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Confidence intervals for distributional positions
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ABSTRACT
A common problem with ranking lists (e.g., regarding success/failure pro-
portions of treatments at hospitals) is that smaller units tend to end up
either in the top or in the bottom just by pure chance. To alleviate this
problem, we propose a method that, for a given unit, gives a confidence
interval for the position of this unit within the distribution of the other
units. The confidence interval is based on asymptotic normality. The
method is illustrated by an empirical example. The small sample confi-
dence level is investigated in a simulation study.
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1. Introduction

It is rather common that ranking data are presented in media and elsewhere in the soci-
ety. Mostly no real statistical analysis of the data is made at all. Here, we will suggest a
general method to obtain a suitable type of confidence statements and prove an asymp-
totic result on the confidence degree.
We formulate the statistical problem in the following model. There are nþ 1 units and we

call one of them the investigated unit and assign it index 0. The other n units are called ref-
erence units with indexes 1, 2, :::, n: Each unit has its own value of a parameter of interest. It
is natural to consider the parameters to be random and independent.
Denote the parameters in the reference group by Zi, i ¼ 1, 2, :::n, and suppose that

they have some unknown cumulative distribution function F(z) and density function
f(z). The unit parameters are not directly observable, but only estimated with some esti-
mates Yi, i ¼ 1, 2, :::, n: These are supposed to be based on samples of sizes Ni and have
variance estimates Vi. For the investigated unit we use the same notation with index 0.
Typically, Zi is a probability (for example the risk for complications of a surgery at

hospital i), Yi is a relative frequency (the corresponding observed proportion) and Vi ¼
Yið1� YiÞ=Ni: In other cases Zi is an expectation parameter, Yi is an empirical mean
and Vi is an empirical variance.
A rank of Y0 in the set Yi, i ¼ 0, 1, 2, :::n gives some information on the position of

the investigated unit in the distribution of the reference units. It gives an estimate of
the percentile in the distribution of the reference unit parameters as well as an estimate

CONTACT Rolf Larsson rolf.larsson@math.uu.se Department of Mathematics, Uppsala University, P.O. Box 480,
SE-751 06 Uppsala, Sweden.
� 2022 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
https://doi.org/10.1080/03610926.2022.2148468

http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2022.2148468&domain=pdf&date_stamp=2023-01-03
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com


of the distributional position of the investigated unit. The latter is here defined
as p ¼ FðZ0Þ:
The aim of this paper is to suggest a method to get a confidence interval for the dis-

tributional position p of the investigated unit and to prove that the intended confidence
degree is asymptotically correct. The confidence interval (region) at level 1� a (say) is
constructed as the set of p ¼ p0 such that the null hypothesis H0: p ¼ p0 is not rejected
vs. the alternative hypothesis H1: p 6¼ p0 at level a.
A confidence interval for the distributional position of the investigated unit means that

with a small risk of error, we can exclude positions which are too small or too large.
There is always a correspondence between confidence intervals and tests for different
parameters (here distributional positions). Test aimed to exclude a parameter value will
be based on the difference between the observation unit estimate and an estimate of the
reference unit distribution divided by a standard error. It will be seen that there are two
sources of variation involved in the problem, the variances for the unit estimates and an
intrinsic variance due to the finiteness of the number of comparison units.
It should be mentioned that the above problem has been addressed in Klein, Wright,

and Wieczorek (2020), but their approach is different. They construct joint confidence
intervals for ranks of units on the basis of simultaneous confidence intervals for individ-
ual specific parameters. In contrast to this, our approach is more of a non parametric
nature, in that we consider the unit parameters to be random.
In section 2 we will motivate our procedure. Section 3 states its asymptotic statistical

properties and gives heuristic motivations. In section 4, the asymptotic result is proved.
Section 5 gives an example of the use of the method, with data on mortality during
treatment after a heart attack for 70 Swedish hospitals in the years 2007 to 2009. In
section 6, we describe and show results of a conducted simulation study, and conclude
in section 7.

