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Abstract: Smart contracts are programs that are stored on a blockchain ledger with code
immutable after deployment. Thus, verifying the correct behavior of smart contracts before
deployment is vital. This paper demonstrates how a security vulnerability verification in a
casino smart contract can be transformed to non-blocking verification. To this end, the contract
is first modeled as interacting extended finite state machines (EFSM), with one EFSM for each
function. Modeling the security vulnerability as a condition in the EFSM system, non-blocking
verification reveals the system to be blocking. Investigating the counterexample produced by
the verification shows that a transfer that is refused by its receiver may block the casino so that
all remaining funds are forever locked into the contract, thus revealing a severe vulnerability.
It is then demonstrated how the same technique can show the absence of this vulnerability, by
verifying that the EFSM model of an improved casino contract is indeed non-blocking.
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1. INTRODUCTION

Smart contracts are programs that are openly stored and
executed in a blockchain ecosystem, enforcing a contrac-
tual agreement between mutually distrusting users, includ-
ing the exchange of crypto currencies. This successfully
addresses the problem of guaranteeing the execution of
agreements in a setting where parties neither have to
trust each other, nor have to involve a third party (like
bank, lawyer, or authority). At the same time, they pro-
vide a surface for security attacks. Even if the underlying
blockchain protocols cannot feasibly be compromised, a
smart contract can itself allow behavior unintended by the
programmer, which may be exploited to the disadvantage
of some of the users. As smart contracts cannot be changed
once deployed on the blockchain, it is important to guar-
antee absence of such unintended behavior.

One of many security attack scenarios of smart contracts
is where an attacker, which might be a malicious contract,
refuses to receive a payment (Atzei et al., 2017). This
can prevent progress of the contract in such a way that
funds intended (by the programmer) for other users may
be locked forever. If a smart contract is vulnerable to this
type of attack, an attacker can cause big damage for other
users, at the cost of only small damage to herself. This
paper demonstrates an approach to use formal verification
to discover and exclude this type of vulnerability.

To formally verify a smart contract, the behavior of the
contract needs to be modeled first. High level behavior of
a smart contract, which mostly addresses the interaction
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between different parts, can be modeled as Extended Finite
State Machines (EFSM) (Sköldstam et al., 2007). In gen-
eral, explicit states result from abstracting away execution
details and intermediate results. But in addition, there is a
certain programming pattern popular in smart contracts,
where elements of an enumeration type effectively act as
explicit states (like IDLE, GAME_AVAILABLE, BET_PLACED in the
casino contract below). Such states determine the effect of
the events that users trigger on the contract.

The works in Mohajerani et al. (2015) and Teixeira et al.
(2015), among others, provide verification of non-blocking
behavior of composed EFSM in the framework of supervi-
sory control theory (SCT) (Ramadge and Wonham, 1989),
which can be applied to a variety of application domains
from manufacturing systems (Leduc et al., 2006) to au-
tonomous cars (Zita et al., 2017). This paper describes how
the SCT framework can be used to verify smart contracts.
This is based on the insight that the presence or absence of
the aforementioned vulnerabilities can be analysed using
non-blocking verification.

Related approaches to guarantee safety of smart contracts
are presented by Suvorov and Ulyantsev (2019); Mavridou
and Laszka (2018). These approaches synthesize from
EFSM models smart contracts guaranteed to fulfill given
requirements. VerX (Permenev et al., 2020) is a verification
tool for smart contracts that verifies properties expressed
in past LTL (with a top-level ‘always’). The above works
focus mainly on safety properties, and nonblocking cannot
be expressed.

Variants of the casino smart contract have been verified
in Ahrendt et al. (2019) and Utting and Kent (2021) using
off-the-shelf verification tools. Also here, the approaches
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State Machines (EFSM) (Sköldstam et al., 2007). In gen-
eral, explicit states result from abstracting away execution
details and intermediate results. But in addition, there is a
certain programming pattern popular in smart contracts,
where elements of an enumeration type effectively act as
explicit states (like IDLE, GAME_AVAILABLE, BET_PLACED in the
casino contract below). Such states determine the effect of
the events that users trigger on the contract.

The works in Mohajerani et al. (2015) and Teixeira et al.
(2015), among others, provide verification of non-blocking
behavior of composed EFSM in the framework of supervi-
sory control theory (SCT) (Ramadge and Wonham, 1989),
which can be applied to a variety of application domains
from manufacturing systems (Leduc et al., 2006) to au-
tonomous cars (Zita et al., 2017). This paper describes how
the SCT framework can be used to verify smart contracts.
This is based on the insight that the presence or absence of
the aforementioned vulnerabilities can be analysed using
non-blocking verification.

Related approaches to guarantee safety of smart contracts
are presented by Suvorov and Ulyantsev (2019); Mavridou
and Laszka (2018). These approaches synthesize from
EFSM models smart contracts guaranteed to fulfill given
requirements. VerX (Permenev et al., 2020) is a verification
tool for smart contracts that verifies properties expressed
in past LTL (with a top-level ‘always’). The above works
focus mainly on safety properties, and nonblocking cannot
be expressed.

Variants of the casino smart contract have been verified
in Ahrendt et al. (2019) and Utting and Kent (2021) using
off-the-shelf verification tools. Also here, the approaches

Modeling and Security Verification of

State-Based Smart Contracts ⋆

Sahar Mohajerani ∗ Wolfgang Ahrendt ∗∗ Martin Fabian ∗

∗ Department of Electrical Engineering
∗∗ Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden
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sory control theory (SCT) (Ramadge and Wonham, 1989),
which can be applied to a variety of application domains
from manufacturing systems (Leduc et al., 2006) to au-
tonomous cars (Zita et al., 2017). This paper describes how
the SCT framework can be used to verify smart contracts.
This is based on the insight that the presence or absence of
the aforementioned vulnerabilities can be analysed using
non-blocking verification.

Related approaches to guarantee safety of smart contracts
are presented by Suvorov and Ulyantsev (2019); Mavridou
and Laszka (2018). These approaches synthesize from
EFSM models smart contracts guaranteed to fulfill given
requirements. VerX (Permenev et al., 2020) is a verification
tool for smart contracts that verifies properties expressed
in past LTL (with a top-level ‘always’). The above works
focus mainly on safety properties, and nonblocking cannot
be expressed.

Variants of the casino smart contract have been verified
in Ahrendt et al. (2019) and Utting and Kent (2021) using
off-the-shelf verification tools. Also here, the approaches

are limited to safety properties, and cannot show non-
blocking. Ahrendt et al. (2019) can deal with reverting
transactions, but not prove the absence of harmful trans-
action reverts.

