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ABSTRACT  

The marine propeller design process runs under strict time 

limitations and even if it entails contradicting 

requirements from different stakeholders and complex 

physical phenomena, the analysis tools must be very fast. 

Cavitation nuisance is such a complex phenomenon that is 

hard to predict accurately from these tools and requires 

additional evaluation by the blade designer. Thus, a good 

blade design depends on approximate analysis tools and 

on the expertise of an experienced blade designer. 

Therefore, we previously developed an interactive 

optimisation methodology, where interactive genetic 

algorithms were utilised for blade design optimisation and 

cavitation was manually evaluated by the blade designer. 

However, since blade design involves a large design 

space, the optimisation requires populations of thousands 

of individuals, something that makes the manual 

evaluations by the blade designer very laborious. 

Accordingly in this study, a machine learning pipeline has 

been developed with the aim to reduce the number of 

manual evaluations and classify the cavitation nuisance 

automatically. Nested-cross validation has been used to 

identify the best classification algorithms combined with 

the most suitable hyperparameters for three different 

propellers with both suction and pressure side cavitation. 

The results have shown that using machine learning can 

be very beneficial to reduce user fatigue in interactive 

optimisation processes.  
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1 INTRODUCTION 

The selection and design of a marine propeller is a 

complex procedure that requires expertise in various 

scientific fields and involves several stakeholders that set 

the requirements and constraints of the problem, like 

propeller efficiency, fuel consumption, overall cost, 

comfort, cavitation, and propeller-induced pressure pulses 

among others. Blade design is a multidisciplinary design 

optimisation process that has several objectives related to 

those requirements. Although it usually involves a large 

design space, since it depends on many design variables, 

the design process runs under strict time limitations and 

the optimisation must be performed as efficiently as 

possible. 

Due to the time limitations, high-fidelity simulations and 

experiments are not feasible, thus fast analysis tools are 

used during the optimisation for predicting the complex 

physical phenomena involved. Cavitation is one of the 

most common constraints in marine propeller design 

problems, which is hard to predict accurately from these 

fast analysis tools and requires additional evaluation by 

the blade designer. Thus, the success of a good blade 

design depends on approximate analysis tools and on the 

expertise of an experienced blade designer. 

With that in mind, an interactive optimisation 

methodology was presented by Gypa et al (2021), where 

interactive genetic algorithms (IGAs) were utilised for 

blade design optimisation and cavitation was evaluated 

interactively by the blade designer. In that process, the 

blade designer manually evaluated and classified designs 

as “accepted” or “rejected”, according to the shape of the 

cavitation on the blade at the angle with maximum cavity 

volume. Then this information was inputted back to the 

genetic algorithm (Deb et al 2002) and the optimisation 

was directed towards areas of the design space with 

designs of high performance and in parallel with 

acceptable cavitation, according to the preference of the 

blade designer. 

In theory, using only the manual evaluations as an input 

to the IGA code for the evolution of the optimisation 

would be sufficient. In practice though, blade design 

requires very large populations of thousands of 

individuals during the optimisation of complex problems 

due to the large design space. Consequently, the blade 

designer must manually evaluate all these designs, which 

easily leads to user fatigue. This is a common problem in 

interactive optimisation procedures (Wahde 2008). This 

process becomes even more complex and laborious with 

blade design scenarios that involve several objectives and 

there is both suction and pressure side cavitation. 

Therefore, a prediction model is essential to classify the 

cavitation nuisance automatically, instead of requiring  



user evaluation of the whole population. In (Gypa et al 

2021), this classification was executed with satisfactory 

predictability by using support-vector machines (SVMs) 

(Cortes & Vapnik 1995) for a propeller design of a 

conventional cargo vessel. 

The objective of this study is to accelerate and improve 

the existing interactive optimisation process, by reducing 

the fatigue due to performing high number of user 

evaluations. This is done by building a machine learning 

(ML) pipeline, where the input is a dataset that has been 

labelled by the blade designer, and five ML classification 

algorithms and their hyperparameters are investigated and 

the output is a model that offers the highest predictability. 

Nested cross-validation (NCV) is utilised as a means 

towards selecting the best model efficiently. In this study 

we have investigated three propeller designs, to cover 

propellers for different types of vessels and for including 

both suction and pressure side cavitation. 

