CHALMERS

UNIVERSITY OF TECHNOLOGY

Reductions and Abstractions for Optimization of Modular Timed Automata

Downloaded from: https://research.chalmers.se, 2024-05-01 22:11 UTC

Citation for the original published paper (version of record):

Lennartson, B. (2022). Reductions and Abstractions for Optimization of Modular Timed Automata.
IFAC-PapersOnLine, 55(28): 344-349. http://dx.doi.org/10.1016/j.ifacol.2022.10.364

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 55-28 (2022) 344-349

Reductions and Abstractions for Optimization of

Modular Timed Automata *
Bengt Lennartson *

* Division of Systems and Control, Chalmers University of Technology,
SE-412 96 Goteborg, Sweden (e-mail: bengt.lennartson @ chalmers.se).

Abstract: Time optimization of concurrent sequences of operations is in this paper solved by timed
automata. To reduce the complexity of this classical problem, including applications such as planning
and scheduling, an abstraction method has recently been proposed based on local optimization (Hage-
bring and Lennartson, 2019). In a modular subsystem, local paths without any communication with
other subsystems are optimized with respect to time, and when subsystems are synchronized more local
behavior appears. The proposed method has shown to be successful, drastically reducing computational
complexity for important classes of planning problems. The only drawback is that the synchronous
composition includes a heuristic non-standard synchronous composition procedure to achieve true con-
currency. In this paper a simple solution to this problem is presented based on the original synchronous
composition of timed automata. In the transformation of the timed automaton to an ordinary automaton,
where time weights are generated, it is first observed that the state space often increases dramatically in
this transformation. To solve this complexity problem, an efficient reduction is proposed as a complement
to local optimization, and both methods are demonstrated to be very efficient when they are applied to

realistic benchmark examples.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Timed systems, timed automata, optimization, automata, modular systems.

1. INTRODUCTION

Time-optimal control and synthesis of time-optimal supervisors
(Su et al., 2012) are mainly formulated based on time weighted
automata, often based on tick automata models (Ware and Su,
2017). Abstractions have also been proposed (Hill and Lafor-
tune, 2016, 2017), recently including even weak bisimulation
(Vilela and Hill, 2022). This means that invisible 7 transitions
can be removed, but some restrictions are introduced which
sometimes make such abstractions less powerful for timed tran-
sitions.

Hagebring has instead proposed an abstraction based on local
optimization, where only the best (minimal time) local paths
are preserved, while invisible tau transitions are also abstracted
in the same way as in for instance branching bisimulation
(Van Glabbeek and Weijland, 1996). This local optimization
abstraction was first developed for tick automata models (Hage-
bring and Lennartson, 2018), but has also been defined for con-
tinuous time models where time is represented by real variables
(Hagebring and Lennartson, 2019).

This framework was formulated for time weighted automata,
but not based on the original formulation in (Su et al., 2012),
where concurrency is separated from the time weighted au-
tomaton by only considering the starting time of the events.
This means that the time duration of operations is hidden in the
weighted automaton. To obtain the local optimization, Hage-
bring includes an explicit concurrency in the automata model by
a special heuristic formulation of the synchronous composition.
This formulation is very efficient but is for special cases not
well defined.

* This work was supported by SyTec — Systematic Testing of Cyber-Physical
Systems, a Swedish Science Foundation grant for strong research environment
and Wallenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation. The
support is gratefully acknowledged.

In this paper we therefore propose an alternative model frame-
work, based on the ordinary synchronous composition of timed
automata (Alur and Dill, 1994; Baier and Katoen, 2008). The
start of an operation is then modeled by an ordinary zero-time
event, while a separate transition condition includes a clock
constraint on the completion time of an operation. Since this
clock constraint can be combined with the start condition of the
next operation, the same number of transitions is achieved as
in earlier proposed methods, including the heuristic method in
(Hagebring and Lennartson, 2019).

Generally, timed automata do not include the full state informa-
tion, where the values of the clocks also need to be added to get
the complete state. This problem is analyzed in the paper, and it
is shown that the transformation to a time weighted model often
increases the state space significantly. To solve this complexity
problem a specific reduction method is proposed which is able
to remove most of the additional states that are generated due
to the incorporation of the clocks in the total state vector.