This paper applies formal verification to the casino con-
tract of Ahrendt et al. (2019). The contract is first modeled
as a set of interacting EFSMs. To verify the correctness of
this EFSM system, the supervisor synthesis and verifica-
tion tool Supremica (Åkesson et al., 2006) is used, and
the contract is verified to be blocking, which reveals an un-
intended security vulnerability. Analysing the counterex-
ample generated by Supremica, adjustments are made to
the casino contract to remove the blocking problem. Then,
the adjusted contract is modeled again and verified to be
non-blocking, showing the absence of the vulnerability.

The paper is organized as follows. Section 2 presents a
brief background on EFSM and smart contracts. Section 3
gives a structured way to model smart contracts as a set
of EFSMs. Section 4 describes the casino contract and
its model as interacting EFSMs. Next, Section 5 models
the security vulnerability. Section 6 shows that the EFSM
Casino model is blocking. Section 7 shows the adjusted
system, and Section 8 gives concluding remarks.

2. PRELIMINARIES

2.1 Smart Contracts: Ethereum and Solidity

The first, and still major, blockchain framework support-
ing smart contracts was Ethereum (Wood, 2014), with its
built-in cryptocurrency Ether. In Ethereum not only the
users, but also the contracts can receive, own, and send
Ether. Sending Ether to a contract, and calling the con-
tract, is the same thing in this framework. Sending funds
to a contract without passing control to the receiver is not
possible. Ethereum miners look for transaction requests on
the network. A transaction request contains the address of
a contract to be called, the call data, and the amount of
Ether to be sent. Miners are paid for their efforts with
units of (Ether prised) gas, to be paid by the address that
requested the transaction.

A transaction may not necessarily be executed successfully.
It can be reverted for various reasons: running out of gas,
sending of unbacked funds, failing runtime assertions, or a
simple revert statement in the code. If the miner attempts
to execute a top-level (i.e., externally triggered) transac-
tion, a reverting action anywhere inside the transaction
execution will undo the entire transaction, all the way up
the call stack. All the effects so far are also undone (except
for the paid gas), as if the original call never happened. For
instance, consider a case where a user calls some smart
contract C, which during execution of the request sends
Ether to another contract D. Recall that sending funds
from C to D means that control is passed, for the moment,
from C to D, and C can only resume once D returns. If
D aborts before returning, the entire original request from
the user gets undone.

The most popular programming language for Ethereum
smart contracts is Solidity 1, which follows largely an
object-oriented paradigm. Each external user and each
1 https://docs.soliditylang.org/en/latest/

contract instance has a unique address. Each address owns
Ether (possibly 0), can receive Ether, and send Ether to
other addresses. For instance, a.transfer(v) transfers the
amount of v Wei (= 10−18 Ether) from the caller to a.
Built-in data types include unsigned integer (uint), enums,
structs, and mappings. Mappings associate keys with val-
ues. For instance, the declaration mapping (address => ...

uint) public m declares a field m which contains a mapping
from addresses to unsigned integers. The current caller,
and the amount of Wei sent with the call, are always
available via msg.sender and msg.value, respectively. Only
payable functions accept payments. require(b) checks the
boolean expression b, and aborts if b is false. Fields marked
public are read-public, not write-public. Solidity offers also
some cryptographic primitives, for instance the function
keccak256 computing a crypto-hash of its argument.

Solidity further features programmable modifiers. For in-
stance, the Casino contract in Fig. 1 uses the modifiers
byOperator, inState(s), and noActiveBet. These modifiers ex-
pand to require statements that abort the transaction if
not fulfilled. The above modifiers expand to, respectively:

• require (msg.sender == operator);
• require (state == s);
• require (state != State.BET_PLACED);

2.2 Finite-state machines

Finite-state machines (FSM) (Ramadge and Wonham,
1989; Cassandras and Lafortune, 1999) are useful to model
the logic of state-based smart contracts.

Definition 1. A finite-state machine (FSM) is a tuple
G = �Σ, Q,→ , Q◦, Qω�, where Σ is a set of events, the
alphabet ; Q is a finite set of states ; → ⊆ Q×Σ×Q is the
transition relation; Q◦ ⊆ Q is the set of initial states ; and
Qω ⊆ Q is the set of marked states.

If Q◦ is a singleton and → a function, the FSM is said to
be deterministic, else it is non-deterministic.

Let Σ∗ be the set of all finite traces of events from Σ,
including the empty trace ε. The transition relation is

written in infix notation q
σ
→ p, and is extended to traces

in Σ∗ by p
ε
→ p for all p ∈ Q, and p

sσ
→ q if p

s
→ r and r

σ
→ q

for some r ∈ Q. The transition relation is also defined for

state sets R ⊆ Q, for example R
s
→ q means r

s
→ q for

some r ∈ R and some s ∈ Σ∗.

Definition 2. An FSM G = �Σ, Q,→ , Q◦, Qω� is non-
blocking if, for every trace t ∈ Σ∗ and every state q ∈ Q

such that Q◦ t
→ q, exists a trace s ∈ Σ∗ such that q

s
→ Qω.

2.3 Extended Finite-State Machines

Extended finite-state machines (EFSM) (Cheng and Krish-
nakumar, 1993; Sköldstam et al., 2007) are similar to FSM,
but augmented with bounded, discrete variables, and up-
dates of those variables associated to the transitions. The
updates are formulas constructed from variables, integer
constants, the Boolean literals true (T) and false (F), and
the usual arithmetic and logic connectives.

A variable v is an entity associated with a bounded discrete
domain dom(v) and an initial value v◦ ∈ dom(v). Let
V = {v0, . . . , vn} be the set of variables with domain
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are limited to safety properties, and cannot show non-
blocking. Ahrendt et al. (2019) can deal with reverting
transactions, but not prove the absence of harmful trans-
action reverts.

This paper applies formal verification to the casino con-
tract of Ahrendt et al. (2019). The contract is first modeled
as a set of interacting EFSMs. To verify the correctness of
this EFSM system, the supervisor synthesis and verifica-
tion tool Supremica (Åkesson et al., 2006) is used, and
the contract is verified to be blocking, which reveals an un-
intended security vulnerability. Analysing the counterex-
ample generated by Supremica, adjustments are made to
the casino contract to remove the blocking problem. Then,
the adjusted contract is modeled again and verified to be
non-blocking, showing the absence of the vulnerability.