 

2 METHODOLOGY 

The general concept of the methodology is that a dataset 

is created, which is inputted in the ML pipeline, NCV is 

used for investigating various hyperparameters of 

different ML algorithms and finally have the best model 

for each algorithm as an output. The best model is the one 

that has the hyperparameters that give the highest 

accuracy; this is then selected as the final model. When 

there is a new dataset, this model is used for cavitation 

nuisance prediction. 

2.1 Optimisation and Data Preparation 

The first step of the methodology is to create and label the 

data that will later be inputted into the ML pipeline. As 

shown in Figure 1, a propeller geometry is created, which 

is the baseline of the optimisation. When the optimisation 

is performed, images of the cavitation shapes on the blade 

of the designs are displayed and the blade designer rejects 

the designs with non-satisfactory cavitation. This process 

is referred to as data labelling. Then the most important 

features (input features) of the dataset together with the 

binary user evaluation are inputted in the ML pipeline. It 

should be noted that the dataset does not necessarily have 

to be the output of the optimisation procedure. For 

example, if there is a database with different designs and 

their cavitation, this can be used as an input to the 

pipeline as well. 

2.2. Nested Cross-Validation 

The next part of the methodology is the use of NCV 

(Stone 1974), which is an effective way to incorporate 

hyperparameter tuning of different ML algorithms. The 

NCV process has two main loops, the outer and the inner, 

which are shown in Figure 2. K-fold cross-validation 

(CV) is carried out in both loops. The purpose of the outer 

loop is to split the dataset into training and testing sets K1 

times, by using K-fold CV, and later input each training 

set into the inner loop. The testing sets will be used in the 

end for validation of the best models. 

The purpose of the inner loop is to investigate which 
hyperparameters are the best for the targeted ML 
algorithm, to achieve the highest accuracy. This is done 
by first splitting the input dataset (which is the training 

dataset of the outer algorithm) into training and testing 
sets K2 times, again by using K-fold CV. Then the values 
of the hyperparameters are explored through the grid 
search method, which is an exhaustive search process that 
loops through a pre-defined hyperparameter space of the 
targeted algorithm. Every combination of hyperpara-

meters is fitted to the ML algorithm for each one of the K2 
training sets, and the accuracy is validated through the 
inner testing sets. The ML algorithm is finally refitted on 
the whole dataset by using the best found 
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Figure 1: Optimisation and ML pipeline framework 

Figure 2: NCV process 



hyperparameters and the accuracy of the model is comp-

uted. 

Since we want to compare the performance of different 
ML algorithms, there is one additional loop in the 

methodology, where the inner loop of the NCV process is 
repeated for each one of the algorithms. Note that each 
algorithm has different hyperparameters, and their ranges 
must be defined before the NCV process begins. 

The output is one model for each ML algorithm by the 
inner loop, where the best hyperparameters have been 
selected. In the outer loop, the mean prediction accuracy 
is computed for each algorithm and the one that offers the 
highest accuracy is selected. This is considered the best 
model of the pipeline and is saved. When there is a new 

dataset, it is inputted in the best model and a prediction is 
done for the cavitation of the designs of the new dataset. 

 

3 RESULTS AND DISCUSSION 

3.1 User Scenario 

Three different propellers are being used in this study. 
Propellers I and II are two different twin controllable 
pitch propellers for two ROPAX vessels and propeller III 

is a single fixed-pitch propeller for a car-carrier. 
Propellers I and II have both suction and pressure side 
cavitation, whereas propeller III has only suction side 
cavitation. Since a different model is built for each 
combination of propeller and cavitation type, there are in 
total five propeller cases, the I-SS, I-PS, II-SS, II-PS and 

III-SS, where SS and PS are the suction and pressure 
sides respectively. 

Figures 3~7 show examples of the images of the cavity 
shapes of the five cases that are displayed to the blade 

designer for manual evaluation. The goal in every case is 
of course to eliminate the cavitation, but since this is not 
always possible, cavity shapes that are smooth, without 
much thickness at the tip and without growth at the root 
of the blade, are generally preferred. However, the user 
evaluation is dependent on the complexity of the project 

and the experience of the blade designer. 