2. A simplified motivation for the method

In a typical real life situation our problem is quite irregular. The sample sizes for the
units are usually not the same and the characteristic unit parameters Zi, i ¼ 1, 2, :::, n,
are random and may have any unknown distribution. Here, in order to get a basic idea
of a suitable procedure, we will consider a very simplified situation. Thus, we suppose
for the moment that all sample sizes are so big that the characteristic unit parameters
can be considered known.
For a given distributional position p 2 ð0, 1Þ, the number of units with random param-

eters below p in a group of n independent reference units follow a binomial distribution
with parameters n and p. We cannot be sure which unit estimate is in fact closest to the
percentile. Thus, even if there is an extremely good precision in the estimates of the unit
parameters, there is a random variation in the estimation of the population percentiles
due to the finiteness of the number of units. We can call this the intrinsic variation.
This variation means that we are not sure of which order statistic is the one closest

to the percentile. This can naturally be taken into consideration by weighting the order
statistics suitably.
There are n ordered statistics in the reference group. In the uniform (0, 1) distribu-

tion the order statistics have expectations
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1
nþ 1

,
2

nþ 1
, :::,

n
nþ 1

: (1)

Any other continuous distribution can be considered to be a transformation of this
uniform distribution with the inverse cumulative distribution function F�1: As a first
rough attempt, one could estimate the m=ðnþ 1Þ percentile F�1 m

nþ1

� �
in the general dis-

tribution by the m:th order statistic. A better estimate, however, can be obtained by
using a weighted mean of “nearby” order statistics.
Consider any percentile corresponding to p in the general distribution of the n refer-

ence units. If one of the observations is in a small neighborhood of p, the number of
smaller observations among the other n� 1 reference units is binomial distributed with
parameters n� 1 and p. This shows that not only the order statistic m would be a rea-
sonable estimate of F�1 m

nþ1

� �
, but that also the order statistics with similar numbers

would be quite reasonable. And if they are weighted suitably we could get an estimate
with smaller variance and small bias.
Now, we consider estimates with weights determined by a binomial distribution

with parameters n� 1 and some q. This distribution has n possible outcomes
0, 1, 2, :::, n� 1: We attach those probabilities as weights to the order statistics with
numbers 1, 2, 3, :::, n: If the distribution of the reference units is uniform with parame-
ters (0, 1) the expectation of the order statistics is as in (1) and the expectation of the
weighted mean is

Xn�1

k¼0

n� 1
k

� �
qkð1� qÞn�1�k kþ 1

nþ 1
¼ 1þ ðn� 1Þq

nþ 1
:

Thus we get an unbiased estimate of the percentile

p ¼ 1þ ðn� 1Þq
nþ 1

by using these weights for the order statistics. This holds not only for the uniform dis-
tribution with parameters (0, 1) (where it is in fact known), but also for any uniform
distribution. For a general continuous distribution this is not exactly true, but it would
hold approximately for big numbers of units n if the density f is differentiable.
Thus now, in order to get a basis for a test of the null hypothesis that the investigated

unit has distributional position p, we calculate a “binomial parameter” q by

q ¼ pðnþ 1Þ � 1
n� 1

: (2)

Then, the weight for order statistic number k is the probability for outcome in the
point k� 1 in the binomial distribution with parameters n� 1 and q, that is

bk ¼ n� 1
k� 1

� �
qk�1ð1� qÞðn�1Þ�ðk�1Þ ¼ n� 1

k� 1

� �
qk�1ð1� qÞn�k, (3)

and so, the statistic that we will study in the sequel is based on

Rp ¼ Y0 �
Xn
k¼1

bkY
ðkÞ, (4)
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where YðkÞ is the kth order statistic in ðY1, :::,YnÞ: Note that, by construction of the bk
and the fact that EðY0Þ ¼ p, we have EðRpÞ ¼ 0:
Observe that there is a p dependence hidden in q ¼ qðpÞ: As a function of p, q(p) is

a suitable smoothed estimate of the cumulative distribution function.
Already in an idealized situation with extremely big unit sample sizes, there is an

intrinsic variance. In a realistic case we must also consider the variance arising from the
errors in the internal estimation of parameters in units based on finite sample sizes Ni,
i ¼ 1, 2, :::, n: The total variance in the test statistic will consist of two components, this
variance and a variance due to the finiteness of sample size for the different refer-
ence units.
In the next section we will give a heuristic motivation of formulas for variance esti-

mation which will later be proved in an asymptotic theorem in section 4.