The paper is organized as follows. Section 2 presents a
brief background on EFSM and smart contracts. Section 3
gives a structured way to model smart contracts as a set
of EFSMs. Section 4 describes the casino contract and
its model as interacting EFSMs. Next, Section 5 models
the security vulnerability. Section 6 shows that the EFSM
Casino model is blocking. Section 7 shows the adjusted
system, and Section 8 gives concluding remarks.

2. PRELIMINARIES

2.1 Smart Contracts: Ethereum and Solidity

The first, and still major, blockchain framework support-
ing smart contracts was Ethereum (Wood, 2014), with its
built-in cryptocurrency Ether. In Ethereum not only the
users, but also the contracts can receive, own, and send
Ether. Sending Ether to a contract, and calling the con-
tract, is the same thing in this framework. Sending funds
to a contract without passing control to the receiver is not
possible. Ethereum miners look for transaction requests on
the network. A transaction request contains the address of
a contract to be called, the call data, and the amount of
Ether to be sent. Miners are paid for their efforts with
units of (Ether prised) gas, to be paid by the address that
requested the transaction.

A transaction may not necessarily be executed successfully.
It can be reverted for various reasons: running out of gas,
sending of unbacked funds, failing runtime assertions, or a
simple revert statement in the code. If the miner attempts
to execute a top-level (i.e., externally triggered) transac-
tion, a reverting action anywhere inside the transaction
execution will undo the entire transaction, all the way up
the call stack. All the effects so far are also undone (except
for the paid gas), as if the original call never happened. For
instance, consider a case where a user calls some smart
contract C, which during execution of the request sends
Ether to another contract D. Recall that sending funds
from C to D means that control is passed, for the moment,
from C to D, and C can only resume once D returns. If
D aborts before returning, the entire original request from
the user gets undone.

The most popular programming language for Ethereum
smart contracts is Solidity 1, which follows largely an
object-oriented paradigm. Each external user and each
1 https://docs.soliditylang.org/en/latest/

contract instance has a unique address. Each address owns
Ether (possibly 0), can receive Ether, and send Ether to
other addresses. For instance, a.transfer(v) transfers the
amount of v Wei (= 10−18 Ether) from the caller to a.
Built-in data types include unsigned integer (uint), enums,
structs, and mappings. Mappings associate keys with val-
ues. For instance, the declaration mapping (address => ...

uint) public m declares a field m which contains a mapping
from addresses to unsigned integers. The current caller,
and the amount of Wei sent with the call, are always
available via msg.sender and msg.value, respectively. Only
payable functions accept payments. require(b) checks the
boolean expression b, and aborts if b is false. Fields marked
public are read-public, not write-public. Solidity offers also
some cryptographic primitives, for instance the function
keccak256 computing a crypto-hash of its argument.

Solidity further features programmable modifiers. For in-
stance, the Casino contract in Fig. 1 uses the modifiers
byOperator, inState(s), and noActiveBet. These modifiers ex-
pand to require statements that abort the transaction if
not fulfilled. The above modifiers expand to, respectively:

• require (msg.sender == operator);
• require (state == s);
• require (state != State.BET_PLACED);

2.2 Finite-state machines

Finite-state machines (FSM) (Ramadge and Wonham,
1989; Cassandras and Lafortune, 1999) are useful to model
the logic of state-based smart contracts.

Definition 1. A finite-state machine (FSM) is a tuple
G = �Σ, Q,→ , Q◦, Qω�, where Σ is a set of events, the
alphabet ; Q is a finite set of states ; → ⊆ Q×Σ×Q is the
transition relation; Q◦ ⊆ Q is the set of initial states ; and
Qω ⊆ Q is the set of marked states.

If Q◦ is a singleton and → a function, the FSM is said to
be deterministic, else it is non-deterministic.

Let Σ∗ be the set of all finite traces of events from Σ,
including the empty trace ε. The transition relation is

written in infix notation q
σ
→ p, and is extended to traces

in Σ∗ by p
ε
→ p for all p ∈ Q, and p

sσ
→ q if p

s
→ r and r

σ
→ q

for some r ∈ Q. The transition relation is also defined for

state sets R ⊆ Q, for example R
s
→ q means r

s
→ q for

some r ∈ R and some s ∈ Σ∗.

Definition 2. An FSM G = �Σ, Q,→ , Q◦, Qω� is non-
blocking if, for every trace t ∈ Σ∗ and every state q ∈ Q

such that Q◦ t
→ q, exists a trace s ∈ Σ∗ such that q

s
→ Qω.

2.3 Extended Finite-State Machines

Extended finite-state machines (EFSM) (Cheng and Krish-
nakumar, 1993; Sköldstam et al., 2007) are similar to FSM,
but augmented with bounded, discrete variables, and up-
dates of those variables associated to the transitions. The
updates are formulas constructed from variables, integer
constants, the Boolean literals true (T) and false (F), and
the usual arithmetic and logic connectives.

A variable v is an entity associated with a bounded discrete
domain dom(v) and an initial value v◦ ∈ dom(v). Let
V = {v0, . . . , vn} be the set of variables with domain
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dom(V ) = dom(v0)×· · ·×dom(vn). An element of dom(V )
is called a valuation and is denoted by v̂ = �v̂0, . . . , v̂n�
with v̂i ∈ dom(vi), and the value associated to variable
vi ∈ V is denoted v̂[vi] = v̂i. The initial valuation is
v◦ = �v◦0 , . . . , v

◦
n�.

A second set of variables, called next-state variables, de-
noted by V ′ = { v′ | v ∈ V } with dom(V ′) = dom(V ),
is used to describe the values of the variables after a
transition occurs. Variables in V are referred to as current-
state variables to differentiate them from the next-state
variables in V ′. The set of all update formulas using
variables in V and V ′ is denoted by ΠV .

For an update p ∈ ΠV , the terms vars(p) and vars′(p)
denote the set of all variables, and the set of next-state
variables, respectively, that occur in p. Updates p ∈
ΠV can be interpreted as predicates over their variables,
evaluating to T or F, i.e., p : dom(V )×dom(V ′) → {T,F}.

Definition 3. An extended finite-state machine (EFSM) is
a tuple E = �Σ, Q,→ , Q◦, Qω�, where Σ is a set of events;
Q is a finite set of locations ; → ⊆ Q ×Σ×ΠV ×Q is the
conditional transition relation; Q◦ ⊆ Q is the set of initial
locations ; and Qω ⊆ Q is the set of marked locations.

