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Abstract: The weighted mean temperature of the troposphere, Tm, is a key parameter in GNSS
meteorology. It can be routinely derived based on meteorological data from radiosonde (RS) or
numerical weather models. Alternatively, it can be also derived through a least-squares model of the
ratio between the precipitable water vapor from RS data and the zenith wet delay estimates from
GNSS measurement in the precise point positioning mode. In this last case, we found anomalous
Tm values for the remote sub-tropical humid location of the Tahiti Island in the South Pacific Ocean
and traced these anomalous values to anomalous zenith total delays (ZTD) that seem to have an
accuracy poorer by one order of magnitude than the claimed accuracy of ZTD delays from worldwide
databases. The possible causes of these discrepancies are discussed.

Keywords: GNSS; weighted mean temperature; zenith total delays; precise point positioning;
precipitable water vapor; radiosonde

1. Introduction

The atmospheric water vapor plays a central role in all meteorology/climate processes,
and at all temporal and spatial scales: micrometeorology, evapotranspiration, clouds, precipi-
tations, and energy balance [1]. In addition, water vapor accounts for around three quarters
of the greenhouse warming on Earth, and is therefore one of the main drivers of climate
variability [2]. Precipitable water vapor (PWV/PW), the core quantity to model the water
vapor contents of the troposphere, is defined as the equivalent amount of water that could be
produced if all the water vapor in an atmospheric column rained down instantly [3].

Several techniques are commonly used to model the spatial and temporal variations of
PW. These include radiosonde balloons (RS), water vapor radiometers, and sun photometers,
but their low spatial and temporal resolution, and sometimes poor quality and high cost
limit their use [4–7]. To overcome these drawbacks, the ground-based Global Positioning
System (GPS) receivers, and now GLONASS, BDS, and Galileo (collectively known as Global
Navigation Satellite Systems (GNSS)) have been extensively used since the early 1990s for the
determination of PW with all-weather capability, high temporal sampling frequency (down
to a few minutes), and widely different line-of-sight receiver-satellite geometries (from the
near-horizon to zenith direction) [8]. Widely used techniques include relative positioning
and precise point positioning (PPP). Compared to relative positioning, PPP is favored in
GNSS meteorology because it uses a stand-alone receiver to obtain absolute atmospheric
parameters [9]. The GNSS receivers are also relativity cheap, with the average cost of a GNSS
receiver being roughly equivalent to 25 radiosonde balloon launches [10].

An extra atmospheric delay in the GNSS receiver-satellites radio-links is caused, at
around a 10–20% level, by the wet refractivity variations in the troposphere, with the bend-
ing of the ray as a second order effect [11,12]. The wet refractivity is highly variable, both
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horizontally and vertically. The total propagation delay, remapped along the vertical di-
rection, is named zenith total delays (ZTD). It can be split as the sum of a zenith hydro-
static (also improperly called “dry”) delay (ZHD) and a zenith wet (non-hydrostatic) delay
(ZWD) [13]. The ZHD can be determined with a good accuracy by empirical models such
as the Hopfield model [14], the Saastamoinen model [15], or the Black model [16]; all of
them are constrained by surface meteorological measurements (temperature and pressure).
Therefore, the ZWD can be defined by the relation ZWD = ZTD-ZHD, if we assume no
other factors other than water vapor are involved. The PW itself can be derived from the
ZWD by using a multiplicative conversion factor, a function of the so-called weighted mean
temperature Tm [17,18]. Usually, values of Tm are derived by analyzing long time series
of RS profile observations, but they can also be computed by ray tracing/vertical integra-
tion with respect to gridded numerical weather models (NWM) [19,20]. In 1992, Bevis
et al. demonstrated that there is a linear relation between Tm and Ts (Tm = a + b·Ts), with
Tm < Ts. The surface temperature, Ts, can be easily obtained from GNSS collocated weather
stations or nearby weather stations (for example, [21] for Europe, [22] for India, [23] for Turkey,
and [24] for Tahiti). To improve the reliability of GNSS PWV, Huang et al. (2022) adopted
three enhanced vertical correction models for temperature, pressure, and PWV, and developed
four accurate Tm models suitable for four regions of China [25]. Ross and Rosenfeld (1997)
noted that the coefficients of the linear relationship between Tm and Ts change as a function of
locations and seasons [26]. In other words, PW estimates from GNSS data need three input
values: ZTD, ZHD, and Tm, and a site-dependent tailored fit [27,28].

