
the amplitude of the oscillations increases for each cycle until the structure’s failure
point is reached. Hence, it is easy to understand that flutter is highly undesirable.
It must be ascertained that an aircraft does not encounter flutter conditions within
the operational envelope.

Viscous effects are often negligible for classical wing aeroelasticity at subsonic and
supersonic speeds with attached flow. For such flows it is commonplace to employ
inviscid flow theory, for example, the inviscid Euler equations (IEE). In Paper D [17]
the viscous effects are investigated. An aeroelastic wing is simulated with hybrid
RANS-LES and with the IEE at Mach numbers of 0.6-1.1. A few of the cases were
also simulated with unsteady RANS (URANS). The difference regarding aeroelastic
responses between hybrid RANS-LES and URANS is anticipated to be small for
attached flow, whereas a significant difference is expected for the IEE simulations.
Separated flow was obtained in a few of the investigated cases; here, a difference
between hybrid RANS-LES and URANS is likely [15]. However, some inadequacies
regarding the methodology resulted in a lack of resolved turbulence, which further
is likely to give inadequate results. A complementary study of a single transonic
case was therefore undertaken, which is presented in Chapter 4. Simulations with
URANS and hybrid RANS-LES on a rigid and elastic wing are compared. The
simulations are performed on a finer CFD grid and a different turbulence model and
numerical scheme are employed for the hybrid RANS-LES simulations.

1.3 Objectives and Motivation
The overall objective is to develop an understanding and gain experience of advanced
fluid-structure interaction methods and aeroacoustics. In particular, aerospace ap-
plications that require fluid-structure interaction simulation in combination with
turbulence-resolving techniques.

The main objective is to investigate potential effects of elastic walls on the aeroa-
coustics in transonic cavity flow. This topic is not well-covered in the scientific
literature. The industrial need of insights into cavity flows and how they affect
the structure and, in turn, how the elastic structure affects the aeroacoustic near-
and far-field is also part of the motivation behind this work. A sub-objective is to
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1. Introduction

investigate methodologies for structural simulation of the cavity, including a modal-
based approach, a non-modal approach, and investigation of finite element model
reduction methods.

A second objective is to investigate and gain insights to viscous effects, and the
effects of shock induced flow separation, on aeroelastic behaviour of an aeroelastic
wing.

1.4 Thesis Outline
The thesis is organised as follows:
Chapter 1 presents the motivation behind the project and the reader is introduced
to cavity flows and classical aeroelasticity.
Chapter 2 presents the numerical methods for flow simulation and for structural
simulation.
Chapter 3 presents complementary studies which relate to Paper A, B, and C.
Some important aspects of the finite element model are discussed. An investigation
of far-field noise of a rigid and an elastic cavity is also presented. The source terms
for the Ffowcs Williams and Hawkings acoustic analogy are extracted from the
results presented in Paper A.
Chapter 4 presents a complementary investigation of the aeroelastic wing, the in-
vestigation relates to Paper D. An improved methodology is used for the hybrid
RANS-LES simulation. The results of the rigid and the aeroelastic wing are com-
pared with corresponding URANS simulations.
Chapter 5 presents a summary of the thesis, including the appended Papers A–D.
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Chapter 2

Numerical Methods

2.1 Numerical Methods for Flow Simulation
This section presents the governing equations and a brief introduction to turbulence
modelling.

2.1.1 Governing Equations
The Navier-Stokes equations for unsteady compressible flow are:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)
∂t

+ ∂(ρuiuj)
∂xj

= − ∂p

∂xi
+ ∂σij
∂xj

, (2.2)

∂(ρe0)
∂t

+ ∂(ρe0uj)
∂xj

= −∂puj
∂xj

+ ∂

∂xj

[
κ
∂T

∂xj
+ uiσij

]
. (2.3)

Here, ρ is density, u is the velocity components, x is the coordinates, p is pressure,
T is temperature, and t is time. The thermal conductivity κ = (Cpµ)/Pr, where
Cp is the specific heat capacity, µ is the molecular viscosity, and Pr is the Prandtl
number. The total energy e0 = e+ (uiui)/2, where the internal energy for a perfect
gas e = CV T . The specific heat capacity for constant volume CV = R/(γ − 1). For
all flows in this thesis, the specific gas constant R = 287 J · kg−1K−1, and the heat
capacity ratio γ = 1.4. For a Newtonian fluid the viscous stress tensor is:

σij = µ

(
∂ui
∂xj

+ ∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
. (2.4)

Here, δi,j is the Kronecker delta function. The equation of state is:

p = (γ − 1)
[
ρeo −

1
2ρuiui

]
. (2.5)
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2. Numerical Methods

2.1.2 Turbulence Modelling
Direct numerical simulation (DNS) of the Navier-Stokes equations is generally not
computationally viable, especially not for industrial applications. No turbulence
model is used in DNS, instead, all relevant temporal and spatial length scales must be
resolved. The temporal and spatial requirements are determined by the Kolmogorov
time and length scales [18]. The temporal and spatial scale requirements can be
alleviated by spatial filtering of the Navier-Stokes equations.

The Reynolds-averaged Navier-Stokes (RANS) equations are formed, as the name
implies, by an averaging operation. The RANS equations contain additional terms
in the momentum equation, known as Reynolds stresses. The Reynolds stresses
are unknown and need to be modelled by a turbulence model to close the set of
equations. By retaining the transient terms in the RANS equations, the mean flow
transients can be captured in time, that is, unsteady RANS (URANS) [19]. For
example, the periodic vortex shedding downstream of a cylinder can be simulated
with URANS.