A transition in E is given as q
σ:p
−−→ q′, which means that

if update p evaluates to T, the system can move from
location q to location q′ on the occurrence of the event σ.
When the transition occurs the variables in vars′(p) are
updated while the variables not contained in vars′(p) are
unchanged.

Usually, EFSM models consist of several interacting com-
ponents. Such a model is called an EFSM system.

Definition 4. An EFSM system is a collection of interact-
ing EFSMs, E = {E1, . . . , En}.

Component interaction in an EFSM systems is modeled
by synchronous composition Hoare (1985).

Definition 5. Given two EFSMs E1 = �Σ1, Q1,→1, Q
◦
1,

Qω
1 � and E2 = �Σ2, Q2,→2, Q

◦
2, Q

ω
2 �, the synchronous

composition of E1 and E2 is E1 �E2 = �Σ1 ∪Σ2, Q1 ×Q2,
→, Q◦

1 ×Q◦
2, Q

ω
1 ×Qω

2 �, where:

(x1, x2)
σ:p1∧p2

−−−−−→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1

σ:p1

−−−→1 y1,

and x2

σ:p2

−−−→2 y2 ;

(x1, x2)
σ:p1

−−−→ (y1, x2) if σ ∈ Σ1 \ Σ2 and x1

σ:p1

−−−→1 y1 ;

(x1, x2)
σ:p2

−−−→ (x1, y2) if σ ∈ Σ2 \ Σ1 and x2

σ:p2

−−−→2 y2 .

Using Def. 5, the global behavior of a system E = {E1,
. . . , En} is given by E1 � · · · � En.

Non-blocking of an EFSM system, is defined on the flat-
tened system (Mohajerani et al., 2015).

Definition 6. Let E = �Σ, Q,→ , Q◦, Qω� be an EFSM
with variable set vars(E) = V . The monolithic flattening
of E is U(E) = �Σ, QU ,→U , Q

◦
U , Q

ω
U � where

• QU = Q× dom(V );

• (x, v̂)
σ
→U (y, ŵ) if E contains a transition x

σ:p
−−→ y

such that p(v̂, ŵ) = T;
• Q◦

U = Q◦ × {v◦};
• Qω

U = Qω × dom(V ).

U(E) is the FSM representation of the EFSM, where
all the variables have been removed and their values v̂
embedded into the state set QU . This ensures the correct
sequencing of transitions in the FSM. The monolithic
flattened EFSM system E is U(E) = U(E1 � . . . � En).

Definition 7. An EFSM system E is non-blocking if U(E)
is non-blocking.

3. MODELING SOLIDITY CODE AS EFSMS

This section presents an approach for modeling a Solidity
smart contract as a set of EFSMs, in general one EFSM for
each function. Since the EFSMs considered in this paper
are finite, the model only contains the logic part of the code
and bounded variables. The following describes step by
step how the EFSM is built. Though this proof-of-concept
was performed manually, the process is well-structured
enough to be automated.

Generally, each line of code of a function is represented by
an EFSM location; all the locations are marked and the
initial location q◦ represents the function being idle.

The alphabet of the EFSM model of a function comprises:

• One event labeled by the name of the function; this
event represents the function being called;

• One event, functionDone, representing function ter-
mination;

• One event for each line of the function; these events
are not shared with other EFSMs.

The set of variables of the EFSM model represents the
bounded variables in the functions. Moreover, as men-
tioned in Section 2.1, the only reason for a function to
revert considered in this work is that a function being
called inside of it aborts. Thus, if a function is called
from another function, a variable is assigned to capture
its reversion or successful termination.

• For each bounded modifier inside the function, add
to the EFSM a variable with the same domain.

• For each function called inside the function, add
to the EFSM a variable with domain {0, 1}; 0 for
reversion and 1 for successful termination of the called
function.

• For each bounded variable inside the function, add to
the EFSM a variable with the same domain.

Each transition of the EFSM represents the execution
of some lines of the code, which contains assignment
of the bounded variables, conditional statements, called
functions or return of the function.

• The transition q◦
function:p
−−−−−−→ q1 models the function

call. The update p represents the condition that the
modifier imposes on the function.

• The transition qn
functionDone:p
−−−−−−−−−−→ q◦ represents ter-

mination of the function, typically its last line. More-
over, if a function is called inside of the function, v = 1
or v = 0 will be a part of the update p, where variable
v represents the called function reversion or successful
termination.

• For each line of code there is a transition qi
e:p
−−→ qi+1.

The event e is a general description of the line and the

update p is the conditional or assignment statement
on any bounded variable.

The overall behavior of a smart contract typically goes
through intermediate states, starting from an initial state
to eventually reach a final state (typically the initial state).
In different states, different functions of the contract are
accessible, and cannot be called from other states. To
manage the states of the contract, enums are often used.

In the EFSM model of the overall behavior of the contract,
the locations directly correspond to the states of the
contract, the enum values. Selfloops in the EFSM model,

enumi
function
−−−−−→ enumi, represent function calls possible

at the particular state. If the function termination causes
the contract to move from one state to another, this is

modeled as enumi
functionDone
−−−−−−−−−→ enumi+1, see for instance

CGD (Create Game Done) in Fig. 2.

4. SYSTEM DESCRIPTION AND MODELING

This section describes the contract and, following the
modeling technique proposed in Section 3, presents a
model of it as a set of interacting EFSMs.

4.1 Casino Contract Overview

The Solidity code for the casino, Fig. 1, has three explicit
states: IDLE, GAME_AVAILABLE, BET_PLACED, see line 3.

Based on the modifier inState(s), in the IDLE location the
operator may create a game by invoking the createGame

function (line 9). To ensure a fair betting, the casino must
place its bet at the time of game creation. Thus, when
calling createGame, hashedNumber is assigned a value to later
decide the game outcome (line 11). After creating a new
game, the state changes to GAME_AVAILABLE (line 12) where
a game is now available. In this state, the player can call
placeBet to place a bet on TAILS or HEADS up to the size
of the pot (lines 16-21). This then changes the state of the
contract to BET_PLACED (line 23).

Next, the operator may by decideBet submit the original
secret number to resolve the bet (line 25). If the secret
number is even the coin toss is HEADS, else it is TAILS
(line 29). If the player wins, double the bet is transferred
to the player (line 41). If the operator wins, the bet is
added to the pot and then set to zero (lines 44-45).

The operator may add money to the pot at any state,
addToPot (line 47). Also, the operator may remove money
from the pot, removeFromPot (line 51), but only if the player
has not placed a bet, that is, if the casino is not in the state
BET_PLACED. This is ensured by the modifier noActiveBet.