This study was prompted by the conclusions of a previous paper [24] about the
determination of PW estimates in Tahiti from GPS data only, with stand-alone receivers
used in the PPP mode. The linear fits Tm − Ts pointed, in this tropical context, to overlarge
values of Tm, sometimes larger than the surface temperature Ts. From its own definition
(see Equation (14)), Tm should be lower than the maximum temperature in the troposphere,
normally found at ground level (a small inversion layer due to the trade winds present
in Tahiti but does not change this behavior). The determination of the linear fit was also
complicated by the fact that the range of surface temperature in Tahiti is also quite limited,
around 10 K, thanks to the South Pacific Ocean acting as a heat buffer. This problem is
already apparent in the seminal paper of Bevis et al. (1992) [29], where the scatter around
the linear relationship Tm − Ts becomes larger and larger with increasing values of Tm and
Ts. In this previous paper, two possible conclusions were made: (1) the underlying physics
of the Tm − Ts linear relationship break for some reasons for large atmospheric humidity
contents, and/or (2) some systematic errors are present in the GNSS data processing
software or in the determination of Ts. The purpose of this follow-on paper is to investigate
these two points by examining all the links of the computation chain leading to the mean
temperature estimate. Our breadcrumb trail will be the comparison between the Tm − Ts
relationship determined from in situ RS/meteorological data and the Tm − Ts relationship
determined from GNSS data.

The paper is organized as follows: Section 2 recalls the underlying physics of the
derivation of ZTD, ZHD, ZWD, Tm and PW; Section 3 introduces the datasets; Section 4
analyses the results, including comparisons between our results and the references; Section 5
gives the discussion about the anomalous ZTD results; and Section 6 draws the conclusions.

2. Methodology

The total tropospheric delay along the zenith direction can be determined as the
integration along the vertical of the atmospheric total refractivity N as:

ZTD = 10−6
∫

N dz, (1)
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where z is the geometrical height of the observation site above the mean sea level. N
and its subparts Nd (hydrostatic) and Nw (wet) can be written as:

N = k1

(
Pd
T

)
Z−1

d + k2

(
Pv

T

)
Z−1

v + k3

(
Pv

T2

)
Z−1

v = Nd + Nw, (2)

Nd = k1

(
P
T

)
Z−1

d , (3)

Nw = [k′2

(
Pv

T

)
+ k3

(
Pv

T2

)
]Z−1

v , (4)

where T is the temperature in Kelvin, Pd is the dry air pressure in mbar, Pv the water vapor pres-
sure in mbar [30], and P = Pd + Pv. Z−1

d and Z−1
v are the inverse compressibility factors for dry

air and water vapor, respectively [31]. Nd is the refractivity of dry air and Nw is the refractivity
of water vapor. k1, k2 and k3 are refractivity constants, k′2 = k2 − k1·(Mw/Md) = 22.1 (K/hPa),
Mw = 18.0152 (kg/kmol) is the molar weight of wet air, and Md = 28.9644 (kg/kmol) is the
molar weight of dry air [19].

As ZTD is, by its own definition, equal to the sum of ZHD and ZWD [29], then:

ZHD = 10−6
∫

Nd dz = 10−6k1

∫ (P
T

)
Z−1

d dz, (5)

and

ZWD = 10−6
∫

Nw dz = 10−6k′2
∫ (Pv

T

)
Z−1

v dz + 10−6k3

∫ ( Pv

T2

)
Z−1

v dz, (6)

From an observational point of view, Pv is measured as

Pv = RH·es/100, (7)

where RH is the sensor relative humidity, and es is the saturation water vapor pressure that
depends on the surface temperature Ts [32,33], that can be calculated by

es = 6.11× 10
7.5×Ts

237.3+Ts . (8)

The ZHD must always be calculated from empirical models as the signature of the
water vapor in the ZTD cannot be distinguished, from a practical point of view, from
the signature in the hydrostatic delay (ZHD) [34]. The Saastamoinen model is the most
common model, with an accuracy that is claimed to be at the millimeter-level [15]:

ZHD = 2.2779 Ps/ f (λ, H), (9)

The model of [17] has the same form as the Saastamoinen model, but with a slightly
different constant:

ZHD = 2.2768 Ps/ f (λ, H), (10)

where, for both, f (λ,H) = 1 – 0.00266·cos(2λ) – 0.00028·H, H(km) is the geometrical height of the
receiver above the ellipsoid, λ(rad) is the station latitude, and Ps is the surface pressure in hPa.