Two different sets of input have been used as input 
features for the ML pipeline separately, the design 
variables and the cavitation parameters. This means that 

two different models are built, based on the two different 
input sets. The design variables (there are different 
variables for each propeller case), such as pitch over 
propeller diameter, camber, chord length, skew etc. define 
the design space, where the optimisation algorithm 
searches for the optimal solutions. The cavitation 

parameters, here given by maximum cavity volume, 
cavity centroid harmfactor, cavity length, cavity closure 
line harmfactor, cavitation thickness at the blade tip, and 
non-dimensional cavity change (see further (Vesting et al 
2016)), are the output of the hydrodynamic analysis tool 
MPUF-3A (He et al 2010) that is used during the 

optimisation, and they describe the cavity shape of each 
design. The reason that both sets of input features are 
being used is that the different cavitation shapes of the 
designs might be produced by other means, except 
through optimisation. 

For each case, an optimisation run of 1000 designs has 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Case I - SS 

Figure 4: Case I - PS 

Figure 5: Case II - SS 

Figure 6: Case II - PS 

Figure 7: Case III - SS 



been performed, out of which approximately the half are 

unique designs, and the blade designer evaluates their 

cavitation. Then the input features of the dataset together 

with the user evaluation are inputted in the ML pipeline 

and the output is one unique ML model for each propeller 

case. Then another run of 500 designs is performed and 

the cavitation evaluation is predicted by the ML model. In 

order to compute the accuracy of the prediction, it is 

compared to a new manual assessment. The prediction is 

done twice for each one of the input feature sets. The 

following five ML algorithms have been tested: k-nearest 

neighbours (KN) (Fix & Hodges 1989), neural networks 

(NN) (Hopfield 1982), decision trees (DT) (Quinlan 

1986), SVMs and XGBoost (XGB) (Chen & Guestrin 

2016). 

3.2 Results 

During the NCV, the five ML algorithms are being tested 

with different hyperparameters for every propeller case. 

In order to find the best model (ML algorithm & suitable 

hyperparameters) that offers the highest prediction 

accuracy, the mean accuracy for each ML algorithm and 

for its different hyperparameters is computed. This is 

presented in Figure 8, where the prediction accuracy 

results of the models that have as input the design 

variables and the cavitation parameters, are shown in 

Figures 8a and 8b respectively. The x-axis of each bar 

plot shows the five different propeller cases and each one 

of the bars for every case represents one ML algorithm. 

On the y-axis the mean prediction accuracy is shown.  

As depicted from the plot 8a for the cases I-SS and III-SS, 

the algorithm that offers the highest mean prediction 

accuracy is the XGB, for cases II-SS and II-PS the SVM 

and for the I-PS is the NN. In plot 8b, it is shown that the 

propeller cases I-SS and II-PS have the highest mean 

accuracy with the XGB algorithm, the case I-PS with the 

SVM, the case II-SS with the KN and finally the III-SS 

with the NN. By comparing the two input feature sets, it 

is observed that the cases I-SS and I-PS have 

approximately the same prediction with both sets, but the 

propeller cases II-SS, II-PS and III-SS had better 

predictability with the cavitation parameters as input 

features. 

The best model for each propeller case is considered the 

one that combines the algorithm that had the highest mean 

accuracy with the values of the hyperparameters that gave 

the highest accuracy. Then the model of each propeller 

case is saved and when new data are inputted, the model 

is trained with the whole old dataset and a prediction is 

done for the new dataset. 

The next step is the prediction of the new datasets for 

every case. In Tables 1~2 the maximum prediction 

accuracy computed during the NCV and the prediction 

accuracy of the cavitation evaluation of the new datasets 

for the design variables and the cavitation parameters are 

presented respectively. In both tables, the prediction 

accuracy for the new dataset is very close to the 

maximum prediction accuracy computed during the NCV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Prediction accuracy – Design variables 

Propeller 

Case 

ML 

Algorithm 

Maximum 

Prediction 

Accuracy 

Prediction 

Accuracy 

New Dataset 

I-SS XGB 0.86 0.87 

I-PS NN 0.93 0.94 

II-SS SVM 0.97 0.92 

II-PS SVM 1.00 0.94 

III-SS XGB 0.98 0.98 

 