In large-eddy simulation (LES), the largest scales of the turbulent spectrum are
resolved, whereas the small scales are filtered out. Similar to RANS, the filtering
leads to additional terms, which for LES are known as sub-grid scale stresses. The
sub-grid scale stresses are unknown and must be modelled to close the set of equa-
tions. The term "sub-grid scale" stems from the fact that filtering of the equations is
related to the local grid resolution; scales smaller than the local grid resolution are
modelled. The grid resolution also sets a requirement on the time step. Moreover,
the time step must be sufficiently small to capture the resolved scales in the turbu-
lent spectrum. Compared with RANS modelling, LES requires a much smaller time
step and a much finer grid resolution [20].

The idea of hybrid RANS-LES is to exploit the virtues of RANS in near-wall
regions, whereas LES is used in off-wall regions. By doing so, the requirement of
an extremely fine grid resolution in the near-wall regions is alleviated. However, it
also means that there must be an interface between the RANS mode and the LES
mode. Hybrid RANS-LES turbulence models suffer from several issues relating to
the interface. Various formulations of the interface have been proposed in an effort
to mitigate the effects of the interface [19, 20].

The delayed detached-eddy simulation (DDES) [21] based on Spalart-Allmaras
(SA) one-equation turbulence model [22], and SA-based improved DDES (IDDES)
[23] are employed in this thesis.

2.2 Numerical Methods for Structural Simulation

Finite element (FE) models are generally too large for direct computation of the
governing equation. Therefore, it is customary to employ a reduction technique to
decrease the order of the structural model. For classical wing aeroelasticity the most
prevalent reduction technique is a modal decomposition method. Modal decomposi-
tion is especially suitable for this type of problems. The first bending and torsional
modes of a lifting surface—such as a wing or a fin—have a predominant role to the
aeroelastic behaviour. Thus, it is often sufficient to represent the structure with

10



2. Numerical Methods

a few eigenmodes. For other structures, such as a cavity where a wide range of
eigenmodes are significant, other reduction techniques may be preferable.

Modal decomposition is employed for the cavity in Paper A and C, and also for
the wing in Paper D. In Paper B a reduced order FE model is used, for which the
equation of motion is directly solved. The ensuing sections introduce the employed
methods.

2.2.1 Governing Equations
The governing equation for the time dependant structural coordinates x(t) for the
full order system is given by the equation of motion:

Mẍ(t) +Cẋ(t) +Kx(t) = f(t). (2.6)

Here, M is the mass matrix, C is the damping matrix, K is the stiffness matrix,
and f(t) is the external force acting on the system. It is assumed that the systems
energy dissipation can be described by the viscous damping which is proportional
to a linear combination of the mass and stiffness matrices. That is the so-called
Rayleigh damping:

C = αM + βK, α, β ≥ 0. (2.7)

The damping is thus determined by the Rayleigh damping coefficients α and β.
The equation of motion—Equation (2.6)—has the same form if a reduced order FE
model is used, it is only the order of the matrices that is reduced. The component
mode synthesis by Craig and Bampton [24] is employed for the reduction of the
matrices in this thesis. Craig and Bampton’s method is underpinned by the exact
static condensation by Guyan [25]. The forthcoming section explains the exact static
condensation, followed by Craig and Bampton’s method.

2.2.2 Exact Static Condensation
Exact static condensation [25]—also called Guyan condensation—is based on the
static equation of equilibrium for the full order system:

Kx = f . (2.8)

The stiffness matrix is partitioned into sub-matrices. Each degree-of-freedom that is
condensed are referred to as a slave and the retained degrees-of-freedom are referred
to as masters, indicated by subscripts s and m, respectively. After separating the
slaves and the masters, Equation (2.8) can then be written as:[

Kmm Kms

Ksm Kss

]{
xm
xs

}
=
{
fm
f s

}
. (2.9)

Multiplication of the left-hand side expands Equation (2.9):

Kmmxm +Kmsxs = fm, (2.10)

11



2. Numerical Methods

Ksmxm +Kssxs = f s. (2.11)

By rearranging Equation (2.11), the slave displacement vector xs can be expressed
in terms of the master displacement vector xm:

xs = −K−1
ss Ksmxm +K−1

ss f s. (2.12)

The displacements of the slaves are described by two terms. The first term emerges
from the displacement of the masters, that is the so-called attached displacements.
The second term results from the external forces acting on the slaves and is referred
to as relative displacements [26]. Combining Equations (2.12) and (2.10) gives:

KRxm = fR, (2.13)

where,

KR = Kmm −KmsK
−1
ss Ksm, (2.14)

fR = fm −KmsK
−1
ss f s. (2.15)

In order to derive the relation for the displacement between masters and slaves, it is
necessary to assume a zero external force applied to the slave nodes. Letting f s = 0,
Equation (2.12) becomes:

xs = RGxm, (2.16)

where RG is the Guyan condensation matrix, which is defined as:

RG = −K−1
ss Ksm. (2.17)

The displacement vector can be expressed as:

x =
{
xm
xs

}
= TGxm. (2.18)

Here, TG is the coordinate transformation matrix, also called the global mapping
matrix:

TG =
{
I
RG

}
. (2.19)

Here, I is the identity matrix. The coordinate transformation matrix relates the
responses of all degrees-of-freedom to the responses at the masters. Substituting
Equation 2.18 into Equation 2.8 and premultiplying with the transpose of TG gives:

KGxm = fG. (2.20)
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2. Numerical Methods

Here,KG is the reduced stiffness matrix and fG is the equivalent force vector acting
at the masters, defined as:

KG = T T
GKTG, (2.21)

fG = T T
Gf . (2.22)

The reduced stiffness matrix and the force vector may also be written in terms of
the sub-matrices and vectors:

KG = Kmm −KmsK
−1
ss Ksm, (2.23)

fG = fm −KmsK
−1
ss f s. (2.24)

The term "exact static condensation" stems from the fact that dynamic effects are
ignored in the condensation, and the condensation is mathematically exact for a
static system. The Guyan condensation may be used for a dynamic system, but is
then no longer exact. The stiffness matrix K in Equation (2.21) can be replaced by
the mass matrix M to compute the reduced mass matrix MG.