The main contribution of this paper is that the very efficient
compositional time optimization approach in Hagebring and
Lennartson (2019) is further improved and simplified. More
specifically a powerful reduction method is proposed in the
transformation to a time weighted automaton, which is required
to obtain the time-optimal path. The method is flexible in the
sense that both state and transition labels can be included in
the model, and it can be applied also to Petri nets including
shared variables (Lennartson et al., 2014). The proposed model
is presented in Section 3, and in Section 4 the reduction method
related to the clock states is presented, while optimization based
abstractions are presented in Section 5.

2. TIMED AUTOMATA

In a timed automaton (Alur and Dill, 1994), time is introduced
by a set of clocks C, where constraints on these clocks are
used to specify time conditions. An operation time greater or
equal A can be specified as ¢ > A, assuming that the clock

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.10.364

Bengt Lennartson et al. / IFAC PapersOnLine 55-28 (2022) 344-349 345

¢ € C is reset to zero when the operation starts. To be able
to define a timed automaton, let $(C') denote the set of clock
constraints over C'. The reset operation is here also incorporated
as a constraint on the immediate clock value after a transition.

Definition 1. A timed automaton G is defined by a 7-tuple G =
(L, ¥ ,C,T, Ly, AP, \) where L is a finite set of locations, X
is a finite set of events, C'is a finite set of clocks, T C L x X' x
&(C) x L is a transition relation where t = ({,a,p,¢') € T
includes the source location #, the event label a, the clock con-
straint ¢ € @(C), and the target location ¢’ of the transition ¢,
Ly C L is a set of possible initial locations, AP is a set
of atomic propositions, and \ : L — 247 is a state labelling

. . . ap
function. A transition (¢, a, ¢, ') is also denoted { — ¢'. O

aiZCfLZO biici > A
NV

Figure 1. Timed automata G;, i = 1,2 where the clock ¢; is
reset when the event a; occurs, and a time delay greater or
equal A; must pass before event b; can occur.

G

Limited set of clock constraints Focusing on time optimiza-
tion of concurrent sequences of operations, only a limited set of
clock constraints is required. In Fig. 1, an operation starts when
the event a; occurs. The clock c; is then reset to zero by the next
clock value constraint ¢; = 0 (next value is denoted by prime).
The clock constraint ¢; > A; specifies that the duration of the
operation is at least A; before the event b; occurs, specifying
that the operation is completed. An equality constraint ¢; = A;
is often enough, but when subsystems are synchronized, this
may be too restrictive. The reason is that if b; is a shared event,
this results in a conjunction of clock constraints that may lead
to further delays caused by other subsystems. Based on this
discussion, the only clock constraints that are required in time
optimization are included in the following definition.

Definition 2. For a finite set of clocks C, the clock constraints
© € &(C) required in time optimization are inductively defined
by the grammar

pu=c>A]d=0]| @1 Aps
where ¢ € C, A € R>q, ¢ > A ! specifies that the value of
the clock c is greater or equal A, ¢/ = 0 specifies that the next

value of c after a transition is reset to zero, and (1 A 2 is the
conjunction of the clock constraints (1 and @,. O

2.1 Synchronous composition of timed automata

One strength of timed automata is the ability to easily define
the composition of timed subsystems. The simplicity comes
from the fact that the timing information is separated from the
location nodes, where the actual time is expressed symbolically
by predicate logic expressions (the clock constraints).

The synchronous composition of two timed automata (Baier
and Katoen, 2008; Hoare, 1978) is here adapted to hidden
T events, where such events in different subsystems are not
synchronized, although they share the same event label 7.
They are simply considered as local events, since the hiding
mechanism where an event is replaced by the invisible 7 event
is only applied to local events.