3. Heuristics on asymptotic variance

In the next section we will formulate and prove asymptotic properties for the suggested
test statistic Rp=r̂R, where r̂2

R estimates the variance of Rp, which is defined later in this
section. In this section we will now only give a sketch of the results in order to explain
basic ideas.
We now consider r̂2

R: There are two components of variation in the estimate, the
randomness in the order statistics due to finite sample size in each unit and an
intrinsic variance due to finiteness of the number of units. The second one remains
true even if the variance for each individual unit is very small due to big sample size
in the estimates for individual units. From now on we assume that the number of
observations in each unit is big enough such that the unit’s expected value is
exactly obtained.
Consider a random sample Y1, :::,Yn from a distribution with density function f ð�Þ:

Assume that the set of order statistics is
Yð1Þ < Yð2Þ < ::: < YðnÞ with corresponding p values pi ¼ FðYðiÞÞ: Let fi ¼ f ðYðiÞÞ: We

have the following theorem, first given by Smirnov (1935) generalized by Mosteller
(1946), also given in Wilks (1962).

Theorem 1. For each integer n, define a sequence of integers
0 < n1n < n2n < ::: < nkn < n. Assume that

1. As n ! 1, limn!1 nin
n ! ki for i ¼ 1, 2, :::, k,

where k1 < k2 < ::: < kk:
2. The probability density function f(x) is continuous, and does not vanish in the

neighborhood of ui, where ðui
�1

f ðxÞdx ¼ ki,

for i ¼ 1, 2, :::, k:
If xð1Þ, :::, xðnÞ are drawn from f(x) satisfying condition 2, and if n1n, :::, nkn satisfy condi-
tion 1, then the xðninÞ, i ¼ 1, 2, :::, k, are asymptotically multivariate normal distributed,
with expectations ui, variances

4 S. HOLM AND R. LARSSON



cii ¼ kið1� kiÞ
nf ðuiÞ2

(5)

for i ¼ 1, :::, k, and covariances

cij ¼
kið1� kjÞ
nf ðuiÞf ðujÞ (6)

for all 1 � i < j � k:
For the case of extremely well estimated unit values, we use the cij together with the

binomial weights in a calculation of the intrinsic variance of the estimate Rp. Theorem
1 is applied for the p values pi ¼ ki, i ¼ 1, 2, :::, n: We use the probability points pi ¼
i=ðnþ 1Þ, since these are the expectations of the order statistics for the uniform distri-
bution on the interval (0, 1). With these values thought of as members of the infinite
sequence, we will employ the asymptotic result by Mosteller (1946) in a finite setting.
The densities fi ¼ f ðYðiÞÞ may be estimated by the reciprocal of the mean length

between the observations Yj (say) at the positional point pi. In a point p close to pi, the
numbers of observation points below and above p are approximate Poisson distributed
with intensities k� ¼ ifi and kþ ¼ ðn� iÞfi, respectively. The approximate mean length
between observation points close to pi is then written as

li ¼ 1
nfi

:

An empirical estimate, l̂ i, will be obtained by again using the binomial weights with
a small modification at the ends, according to

l̂ i ¼
Yð2Þ � Yð1Þ, i ¼ 1,
Yðiþ1Þ � Yði�1Þð Þ=2, i ¼ 2, 3, :::, n� 1,
YðnÞ � Yðn�1Þ, i ¼ n:

8<
: (7)

From (5)–(7), we now have the empirically estimated variances for order statistics