4.2 EFSM Model of the Casino

The Casino model is modular, see Fig. 2, comprising one
EFSM for each Solidity function, and maps the code line
by line, disregarding the unbounded variables. In addition,
the Casino EFSM keeps track of each state of the contract.
Thus, the locations of Casino are the values of enum State.
Location I models IDLE, GA models GAME_AVAILABLE, and
BP BET_PLACED. Since going back to the IDLE state shows
completion of a game, location I is the initial and the

1 contract Casino {
2
3 enum State {IDLE , GAME AVAILABLE, ...

BET PLACED}
4 State private s t a t e ;
5 address public operator , p laye r ;
6 bytes32 public hashedNumber ;
7 struct Wager {uint bet ; Coin guess ;}
8
9 function createGame (bytes32 hashNum) public

10 byOperator , i nS ta t e ( State . IDLE) {
11 hashedNumber = hashNum
12 s t a t e = State .GAMEAVAILABLE; }
13
14 function placeBet ( Coin gue s s ) public payable
15 inS ta t e ( State .GAMEAVAILABLE) {
16 require (msg . sender != operator ) ;
17 require (msg . value > 0 && msg . value ≤ pot ) ;
18 p laye r = msg . sender ;
19 wager = Wager ({
20 bet : msg . value ,
21 guess : gue s s
22 }) ;
23 s t a t e = State .BET PLACED; }
24
25 function dec ideBet (uint secretNumber ) public
26 byOperator , i nS ta t e ( State .BET PLACED) {
27 require ( hashedNumber ==
28 keccak256 ( secretNumber ) ) ;
29 Coin s e c r e t = ( secretNumber % 2 == 0) ? ...

Coin .HEADS : Coin .TAILS ;
30 i f ( s e c r e t == wager . guess ) {
31 playerWins ( ) ;
32 } else {
33 operatorWins ( ) ;
34 }
35 s t a t e = State . IDLE ; }
36
37 function playerWins ( ) private {
38 tmp = wager . bet
39 wager . bet = 0 ;
40 pot = pot - tmp ;
41 p laye r . transfer (tmp∗2) ; }
42
43 function operatorWins ( ) private {
44 pot = pot + wager . bet ;
45 wager . bet = 0 ; }
46
47 function addToPot ( ) public payable
48 byOperator {
49 pot = pot + msg . value ; }
50
51 function removeFromPot (uint amount ) public
52 byOperator , noActiveBet {
53 pot = pot - amount ;
54 operator . transfer ( amount ) ; }
55 }

Fig. 1. Solidity-code for Casino (some details are omitted)

marked location in Casino. The models of the functions
have all locations marked.

The variables of the model are V ={gc, sc, hn, s, tp, to, pwd ,
owd}. Variables gc and sc, with the domain {t, h} (t for
TAILS and h for HEADS), capture the guess and secret

coin variables (lines 21 and 29). The hn variable represents
the hashedNumber (line 11) and, since only the evenness and
oddness of the hashed number is relevant (line 29), the
domain of hn is {e, od} (e for even and od for odd). The s
variable, with the domain {o, p} (o for operator and p for
player), models the sender. Moreover, as transfer, called in
removeFromPot and playerWins, can succeed or fail, variables
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update p is the conditional or assignment statement
on any bounded variable.

The overall behavior of a smart contract typically goes
through intermediate states, starting from an initial state
to eventually reach a final state (typically the initial state).
In different states, different functions of the contract are
accessible, and cannot be called from other states. To
manage the states of the contract, enums are often used.

In the EFSM model of the overall behavior of the contract,
the locations directly correspond to the states of the
contract, the enum values. Selfloops in the EFSM model,

enumi
function
−−−−−→ enumi, represent function calls possible

at the particular state. If the function termination causes
the contract to move from one state to another, this is

modeled as enumi
functionDone
−−−−−−−−−→ enumi+1, see for instance

CGD (Create Game Done) in Fig. 2.

4. SYSTEM DESCRIPTION AND MODELING

This section describes the contract and, following the
modeling technique proposed in Section 3, presents a
model of it as a set of interacting EFSMs.

4.1 Casino Contract Overview

The Solidity code for the casino, Fig. 1, has three explicit
states: IDLE, GAME_AVAILABLE, BET_PLACED, see line 3.

Based on the modifier inState(s), in the IDLE location the
operator may create a game by invoking the createGame

function (line 9). To ensure a fair betting, the casino must
place its bet at the time of game creation. Thus, when
calling createGame, hashedNumber is assigned a value to later
decide the game outcome (line 11). After creating a new
game, the state changes to GAME_AVAILABLE (line 12) where
a game is now available. In this state, the player can call
placeBet to place a bet on TAILS or HEADS up to the size
of the pot (lines 16-21). This then changes the state of the
contract to BET_PLACED (line 23).

Next, the operator may by decideBet submit the original
secret number to resolve the bet (line 25). If the secret
number is even the coin toss is HEADS, else it is TAILS
(line 29). If the player wins, double the bet is transferred
to the player (line 41). If the operator wins, the bet is
added to the pot and then set to zero (lines 44-45).

The operator may add money to the pot at any state,
addToPot (line 47). Also, the operator may remove money
from the pot, removeFromPot (line 51), but only if the player
has not placed a bet, that is, if the casino is not in the state
BET_PLACED. This is ensured by the modifier noActiveBet.

4.2 EFSM Model of the Casino

The Casino model is modular, see Fig. 2, comprising one
EFSM for each Solidity function, and maps the code line
by line, disregarding the unbounded variables. In addition,
the Casino EFSM keeps track of each state of the contract.
Thus, the locations of Casino are the values of enum State.
Location I models IDLE, GA models GAME_AVAILABLE, and
BP BET_PLACED. Since going back to the IDLE state shows
completion of a game, location I is the initial and the

1 contract Casino {
2
3 enum State {IDLE , GAME AVAILABLE, ...

