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Power-Efficient Voronoi Constellations
for Fiber-Optic Communication Systems

Shen Li, Ali Mirani, Magnus Karlsson, Senior Member, IEEE, Fellow, OSA, and Erik Agrell, Fellow, IEEE

Abstract—Voronoi constellations (VCs) are considered as an
effective geometric shaping method due to their high power
efficiencies and low complexity. In this paper, the performance of
16- and 32-dimensional VCs with a variety of spectral efficiencies
transmitted in the nonlinear fiber channel are investigated. Both
single-channel and wavelength-division multiplexing systems are
considered for the transmission of the VCs, as well as different
signal processing schemes, including chromatic dispersion com-
pensation and digital backpropagation. Multiple performance
metrics including the uncoded bit error rate, mutual information
(MI), and generalized mutual information (GMI) of VCs are
evaluated. Compared with quadrature amplitude modulation
(QAM) formats, the VCs provide 1.0–2.4 dB launch power gains,
up to 0.50 bits/symbol/dimension-pair MI gains, up to around
30% potential reach increase at the same MI, and up to 0.30
bits/symbol/dimension-pair GMI gains in a limited launch power
range. The observed performance gains over QAM are found
higher than in the back-to-back case. Moreover, a general GMI
estimation method for very large constellations using importance
sampling is proposed for the first time.

Index Terms—Fiber-optic communication, generalized mutual
information, geometric shaping, information rates, lattices, mul-
tidimensional modulation formats, Voronoi constellations.

I. INTRODUCTION

GEOMETRIC shaping is a way to gain power efficiency
by adjusting the position of constellation points with

respect to uniform quadrature amplitude modulation (QAM).
In recent years, great interests have been shown in performing
shaping in fiber-optical communications, partially because no
theoretical limits have been found for the maximum shaping
gain of the nonlinear fiber channel yet, which could potentially
be more than the ultimate 1.53 dB shaping gain in the linear
additive white Gaussian noise (AWGN) channel. Actually,
there have been indications showing that geometrically shaped
modulation formats might achieve gains higher than 1.53 dB
[1]. On the other hand, some works show that probabilistically
shaped constellations introduce a modulation-dependent non-
linear interference for fiber transmission, which reduces the
shaping gain achieved in the AWGN channel [2], [3].

Coherent fiber communication inherently consists of four
dimensions: two orthogonal quadratures in two orthogonal
polarizations. More dimensions can be realized utilizing time
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slots, wavelengths, and spatial dimensions, and performing
shaping over higher dimensions jointly is expected to achieve
larger performance gains. A comprehensive review of several
geometrically-shaped modulation formats can be found in [4,
Table I]. Much work has been devoted to design geometri-
cally shaped 4-dimensional constellations [2], [5]–[8]. Among
the work in the literature, usually look-up tables storing all
coordinates of constellation points are needed, which makes
the detection complexity and storage requirement increase
exponentially when extending to higher dimensions.

Voronoi constellations (VCs) based on lattices, inherently
performing a joint shaping of multiple dimensions, can be
a good trade-off between shaping gain and complexity. VCs
have a shaping lattice providing the shaping gain and a coding
lattice providing the coding gain, which were first proposed by
Conway and Sloane in [9], together with their low-complexity
encoding and decoding algorithms, and then generalized by
Forney [10]. No look-up tables are needed, neither no dramatic
complexity increase in high dimensions. VCs were used for
shaping in some wireless network applications [11]–[16]. For
the AWGN channel, uncoded BER gains of VCs over QAM
were reported in [17], [18], and mutual information (MI) gains
of VCs were demonstrated in [19].

VCs were first studied for fiber communications in [18],
where Mirani et al. reported significant uncoded bit error rate
(BER) gains of VCs over QAM transmitted in a wavelength-
division multiplexing (WDM) system. Later in [20], power
gains of VCs were demonstrated in experiments for a 80 km
single-channel transmission.

In this paper, different from the work in [18] and [20], we
investigate the performance of another type of VC with a cubic
coding lattice in both single-channel and WDM simulations.
The considered VCs have different numbers of dimensions,
shaping lattices, and spectral efficiencies. Several important
performance metrics for both hard- and soft-decision forward
error correction (FEC) are evaluated for the VCs, including
the uncoded BER, MI, and generalized mutual information
(GMI), among which the MI and GMI performances for VCs
in the nonlinear fiber channel are demonstrated for the first
time to our knowledge. Consistently with [1], the observed
power, MI, and GMI gains of VCs over QAM formats in fiber
transmission are found higher than in the AWGN channel. The
data rates and transmission distances of the studied systems
are comparable to 400ZR [21] and the upcoming 800 Gbps
and 1.2 Tbps standards. The target systems of VCs could be
data center interconnects, e.g., campus and metro data centers,
which require rather high throughput with limited complexity
for short distances (usually less than 100 km), or metro
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optical links with up to hundreds of kilometers. Moreover, a
general GMI estimation method for very large constellations
is proposed, using importance sampling, extending the MI
estimation method in [19].