ĉii ¼ npið1� piÞ̂l2i (8)

and covariances

ĉij ¼ npið1� pjÞ̂l îlj (9)

for i< k.
Next, we use this asymptotic result on our estimate Rp in (4). We get the estimated

variance by the sum

r̂2
R ¼ VarðY0Þ þ

X
i

npið1� piÞ̂l2i b2i þ 2
X
i<j

npið1� pjÞ̂l îljbibj, (10)

where VarðY0Þ ¼ Y0ð1� Y0Þ=N0, Y0 being the observed proportion and N0 the number
of observations of the reference unit.
Here, observe that both the estimate itself and the estimate of its variance depend on

the value p to be tested through the p-dependence in bk. For each value p we now have
a test statistic, Rp, and an estimate of its variance, r̂2

R: The ratio of the estimate and its
estimated standard error, i.e., Rp=r̂R, is the derived test statistic, which has an

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



asymptotic normal distribution with parameters 0 (mean) and 1 (variance). This is
proved in the next section.
In other words, when testing H0: p ¼ p0 vs H1: p 6¼ p0, we reject at level a if

jRp0=r̂Rj is greater than the standard normal a=2 percentile, ka=2 say. The 1� a confi-
dence region consists of the p ¼ p0 which are such that H0 is not rejected at level a,
i.e., such that jRp=r̂Rj � ka=2:
We have not proved that the derived test statistic is monotone, so in principle we have

to check this test statistic not only at the boundaries (where its absolute value equals ka=2)
but also in all values of p outside the boundaries. In practice the derived test statistic will
appear to be monotone in most cases. If, however, the dependence is not monotone, we
have to find the most distant values of p where the hypothesis is “barely rejected”.

4. Asymptotic theorem

Assume at first that sample sizes Ni, i ¼ 1, 2, :::, n, are fixed. We want to prove that our
test statistic, Rp=r̂R where Rp is as in (4) and r̂2

R is as in (10), tends in distribution to
standard normal as the number of units, n, tends to infinity.
Consider (4). We note that Rp is a linear combination of Y0 and the order statistics

Yð1Þ, :::,YðnÞ: Thus, by Mosteller’s theorem (section 3), Rp is asymptotically normal. We
have also seen that EðRpÞ ¼ 0 (section 2). Moreover, by (4),

VarðRpÞ ¼ VarðY0Þ þ
Xn
i¼1

Xn
j¼1

bibjCovðYðiÞ,YðjÞÞ: (11)

Now, via Mosteller’s theorem, for i � j we get that as n ! 1,

nCovðYðiÞ,YðjÞÞ ! pið1� pjÞ
fifj

, (12)

where pi and fi are the values of the distribution and density functions of YðiÞ respect-
ively, hence fixed quantities. Furthermore, conditionally on Z0, VarðY0Þ ¼ Z0ð1�
Z0Þ=N0, so it is clear that n times the unconditional variance of Y0 is asymptotically
finite as ðn,N0Þ tend to infinity in such a way that n=N0 ! c < 1: In the following, we
call this limit v0.
Equations (11) and (12) imply

nVarðRpÞ ! v0 þ lim
n!1

Xn
i¼1

b2i
pið1� piÞ

fifj
þ 2

X
i<j

bibj
pið1� pjÞ

fifj

( )
: (13)

To see that the limit of the double sum in (13) is finite, we note that the double sum
is equal to the variance of

P
1�k�n bkY

ðkÞ: The proof that the limit of this variance is
finite is given in Appendix 1.
Because of the Slutsky theorem, the proof will be completed if we can show that n

times the estimated variance, given in (10), tends to the same limit as in (13). To this
end, we note that

6 S. HOLM AND R. LARSSON



nr̂2
R ¼ nVarðY0Þ þ

Xn
i¼1

b2i pið1� piÞðn̂liÞ2 þ 2
X
i<j

bibjpið1� pjÞðn̂liÞðn̂ljÞ: (14)

But then the result follows from the fact that per (7), the n̂li converge to 1=fi
as n ! 1:

5. An empirical example

In this section, in order to show how the method works, we present an example.
Details of the algorithms are given in Appendix 2. The data describes mortality during
treatment after a heart attack for 70 Swedish hospitals in the years 2007 to 2009. The
results are ordered according to adverse event rates. See Table 1.
We will construct a 95% confidence interval for unit number 19 (’Akademiska sju-

khuset’, Uppsala) which has complication risk Y0 ¼ 0:124 in N0 ¼ 2691 operated
patients. The other 69 hospitals will serve as reference units. The test statistic includes a
p-dependent part, which is an estimate of the p:th quantile (called “moving average” in
Figure 1). Figure 1 shows the dependence together with the order statistics in the refer-
ence group. The order statistics are placed in the points 1=70, 2=70, :::, 69=70:
The measurement standard error for the investigated unit is 0.0063. The standard

error in the estimate of the percentiles in the reference distribution depends on p, is
fairly constant and less than 0.01 for p � 0:8, but then seems to increase noticeably for
p> 0.8. See Figure 2.

Table 1. Mortality during treatment after heart attack for 70 Swedish hospitals in the years 2007
to 2009.
Region no. 1 2 3 4 5 6 7 8 9 10

Risk .0967 .0992 .1055 .1082 .1109 .1110 .1110 .1114 .1132 .1133
Size 362 2309 1678 804 2245 1559 2081 1086 1872 1465

Region no. 11 12 13 14 15 16 17 18 19 20

Risk .1141 .1141 .1145 .1168 .1173 .1196 .1198 .1198 .1241 .1243
Size 3505 841 2489 2175 392 736 2279 409 2691 732

Region no. 21 22 23 24 25 26 27 28 29 30

Risk .1263 .1285 .1287 .1309 .1315 .1316 .1340 .1346 .1354 .1359
Size 388 599 785 596 540 904 1977 6002 1167 655

Region no. 31 32 33 34 35 36 37 38 39 40

Risk .1373 .1374 .1375 .1377 .1378 .1380 .1386 .1418 .1439 .1439
Size 2833 3587 669 2259 1655 1471 1717 2369 834 660

Region no. 41 42 43 44 45 46 47 48 49 50

Risk .1447 .1451 .1456 .1464 .1466 .1492 .1496 .1497 .1522 .1533
Size 1092 448 309 3006 805 516 1210 1630 552 1957

Region no. 51 52 53 54 55 56 57 58 59 60

Risk .1555 .1563 .1628 .1645 .1652 .1666 .1679 .1720 .1744 .1783
Size 1383 646 596 310 690 2473 137 436 1640 415

Region no. 61 62 63 64 65 66 67 68 69 70

Risk .1813 .1839 .1940 .1973 .2085 .2093 .2173 .2275 .2362 .2880
Size 888 892 928 446 470 430 635 422 436 125

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



Now, for each p we construct a t type test as the difference between the estimate
for the investigated unit and the estimated p percentile in the reference distribution,
divided by the standard error for the estimate difference, i.e., Rp=r̂R: It is depicted in
Figure 3.
The approximate 95% two-sided confidence interval for p is ð0:10, 0:46Þ:

Approximately, it can be obtained by reading off the ±1.96 points in Figure 3 (see the
dotted and dashed lines), and for better precision it is obtained by examining the test
statistic calculation for different values of p in the neighborhood of the bounds of the
confidence interval.
It may be thought that we have then neglected the random measurement errors, but

this is not the case. Our estimated variance is made for the cumulative distribution
function including this variance. It is only the minor influence on the estimate itself
which is neglected here. If the curvature of the cumulative distribution function is big,
the correction can be considerable. The distribution for the true unit parameters has
smaller variance than the distribution for the parameters obtained by measurement
including measurement errors. The correction aims at adjusting for this and tends gen-
erally to make the estimated distribution having smaller variance. This means in prac-
tice that the confidence interval will be longer with the correction, which is natural.

6. Simulation study

In this section, we present simulations of empirical coverage probabilities for finite sam-
ple sizes. The simulations have been run in Matlab 2019a. Program codes are available
upon request.
The sample sizes for different units (Ni) were assumed to be large. The estimate for

the unit of interest, Y0, was calculated as the pth percentile from a beta distribution
with parameters a and b. For the reference units, Y1, :::,Yn were generated from the

Figure 1. Quantile estimates.