BET PLACED}
4 State private s t a t e ;
5 address public operator , p laye r ;
6 bytes32 public hashedNumber ;
7 struct Wager {uint bet ; Coin guess ;}
8
9 function createGame (bytes32 hashNum) public

10 byOperator , i nS ta t e ( State . IDLE) {
11 hashedNumber = hashNum
12 s t a t e = State .GAMEAVAILABLE; }
13
14 function placeBet ( Coin gue s s ) public payable
15 inS ta t e ( State .GAMEAVAILABLE) {
16 require (msg . sender != operator ) ;
17 require (msg . value > 0 && msg . value ≤ pot ) ;
18 p laye r = msg . sender ;
19 wager = Wager ({
20 bet : msg . value ,
21 guess : gue s s
22 }) ;
23 s t a t e = State .BET PLACED; }
24
25 function dec ideBet (uint secretNumber ) public
26 byOperator , i nS ta t e ( State .BET PLACED) {
27 require ( hashedNumber ==
28 keccak256 ( secretNumber ) ) ;
29 Coin s e c r e t = ( secretNumber % 2 == 0) ? ...

Coin .HEADS : Coin .TAILS ;
30 i f ( s e c r e t == wager . guess ) {
31 playerWins ( ) ;
32 } else {
33 operatorWins ( ) ;
34 }
35 s t a t e = State . IDLE ; }
36
37 function playerWins ( ) private {
38 tmp = wager . bet
39 wager . bet = 0 ;
40 pot = pot - tmp ;
41 p laye r . transfer (tmp∗2) ; }
42
43 function operatorWins ( ) private {
44 pot = pot + wager . bet ;
45 wager . bet = 0 ; }
46
47 function addToPot ( ) public payable
48 byOperator {
49 pot = pot + msg . value ; }
50
51 function removeFromPot (uint amount ) public
52 byOperator , noActiveBet {
53 pot = pot - amount ;
54 operator . transfer ( amount ) ; }
55 }

Fig. 1. Solidity-code for Casino (some details are omitted)

marked location in Casino. The models of the functions
have all locations marked.

The variables of the model are V ={gc, sc, hn, s, tp, to, pwd ,
owd}. Variables gc and sc, with the domain {t, h} (t for
TAILS and h for HEADS), capture the guess and secret

coin variables (lines 21 and 29). The hn variable represents
the hashedNumber (line 11) and, since only the evenness and
oddness of the hashed number is relevant (line 29), the
domain of hn is {e, od} (e for even and od for odd). The s
variable, with the domain {o, p} (o for operator and p for
player), models the sender. Moreover, as transfer, called in
removeFromPot and playerWins, can succeed or fail, variables
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Fig. 2. EFSM model of the casino code of Fig. 1. Initial
locations have small arrows pointing into them, and
marked locations are shaded.

tp and to, both with domain {0, 1} (0 for failure and 1
for success), are added to model the status of transfer.
Similarly, as playerWins and operatorWins are called inside of
decideBet, variables pwd and owd , with domain {0, 1} (0 for
reversion and 1 for success), model the status of playerWins
and operatorWins, respectively. The initial value of variables
tp, to, pwd and owd are 1, as initially it is assumed that the
corresponding functions are not reverted. Moreover, since
the operator is the one initially connected to the contract,
s◦ = o. The other variables have their entire domain as
initial values, thus the model is non-deterministic.

When the casino is in IDLE, location I of the Casino EFSM,
the operator can call functions addToPot, removeFromPot, or
createGame, represented by the eventsAP, RP, and CG, re-
spectively. Based on the occurred event, the corresponding
EFSM transits from its initial location on a transition with
the update s = o, which captures the byOperator modifier.
Since the pot variable is not bounded, the addToPot EFSM
has only a selfloop labeled by the event AP and the update
s = o. Similar to AddToPot , line 53 in Fig. 1 is not modeled
in the RemoveFromPot EFSM. Thus, after occurrence of
RP, RemoveFromPot moves to location R1, from where
two transitions labeled by TOmodel line 54; the transition
with the update to′ = 0 represents a failed transfer, while
to′ = 1 represents a successful transfer to the operator.
Since addToPot and removeFromPot do not change the casino
state, their invocation is modeled as selfloops in Casino.

The CreateGame EFSM models the function createGame

and occurrence of the CG event, the CreateGame EFSM
moves to location C1, which models calling createGame. In
location C1 a hashed number is assigned by event HA.
Based on the evenness or oddness of the hashed number,
the transition with update hn ′ = e or hn ′ = od occurs

(compare line 11). At this point, by occurrence of the
event CGD, CreateGame goes back to its initial location
and Casino moves to location GA, which models line 12.
Similar to location I, at GA events AP and RP can occur.
At this location the player can place a bet by invoking
placeBet (line 14), represented by the event PB. When
PB occurs, PlaceBet moves to location P1 and the sender

becomes the player, by the update s ′ = p, to ensure that
only the player can place a bet (line 16). At location
P1, events PBH or PBT can occur, taking PlaceBet to
location P2. These events, with their updates gc′ = h
and gc′ = t, represent that the player bets on HEADS
or TAILS, modeling line 21. These transitions also update
s ′ = o, as the player should not be able to invoke the other
functions. At locations P2 and GA, event PBD can occur,
which takes PlaceBet to its initial location and Casino to
the BP location, which models line 23.

In BET_PLACED, contrary to other states, removeFromPot cannot
be invoked due to the noActiveBet modifier (line 52). Thus,
the RP event is omitted at BP. The operator can invoke
addToPot at BP, though, represented by the AP selfloop.
Moreover, at BP the DB event can occur. This represents
the operator resolves the winner by invoking decideBet

(lines 25-35). Occurrence of DB takes the DecideBet
EFSM to location D1 with the update s = o. At D1 two
SCA labeled transitions with different updates can occur,
which models line 29. The updates hn = e ∧ sc′ = h and
hn = od ∧ sc′ = t model that hashedNumber is even or odd
and that secret is assigned HEADS or TAILS, accordingly.
On SCA, DecideBet moves to location D2, where the
events PW and OW can occur, respectively representing
player or operator winning. In decideBet, if secret and
wager.guess are equal, playerWins is called, else operatorWins

is called (lines 30-33). These conditional statements are

modeled as updates on the transitions D2

PW:gc=sc
−−−−−−→ D3

and D2

OW:gc �=sc
−−−−−−−→ D4, respectively, in DecideBet . Based

on the winner, DecideBet will move to D3 or D4, each
having two possible transitions to D0. The transition
labeled by DBD represents that decideBet is successfully
terminated. In this case, line 35 is executed, so that the
casino goes to its initial location, which is modeled as

BP
DBD
−−−→ I in Casino. Furthermore, the transitions to

D0 labeled by DBR with updates pwd = 0 and owd = 0
respectively model that decideBet reverts due to playerWins

or operatorWins reverting. In this case decideBet reverts and
can be called again, but line 35 is not executed. To model
this, Casino has no transition on DBR.