2.2.3 Component Mode Synthesis by Craig and Bampton
The component mode synthesis (CMS) by Craig and Bampton [24] is based on
the exact static condensation by Guyan. The CMS provides a coupling between
the internal variables and the interface degrees-of-freedom and compensates for the
neglected inertia terms in the Guyan condensation. The reduction is augmented
with a set of generalised coordinates ξ, which represent the amplitude of a set of
eigenmodes of the slave model, which are derived with the masters fixed. Equation
(2.6) is partitioned, similar to Equation (2.9), but including the mass matrix. Setting
xm = 0 and f s = 0 in the partitioned equation of equilibrium result in the eigenvalue
problem:

KssΦ = λM ssΦ. (2.25)

The eigenvalue problem is solved for eigenvalues λ and eigenvectors Φ. A set of
eigenmodes is retained as an additional basis to the approximation of the slave
model. For CMS, Equation (2.12) becomes:

xs = −K−1
ss Ksmxm +

∑
Φiξi = RGxm + Φξ. (2.26)

The CMS coordinate transformation matrix is:

T CMS =
[
I 0
RG Φ

]
(2.27)

13



2. Numerical Methods

The structural coordinates are given by:{
xm
xs

}
= T CMS

{
xm
ξ

}
. (2.28)

The selection of masters plays an important role to the accuracy of the CMS (and
Guyan condensation). Furthermore, the accuracy depends upon the selection of
retained eigenmodes. All eigenmodes with frequencies of interest should be retained
to assure a sufficient accuracy [27]. The reduction of the matrices is straightforward,
however, the selection of masters is not obvious. The ensuing section discusses the
selection of masters.

2.2.4 Selections of Masters
The valid eigenvalue range of the Guyan condensation is (0, λc) [26]. The cut-off
eigenvalue λc is equal to the lowest eigenvalue of the slave model, that is, the full
order model with all the masters constrained. The approximate eigenvalue errors due
to Guyan condensation are inversely proportional to the cut-off eigenvalue. Hence,
the accuracy of Guyan condensation increases as λc increases. The fundamental
requirement to the selection of masters is therefore to maximise the lowest eigenvalue
of the slave model. Notwithstanding that this fundamental requirement is dedicated
to Guyan condensation, it is still valid for its variants and all physical-type dynamic
condensation methods.

Various qualitative guidelines have been proposed. Levy [28] proposed that the
masters should be selected based on the largest entries of the mass matrix, and
degrees-of-freedom that have the largest displacements. Rather than focusing on
all individual degrees-of-freedom, Ramsden and Stoker [29] selected the masters in
areas of the structure that are associated with large concentrations of mass. Areas
that are more flexible relative to other mass concentrations should be selected first.
Popplewell et al. [30] proposed a guideline in terms of strain energy conservation.
The disadvantage of many proposed qualitative guidelines is that they require prior
knowledge of the system response. For simple structures the required information
might be known, but for complex structures, that is generally not the case [26].

Contrary to the qualitative guidelines, quantitative guidelines can generally be
implemented in a programme code for an automatic selection of masters. Several
proposed algorithms are based on the ratio of the diagonal elements of the stiffness
and mass matrices. Shah and Raymond [31] proposed an algorithm that condenses
the slaves one by one directly from the full stiffness and mass matrices. Matta [32]
proposed a scheme where a certain number of degrees-of-freedom with the small-
est ratio are selected as masters. A comprehensive study of Shah’s and Matta’s
algorithms was undertaken by Suarez and Singh [33]. They concluded that Shah
and Raymond’s algorithm is better than Matta’s algorithm, though the former is
more computationally expensive than the latter. Algorithms based on the ratio of
the diagonal elements are applicable to all structures, but might not be suitable for
structures with irregular mass distribution. In such cases there is a risk of concen-
trating the bulk of masters in regions with significant masses [34, 35]. However, if
the structure has relatively uniform mechanical and geometrical proprieties this type
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of scheme provides excellent results. Shah and Raymond’s algorithm is described in
detail and employed in Paper B.

Structural models which are symmetric regarding geometrical and material prop-
erties in two or three directions often have repeated eigenfrequencies, for instance
a square plate. For such structures, the symmetry should be considered in the
selection of masters to preserve the symmetry features in the reduced model [26].

It is not always possible to follow all guidelines regarding selection of masters. In
some cases, certain degrees-of-freedom must be kept in the master set for practicality
purposes, regardless whether or not they satisfy the guidelines. It could for example
be degrees-of-freedom at which external forces act, prescribed displacements, or at
which responses are of interest.

The selection of masters has a significant influence on the accuracy. The selection
should result in a reduced model as accurate as possible. As the number of masters
increases, the dynamic characteristics of the reduced model will steadily approach
those of the full model; however, it increases the computational effort. It may not
always be computationally viable if all guidelines considering accuracy are followed.
In such cases, there must be a trade-off between accuracy and computational effort.