8 S. HOLM AND R. LARSSON



same beta distribution, using 107 replicates. Then, the empirical coverage was computed
as the percentage of times where �ka=2 � Rp=r̂R � ka=2, where ka is defined through
PðZ > kaÞ ¼ a for Z standard normal.
We used 1� a ¼ 0:95, n 2 f20, 40, :::, 300, 340, :::, 500g, p 2 f0:2, 0:5g and ða, bÞ 2

fð10, 10Þ, ð15, 5Þ, ð5, 15Þ, ð50, 50Þ, ð75, 25Þ, ð25, 75Þg, excluding ða, bÞ 2 fð5, 15Þ, ð25, 75Þg
for p¼ 0.5 because of symmetry.
In the ða, bÞ ¼ ð10, 10Þ case, we added
n 2 f750, 1000, 1250, 1500, 2000, 2500, 3000, 4000, 5000g: For these n, to calculate the

bk coefficients we used the improved Stirling approximation,

Figure 2. Standard errors.

Figure 3. Test statistics.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 9



n! �
ffiffiffiffiffi
2p

p
nnþ

1
2e�n 1þ 1

12n

� �
,

cf Wrench (1968). This is a way for the computer to be able to compute n! for large
values of n efficiently.
The simulation results are depicted in Figures 4–6 (see also Table 2). These figures

show that the real confidence degree (empirical coverage) approaches the nominal con-
fidence degree from below. That is quite natural since the estimate of difference is nor-
malized by dividing by the estimated standard deviation, which gives an extra random
variation. It is the same type of effect as if, in the simple situation of estimating the

Figure 4. Coverage, (a, b) ¼ (10, 10).

Figure 5. Coverage, p¼ 0.5.
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theoretical mean with series of normally distributed observations, the asymptotic normal
distribution percentage value is used instead of the t distribution function value. The
convergence here seems to be quite slow. The reason is that the effective number of

Figure 6. Coverage, p¼ 0.2.

Table 2. Empirical coverage probabilities for the case ða, bÞ ¼ ð10, 10Þ:

Sample size

Coverage probability

p¼ 0.2 p¼ 0.5

20 0.9191 0.9162
40 0.9216 0.9223
60 0.9240 0.9261
80 0.9261 0.9286
100 0.9279 0.9303
120 0.9291 0.9316
140 0.9302 0.9328
160 0.9311 0.9337
180 0.9321 0.9344
200 0.9328 0.9352
220 0.9334 0.9357
240 0.9340 0.9361
260 0.9345 0.9366
280 0.9349 0.9372
300 0.9354 0.9375
340 0.9360 0.9382
380 0.9368 0.9388
420 0.9372 0.9393
460 0.9377 0.9396
500 0.9380 0.9401
750 0.9400 0.9417
1000 0.9412 0.9428
1250 0.9421 0.9434
1500 0.9427 0.9439
2000 0.9436 0.9448
2500 0.9443 0.9453
3000 0.9447 0.9456
4000 0.9452 0.9462
5000 0.9457 0.9466

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 11



observations used for estimating a percentile in the reference distribution is of the order
of square root of sample size. This effect is greater for p¼ 0.2 than for p¼ 0.5 since the
binomial variance is smaller.
Another observation from the figures is that for p¼ 0.2, the coverage is higher for

higher aþ b and for higher a.
A further illustration of the convergence issues is given in Figure 7. Here, as in

Figure 4, we have plotted the simulated coverage for the case ða, bÞ ¼ ð10, 10Þ, p¼ 0.5,
but now along with the approximation

Figure 7. Coverage, (a, b) ¼ (10, 10) p¼ 0.5.