As already stated, ZWD is defined as the Equation (11):

ZWD = ZTD− ZHD, (11)

with ZWD converted into PW by [19]:

PW = Π·ZWD, (12)
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and with the ratio Π defined as [35]:

Π = 106/(ρ·Rv(
k3

Tm
+ k′2)), (13)

where ρ = 1000 (kg/m3) is the density of liquid water (kg/m3), and Rv = 461.495 (J/kg·K)
is the specific water vapor constant. Tm, the vertically weighted mean temperature of the
atmosphere with respect to its water vapor contents, is defined as [17]:

Tm =
∫
(Pv/T)dz/

∫ (
Pv/T2

)
dz, (14)

As it is clear from Equation (14), time series of Tm for a particular site can be derived
from the knowledge of the vertical values of T and Pv from RS profiles or numerical
weather models [20]. It is also clear from Equation (14) that Tm is the mean temperature
defined with the water vapor pressure Pv as weight. It should be also emphasized that
this definition ignores any orographic effect, with the exception of the initial altitude of the
vertical profiles.

RS profiles and gridded weather models also allow a direct computation of PW as:

PW =
1
ρ

∫
ρwdz, (15)

ρw = Pv/(Rv·T), (16)

where ρw is the density of water vapor.

3. Datasets

Two International GNSS Service (IGS) stations are operating on the South Pacific
Ocean Island of Tahiti: FAA1 is located at almost sea level on the premises of the Tahiti
international airport; THTI is located inland at a horizontal distance of 2.56 km and with
an altitude difference of 86.14 m with respect to FAA1. Although they are close (Figure 1),
their surroundings are quite different. FAA1, managed by Météo-France, is located at near
sea-level, under the premises of the international airport, on a very large area that was
flattened to host the airstrip. THTI is located on the main campus of the University of
French Polynesia, a little bit more inland, on a ridge crest with a slope of about 8%, at a
distance from the sea of about 1.5 km. They belong to two distinct valleys, each one with
its own micro-climate [10,36].
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Figure 1. Location of the THTI site (149.61◦W, 17.58◦S, ellipsoidal altitude 98.49 m) and FAA1 site
(149.62◦W, 17.56◦S, ellipsoidal altitude 12.35 m) on Tahiti Island.
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A precise analysis of the differences between their ZTD time series showed that the
difference in insulation (and so evapotranspiration), and not the altitude difference, is the
leading actor in these differences. For this study, we processed GNSS data for the whole
year of 2017 on a daily basis, and obtained one-year ZTD results using the Bernese Software
Version 5.2 in the static post-processing PPP mode [37,38]. To validate the accuracy of
our ZTD estimates, we compared our estimates with the Center for Determination in
Europe (CODE) tropospheric products and the IGS final tropospheric products. Their ZTD
products, with a claimed accuracy of 4 mm, are presented in the literature [39,40] as highly
reliable products. Details of these data processing strategies are described in Table 1.

Table 1. Data processing strategies of our ZTD estimates and IGS/CODE tropospheric products.

Our ZTD Estimates IGS CODE

Precise satellite orbits and
clocks CODE Final products IGS Final products CODE Final products

Approach PPP PPP Relative positioning
Elevation angle cutoff 3 degrees 7 degrees 3 degrees

Mapping function VMF1 (Vienna Mapping
Function 1)

GMF (Global Mapping
Function) VMF1

A priori troposphere estimate Dry VMF model Dry Niell model Dry VMF model

Ionosphere correction Ionosphere-free linear
combination of L1 and L2

Ionosphere-free linear
combination of L1 and L2

Ionosphere-free linear
combination of L1 and L2

Temporal resolution 1 h 5 min 2 h
Ocean tidal loading FES 2004 FES 2004 FES 2014b

Atmospheric tidal loading Ray and Ponte (2003) [41] Ray and Ponte (2003) [41]
S1 + S2 tidal corrections from

the Vienna atmospheric
pressure model

The Integrated Global Radiosonde Archive (IGRA) is maintained by the National
Oceanic and Atmospheric Administration (NOAA) and consists of radiosonde observations
over 2700 globally distributed stations since 1905 [42]. A IGRA radio sounding balloon
station is collocated with the FAA1 GNSS receiver at a few meters distance. The RS balloons
are launched twice a day at 00:00 and 12:00 UTC and provide approximately vertical
profiles (depending on the wind) of the atmospheric key variables including pressure,
temperature, relative humidity, wind speed and direction, dew point temperature, and
elapsed time since launch, until the balloon blows up under overpressure of its envelope at
around 30 km [43].

The meteorological parameters from the site-wise VMF1 files (using the 40 years reanaly-
sis (ERA-40) NWM data of the ECMWF, https://vmf.geo.tuwien.ac.at/, accessed on 9 Novem-
ber 2022) were also used in this study. The values are interpolated from a 2.0◦ × 2.5◦ grid,
with a six-hour temporal resolution, and include the so-called hydrostatic/wet “a” coefficient
of the VMF1 mapping function continuous fraction, the hydrostatic/wet zenith delays, an
estimation of the atmosphere mean temperature above the site, the pressure, temperature
and water vapor pressure at the site, and the orthometric altitude of the station (geoid model
EGM96) [39]. Here, all site-wise products are generated based on the coordinates and altitude
of IGS stations [44].