The function decideBet calls operatorWins, which is mod-
eled by the event OW in the EFSM DecideBet . Since,
in operatorWins the variables pot and bet are unbounded,
lines 44 and 45 are not modeled in the EFSMOperatorWins .
Thus,OperatorWins is a selfloop labeled by theOW event.
As no function is called inside operatorWins, the reverting
of it is not modeled, so the variable owd is not affected.

Similarly, the PlayerWins EFSM models playerWins. If the
player wins, the money is transferred to the player by the
transfer (line 41). Since transfer is a function called inside
playerWins, at location P1 in PlayerWins two transitions
labeled by the event TP can occur. The transition with
the update tp′ = 0 models transaction failure, while

the transition with the update tp′ = 1 models success.
Moreover, a failed transfer will cause playerWins to revert
and the update tp′ = 0 ∧ pwd ′ = 0 models this situation.

5. MODEL OF THE SECURITY VULNERABILITY

With a malicious player that refuses to accept payment
after a win, the casino will be prevented to progress and all
funds will be locked. This section shows how this security
attack can be modeled and verified to exist.

In the casino contract, refusal of transfer causes playerWins

to revert and consequently decideBet to revert (line 31).
Thus, the eventDBR should occur in DecideBet . To verify
if the attack can result in prevention of progress, an update
tp = 1, in bold in Fig. 2, is added, which models this
security attack. This update is conjuncted to the transition

D3

DBR:pwd=0
−−−−−−−−→ D0. This ensures that decideBet can revert

due to playerWins reverting, update pwd = 0, and be called
again only if playerWins reverting is not the result of the
malicious player refusing the payment, tp = 1.

6. NON-BLOCKING VERIFICATION

As the contract executes, its state is updated, to after a
full round return to the initial state. This is represented
by Casino from its initial location I firing transitions
corresponding to execution of the modeled lines of code
returning back to I, with all EFSMs in their respective
initial locations. Thus, verifying whether the contract
is vulnerable to a malicious player preventing progress
and locking the funds, can be mapped to non-blocking
verification in the SCT framework.

To verify the non-blockingness of the EFSM system E
shown in Fig. 2, the software tool Supremica (Åkesson
et al., 2006) that implements formal verification and
synthesis of systems modeled as FSMs or EFSMs is used.
When Supremica’s non-blocking verification algorithm
finds a blocking state, it generates a counterexample, a
trace of events from the initial state to the blocking state.

Non-blocking verification of E shows the system to be
blocking, with the following counterexample:

CG.HA{hn′ = od}.CGD.PB.PBT.PBD.DB.

SCA{hn = od}.PW{gc = t}.TP{pwd ′ = 0}. (1)

In (1), four events, HA{hn′ = od}, SCA{hn = od},
PW{gc = t}, and TP{pwd ′ = 0} are added to the system
by the flattening. These are extended by the corresponding
updates and their values when the transition occurs. For
example, event HA{hn′ = od} is the event HA extended
with the update hn′ = od, representing the event where
the hashedNumber is assigned an odd number.

The last two events of (1) show that if the player bets
TAILS and wins, event PW{gc = t}, and then refuses the
payment causing playerWins to revert, event TP{pwd ′ =
0}, the system blocks. This captures that the player’s
malicious behavior prevents progress of the contract. Re-
gardless of the HEADS or TAILS bet, the blocking occurs
if the player wins and the transfer to the player fails.

Inspection of the Solidity code, Fig. 1, maps the blocking
to line 41. If player.transfer(wager.bet*2) fails, line 35 will

not be executed. Though decideBet can be called again, if
the malicious player refuses the transfer on each call, the
contract will not progress to reach its IDLE state.

7. NON-BLOCKING CASINO MODEL

Section 6 shows that the casino contract blocks and cannot
go back to its IDLE state if the player always rejects the
transferred payment. This section proposes adjustments
of the Solidity code to solve this blocking problem.

7.1 Solidity Code for Non-Blocking Casino

The blocking problem arises due to the casino contract not
being able to go back to its IDLE state. One solution is to
modify the playerWins function to omit the transfer and
instead use an account mapping to associate the player’s
address to the player’s account, Fig. 3. Thus, the playerWins

function cannot fail and line 35 will always be executed.
Every time that the player wins, wager.bet*2 is removed
from the pot and added to the player’s account (lines 63-
64). To enable the player to withdraw funds, the withdraw

function (line 67) is added that can be called at any time.
By withdraw, the account mapping looks up the account
related to the address that initiated the call and stores
its value in the variable tmp (line 68). Next, the account
of the withdraw caller is set to zero (line 69) and the amount
stored in tmp is transferred to the caller (line 70). If this
transfer is rejected by the receiver, this reverts only the
withdraw, while the casino contract is unaffected.

7.2 EFSM model of Non-blocking Casino

The EFSM model of the new Solidity code is shown
in Fig. 4. The only change between Casino′ of Fig. 4
and Casino are the selfloops labeled with event WP,
which allow withdraw to be called at any location. When
WP occurs, the EFSM Withdraw moves to location W1,
where two transitions, labeled with the event TP can
occur. The transitions have the updates tp′ = 0 and
tp′ = 1, respectively, modeling a successful and failed
transaction, respectively. Since withdraw is not called inside
any function, in Withdraw the update that models that
withdraw failed due to a rejected transfer is omitted. Since
the new playerWins function only stores the unbounded
amount that the player wins, the EFSM PlayerWins ′ is
a selfloop. Moreover, since the transfer is omitted in the
function playerWins, the termination or reversion of the
function decideBet is independent of failure or success of
the transfer to the player. Thus, the update tp = 1 is

not added to transition D3

DBR:pwd=0
−−−−−−−−→ D0 in the EFSM

DecideBet ′. The rest of the functions and their the EFSM
models are not changed. The EFSM model of the adjusted
casino system is:

E ′ = {Casino′,AddToPot ,RemoveFromPot ,

CreateGame,PlaceBet ,DecideBet ′, (2)

OperatorWins ,PlayerWins ′,Withdraw}.

This system is verified to be non-blocking, thus Casino′ is
not vulnerable to the player payment refusal attack.
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the transition with the update tp′ = 1 models success.
Moreover, a failed transfer will cause playerWins to revert
and the update tp′ = 0 ∧ pwd ′ = 0 models this situation.

5. MODEL OF THE SECURITY VULNERABILITY

With a malicious player that refuses to accept payment
after a win, the casino will be prevented to progress and all
funds will be locked. This section shows how this security
attack can be modeled and verified to exist.