Definition 3. Let G; = <Li, 2, C, Ty, Lo, 14P)17)\z‘>, 1=1,2,
be two timed automata. The synchronous composition of Gy
and (G5 is then defined as

G]_ || G2 = <L1 X LQ, 21 U 22,T7 Lo]_ X L02, AP1 N 14]327)\)
1 A more correct notation is to introduce a valuation function v : C — R>q

and write v(c) > A.If ¢ means the variable or its value is, however, clear from
the context.

where \ : Ly X Lo — 24P1NAP2 gpd
(61, 02) Z2522 (0, 0) € T2 a € (510 22)\ {7},

6 e, 6 X 0 e Ty,
(01, 02) 225 (0 02) €Tra € (31\Z2) U{r}, 46 25 0, € Ty,

aipa

(01,05) 225 (01, 05) € T a € (22\Z1) U{r}, lo —25 0y € Tp.
O

A more general definition of composed state labels is given
in (Lennartson and Jia, 2020), where both disjunctive and
conjunctive state labels are accepted. Examples of disjunctive
state labels are forbidden states where the union is taken, while
marked states are conjunctive, meaning that the intersection is
applied as in Def. 3. In this paper, marked state labels will
mainly be used, see the double circle in Fig. 1. Introducing
more arbitrary state labels can be used to specify more complex
state based properties, including for instance temporal logic
specifications.

Example 1. The synchronous composition G'1 || G2 of the two
timed automata in Fig. 1 is shown in Fig. 2. Since all events are
local, no synchronized events are involved, and the result is an
interleaving of the transitions in the individual timed automata,
including their transition labels. a

G1 ”G2 bo:co > Ao

bi:c1 > A

Figure 2. Synchronous composition of the two timed automata
in Fig. 1.

True concurrency In order to obtain a natural concurrency,
every event including a time delay is separated in two tran-
sitions. It means that concurrent operations can be started at
any time, as the start events a; and as in Fig. 2. When one
operation is started by say event a1, the event as can be ex-
ecuted already in location 3. It does not need to wait until
the operation delay A has passed and the first operation has
reached location 6. This separation of the start event and its du-
ration in two transitions naturally introduces the required con-
currency. In Hagebring and Lennartson (2019) events and their
time durations are joined together in time weighted transitions
and a heuristic synchronization procedure is introduced to still
obtain concurrent operations. The operation model proposed in
this paper achieves concurrent operations by an ordinary syn-
chronous composition, without any additional complications.
In (Su et al., 2012), concurrency is separated from the time
weighted automaton by only considering the starting time of the
events, meaning that the time duration of operations is hidden
in the weighted automaton.

3. TIME OPTIMIZATION

Optimization with respect to time means that we are searching
for the shortest time to reach any marked location ¢ € L, from

346 Bengt Lennartson et al. / IFAC PapersOnLine 55-28 (2022) 344-349

a given initial state. To be able to represent the desired time-
optimal solution as a sequence of events, it is assumed that
the timed automaton G is deterministic. This means that the
execution of a string of events from a given initial state results
in a unique location £ € L.

3.1 States including clocks

The actual time when a location ¢, is reached depends on the
path of locations that has been taken to reach this location from
the initial location ¢y. Such a path, pi, = (¢, %1, ...,0k), is a
member of a set 7°(¢},), including all paths such that £, can be
reached from /.

Entry time clock vector For a given path pj, the minimal
time to reach location ¢}, is called the minimal location time,
and it is denoted ¢*(py,). This time depends on clock constraints
according to Def. 2, where the values of each clock ¢; € C in
location ¢, are collected in a clock vector

C(gk) = [Cl (fk% N 7Cn(€k)]

To be more precise, some clocks can be reset when location £y,
is reached. Following the notation in Def. 2, see also Fig. 1,
the value of the clocks when location ¢;, has been reached, and
specified clocks have been reset, is denoted ¢’ (€). Indeed, this
is the entry time of the clocks in location £, and ¢’ (¢,) is called
the entry time clock vector for location ¢j.