2.2.5 Modal Decomposition
The modal decomposition is based on the eigenvalue problem of the equation of
motion, Equation (2.6), of the full order model. The decomposition results in a set
of linear equations that describes the structural coordinates x(t). The coordinates
are represented by normal mode shapes (eigenvectors) φk and modal coordinates
qk(t):

x(t) = x0 +
Nm∑
k=1

qk(t)φk. (2.29)

The subscript k indicates the k-th mode, and x0 = x(t = 0) is the initial condition.
The external forces and the damping are both zero for the special case of free
vibration, then the equation of motion reduces to a generalised eigenvalue problem:

Kφk = ω2
kMφk, k ∈ [1, N ]. (2.30)

The solution to the eigenvalue problem gives N eigenvectors and the associated
angular eigenfrequencies ωk. The value of N is equal to the dimension of x, which
is the total number of structural degrees-of-freedom. It is here assumed that the
normal mode shapes and corresponding frequencies are ordered as ω1 < ωk < ωk+1 <
, · · · , < ωN−1 < ωN . The normal mode shapes satisfy the orthogonality conditions:

φTjMφk = akδjk, (2.31)

φTjKφk = akω
2
kδjk. (2.32)
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The normalisation constant ak is known as the generalised mass for the k-th mode,
and δ is the Kronecker delta function. The full system with N degrees-of-freedom
can be truncated at order Nm � N . The equation of motion is thus with the
truncated modal basis reduced to a set of Nm scalar equations, which are coupled
only through the external force term. The equation of motion can be rewritten by
combining Equation (2.29) and the orthogonality conditions, Equations (2.31) and
(2.32), and pre-multiplying Equation (2.6) with the transpose of φk:

akq̈k + 2ζkakωkq̇k + akω
2
kqk = Qk, k ∈ [1, Nm], (2.33)

Qk = φTk f . (2.34)

Here ζk is the damping ratio for mode k, and Qk is known as the generalised force.
A Newmark’s time-integration scheme is applied to Equation (2.33):

q̇n+1
k = q̇nk + ∆t(1− γ)q̈nk + ∆tγq̈n+1

k , (2.35)

qn+1
k = qnk + ∆tq̇nk + ∆t2

(1
2 − σ

)
q̈nk + ∆t2σq̈n+1

k . (2.36)

Here ∆t is the time step and n is the time step number. Setting the parameters γ = 1
2

and σ = 1
6 corresponds to a linear interpolation of the modal acceleration q̈(t), t ∈

[tn, tn+1]. Combining Equations (2.33), (2.35), and (2.36) the modal acceleration
q̈n+1
k can be computed. Subsequently, the acceleration can be substituted back
into Equations (2.35) and (2.36) which gives the modal velocity and the modal
coordinate.
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Chapter 3

Aeroelasticity of the M219 Cavity

T his chapter presents complementary studies on the M219 cavity [36], which
relate to Paper A, B, and C. First, grid resolution aspects of the finite
element model of the cavity are discussed. Secondly, the far-field noise

stemming from the elastic and rigid cavity is predicted using an acoustic analogy.
A brief introduction is also given to acoustic analogies.

3.1 Finite Element Models

3.1.1 Dynamic Considerations
The presence of high frequency aeroacoustic waves that stimulate the structure
entails a requirement on the spatial resolution of a structural model. The grid must
be fine enough to capture the pressure fluctuations acting on the structure. The
maximum resolved frequency fmax can be computed from:

λ = c0

fmax
, (3.1)

∆s = λ

n
. (3.2)

Here, λ is the wavelength, c0 is the speed of sound (phase velocity), fmax is the cut-
off frequency, n is the number of elements per wavelength, and ∆s is the element
edge length. The number of elements per wave length must be at least four to
capture a wave, this is illustrated in Figure 3.1. If only two or fewer elements span
a wave as in Figure 3.1 (a), merely the static pressure is captured (also depending
on the phase). In Figure 3.1 (b) there is four elements per wave length and the
characteristics of the wave is captured. Increasing the number of elements per wave
length significantly increases the resolution of the wave, as seen in Figure 3.1 (c)–(d).
The cut-off frequency should be at least equal to the highest significant frequency
of the acoustic field.

17



3. Aeroelasticity of the M219 Cavity

(a) 2 elements per wavelength (b) 4 elements per wavelength

(c) 8 elements per wavelength (d) 16 elements per wavelength

Figure 3.1: Illustration of wave resolution depending on the number of elements
per wavelength.

2 5 10 15
No. of elements per wavelength

0

0.02

0.04

0.06

0.08

0.1

E
le

m
en

t l
en

gt
h 

[m
]

f
max

=2000 Hz

f
max

=4000 Hz

f
max

=6000 Hz

Figure 3.2: Element length as function of number of elements per wavelength,
for three different cut-off frequencies.

Figure 3.2 shows the element edge length as a function of n, for three different
cut-off frequencies. A sound speed of c0 = 327 ms−1 is used, which is the same as for
the cavity flow in Paper A, B, and C. The higher values for fmax and n, the smaller
elements. The accuracy generally increases as the element size decreases, however,
the size of the FE model swiftly grows. The total number of entries in the system
matrices grows with the square of the number of grid points in the FE model.
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3. Aeroelasticity of the M219 Cavity

3.1.2 Finite Element model of the Cavity
A static grid convergence study for the FE model of the cavity has been under-
taken. Two different pressure distributions were applied to the cavity walls. First, a
spatially uniform pressure distribution and secondly an instantaneous pressure dis-
tribution from a time dependant CFD simulation. The latter was partly performed
to visually get a perception of the pressure distribution after it was mapped onto
the FE grid.

A first-order element only has corner nodes, whereas a second-order element has
corner and mid-edge nodes. Hence, the edges of a first-order element is always
straight, whereas the edges of a second-order element can curve. The accuracy of
a second-order element is generally higher, although the accuracy of the FE model
highly depends on the element size as well.