In addition, to compute tropospheric delays, we converted the geopotential heights
recorded on RS data to orthometric heights [45]. The 1976 US Standard atmosphere [46] at
waterless high altitudes was used to complement the RS troposphere delay models. This
standard atmosphere model, up to 100 km altitude, assumes that air is a clean, dry (no
water vapor present) gas, obeying the perfect gas law and the hydrostatic equation. It is
roughly representative of year-round, mid-latitude conditions [47].

4. Results

In this section, to analyze and discuss our results calculated by using the above
methodology and datasets, we make some comparisons between our results and the

https://vmf.geo.tuwien.ac.at/
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references that will be provided, including our ZTD estimates versus CODE and IGS
products in Section 4.1, surface temperature from ground station versus that from site-wise
VMF1 files in Section 4.2, weighted mean temperature estimated from RS measurements
versus that from site-wise VMF1 files in Section 4.3, ZWD results estimated from RS
measurements versus that from site-wise VMF1 files in Section 4.4, ZHD estimates based
on the original Saastamoinen model versus that based on Davis’ adapted Saastamoinen
model in Section 4.5, and Section 4.6 includes ZHD estimates based on Davis’ adapted
Saastamoinen model versus that calculated by using RS data and standard atmosphere,
and GPS ZTD estimates versus ZTD derived from RS data and standard atmosphere. The
detailed comparisons are presented in the following.

4.1. Comparisons of Our ZTD Estimates with CODE and IGS ZTD Estimates

To validate the effectiveness of our data processing strategies and the accuracy of our
ZTD estimates, we compare, in this subsection, our ZTD to CODE/IGS ZTD products.
The different settings between our processing and CODE/IGS products are summarized
in Table 1. Our processing and the IGS final ZTD products both use the so-called PPP
post-processing mode [48,49]. IGS lists four PPP providers at the time of the writing of
these lines (https://igs.org/products-access/#gps-orbits-clocks, accessed on 9 November
2022). Our Bernese 5.2 software uses the PPP-CODE final product (https://www.aiub.
unibe.ch/research/code___analysis_center/, accessed on 9 November 2022) and the IGS
data analysis centers use the PPP-IGS final product [50]. Details about what are exactly the
differences in processing strategies between the currently available PPP products are arcane.
We refer to [48,51,52] for recent assessments of the PPP models for several constellations.
All these PPP products claim a few centimeter-level accuracy on the GPS satellite orbits.
CODE ZTD products use the relative positioning approach [39].

From a practical point of view, our ZTD estimates are very close to the CODE/IGS
final ZTD products (Figure 2a,b and Table 2), with a mean bias at the mm level over one
year, probably caused by some different settings between our GPS data processing and
the CODE/IGS final products (Figure 2c,d): PPP/relative positioning models, mapping
functions, a priori ZTD models, cut-off angles, and oceanic/Earth tides models (see Table 1).
Such a small bias does not validate our processing versus CODE/IGS products. It just
indicates that if systematic effects are present, they are present in both these computations,
possibly disappearing in the ZTD differences.

Table 2. Statistical summary for the comparison between our THTI/FAA1 ZTD estimates and
CODE/IGS THTI/FAA1 ZTD estimates (CODE/IGS values minus our ZTD values, Figure 2a,b) in
terms of maximum (max), minimum (min), bias, root mean squares (RMS), and standard deviation
(STD). The exact definitions of bias, RMS and STD, are shown in Appendix A.

Differences Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

THTI CODE-our 14.53 −14.72 −2.02 4.96 4.52 4244
IGS-our 14.93 −15.42 −0.47 5.03 5.01 4244

FAA1 CODE-our 22.89 −23.39 −0.51 7.06 7.04 4149
IGS-our 26.36 −26.71 1.09 8.15 8.08 4149

https://igs.org/products-access/#gps-orbits-clocks
https://www.aiub.unibe.ch/research/code___analysis_center/
https://www.aiub.unibe.ch/research/code___analysis_center/
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temperature, 𝑇 , and surface temperature, 𝑇 , we need to examine the accuracy of 𝑇  val-
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Figure 2. Comparisons of our THTI ZTD estimates (cyan dots) with CODE/IGS THTI ZTD estimates
(blue and red dots) (a), and FAA1 ZTD estimates (cyan dots), with CODE/IGS FAA1 ZTD estimates
(blue and red dots) (b). See Table 2 for a statistical summary; (c) histograms of the ZTD differences
between our THTI ZTD estimates and CODE/IGS THTI ZTD estimates; (d) histograms of the ZTD
differences between our FAA1 ZTD estimates and CODE/IGS FAA1 ZTD estimates.