In the casino contract, refusal of transfer causes playerWins

to revert and consequently decideBet to revert (line 31).
Thus, the eventDBR should occur in DecideBet . To verify
if the attack can result in prevention of progress, an update
tp = 1, in bold in Fig. 2, is added, which models this
security attack. This update is conjuncted to the transition

D3

DBR:pwd=0
−−−−−−−−→ D0. This ensures that decideBet can revert

due to playerWins reverting, update pwd = 0, and be called
again only if playerWins reverting is not the result of the
malicious player refusing the payment, tp = 1.

6. NON-BLOCKING VERIFICATION

As the contract executes, its state is updated, to after a
full round return to the initial state. This is represented
by Casino from its initial location I firing transitions
corresponding to execution of the modeled lines of code
returning back to I, with all EFSMs in their respective
initial locations. Thus, verifying whether the contract
is vulnerable to a malicious player preventing progress
and locking the funds, can be mapped to non-blocking
verification in the SCT framework.

To verify the non-blockingness of the EFSM system E
shown in Fig. 2, the software tool Supremica (Åkesson
et al., 2006) that implements formal verification and
synthesis of systems modeled as FSMs or EFSMs is used.
When Supremica’s non-blocking verification algorithm
finds a blocking state, it generates a counterexample, a
trace of events from the initial state to the blocking state.

Non-blocking verification of E shows the system to be
blocking, with the following counterexample:

CG.HA{hn′ = od}.CGD.PB.PBT.PBD.DB.

SCA{hn = od}.PW{gc = t}.TP{pwd ′ = 0}. (1)

In (1), four events, HA{hn′ = od}, SCA{hn = od},
PW{gc = t}, and TP{pwd ′ = 0} are added to the system
by the flattening. These are extended by the corresponding
updates and their values when the transition occurs. For
example, event HA{hn′ = od} is the event HA extended
with the update hn′ = od, representing the event where
the hashedNumber is assigned an odd number.

The last two events of (1) show that if the player bets
TAILS and wins, event PW{gc = t}, and then refuses the
payment causing playerWins to revert, event TP{pwd ′ =
0}, the system blocks. This captures that the player’s
malicious behavior prevents progress of the contract. Re-
gardless of the HEADS or TAILS bet, the blocking occurs
if the player wins and the transfer to the player fails.

Inspection of the Solidity code, Fig. 1, maps the blocking
to line 41. If player.transfer(wager.bet*2) fails, line 35 will

not be executed. Though decideBet can be called again, if
the malicious player refuses the transfer on each call, the
contract will not progress to reach its IDLE state.

7. NON-BLOCKING CASINO MODEL

Section 6 shows that the casino contract blocks and cannot
go back to its IDLE state if the player always rejects the
transferred payment. This section proposes adjustments
of the Solidity code to solve this blocking problem.

7.1 Solidity Code for Non-Blocking Casino

The blocking problem arises due to the casino contract not
being able to go back to its IDLE state. One solution is to
modify the playerWins function to omit the transfer and
instead use an account mapping to associate the player’s
address to the player’s account, Fig. 3. Thus, the playerWins

function cannot fail and line 35 will always be executed.
Every time that the player wins, wager.bet*2 is removed
from the pot and added to the player’s account (lines 63-
64). To enable the player to withdraw funds, the withdraw

function (line 67) is added that can be called at any time.
By withdraw, the account mapping looks up the account
related to the address that initiated the call and stores
its value in the variable tmp (line 68). Next, the account
of the withdraw caller is set to zero (line 69) and the amount
stored in tmp is transferred to the caller (line 70). If this
transfer is rejected by the receiver, this reverts only the
withdraw, while the casino contract is unaffected.

7.2 EFSM model of Non-blocking Casino

The EFSM model of the new Solidity code is shown
in Fig. 4. The only change between Casino′ of Fig. 4
and Casino are the selfloops labeled with event WP,
which allow withdraw to be called at any location. When
WP occurs, the EFSM Withdraw moves to location W1,
where two transitions, labeled with the event TP can
occur. The transitions have the updates tp′ = 0 and
tp′ = 1, respectively, modeling a successful and failed
transaction, respectively. Since withdraw is not called inside
any function, in Withdraw the update that models that
withdraw failed due to a rejected transfer is omitted. Since
the new playerWins function only stores the unbounded
amount that the player wins, the EFSM PlayerWins ′ is
a selfloop. Moreover, since the transfer is omitted in the
function playerWins, the termination or reversion of the
function decideBet is independent of failure or success of
the transfer to the player. Thus, the update tp = 1 is

not added to transition D3

DBR:pwd=0
−−−−−−−−→ D0 in the EFSM

DecideBet ′. The rest of the functions and their the EFSM
models are not changed. The EFSM model of the adjusted
casino system is:

E ′ = {Casino′,AddToPot ,RemoveFromPot ,

CreateGame,PlaceBet ,DecideBet ′, (2)

OperatorWins ,PlayerWins ′,Withdraw}.

This system is verified to be non-blocking, thus Casino′ is
not vulnerable to the player payment refusal attack.
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60 mapping (address => uint ) account ;
61
62 function playerWins ( ) private {
63 pot = pot - wager . bet ;
64 account [ p laye r ] = account [ p laye r ] + ...

wager . bet ∗2 ;
65 wager . bet = 0 ; }
66
67 function withdraw ( ) public {
68 uint tmp = account [msg . sender ] ;
69 account [msg . sender ] = 0 ;
70 msg . sender . transfer (tmp) ; }

Fig. 3. Part of the non-blocking casino Solidity code.
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Fig. 4. EFSM model of the non-blocking casino of Fig. 3.

8. CONCLUSION

This paper investigates formal non-blocking verification
of a casino smart contract. Smart contracts can often be
modelled as state machines, where state transitions model
function calls. In many cases, smart contracts even explic-
itly implement state machines. Leveraging this, the Solid-
ity code of the casino smart contract is modeled as a set of
interacting EFSMs. Applying non-blocking verification on
the EFSM system shows that failure in transferring money
to the player may result in the contract not able to go back
to its IDLE state. Then, the bets are forever locked into the
contract. This type of attack has been exercised on real
contracts with huge financial damage. An improved casino
contract removes the dependency of moving back to the
IDLE state from the transfer. Verification of the adjusted
model shows that this model is in fact non-blocking.

In the future, the authors will investigate automatic mod-
eling of Solidity code as interacting EFSMs.
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