The FE model consists of first-order quadrilateral shell elements (called CQUAD4
in MSC Nastran [37]). Young’s modulus is 70·109 kg·m−1s−2, Poisson’s ratio is 0.33,
the material density is 2700kg ·m−3, and the shell thickness is 1.5 mm. The length
of the M219 cavity is 0.5080 m, the depth and the width are 0.1016 m. Each node
comprises six degrees-of-freedom—three translational and three rotational. The ma-
terial and geometrical properties are the same as those used in Paper A, B and C.
In Paper A, the rationale for choosing the material and geometrical properties of
the cavity is further elaborated upon.

Table 3.1: The number of elements across the cavity width and the total num-
ber of elements in the FE models.

FE Model No. of elements Total No. of FE Grid No. of elements Total No. of
across cavity elements across cavity elements

1 4 272 12 15 3825
2 5 425 13 16 4352
3 6 612 14 17 4913
4 7 833 15 18 5508
5 8 1088 16 19 6137
6 9 1377 17 20 6800
7 10 1700 18 30 15300
8 11 2057 19 40 27200
9 12 2448 20 79 106097
10 13 2873 21 80 108800
11 14 3332

The spatially uniform pressure applied to the cavity walls is 2.3 MPa, which is
much higher than the actual peak pressures for the cavity in the transonic flow in
Paper A–C; the pressure is set high to obtain larger displacements for the static
solution. The maximum displacements for 21 different element sizes were examined
for the spatially uniform distribution. The coarsest grid consists of elements with
an edge length of 25.40 mm and the finest has an edge length of 1.27 mm. The two
finest grids have smaller elements than the CFD surface grid. To that end, only the
19 FE models with edge lengths greater than the CFD surface grid were employed
for the CFD pressure distribution. The number of elements in the 21 FE models are
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3. Aeroelasticity of the M219 Cavity

given in Table 3.1. The number of elements across the cavity width are also given
in the Table 3.1, rather than the element edge lengths.

Figure 3.3 shows the CFD pressure distribution mapped onto grids 3, 7, 17,
and 19. In this, and ensuing figures, of the cavity the cavity side walls are folded
outwards to enable a two-dimensional view of the cavity. Small features of the
pressure distribution are highly detailed for grid 19 (Figure 3.3 (d)), whereas the
features are very poorly detailed for grid 3, as seen i Figure 3.3 (a).

(a) FE model 3. (b) FE model 7.

(c) FE model 17. (d) FE model 19.

Figure 3.3: The CFD pressure distribution mapped onto the FE grids. The grid
is not shown for FE model 19.

(a) FE model 7. (b) FE model 17.

Figure 3.4: Static displacement magnitudes of the cavity with the spatially uni-
form pressure distribution.

The static deformation problem was solved using MSC Nastran [37]. Figure 3.4
shows the static deformations for grids 7 and grid 17, using the spatially uniform
pressure distribution. Corresponding deformations for the CFD distribution are
shown in Figure 3.5. For the examples shown in the figures, deformations are similar.
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3. Aeroelasticity of the M219 Cavity

The reason for showing grids 7 and 17 in particular, is because these grids are used
in Paper A, B and C.

(a) FE model 7. (b) FE model 17.

Figure 3.5: Static displacement magnitudes of the cavity with the CFD pressure
distribution.

The relative errors of the displacement magnitudes were computed. The finest
grid in each case was used for reference; thus, the error relative grid 21 was computed
for the spatially uniform pressure distribution and grid 19 was used for reference for
the CFD pressure distribution. The maximum displacements and the relative errors
for the uniform distribution and the CFD distribution are shown in Figures 3.6 and
3.7, respectively.
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Figure 3.6: Maximum displacements and relative errors for the FE models with
the spatially uniform pressure distribution.

The absolute magnitudes for the different distributions are large because of the large
difference in pressure, however, the trends are similar. The maximum displacement
and the relative error differ substantially depending on whether the number of el-
ements across the width of the cavity is even or odd. If the number of elements
are even, there are element nodes along the centrelines of the cavity walls, which is
where the maximum displacement is expected. This trend would not be as apparent
if second-order elements had been used, which allows for bending of the element
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3. Aeroelasticity of the M219 Cavity

edges. The relative errors are generally smaller with the uniform pressure distri-
bution. For all FE models with an even number and 8 or more elements across
the cavity width, the relative error is less than a half percent for both pressure
distributions.
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Figure 3.7: Maximum displacements and relative errors for the FE models with
the CFD pressure distribution.

In addition to the aspects considered here, the eigenvectors and the associated
eigenvalues may also change depending on the resolution of the FE model. This
has not been investigated in detail for all the models presented here. However, it
became relevant in Paper B where results using FE model 17 for the modal-based
approach was compared with results using FE model 7 together with the non-modal
approach. The normalised relative frequency difference (NRFD) and the modal
assurance criterion (MAC) [38, 39] were computed for FE models 7 and 17 in Paper
B, in order to compare the models.

3.2 Acoustic Analogy
Acoustic analogies are widely used to analyse far-field noise. The traditional aeroa-
coustic analogies are derived from the compressible Navier-Stokes equations, which
are linearised to form an inhomogeneous wave equation. The first acoustical anal-
ogy was proposed by Lighthill [40, 41] in 1952–1954. Lighthill’s analogy describes
sound wave propagation in free space. Soon after, in 1955, Curle [42] incorparated
the effect of solid walls into Lighthill’s analogy. Come 1969, Ffowcs Williams and
Hawkings (FW-H) [43] derived a generalised formulation of Lighthill’s and Curle’s
theories and also expanded the theory to include moving solid walls. In the original
formulation, a volume integration is required to include turbulent noise sources in
the flow. The volume integration significantly increases the computational effort
required. The volume integration can be replaced by a surface integration over per-
meable surfaces [44, 45], where the permeable surfaces should enclose all significant
turbulent noise sources.