Table 2: Prediction accuracy – Cavitation parameters 

Propeller 

Case 

ML 

Algorithm 

Maximum 

Prediction 

Accuracy 

Prediction 

Accuracy 

New Dataset 

I-SS XGB 0.89 0.87 

I-PS SVM 0.90 0.92 

II-SS KN 1.00 0.95 

II-PS XGB 1.00 0.95 

III-SS NN 0.99 0.99 

(a) Design variables 

(b) Cavitation parameters 

Figure 8: Mean prediction accuracy for five ML 

algorithms and five propeller cases 



An investigation on the training size of the datasets is 

done for the best model of each propeller case, with the 

aim to reduce the manual evaluations by the blade 

designer and in parallel maintain a satisfactory prediction 

accuracy. This is shown in Figure 9, where for every 

propeller case, the best model has been trained with nine 

different training sizes and the model has been trained and 

done prediction 2000 times. On the x-axis the training 

size is presented and on the y-axis, there is the mean 

prediction accuracy (from the 2000 repetitions). The 

colour of each bar represents one propeller case, and the 

error (standard deviation) is shown with grey colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 9a, where the input features are the design 

variables, it is observed that the models of the cases II-SS, 

II-PS and III-SS have a mean prediction accuracy of 

above 90%, by including the error, with a training size of 

20%. The model I-PS has satisfactory predictability of 

above 90% with training size of 30-40%. The model I-SS 

has a lower predictability with all training sizes, thus it 

depends on the blade designer and on the project, which 

prediction accuracy that is considered acceptable. Note 

that it is not crucial for the ML pipeline to have an 

extremely high accuracy, since we use it as part of the 

optimisation process and the accepted designs will be re-

evaluated in later generations. 

Similar outcome is shown in Figure 9b, where the input 

features are the cavitation parameters. The models II-SS, 

II-PS and III-SS have a mean predictability of above 95% 

with 10-20% training size. For models I-SS and I-PS the 

predictability is generally lower, but an increase is 

observed for training sizes of 40-50%.  

By comparing the two plots, it is evident that for the 

models of the propeller cases II-SS, II-PS and III-SS the 

input features of the cavitation parameters give better 

results. For the case I-PS the design variables are more 

beneficial as input and for the case I-SS, both models give 

approximately the same prediction accuracy. 

Although the prediction accuracy of a model is very 

important, understanding and explaining the output of the 

model is equally important. We are doing this by using 

and presenting the SHAP (SHapley Additive 

exPlanations) values (Lundberg & Lee 2017) of the best 

model of each propeller case. The SHAP values show 

how much a predictor contributes either positively or 

negatively to the target variable. The SHAP values are 

investigated in this study for the initial datasets of 1000 

designs, for a training size of 80% and a testing size of 

20%. The models that are investigated are the best models 

from the NCV that were presented in Tables 1~2. 

In Figures 10 and 12 the variable importance plot is 

presented for all five propeller cases and for the design 

variables and cavitation parameters as input respectively. 

The purpose of this plot is to show which variables 

contribute the most to the model, which means that they 

have the highest predictive power. The x-axis presents the 

average of the absolute SHAP value for each feature and 

the y-axis presents the input features. The features are 

presented on descending order, based on the significance 

of their contribution. 

Interestingly, the Figures 10a~e that have the design 

variables as input features, all have the pitch at 1.0R as 

the most significant feature. Especially, in cases II-SS and 

II-PS, it seems that the pitch at 1.0R is the only important 

feature. In I-SS also the pitch and camber at 0.70R are 

important and in case III-SS, all other features seem to 

contribute to the prediction of the model almost equally. 

The cavitation parameters that were mentioned earlier are 

the output of the analysis tool MPUF-3A for suction side 

cavitation. For pressure side cavitation, only the 

parameters maximum cavity volume, cavity centroid 

harmfactor and cavity changed are defined by the 

software. This is shown in plots 12b and 12d, where the 

cavity volume (cav_vol) and the cavity change (cav_chg) 

are the most important features. On the contrary, Figures 

12a, 12c and 12e that represent the cases with suction side 

cavitation, show that the most significant feature was the 

cavity centroid harmfactor (cav_cnt). For case II-SS also 

the cavitation thickness at the blade tips (cav_tip) and the 

cavity length (cav_len) were important as well. 