According to Table 2, RMS values for the FAA1 site are larger than that for the THTI site,
by around 3 mm. This difference is mainly driven by insolation differences, and the differences
in altitude and the wind are secondary factors, as presented by Zhang et al. (2019) [10].

4.2. Comparison of the Surface Temperature from the FAA1 Ground Weather Station and the
Site-Wise VMF1 Files

To assess from a metrological point of view, the linear relationship between the mean
temperature, Tm, and surface temperature, Ts, we need to examine the accuracy of Ts values.
For this purpose, we compared the surface temperature records (T1) from the FAA1 ground
weather station with the time series of the surface temperature (T2) from the site-wise VMF1
files (Figure 3a). The histogram of the temperature differences between T1 and T2 is shown in
Figure 3b. From time series of T2, we find that surface temperature over Tahiti is relatively
stable with variations less than 8 K through one year, reaching the lowest values in August. T1
generally follows the trend of T2 but exhibits larger noises. According to Figure 3b, the noises
of T1 roughly obey a Gaussian distribution with a small bias. A statistical summary provided
in Table 3 shows that these two temperature records are coherent with a bias of 1 K and an
RMS of 2 K. We should emphasize that ground temperatures are influenced by micro-scale
variations, both in time and space, of turbulence and insolation at the air-soil interface, so the
concept of “surface temperature” is a blurry one. These micro-scale variations are certainly
the main contributor to the RMS value of 2 K.
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culated the 𝑇   estimates by directly considering its definition (Equation (14)), with the 
flight of the balloon assumed to be vertical up to its maximum altitude. Its lateral drift can 
reach up to 20 to 50 km, depending on the direction and intensity of the wind [24]. 

We compared our RS −𝑇  estimates with the 𝑇   estimates from the site-wise 
VMF1/ECMWF files, that considers an atmospheric column up to 47 km [39]. Time series, 
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Figure 3. FAA1 station: (a) comparison between the surface temperature from the ground weather
station (T1, red dots) and from the site-wise VMF1/ECMWF files (T2, blue dots); (b) histograms of
the temperature differences between the surface temperature from the ground weather station (T1)
and from the site-wise VMF1/ECMWF files (T2).

Table 3. Statistical summary for the comparisons (Figure 3) between the surface temperature from
the ground weather station (T1) and from the site-wise VMF1/ECMWF files (T2) (T1 minus T2) in
terms of max, min, bias, STD, and RMS.

Differences Max (K) Min (K) Bias (K) RMS (K) STD (K) Data Points

T1-T2 5.93 −4.20 0.98 2.04 1.80 1458

4.3. Comparison of Tm Estimates from RS Measurements and Site-Wise VMF1 Files

In this section we derive mean temperature, Tm, estimates built only from the RS
balloon measurements (noted RS − Tm) made at the FAA1 weather station in 2017. We
calculated the Tm estimates by directly considering its definition (Equation (14)), with the
flight of the balloon assumed to be vertical up to its maximum altitude. Its lateral drift can
reach up to 20 to 50 km, depending on the direction and intensity of the wind [24].

We compared our RS − Tm estimates with the Tm estimates from the site-wise
VMF1/ECMWF files, that considers an atmospheric column up to 47 km [39]. Time
series, histogram of their differences, and a statistical summary are given in Figure 4a,b and
Table 4, respectively. According to Figure 4a, RS − Tm values are consistent with the VMF1
ones, displaying a periodical pattern with peak-to-peak values of around 8 K. From Table 4,
the bias and RMS values of the differences between RS − Tm and Tm from VMF1/ECMWF
are 0.56 K and 1.05 K, respectively.

Table 4. Statistical summary for the comparison between RS − Tm and Tm from VMF1/ECMWF
(vmf1 minus RS) in terms of max, min, bias, STD and RMS.

Differences Max (K) Min (K) Bias (K) RMS (K) STD (K) Data Points

ECMWF—RS 4.55 −2.69 0.56 1.05 0.88 724
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Figure 4. (a) FAA1 station: comparison between the RS− Tm values computed from Equation (14) (blue
dots) and the VMF1/ECMWF − Tm values (red dots), and (b) histogram of the differences between the
RS − Tm values and the VMF1/ECMWF − Tm values, and (c) linear fit between the RS − Tm and the
VMF1/ECMWF – Ts, and (d) linear fit between the RS− Tm and the surface temperature measurements,
Ts, from the FAA1 ground weather station.