Minimal waiting time To obtain the minimal location time
t*(pr), all time delay constraints must be reduced to a mini-
mum, still satisfying all specified clock constraints. The mini-
mal time one has to wait in location ¢, before a transition can
occur to a location ¢4 is called minimal waiting time w. This
minimal waiting time depends on the entry time clock ¢/(¢y),
and the clock constraint (¢, x1) for the transition from ¢y
to €k+1-

In the following proposition, an expression for the minimal
waiting time is given for a generic clock constraint ¢ (¢, l11),
as well as updates of the minimal waiting time ¢* and the entry
time clock vector ¢’. For time optimization, this proposition
summarizes the required time update of a timed automaton.
Proposition 1. For a transition from location ¢y, to ¢4, con-
sider the clock constraint

ol)=\

€14 (L Lrt1)

/\ C;(&Prl) =0,

1€l Ly Lrt1)

¢i(lk) > A (Uk, Lyr) A

where I;({k, k1) is the index set of the clocks involved in
time delay clock constraints, and I.(¢j, ¢1) is the index set
for the clocks to be reset when location ¢ is reached. The
minimal waiting time is then

(Ai(lr, liy1) — € (0k),0)

max

Uy 1) =
w(le, Cy1) i€lq(frlry)

and

t*(pr+1) = t"(pr) + w(li, 1)

ci(lg) + w(ly, l ié¢ I,
C;(£k+1):{0(k) (k k)-‘rl) Zi[

Proof: Follows directly by the fact that ¢;(¢r) > ci(4) +
w(lg, Lr+1) must be valid for all i € I;(¢x, k1) before a
transition to location ¢ 1 is admissible. O

Complete state and timed transition Since the entry time
clocks ¢/(¢;) may be different, depending on which path has
been taken to reach location /i, the complete state is defined by
the actual combination of location and entry time clock values.
In other words, for a given location ¢, the explicit system
state is (¢x, ¢/ (£x)). The minimal waiting time w (¢, €11) for
a given state (¢, ¢'(¢x,)) also defines a timed transition

(Cr, € (Lr)) (Chs1, € (Lryr))

w(@k 75k+1)

3.2 Time-optimal path

The path to the marked location ¢,, € L,, with the shortest
minimal location time t* is the time-optimal path p*, i.e.

p* = arg I?in t*(pm)

where p,, € V'(¢,,) and ¢,,, € L,,. The minimal location time
t*(p*) that generates the time-optimal path is called minimal
makespan. The time-optimal sequence of events y € X* is
finally obtained by observing the events in transitions between
the locations in the time optimal path p* in the original timed
automaton G.

Due to the recursive update of the minimal location time in
Prop. 1, the time-optimal solution can also be expressed as

N-1
p* = arg min Z w(lgy lt1)
k=0

Pm

where p,, € Y (¢,,) and {5y = {,, € L, The minimal
waiting times can then be regarded as weights w(£y, {xt1)
and the timed automaton has been extended to a weighted
ordinary automaton, where the shortest path gives the optimal
solution. On the other hand, the weights w(¢, {x1) need to
be computed, and doing that following Prop. 1 gives at the
same time the time-optimal solution. The following example
illustrates how additional states are obtained due to different
paths to the final state 9 in the timed automaton in Fig. 2, at the
same time as the time optimal solution is generated.

Example 2. When minimal waiting times are applied in the
synchronous composition G'1 || G in Fig. 2, passing location 3
gives ¢'(3) = (Az,Aq), ¢(6) = (0,Az), and '(9) =
(A1,A1 4+ Ay), and passing location 7 gives symmetrically
(7)) = (A1, A1), d(8) = (A1,0), and ¢'(9) = (A1 +
Ay, As). In both cases the makespan is A; + Ag, while the
optimal path has the minimal makespan A1y = max(Aq, Ay)
passing location 5 and either 6 or 8 with ¢/(6) = (A, Ag),
d(8) = (A1,Aq), and ¢'(9) = (A12,A12). Thus, three
different clock values are obtained in the final location 9, either
c(9) = (A1, A1+ Ay) passing location 3, ¢'(9) = (A +
Agy, Ay) passing location 7, or ¢'(9) = (A1a,A12) passing
location 5. O

4. REDUCTION OF CLOCK STATES

In this section we will show that the number of states often
increases dramatically when a timed automaton is transformed
to a time-weighted automaton and the complete states including
clock values are computed. This is first illustrated by an exam-
ple with two arbitrarily large sequences of concurrent opera-
tions. A simple solution to this problem is then presented, where
the true state space including clocks often can be reduced to a
size similar to the number of locations in the timed automaton.
The proposed reduction exploits the fact that the time-optimal
solution is requested.