A similar type of plot is presented in Figures 11 and 13 

and is used to visualise the directionality impact of the 

features, where the positive or negative relationships of 

the predictors with the target variable are shown. The 

variables are presented again here on the y-axis in 

descending order, based on the feature importance and the 

x-axis represents the SHAP value, where a positive or 

negative SHAP value shows positive or negative impact 

on the model respectively. Each point on the chart is one 

SHAP value for a prediction and a feature. The colour 

scale shows whether the actual value of the feature is low 

(blue) or high (red). 

In more detail, in Figure 11a it is shown that middle and 

lower values of pitch at 1.0R have a more positive impact  

 

(a) Design variables 

(b) Cavitation parameters 

Figure 9: Training size investigation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) I-SS 

(b) I-PS 

(c) II-SS 

(d) II-PS 

(e) III-SS 

(a) I-SS 

(b) I-PS 

(c) II-SS 

(d) II-PS 

(e) III-SS 

Figure 10: Variable importance plot – Design variables Figure 11: Directionality impact – Design variables 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) I-SS 

(b) I-PS 

(c) II-SS 

(d) II-PS 

(e) III-SS 

Figure 12: Variable importance – Cavitation parameters 

(a) I-SS 

(b) I-PS 

(c) II-SS 

(d) II-PS 

(e) III-SS 

Figure 13: Directionality impact – Cavitation parameters 



on the model, while lower values of pitch at 0.7R have a 
negative impact on the model. For the two cases with 
pressure side cavitation I-PS and II-PS, higher values of 
pitch at 1.0R have a positive impact on the model and in 
II-SS it is the opposite. For the propeller case III-SS, it is 
a bit unclear which values of the features had a positive or 
negative impact on the model. 

For the models that have the cavitation parameters as 
input in Figure 13 starting from the case I-SS, middle and 
high values of the cavity centroid harmfactor had a 
positive impact on the model. For the cases I-PS and II-
PS, low values of the maximum cavity volume had a 
positive impact on the model and high values of the cavity 
centroid harmfactor had a negative impact. In case II-SS, 
high values of the cavity centroid harmfactor had a 
positive impact, while for all the other features, low 
values had a positive impact on the model. Again in case 
III-SS the impact of the values of the input features is 
unclear. 

 

4 CONCLUSIONS 

In this paper we presented the results of an ML (machine 
learning) pipeline that we use as part of an interactive 
optimisation process, where cavitation was assessed by 
the blade designers manually. The goal was to accelerate 
and improve the existing optimisation procedure, by 
reducing the risk of user fatigue, through selecting an ML 
model that does part of the cavitation nuisance 
identification automatically and offers high predictability 
with a small training set. 

The performance of five ML algorithms was investigated 
with the aid of NCV (nested cross-validation) and 
different hyperparameters were tested through the grid 
search method. The output was one model that offered the 
highest prediction accuracy and combined one ML 
algorithm with the most suitable values of its 
hyperparameters. Then this model was used for 
predictions of new datasets. This process was repeated for 
three propeller designs, two of which had both suction 
and pressure side cavitation. 

According to the results, the prediction accuracy proved 
to be high (above 90%) for almost all propeller cases, 
except the I-SS that was approximately at 87%. In 
general, highest accuracy was achieved when the 
cavitation parameters were the input features. The 
investigation on the training size of the best models 
showed that for cases II-SS, II-PS and III-SS, training 
sizes of 20% provided satisfactory accuracy, while for 
cases I-SS and I-PS, training sizes of 30-50% of the 
dataset were more satisfactory. 

In addition to investigating the predictability of the 
different models, the output of the models was explained 
by using and presenting the SHAP values. We used the 
variable importance plots in order to show which input 
features contributed to the model the most and the 
directionality plots, in order to show which values of the 
input features had positive or negative impact on the 
prediction of the model. 

Using ML as part of our interactive optimisation method 
proved to be beneficial in order to identify cavitation 

nuisance faster, by requiring fewer manual evaluations by 
the blade designer. An interesting future study would be 
to use the ML pipeline for a complex propeller design 
scenario, with contradicting objectives and with both 
suction and pressure side cavitation. 
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