We can now try to check a possible linear relationship noted Tm − Ts, based on the
FAA1 surface temperature estimates, Ts, from the site-wise VMF1/ECMWF files (Figure 4c)
or the FAA1 ground weather station (Figure 4d) and our weighted mean temperature,
Tm, from RS measurements. In Figure 4c, the linear relationship between Tm and Ts is
shown based on 724 RS profiles as Tm = 0.69 × Ts + 81.99, with R2 = 37.39% and an error
bar of 6.01 K. In Figure 4d, the linear relationship between Tm and Ts is shown based on
724 RS profiles as Tm = 0.22 × Ts + 220.56, with R2 = 27.879% and an error bar of 6.22 K.
Clearly, these fits are not good. We think that the main culprit is the small range of surface
temperature, Ts, (10 K) in Tahiti over the year [24] that impairs a reliable estimation of the
fit line, probably linked with instrumental difficulties for the balloon humidity sensor to
measure accurately the high levels of water vapor present in the tropical location of Tahiti
(Equation (7), see [53]).

4.4. Comparison of the ZWD Estimates from RS Data with the ZWD Estimates from
VMF1/ECMWF Files

The next step is to compare our ZWD estimates from RS data (RS-ZWD) with ZWD
estimates from VMF1/ECMWF records (VMF1/ECMWF-ZWD) for the FAA1 site. Our RS-
ZWD estimates at the FAA1 station were calculated by using Equation (6). In our case, we did
not consider the extension of the atmospheric column by the standard atmosphere, as it is void
by construction of any water vapor. In Figure 5a, the consistency between the RS-ZWD and
the VMF1/ECMWF-ZWD is also not very good, with an obvious bias of 28.43 mm (Table 5).
In addition, the RMS between our RS-ZWD and VMF1/ECMWF-ZWD is also very large at
about 34.57 mm (Table 5). Indicated by [39,54], the ZWD differences between ZWD estimates
obtained from the VMF1/ECMWF files and ZWD derived by GPS data processing are very
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large in terms of bias and STD up to a 2-cm level for the Kokee Park station (Kaua’i Island,
Hawaii), with a climatic environment close to the one found in Tahiti.

We conclude that for the FAA1 station (and Kokee Park station), with a very high
humidity, the large biases of Table 5 are mainly the result of a mismodeling of the wet contents
of the atmosphere from the underlying numerical weather models, probably due to micro-
local effects, as the resolution of the site-wise VMF1/ECMWF files (more than 200 km) is
much larger than the dimensions of the Tahiti Island (30 km in diameter) or Kaua’i Island
(35 km in diameter).
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Equation (15) (Figure 5c, with 1/Π noted 1/Π1). The linear relationship between 1/Π1 and 
1/𝑇  (𝑇  values are also from the RS measurements) is shown based on 724 RS profiles as 
1/Π1 = 1779.61 × 1/𝑇 −0.07, with R2 = 99.78% and an error bar of 0.01 K. Besides, we esti-
mated 1/Π using GPS (VMF1/ECMWF)-ZWD divided by RS−PW (Figure 5d, with 1/Π 
noted 1/Π2). We have 1/Π2 = 5322.56 × 1/𝑇 −12.98, with R2 = 28.38% and an error bar of 
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Figure 5. (a) FAA1 station: comparison between our RS-ZWD estimates (blue dots) with the ZWD
estimates from VMF1/ECMWF (red dots); (b) histogram of the ZWD differences between the RS-
ZWD values and the VMF1/ECMWF-ZWD values; (c) relationship between 1/Π (1/P1 for the
y-axis, RS-ZWD/RS-PW) and 1/Tm (for the x-axis, RS − Tm), and their least-squares linear fit: 1/Π =
1779.61 ∗ 1/Tm − 0.07, with R2 = 99.78% (red line); (d) relationship between 1/Π (1/P2 for the y-axis,
GPS-ZWD (VMF1/ECMWF)/RS-PW) and 1/Tm (for the x-axis, RS − Tm), and their least-squares
linear fit: 1/Π = 5322.56 ∗ 1/Tm − 12.98, with R2 = 28.38% (red line).

Table 5. Statistical summary for the comparison between RS-ZWD and VMF1/ECMWF-ZWD
(VMF1/ECMWF minus RS-ZWD) in terms of max, min, bias, STD, and RMS.

ZWD Differences Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

VMF1-RS 68.01 −111.01 −28.43 36.51 22.90 724

We then tested if the computation of the Π factor through Equation (13) is valid. For
this purpose, we plotted, for the FAA1 station, the relation between 1/Π and 1/Tm that
should be linear according to this equation. Based on Equation (12), the 1/Π factor can
be estimated using a ZWD estimate divided by the corresponding PW estimate. This is
indeed the case with a very high accuracy with RS – ZWD and RS – PW calculated through
Equation (15) (Figure 5c, with 1/Π noted 1/Π1). The linear relationship between 1/Π1
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and 1/Tm (Tm values are also from the RS measurements) is shown based on 724 RS profiles
as 1/Π1 = 1779.61 × 1/Tm − 0.07, with R2 = 99.78% and an error bar of 0.01 K. Besides, we
estimated 1/Π using GPS (VMF1/ECMWF)-ZWD divided by RS – PW (Figure 5d, with
1/Π noted 1/Π2). We have 1/Π2 = 5322.56 × 1/Tm − 12.98, with R2 = 28.38% and an
error bar of 1.41 K.