Table 3. Mean confidence interval length for the case ða, bÞ ¼ ð10, 10Þ:

Sample size

Mean confidence interval length

p¼ 0.2 p¼ 0.5

20 0.304 0.378
40 0.227 0.274
60 0.188 0.229
80 0.163 0.202
100 0.146 0.182
120 0.134 0.168
140 0.124 0.156
160 0.117 0.147
180 0.110 0.139
200 0.105 0.132
220 0.100 0.126
240 0.096 0.121
260 0.093 0.117
280 0.089 0.112
300 0.087 0.109
340 0.082 0.102
380 0.077 0.097
420 0.074 0.093
460 0.071 0.089
500 0.068 0.085

12 S. HOLM AND R. LARSSON



coverage � 0:95� 0:232ffiffiffi
n

p :

The constant 0.232 is obtained from a regression without intercept of 0.95 minus the
simulated coverage on 1=

ffiffiffi
n

p
, for the nine n values of 750 and higher. For such large n,

this approximation is seen to fit very well to the simulated coverage values.
Finally, for the case ða, bÞ ¼ ð10, 10Þ and p 2 f0:2, 0:5g, we have simulated the aver-

age lengths of the confidence intervals, see Table 3 and Figure 8. Because these simula-
tions were quite time consuming, we stopped at n¼ 500, and only 105 replicates were
used. (By comparing to preliminary simulations, we have found that the results are
quite stable up to three decimal points.) The main findings are that the confidence
intervals are shorter for p¼ 0.2 than for p¼ 0.5, and that as the sample size n increases,
the lengths decay about proportionally to 1=

ffiffiffi
n

p
:

7. Conclusion

In this paper, we have suggested a statistical method to analyze ranking lists. For a
given unit, the method gives a confidence interval for the distributional position of the
unit within the distribution of the other (reference) units. This gives a way to statistic-
ally judge if the ranking of a certain unit as particularly good or bad is really significant,
or if it was ranked in an extreme way mainly by chance, which is something that could
happen to relatively small sized units.
The method is quite general, and works under a minimum of assumptions, as long as

the number of inverstigated units as well as the numbers of observations for the units
are sufficiently large.
One problem still not solved by our method is how to deal with simultaneous confi-

dence intervals for the positions of several units. This could be an issue for further
work on the subject.

Figure 8. Mean c.i. length, (a, b) ¼ (10, 10).
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Appendix 1

In this Appendix, we prove that the limit of the variance of

Wn ¼
Xn
k¼1

bkY
ðkÞ,

as n ! 1, is finite.
Let X be a discrete random variable with probability function bkþ1 as in (3), i.e., binomial with

parameters m ¼ n� 1 and q. Furthermore, we may assume that X is independent of all Yi.
Moreover, let Z ¼ YðXþ1Þ: Then, it follows that Wn ¼ EðZjY1, :::,YnÞ:

Suppose that a is so small that

FðaÞ ¼ PðYi � aÞ < qe�2=2 (15)

and that mq � 8: Now,

PðZ � a,X > mq=2Þ � P Yð mq=2½ �Þ � a
� �

, (16)

where ½v� is the integer part of v. Since F(Y) is uniform on the unit interval, the r.h.s. of (16),
which says that at least ½mq=2� of the Yis are less than a, equals the probability that a binomial
(n, FðaÞ) variate is greater than or equal to mq=2:

From corollary 2.4 of Janson et al. [1], this can be majorized by

exp �mq
2

log
q

2FðaÞ
� �

� 1
	 
� �

� exp �mq
4

log
q

2FðaÞ
� �� �

� exp � mq
8

þmq
8

log
q

2FðaÞ
� �	 
� �

� 2FðaÞ
q

expð�c1mÞ,

for a constant c1. Moreover, it follows similarly that

PðZ � a,X � mq=2Þ � PðYð1Þ � aÞPðX � mq=2Þ
� nFðaÞC1 exp ð�c2mÞ � FðaÞ expð�c3mÞ,
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(PðYð1Þ � aÞ � mFðaÞ follows because the l.h.s. equals the probability that some Yi � a, which
in turn is smaller than the r.h.s.) for some constants C1, c2, c3, and so, putting the results together
we find

PðZ � aÞ � expð�c4mÞFðaÞ, (17)

for some constant c4, for all large enough m and a with FðaÞ < qe�2=2:
Now, take b> 0 such that PðYi � �bÞ � q=2: Together with (17), we get (IfAg is the indicator

of the event A)

E Z2IfZ � �bg
� �

¼
X1
k¼0

E Z2If�2kþ1b < Z � �2kbg
� �

�
X1
k¼0

22kþ2b2P Z � �2kb
� �

�
X1
k¼0

4b222kC2e
�c5mP Yi � �2kb

� �

¼ C2e
�c5mE

X
2k��Yi=b

22k
 !