Bengt Lennartson et al. / IFAC PapersOnLine 55-28 (2022) 344-349 347

G;

aiylsc;:O ai’QZCiZAiJ /\C,’L»:O
So=='0 D
WiniCi > N1 Ac,=0 bin:ci>Nin
c—(n—1) : —@ >(n+1)

Figure 3. Timed automaton (; for a sequence of operations
with start events a; 1, ..., a;, and completion event b;
for the last operation.

Example 3. In this example a straight sequence of n operations
is considered. The completion event b; ; of operation j in a
timed automaton G; is then also the starting event a; j41 of the
next operation j + 1. With the time delay constraint ¢; > A; ;
for operation j, a sequence of operations with start events
ai1,-..,a;y, and completion event b; ,, for the last operation,
is modelled by the timed automaton in Fig. 3.

For the synchronous composition Gy || G2, the number of
locations |L| and the number of complete states | X | including
clocks are shown in Table 1. Note first that there are no
shared events. Thus, no mutual exclusion or other types of
restrictions are introduced. The result is an interleaving of the
operations, in the same way as in Fig. 2. Table 1 shows that
for a modest increase of the number of locations (49 locations
for 5 operations), the complete number of states is nearly 10
times larger, still far less than the theoretical upper limit when
no common clock states exist in the synchronous composition.
This upper limit is 70 times higher than the number of locations.
The increase of the state space is much higher when the number
operations increases further, resulting in a significantly larger
computational cost when time-optimal paths are requested.

O

Table 1. State space evaluation for n operations
in both G; and G2 according to Fig. 3. |L| is the
number of locations in G || G2, and max | X | is the
maximum number of states if no common clock
states exist in an arbitrary G; || G2 with arbitrary
clock constraints, while | X| is the number of states
when the common clock states are taken into ac-
count in G || G5 according to Fig. 3.

n | |L] | max|X]| | |X]|
1 9 19 14
2| 16 69 43
3 25 251 109
4 | 36 923 236
5 | 49 3431 454

4.1 Clock state reduction based on time-optimality

When minimal waiting times are computed according to
Prop. 1, some updated clock values can be neglected when a
time-optimal solution is requested. This follows from the next
proposition, where the minimal location time ¢* and the entry
time clock vector ¢’ are compared for two different paths. Since
not only ¢* but also ¢’ depends on the actual path, location is
here replaced by path as argument also in ¢’

Proposition 2. Consider the entry time clock vector ¢/(py) and

the minimal location time t*(py,) for two specific paths pj}., p3 €
T (¢) where 0}, = (2. 1f

d(pr) = c(pR) Nt*(pg) <t (p7),

the state (¢x,c'(p3)) can be excluded from the list of current
states to be considered in the evaluation of possible time-
optimal paths.

Proof: Based on the inequality ¢’(pi) > ¢/(p?), every individ-
ual clock ¢; also satisfies (p}.) > c(p?). Due to Prop. 1, this
implies that the minimal waiting time w (¢, {1 1) for path p} is
always less or equal to the waiting time for path p?, regardless
of the actual value of the involved time delays A; (¢, €k11).
Indeed, this condition is valid for all future transitions until the
final marked state is reached. Since t*(p}) < t*(p7), and the
fact that the recursive updates of all future minimal location
times only depend on the future minimal waiting times, the final
minimal location time t*(p*) that generates the time-optimal
path will always be lower, selecting the clocks based on path p}c
in location £, compared to path p? . O

The condition in this proposition is implemented as one single
vector inequality

[c(pr) =t (pp)] = [(ph) —t*(n})]

when the clock reduction proposed in this proposition is evalu-
ated in the following example.