The foremost advantage of an acoustic analogy is the significantly reduced com-
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putational effort required. Computational aeroacoustics (CAA) by means of con-
ventional CFD is very challenging when it comes to far-field noise. A CFD grid
is often highly stretched towards the far-field boundaries where the computational
cells become large. This is not acceptable for far-field noise prediction; the whole
distance between the noise sources and the far-field must be sufficiently resolved
to avert non-physical dissipation of the acoustic waves. A much more efficient ap-
proach is to employ a hybrid CAA method involving CFD and an acoustic analogy.
The near-field is computed with a suitable CFD technique. Afterwards, the far-field
noise is computed with an acoustic analogy using source terms extracted from the
CFD simulation.

3.2.1 Cavity Far-Field Noise

The hybrid CAA method is employed to predict the far-field noise resulting from the
rigid and elastic cavity investigated in Paper A. The FW-H solver is an in-house code
developed by Yao et al. [46] at Chalmers University of Technology. To isolate the
effect of the elastic cavity, the source terms only encompass wall bounded quantities:
pressure, grid velocity (zero for the rigid cavity), and coordinates (constant for the
rigid cavity). Hence, the simulations are not intended to determine the total noise.
The noise is computed at 146 observers, which are situated in three different planes
according to Figure 3.8. It is worth noting that the distance from the origin to
the xy-plane (red) observers are not the same as the observers in the other two
planes. Contributions from the cavity walls and from the top surface are included
in the simulation. For further details about the geometry, flow conditions, and CFD
method the reader is referred to Paper A.

r

y

z

x

r

Figure 3.8: Black observers are in the xz-plane at z = 0, blue observers are in
the yz-plane at x = 0, and red observers are in the xy-plane at z = r = 40 m.
The cavity is coloured green and the top plate is red. The observers’s location are
not displayed in scale in relation to the cavity. The free-stream direction is in the
+x-direction.
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The time-averaged sound intensity I (energy flux) in the direction of propagation
of an acoustic wave can be expressed as:

I = p′2

ρ0c0
. (3.3)

Here, p′2 is the time-average of the pressure fluctuations squared. The characteristic
impedance is ρ0c0 [47], where ρ0 and c0 are the far-field fluid density and the speed
of sound, respectively. The sound intensity at the observers for the rigid and elastic
cavity are shown in Figure 3.9.
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Figure 3.9: Sound intensity I at the observers generated by the rigid and elastic
cavity.

The rigid cavity generally results in a slightly higher sound intensity than the elastic
cavity. The exception is in the yz-plane at x = 0, Figure 3.9 (b), where the intensity
is higher for the elastic cavity; this can also be seen in Figure 3.9 (a) and (c).
An intensity peak is obtained at about 60 degrees measured from the downstream
direction as seen in Figure 3.9 (a). The highest intensity is obtained in the upstream
direction at about 135 degrees (Figure 3.9 (a)).

The sound pressure level (SPL) for four of the observers in the xz-plane are
shown in Figure 3.10. The Rossiter modes can clearly be identified in the spectra
for the rigid cavity. In Paper A, it was reported that the 1st and 3rd Rossiter mode
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energies were slightly lower for the elastic cavity, and that the 2nd Rositer mode
was slightly higher. Furthermore, the energy of the 4th Rositer mode was depleted
and a tone was induced at 816 Hz, also a tone at 900 Hz was intensified for the
elastic cavity. These variations were obtained from the CFD simulation inside the
cavity and also at microphones relatively close to the cavity. The variations are also
obtained from the FW-H simulation shown in Figure 3.10. The induced tone in
the elastic cavity at 816 Hz has the largest amplitude at 90 degrees in the xz-plane,
shown in Figure 3.10 (b). This corresponds to the location where the sound intensity
is larger for the elastic cavity than for the rigid cavity as shown in Figure 3.9.

0 500 1000 1500
frequency  [Hz]

40

50

60

70

80

S
P

L 
 [d

B
/H

z]

Rigid
Elastic

(a) 60 degrees.

0 500 1000 1500
frequency  [Hz]

40

50

60

70

80

S
P

L 
 [d

B
/H

z]

(b) 90 degrees.

0 500 1000 1500
frequency  [Hz]

40

50

60

70

80

S
P

L 
 [d

B
/H

z]

(c) 135 degrees.

0 500 1000 1500
frequency  [Hz]

40

50

60

70

80

S
P

L 
 [d

B
/H

z]

(d) 170 degrees.

Figure 3.10: Sound pressure level in the xz-plane at y = 0, given angles are as
according to Figure 3.9 (a). The green vertical lines mark the Rossiter frequencies.
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Chapter 4

Aeroelastic Simulation of the
ONERA M6 Wing

T his chapter presents a complementary study of the aeroelasticity of the ON-
ERA M6 wing [48]. In Paper D, a difference in structural responses between
URANS and DDES were obtained for cases where flow separation occurred,

whereas the aeroelastic behaviour is near identical for attached flow. A difference
in the aeroelastic behaviour is expected if the flow separates, research has shown
that URANS does not suffice [15]. However, the hybrid RANS-LES simulations in
Paper D suffered from deficiencies in the methodology that affected the results for
the cases with detached flow. No experimental data of the aeroelasticity are avail-
able for the ONERA M6 wing and it is hence problematic to asses the validity of
the aeroelastic behaviour. Nonetheless, the paucity of resolved turbulent structures
evinces an inadequate methodology. This chapter presents a complementary study
with an improved methodology for one of the cases where detached flow was ob-
tained, namely case 18 in Table 3 in Paper D, that is, Mach 0.925 and a free-stream
static pressure of 94 kPa. Results from simulations with hybrid RANS-LES and
URANS on the rigid wing and the elastic wing are compared.