The conclusion is straightforward; the underlying physics for the Tm – Ts relationship
is confirmed, even for the high levels of humidity found in Tahiti. We have to look at other
possible causes for the violation of Tm < Ts.

4.5. Comparison of ZHD Estimates Based on the Saastamoinen Model with ZHD Estimates Based
on Davis’ Adapted Saastamoinen Model

The two most used empirical models, with an accuracy that is claimed to be at the mm-
level for the determination of ZHD estimates, the Saastamoinen model (1972, Equation (9),
noted here old-SAAS) and the Davis-Saastamoinen model, as modified by Davis et al.
(1985, Equation (10), noted here new-SAAS), are analyzed in this section.

We used the VMF1/ECMWF pressure time-series for the FAA1 (Figure 6a,c) and THTI
(Figure 6b,d) IGS stations, that are separated by a 2.56 km horizontal distance and an
altitude difference of 86.14 m [10], to calculate ZHD estimates with respect to the two kinds
of Saastamoinen models. A statistical summary is given in Table 6. For both stations, the
ZHD estimates from the two kinds of Saastamoinen models are consistent with the ZHD
VMF1/ECMWF estimates at the mm level.
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(a), and the THTI station (b), and the histograms of their corresponding ZHD estimates differences at
FAA1 station (c), and THTI station (d).
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Table 6. Statistical summary for the comparison between the new/old SAAS ZHD estimates and the
VMF1/ECMWF ZHD estimates (VMF1/ECMWF minus new/old) in terms of max, min, bias, STD,
and RMS, for Figure 6c,d.

Differences Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

ECMWF-old FAA1 4.08 −4.68 −0.59 1.30 1.16 1461
ECMWF-new FAA1 5.20 −3.56 0.53 1.28 1.16 1461
ECMWF-old THTI 4.18 −4.60 −0.48 1.26 1.16 1461
ECMWF-new THTI 5.28 −3.49 0.62 1.32 1.17 1461

Zhang et al. (2016) [55] increased the numerator value in Equation (10) from 2.26768 to
2.2794 and claimed a global ZHD accuracy of less than 1 mm for this modified formula. This
is certainly not true for our case, as this model is leading to a larger bias because of the large
value in the numerator with respect to the Saastamoinen original and modified formulas.

4.6. Comparison of GPS ZTD Estimates with ZTD Estimates from RS Data and a
Standard Atmosphere

In this section, based on Equation (5), we first calculate the ZHD estimates by using
RS data from the surface of the Earth up to a balloon altitude of 30 km, and then we
complement this value up to a 100 km altitude by using the vertical profiles from the U.S.
Standard Atmosphere (SA) 1976 model [46].

Figure 7a shows that the comparison of ZHD estimates based on Davis-Saastamoinen
model [17] with ZHD estimates derived from RS and SA. The consistency is obvious, with
a bias of −3.00 mm and an RMS of 3.18 mm (Table 7).
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Table 7. Statistical summary for Figure 7a,b for the comparison between ZHD1 and ZHD2 (ZHD2
minus ZHD1) and between ZTD1 and ZTD2 (ZTD2 minus ZTD1) in terms of max, min, bias, STD,
and RMS.

Differences Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

ZHD2-ZHD1 1.87 −6.14 −3.00 3.18 1.06 724
ZTD2-ZTD1 102.61 −132.97 −33.40 41.04 23.84 689

It is very well known that the zenith tropospheric delay (ZTD) effect on GNSS signals is
defined as the sum of a hydrostatic part (ZHD) and a wet part (ZWD), as ZTD = ZHD + ZWD.
To justify this equation in our case, we build for the FAA1 station, ZTD (RS + SA) = ZHD
(RS + SA) + ZWD (RS). As already stated, nearly all the water vapor is concentrated in the
troposphere, so there is no need to complement the computation of ZWD by considering
a continuation in altitude by the standard atmosphere. We made a comparison between
ZTD (RS + SA) and ZTD derived from GPS in Figure 7b. There is a large bias of about 33.40
mm and a large RMS of about 41.04 mm.