Example 4. To increase the applicability and complexity in the
evaluation of the clock reduction in Prop. 2, m sequences of
operations defined by the timed automata G, Gs,...,G,, in
Fig. 3 are assumed to be executed concurrently as G || G2 ||
-+ || Gy, with an added mutual exclusion such that only
one at a time of the subsystems can execute operation j for
j = 1,4,7,..., i.e. every third operation has this restriction.
This is modelled by a shared resource R;, shown in Fig. 4
for m = 3. The operation times are varied such that A; ;=10

+mod(i+4,3) forj=1,...,m.

Figure 4. Automaton for a resource R,;, shared by m =3
sequences of operations defined in Fig. 3.

The optimal make span ¢*, the number of locations the total
number of states | X |, and the computation time ct, including
subscript » when the reduction technique based on Prop. 2 is
applied, are shown in Table 2. The results in this table show
that the reduction technique is very impressive, mainly due to
the fact that it is able to remove most of the additional states
that are generated because of the incorporation of the clocks
in the total state vector. The additional states are caused by the
mutual exclusions. When the shared resources are removed, the
number of states in the reduced model are always the same is
the number of locations, i.e. | X,| = |L|.]

5. TIME-OPTIMAL ABSTRACTION

As a complement to the reduction of clock states, we will now
show how the number of locations can also be reduced by
local optimization. This type of reduction is obtained by joining
states with the same future behavior into equivalence classes,
also called block states. Transitions between such states must
be labeled by local non-shared events to be able to encapsulate
them into block states.

348 Bengt Lennartson et al. / IFAC PapersOnLine 55-28 (2022) 344-349

Table 2. State space evaluation and computation
times for G || - - - || Gy, With n operations in every
subsystem according to Fig. 3. The computation
times with and without reduction are denoted ct,
and ct, the optimal make span t*, and the number
of states including reduction | X.|. t.0. means time
out (>200 sec.), and for the rest of the notations we
refer to Table 1

m n |L| | X| ct | X ctr t*

2 20 477 16000 2.36 759 0.037 | 230
2 60 3824 | 441727 | 199.3 6265 0.179 670
2 100 | 10370 - t.o. 17103 0.486 | 1111
3 5 375 30935 | 46.32 1268 0.081 76

3 10 2064 - t.o. 11353 0.969 132
3 20 13245 - t.o. 148055 | 26.22 241

Single entry-exit timed automata To generate local explicit
state models including clock states, a single entry and a single
exit transition are assumed, but also a well defined clock state
after the first entry transition. Such models are called single
entry-exit timed automata, for which a time-optimal abstraction
is easily obtained.

Definition 4. Let G be a single entry-exit timed automaton with
a clock vector ¢, and single entry and exit transitions
a:c'=co b:p
60 e 61 and {— gm,

where the entry event a and the exit event b are shared with
other timed automata, and ¢ is a clock constraint. Between
these transitions there may be a number of time delayed and
event transitions, where all events are local and alternative paths
are accepted. The next clock value constraint ¢’ = c¢p in the
entry transition defines the initial value of all clocks. a

The assumption that the initial value of all clocks is known is
critical to be able to determine the transition weights and a time-
optimal path for a single entry-exit timed automaton.

Time-optimal abstraction For a single entry-exit timed au-

tomaton, a time-optimal abstraction is presented in the follow-
ing proposition.
Proposition 3. A single entry-exit timed automaton G can be
abstracted to a time-optimal three state timed automaton A(G)
shown in Fig. 5, where the minimal makespan from location ¢
to location ¢, is w*(¢, ¢,,

Proof: Since the values of all clocks are defined at the entry
transition and events after the first transition are local and
therefore not restricted by any other subsystems, the minimal
waiting time of each time delayed transition is easily defined
by Prop. 1 as well as the minimal makespan from the entry
location to the exit location, in the abstracted model denoted

w* (¢, £,,). Also note that all clocks that are only used in G can
be replaced by a single clock c that only defines the time delay
equal to the minimal makespan w* (¢, £,,

A(G)

/=0 bchw*(f,fm)

Figure 5. Time-optimal abstraction .A(G) of a single entry-exit
timed automaton G.