4.1 Methodology
If not stated otherwise, the same methodology is employed here as in Paper D.
A finer computational grid is used, which is based on the previously used grid.
The spatially grid resolution on the wing surface is increased as well as the wall-
normal resolution. The maximum cell edge length at the wing-root is 3.6 mm
and 2.0 mm at the wing tip. The total number of grid points is approximately
69 million. A cross-section of the grid at the wing-root is shown in Figure 4.1.
Spalart-Allmaras improved delayed detached-eddy simulation (SA-IDDES) [23, 22]
turbulence model together with a low-dissipation and low-dispersion second-order
scheme [49] are employed. Spalart-Allmaras turbulence model [22] is also used for
the URANS simulations. The time step is 1.0 · 10−5 s. The rigid wing was first
simulated with IDDES and URANS to examine the differences for the rigid wing.
A total physical time of 0.3 s was simulated for the rigid wing, the latter 0.2 s is
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presented here. As in Paper D, critical damping was first applied to the structure
for the aeroelastic simulation. Subsequently, zero damping was used and an initial
perturbation was applied to the second structural mode (1st pitch mode) to obtain
the dynamic response.

Figure 4.1: Cross-section of the computational grid at the wing-root.

4.2 Results
The ensuing sections present the results. First, results from the simulation with the
rigid wing, followed by results from the aeroelastic simulation.

4.2.1 Rigid Wing
Figure 4.2 shows a visualisation of resolved turbulent structures using iso-surfaces of
the Q-criterion [50]. Contrary to the results in Paper D, resolved turbulent structures
are obtained. Figure 4.3 shows the time variation of the surface pressure coefficient
for the rigid wing. The shock wave position using IDDES is throughout the wingspan
upstream of the corresponding shock from the URANS simulation. Towards to the
wing-root, Figure 4.3 (a)–(c), the shock wave is virtually stationary with URANS,
whereas the movements of the shock are significant with IDDES. Towards the wing
tip, the magnitudes of the movement of the shock wave are similar, but the shock
is further upstream with the use of IDDES. Figure 4.4 shows the time-variation
of the skin friction coefficient for the positions along the wingspan. The position
of flow separation is generally further upstream for the IDDES simulation. The
position of separation is indicated by the location where the skin friction coefficient
first becomes negative. The shock wave position is close to the position of the flow
separation. Solely based on these observations, it is to be expected that the static
and dynamic responses of the elastic wing are different between IDDES and URANS.
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Figure 4.2: Visualisation of resolved turbulent structures using the Q-criterion.
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Figure 4.3: Time variation (t = 0.1–0.3) of the surface pressure coefficient on the
suction side of the rigid wing at 20–99 percent of the wingspan measured from the
wing-root. The distance from the leading-edge is normalised by the local chord
length.
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Figure 4.4: Time variation (t = 0.1–0.3) of the x-directional skin friction coeffi-
cient on the suction side of the rigid wing at 20–99 percent of the wingspan mea-
sured from the wing-root. The distance from the leading-edge is normalised by the
local chord length.

4.2.2 Aeroelastic Wing
The static and dynamic aeroelastic responses are shown in Figure 4.5. The first
0.25 s of the signals show the static response of the plunge and pitch (defined in
Paper D) at the wing tip. The difference between IDDES and URANS is significant.
Since the shock wave is further upstream for IDDES, there is a larger area with high
pressure acting on the suction side of the wing. This causes the pitch to be greater
(higher angle-of-attack) for IDDES. The higher pressure also causes the the plunge
(bending) of the wing to be smaller for IDDES compared with URANS. The dynamic
responses (0.25 < t < 1.25 s) are dissimilar. The amplitude of the oscillations is
much greater for IDDES than for URANS. The plunge oscillations constitutes more
high frequency content, which is an indication of that the IDDES prediction is closer
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to the flutter boundary than the URANS prediction. It can an also be inferred from
the oscillations that the damping is lower for IDDES than for URANS, which implies
that the IDDES simulation is closer to the flutter boundary.
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Figure 4.5: Static (0 < t < 0.25 s) and dynamic (0.25 < t < 1.25 s) plunge and
pitch responses.

Figure 4.6: Instantaneous density gradient at time t = 0.5415 s at 95 percent of
the wingspan. Left: IDDES. Right: URANS.

Figure 4.6 shows the instantaneous density gradient at time t = 0.5415 s. For
IDDES, resolved turbulence is clearly seen downstream of the shock where the flow
separates. A separation downstream of the shock is also obtained with URANS.
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Chapter 5

Summary

T his chapter summarises the appended papers and the work undertaken in
this project. The first section summarises the papers on cavity flow and the
following summarises the paper and complimentary study on the aeroelastic

wing. Each section ends with some concluding remarks and future work is briefly
discussed.

5.1 Cavity Flow

5.1.1 Paper A
Effects of Aeroelastic Walls on the Aeroacoustics in Transonic Cavity Flow

The paper presents a novel study on the effects of elastic cavity walls on the aeroa-
coustics at a transonic Mach number of 0.85. The M219 cavity geometry is used, for
which experimental data are available for the rigid cavity. A flow solver validation
is undertaken for the rigid cavity, where SA-DDES and SA-IDDES are assessed.
Overall, the SA-IDDES is deemed to better predict the Rossiter modes and is used
for the FSI simulation. The grey area effect is less apparent with SA-IDDES as
compared to SA-DDES, because of the faster transition from modelled stresses in
RANS mode to resolved stresses in LES mode.