� C2e
�c6mEðY2

i Þ ¼ C3 < 1,

for constants C2, C3, c5, c6. (The last inequality follows since the sum is on the same order of
magnitude as its last term.)

Similarly, by symmetry, for b sufficiently large,

E Z2IfZ � bg
� �

� C4 < 1
for some constant C4, and we have

EðZ2Þ � C3 þ C4 þ b2 < 1:

Finally, by the Jensen inequality,

W2 ¼ fEðZjY1, :::,YnÞg2 � EðZ2jY1, :::,YnÞ,
and by taking expectations w.r.t. the Yis, EðW2Þ � EðZ2Þ, and we are done.

Appendix 2

This Appendix gives some further details on the algorithms of Sections 5 and 6. Program codes
in Matlab2019a may be obtained at request.

To obtain the confidence interval for p and Figures 1–3, the algorithm is as follows:

1. Use the observed proportion Y0 and the number of observations N0 for the reference unit to
calculate VarðY0Þ ¼ Y0ð1� Y0Þ=N0:

2. Given the sorted input data YðiÞ, calculate the weights l̂ i from (7).
3. For i ¼ 1, :::, n, do

(a) Let pi ¼ i=ðnþ 1Þ:
(b) Calculate the bk coefficients from (3), where for q we use (2) with p ¼ pi.
(c) Use the bk to calculate the correction term

Pn
k¼1 bkY

ðkÞ in (4).

(d) Use VarðY0Þ, pi, the l̂ i and the bi to calculate the estimated variance r̂2
R in (10).

(e) Plug in Y0 and the correction term to get Rp from (4), then use r̂R to obtain the
observed test statistic tðiÞ ¼ Rp=r̂R:

4. Compute the upper limit of the 1� a confidence interval as the proportion of t(i) greater
than �ka=2:

5. Compute the lower limit of the 1� a confidence interval as the proportion of t(i) greater
than ka=2:

6. For Figure 1, plot the correction terms
Pn

k¼1 bkY
ðkÞ and the sorted input data YðiÞ vs the pi.
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7. For Figure 2, plot the estimated standard errors r̂R vs the pi.
8. For Figure 3, plot the test statistics t(i) vs the pi.

Items 4 and 5 may seem counterintuitive, but this is because the larger the pi, the smaller the
t(i). Cf Figure 3.

In the coverage probability simulations, the algorithm may be simplified (and quicker to exe-
cute), because for this purpose, we only need to check if p is inside the confidence interval.
Moreover, to simplify we skip the VarðY0Þ term (assuming that the corresponding sample size,
N0, is very large). In this case, for each replicate we use the following algorithm:

1. Generate Y0 and the YðiÞ from the specified distribution, including the given p and n. It
holds that p ¼ FðY0Þ, where F is the distributon function used in the data generation.

2. Given the YðiÞ, calculate the weights l̂ i from (7).
3. Calculate the bk coefficients from (3), where for q we use (2) with the given p.
4. Use the bk to calculate the correction term

Pn
k¼1 bkY

ðkÞ in (4).

5. Use p, the l̂ i and the bi to calculate the estimated variance r̂2
R in (10), neglecting VarðY0Þ:

6. Plug in Y0 and the correction term to get Rp from (4), then use r̂R to obtain the observed
test statistic t ¼ Rp=r̂R:

7. The replicate generates a p inside the 1� a confidence interval if t2 < v2að1Þ, where v2að1Þ is
given by PfQ > v2að1Þg ¼ a for a variate Q that is chi square with one degree of freedom.
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