A single entry-exit timed automaton (G can be a part of a timed
automaton G that is temporarily separated from the rest of the
system such that G = G || G2. A time-optimal abstracted
automaton A(G1) then generates an abstraction of the original
system A(G) = A(G1) || G2. This procedure can be extended

A1z = mil’l(Al +As, Az)
Ayg = A1+Ay

Flgure 6. Timed automaton G and its time-optimal abstraction

A(G).

to other parts of the timed automaton G where single entry-exit
timed automata are naturally achieved.

Example 5. Consider the timed automaton G in Fig. 6. Since
this model has two local events, here labeled by the hidden
event 7, an abstracted time-optimal model can be generated.
From the entry event a we find two exit events b; and bo,
which means that two single entry-exit timed automata can be
formulated. The first one includes the states {0,1,2,3,4,5}
and the exit event by, and the second one includes the states
{0,1,2,6,7,8} and the exit event bs.

Since the clock is reset before every time delayed transition, all
non-zero minimal waiting times are equal to their lower limit
time delays A;, i = 1,...,4. Thus, the shortest path from the
entry event a to the exit event by is min(A; +Ag, As), while
the shortest path (the only path) from a to by is A;+Ay. These
minimal path times are therefore according to Prop. 3 and Fig. 5
introduced as time delay clock constraints in the time-optimal
abstraction A(G) in Fig. 6. a

In the next example it is illustrated how this abstraction tech-
nique can reduce the computation time significantly for larger
systems.

Example 6. Consider the system in Example 4 where now the
operation time for every second operation including mutual
exclusion is A; ;=10 +mod(i + 7, 3) for j=1,...,m, while
the other non-interacting local operations are assumed to be
varied such that A, ;=20 + mod(i + j, 3). These local oper-
ations can be abstractions of a sequences of local operations
where for simplicity we assume that A; ; = > | A, ;/r,
i.e. every abstracted operation consists of r local operations.
In this way the number of original operations n increases, and
in Table 3 different values of r and resulting n are compared
with the computation time for the the abstracted model (r = 1).
This is a very simple type of abstraction, but from a computa-
tional point of view, including more complex behavior involv-
ing for instance alternative local paths generates the same type
of computations. The computational burden is mainly in the
optimization, which according to Table 3 is greatly simplified
for » = 1. In this example, a final transition is also added when
all operations in the individual sequences have beed completed.

O

Bengt Lennartson et al. / IFAC PapersOnLine 55-28 (2022) 344-349 349

Table 3. State space evaluation and computation
times for G || - - - || Gy, With 1 operations in every
subsystem according to Fig. 3. » = 1 corresponds
to an abstraction, where » > 1 local operations
without mutual exclusion are joined into one oper-

ation.

m n r |L] | X ctr t*

2 40 1 1745 2567 0.065 | 651
2 120 5 14865 49324 1.75 651
2 | 220 | 10 | 49265 | 370465 19.0 651
3 7 1 874 3935 0.25 129
3 10 2 2065 12551 1.16 129
3 13 3 3976 85210 37.5 129

This type of abstraction is easily performed on the original
submodels, while requiring the value of all involved clocks
at the entry transition makes this abstraction harder to apply
after synchronization, when a number of clocks are involved.
However, significant reductions can be achieved for special
system structures also when a number of subsystems have been
synchronized. This is illustrated in the last example.

Example 7. A synchronized system which satisfies the single
entry-exit assumption in Prop. 3 is a group of concurrent
operations where all operations are completed before a new
set of independent and concurrent operations are started again.
In Table 4 this is illustrated by first computing a model for
n = 4 and n = 5 with m = 3 parallel sequences as in
the earlier examples, and mutual exclusion added every third
operation as in Example 4. Adding a first and final common
transition before and after the m concurrent sequences means
that the time-optimal sequence can be repeated, without any
additional computations. Alternatively, a global model can be
generated where a copy of the first model is synchronized
with itself, using local events except for the shared last event
in the first submodel and the first event in the second copied
submodel. The computation of a time-optimal path for this
global model generates a model with 2nm operations, but
due to the concurrency the computational complexity increases
dramatically, compared to just repeating the optimal solution
from the first subsystem a second time. O