Only the aerodynamics of the M219 cavity has been measured in a wind tun-
nel and no aeroelastic data are available. Instead, the effects of the elastic cavity
walls are investigated by comparing the results with corresponding quantities from
a rigid cavity simulation. The modal-based approach is employed. The modal basis
was truncated after the 50th normal mode shape, including eigenfrequencies up to
approximately 2300 Hz. A spectral analysis is performed for the pressure fluctua-
tions in a microphone array that is situated in the flow above the cavity. Spectral
proper orthogonal decomposition (SPOD) [51, 52] is employed to analyse cavity wall
pressure fluctuations and wall displacements. The spectra of both analyses show a
depletion of the energy at the 4th Rossiter mode frequency in the elastic cavity. A
strong tone is concurrently induced at a frequency slightly below the 4th Rossiter
mode frequency, which is not present in the rigid cavity.
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5.1.2 Paper B

Effects of Aeroelastic Walls on the Aeroacoustics in Transonic Cavity Flow, Utilising
a non-Modal Approach

The same elastic cavity problem as in Paper A is investigated. The methodol-
ogy employed is similar to the one used in Paper A, with the exception that a
non-modal approach is employed for structural simulation. A reduced order finite
element model is used. An analytical selection scheme is used for the selection of
master degrees-of-freedom. The scheme ensures that all significant eigenmodes are
retained in the reduced order model. As in Paper A, the signals from a microphone
array are analysed, and a SPOD analysis is performed for wall pressures and wall
displacements. In addition to the depletion of energy at the 4th Rossiter mode and
the induced tone below the 4th Rossiter mode, another strong tone above the 4th
Rossiter mode frequency is obtained. The absence of the tone in the modal-based
simulation is due to the method, or the truncation error of the method.

5.1.3 Paper C

Conjunction of Aeroelasticity and Aeroacoustics in Transonic Cavity Flow

Paper A is an extended version of this conference paper.

5.1.4 Concluding Remarks

The investigation of the elastic cavity shows the potential importance of considering
the aeroelasticity in cavity flow. The studies show that the acoustic field is altered by
means of aeroelasticity. Whether the aeroelasticity is important or not also depends
on which questions should be answered, and on the cavity design. It should be
stressed that it is a single case of an ideal cavity that has been investigated; it is
hence not possible to draw a general conclusion that is valid for all cavities. The
fluid-structure interaction is bidirectional and it has been shown that the spectral
pressure distribution on the cavity walls are different in the elastic cavity. Hence, it
may be of importance to consider the aeroelasticity for the prediction of structural
stability and fatigue.

The flow solver validation evinced that improvements of the hybrid RANS-LES
methods are desired. The accurate prediction of the Rossiter modes becomes espe-
cially important as they interact with the structural modes. Therefore, for future
work, it would be important with further methodology studies on flow simulation
of the flow in the rigid cavity, for which experimental data are available. It would
also be highly desirable to have validation data from a wind tunnel test, for which
aeroelastic walls are considered. Further studies of the structural methods and the
coupling between the flow solver and the structural solver are also needed, to gain
insights to the potential effects and level of accuracy.

Further investigation into the results of the already performed simulations can
also be made to comprehend and explain the interaction.
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5.2 Aeroelastic Wing

5.2.1 Paper D
Effects of Viscosity and Density on the Aeroelasticity of the ONERA M6 Wing from
Subsonic to Supersonic speeds

This paper presents a study of the viscous effects on the aeroelastic prediction of
a wing. The ONERA M6 wing geometry is used. Mach numbers from 0.6 to 1.1
are simulated. Simulations with the SA-DDES turbulence model and simulations
with the inviscid Euler equations (IEE) are performed. The static and dynamic
structural responses from the viscous and inviscid flow simulations are examined and
compared. A few of the cases are also simulated with URANS. The modal-based
approach is employed for the structural simulation. All Mach numbers are simulated
with a constant free-stream density and, additionally, higher free-stream densities in
order to find the critical dynamic pressure where aerodynamic flutter is obtained. A
significant difference in the aeroelastic responses is found for Mach numbers between
0.875 and 0.950 for the SA-DDES and the IEE simulations. For attached flow, SA-
DDES provides a response near identical to that of URANS, as expected. The cases
with detached flow, caused by a shock induced separation, a substantial difference
in the responses is obtained. However, the methodology employed suffered from a
few weaknesses, which resulted in a lack of resolved turbulence in the SA-DDES
simulations.

5.2.2 Concluding Remarks
The methodology was improved in Chapter 4 where the wing was simulated with
SA-IDDES and unsteady RANS for a case with detached flow. The simulations of
the rigid wing showed a significant difference in the surface pressure distribution be-
tween the flow simulation methods. The static and dynamic aerodynamic responses
were substantially dissimilar. Unfortunately, there are no aeroelastic data for the
simulated case. Hence, it is not possible to conclude that the predictions made in
Chapter 4 are accurate. A grid convergence study could be performed to, to some
extent, validate the method.

Hybrid RANS-LES simulations of separated wall-bounded flows are generally
very challenging. Moreover, the accuracy of the flow simulation is a prerequisite for
accurate prediction of the structural response. Even though the greatest challenge
comes from the flow simulation there are other potential sources of error, which
have not been investigated here. For instance, the method for structural simulation
and the coupling between the solvers. Furthermore, for real-world problems the
accuracy of the structural model is essential. Even though a structure has isotropic
material properties, an assembled real-world structure may be non-linear, which
understandably pose a problem for linear structural solvers.
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