Given the fact that the ZWD from RS is reliable (see Section 4.4), this large bias points
to a culprit on the GPS side, probably linked with a common cause shared by both our local
processing and the IGS processing. The common cause could be (see Table 1), but is certainly
not limited to, the PPP approach and the Earth tide models (solid and oceanic) [56,57].
Considering the orbital period of one-half a sidereal day (approximately 11h 58m) for GPS
satellites [58], and semidiurnal periods of tide effects [59], we assume all of them have
effects on ZWD estimates with a common period of around 12 h, which may lead to an
unfortunate addition of these possible errors.

5. Discussion

Through above analysis of all elements, we think that the reason for the large sys-
tematic error showing up in the last step of the previous comparisons (ZTD estimation)
is related to external sources in the GNSS processing. Possible causes, and certainly inter-
twined causes, could be orbits/clocks errors in the PPP corrections [49,51,60] and errors in
the tide models (Earth tides, oceanic tides and loading models) [61–63]. It should be also
noted that the THTI and FAA1 receivers used in this study are IGS stations belonging to
the network of reference stations used in the PPP corrections [64] and that GNSS orbits
and tides share a common periodicity of 12 h. From a physical point of view, the tides
are showing up at two places: (1) their gravitational pull on the GNSS satellites; (2) the
modulation in the receiver position. It is far beyond the scope of this paper, and of the
practical resources of the authors, to pinpoint the exact cause(s) of the ZTD mismodeling
in Tahiti, but the first idea that comes to mind is the remoteness of the Tahiti Island in the
central South Pacific, with degraded accuracies in some underlying physical models for
this specific location.

6. Conclusions

This paper was motivated by the results of a previous study [24] that pointed to overlarge
values of the mean temperature of the troposphere for the tropical location of the Tahiti
Island. To understand the reason(s) of these overestimations, we examined all the links of the
computation chain leading to the mean temperature estimate. We first evaluated the accuracy
of the ZTD estimates derived from our GPS data processing, based on a comparison with
the CODE/IGS final products at two local IGS sites, FAA1 and THTI. We found that our
ZTD estimates and CODE/IGS ZTD estimates are coherent at a millimeter level. Secondly,
we compared the surface temperature measurements and estimates at FAA1 from a ground
weather station, from the IGRA RS balloons launched from the same site and from the
VMF1/ECMWF site-wise records. They all are coherent at the 1 K level. Thirdly, the weighted
mean temperature of the atmosphere was estimated from the RS measurements (temperature
and humidity) taken from the FAA1 balloon launch site and compared with the Tm values
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derived from the FAA1 site-wise VMF1/ECMWF records. We found that the Tm estimates
from the RS data and the Tm estimates from VMF1/ECMWF are coherent within 0.56 K. This
point also confirmed the underlying physical assumptions at the base of the Tm – Ts linear
relationship. Fourthly, ZWD estimates were calculated by using the RS data at the FAA1 site
and were compared with the corresponding ZWD values computed from the corresponding
site-wise VMF1/ECMWF records. We found a large bias of 28.43 mm, indicating that the
VMF1/ECMWF model is not a reliable source for estimating the water vapor contents of the
troposphere, probably because its resolution in space and time is not enough to capture the
high variability of water vapor at our scale. Fifthly, we calculated the ZHD estimates for the
FAA1 site from the RS balloon data completed up to 100 km altitude by the U.S. Standard
Atmosphere 1976 model. We found a bias of 3.00 mm and an RMS of 3.18 mm between these
ZHD estimates and the ZHD estimates computed from the Saastamoinen model. Finally, we
compared our ZTD (RS + SA) estimates with the ZTD estimates derived from our GPS data
processing. We found a large bias of 33.40 mm associated with a large RMS of 41.04 mm.

If we take these elements together, we find that anomalous Tm values for the Tahiti
Island are traced to anomalous ZTD, leading to an accuracy poorer by one order of mag-
nitude than the claimed accuracy of ZTD delays from worldwide databases. The reason
for the large systematic errors of these ZTD estimates is assumed to be related to external
sources in the GNSS data processing. Although it is not practical to pinpoint the exact
causes of the ZTD mismodelling in Tahiti, the first idea coming to mind is that the remote
Tahiti Island in the central South Pacific may suffer from degraded accuracies in some
underlying physical models for this specific location.
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Appendix A

The bias, RMS and STD, are used to quality the performances of the results with
respect to the corresponding reference data. The formula is as follows [10]:

Bias =
1
n ∑n

i=1(Gi − Ri), (A1)

RMS =

√
1
n

n

∑
i=1

(Gi − Ri)
2, (A2)

STD =

√
1
n

n

∑
i=1

((Gi − Ri)− Bias)2, (A3)

where i = 1, 2, 3, . . . n. n denotes the total number of data points. In this case, G denotes
our results from GNSS data processing and R is the reference data.
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