Table 4. State space evaluation and computation
times for Gy || --- || Gy, with n operations in
every subsystem according to Fig. 3. In the second
and fourth row, the first and third examples are
repeated a second time after a synchronization,
where the last shared event in the first subsystem
is joined with the first event from a copy of this

subsystem.
m | n | |L] | X 7| cty t*
3 4 234 756 0.047 66
3 | 8 | 466 | 12525 | 8.18 | 132
3 5 390 1426 0.090 76
3 | 10 | 778 | 42206 | 42.9 | 152

6. CONCLUSIONS AND FUTURE WORK

Time optimization of concurrent sequences of operations is in
this paper solved by timed automata. To reduce the complex-
ity an abstraction method has recently been proposed based
on local optimization (Hagebring and Lennartson, 2019). In
a modular subsystem, local paths without any communication
with other subsystems are optimized, and when subsystems

are synchronized more local behavior appears. The proposed
method has shown to be successful, reducing computational
complexity for important classes of planning problems. The
original heuristic non-standard synchronous composition pro-
cedure to achieve true concurrency is in this paper replaced by
a synchronous composition of timed automata. In the transfor-
mation to time weighted automata, a powerful state reduction
is proposed and evaluated.

This modeling approach is simple but also general, making it
possible to handle both automata and modular Petri nets with
shared variables. An interesting future direction is to combine
the proposed abstraction method with for instance Z3-Opt,
since the modeling framework is suitable for the logic equation
based input format that is available in such satisfiability solvers.

ACKNOWLEDGEMENTS

Many thanks to my former PhD student Dr Fredrik Hagebring
who initiated and formulated the basic concepts around compo-
sitional optimization.

REFERENCES

Alur, R. and Dill, D.L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2), 183 — 235. doi:
https://doi.org/10.1016/0304-3975(94)90010-8.

Baier, C. and Katoen, J.P. (2008). Principles of Model Check-
ing. The MIT Press, Cambridge, MA.

Hagebring, F. and Lennartson, B. (2018). Compositional op-
timization of discrete event systems. In /4th IEEE Interna-
tional Conference on Automation Science and Engineering.

Hagebring, F. and Lennartson, B. (2019). Time-optimal con-
trol of large-scale systems of systems using compositional
optimization. Discrete Event Dynamic Systems. doi:
10.1007/s10626-019-00290-0.

Hill, R. and Lafortune, S. (2016). Planning under abstraction
within a supervisory control context. In 2016 IEEE 55th
Conference on Decision and Control (CDC).

Hill, R. and Lafortune, S. (2017). Scaling the formal synthesis
of supervisory control software for multiple robot systems.
In 2017 American Control Conference (ACC).

Hoare, C. (1978). Communicating Sequential Processes,
volume 21. ACM, New York, NY, USA. doi:
10.1145/359576.359585.

Lennartson, B., Basile, F, Mire;madi, S., Fei, Z., Noori-
Hosseini, M., Fabian, M., and Akesson, K. (2014). Super-
visory control for state-vector transition models - A unified
approach. [EEE Transaction on Automation Science and
Engineering, 11(1).

Lennartson, B. and Jia, Q.S. (2020). Reinforcement learn-
ing with temporal logic constraints. In Proc. 15th Inter-
national Workshop on Discrete Event Systems (WODES).
IFAC-PapersOnLine.

Su, R., van Schuppen, J.H., and Rooda, J.E. (2012). The
synthesis of time optimal supervisors by using heaps-of-
pieces. [EEE Transactions on Automatic Control, 57(1),
105-118. doi:10.1109/TAC.2011.2157391.

Van Glabbeek, R.J. and Weijland, W.P. (1996). Branching time
and abstraction in bisimulation semantics. Journal of the
ACM, 43, 555-600.

Vilela, J. and Hill, R. (2022). Hierarchical planning in a
supervisory control context with compositional abstraction.
Discrete Event Dynamic Systems, 32, 89-113.

Ware, S. and Su, R. (2017). Time optimal synthesis based upon
sequential abstraction and its application to cluster tools.
IEEE Transactions on Automation Science and Engineering,
14(2), 772-784.