Notation: Bold lowercase symbols denote row vectors and
bold uppercase symbols denote random vectors or matrices.
The sets of integer, real, complex, and natural numbers are
denoted by Z, R, C, and N, respectively. Other sets are denoted
by calligraphic symbols. Rounding a vector to its nearest
integer vector is denoted by ⌊·⌉, in which ties are broken
arbitrarily.

II. BASICS OF VCS

VCs are structured multidimensional lattice-based constel-
lations. An n-dimensional lattice is spanned by n linearly
independent basis vectors which are the rows of its n × n
generator matrix G. All linear combinations of these basis
vectors with integer coefficients form the lattice, i.e,

Λ ≜ {uG : u ∈ Zn}. (1)

From the definition, a lattice must contain the all-zero point 0.
The Voronoi region of a lattice Λ, denoted as Ω(Λ), contains
all points1 in Rn having the all-zero point 0 as their closest
lattice point in Λ.

A VC has a coding lattice Λ and a shaping lattice Λs, and
Λs is a sublattice of Λ, i.e., Λs ⊂ Λ. Forney defined a VC
based on the lattice partition Λ/Λs as a set of translated lattice
points of Λ enclosed by the Voronoi region of Λs [10], i.e.,

Γ ≜ (Λ− a) ∩ Ω(Λs), (2)

where a ∈ Rn is the offset vector (see Fig. 1 for an example
VC). The offset vector avoids lattice points falling on the
boundary of Ω(Λs), and can be optimized to minimize the
average symbol energy of the VC. The number of points in
a VC is M ≜ |detGs|/|detG|, where Gs and G are the
generator matrices of Λs and Λ, respectively. The length of
the bit labels is m = log2 M bits and the spectral efficiency
[22]–[24] of a VC per dimension-pair is defined as

β = 2m/n [bits/symbol/dimension-pair]. (3)

A dimension-pair could refer to any two real dimensions
for a multidimensional AWGN channel, and for fiber-optic
channels, it could be an in-phase and quadrature (I/Q) pair of
a single polarization component. The average symbol energy
of a VC is

Es =
1

M

∑
x∈Γ

∥x∥2. (4)

The VCs based on the lattice partition Zn/Λs are the
focus of this paper due to the following reasons. First, the
decoding process is simpler for such VCs than the classical
VCs considered in [18]. Second, the cubic coding lattice
enables a “pseudo-Gray” labeling scheme where most of the
constellation points differ by only one bit from their adjacent

1Arbitrary points in Rn are denoted as “points” in this paper. To avoid
ambiguity, “lattice point” is used when a point also belongs to a lattice. Later
throughout the paper, “constellation points” refers to the points in VCs.

constellation points. Third, the analysis of the MI and log-
likelihood ratio becomes possible with a cubic coding lattice,
which has never been studied for such large constellations.
Fourth, though the cubic coding lattice does not provide any
coding gain, the coding gain is provided by FEC coding
in the considered optical systems, which partly serves the
same purpose as maximizing the minimum distance between
constellation points.

The encoding and decoding algorithms (mapping between
integers coordinates and constellation points) of VCs based
on the lattice partition Zn/Λs are summarized in [19,
Alg. 1, Alg. 2] and [25]. As seen from the algorithms, the
decoder only comprises linear operations. Though it is not a
maximum-likelihood decoder, it has a much lower complexity,
and there is evidence showing that the performance gap to
the maximum-likelihood decoder becomes negligible when
M or the signal-to-noise ratio (SNR) increases [18]. The
mapping between information bits and integer coordinates
is according to the binary reflected Gray code in order to
minimize the BER [17]. In this paper, some commonly-used
multidimensional lattices are scaled and adopted as the shaping
lattices, including the 2-dimensional checkerboard lattice D2,
4-dimensional checkerboard lattice D4, 8-dimensional Gosset
lattice E8, 16-dimensional Barnes–Wall lattice Λ16 [26, Ch. 4]
and a 32-dimensional lattice L32 [19, Table I]. The VCs
considered in this paper together with their parameters are
listed in Table I. The offset vector a is optimized using an
iterative algorithm proposed in [9] to minimize the average
symbol energy of VCs with small M values, such as D5

2 and
D17

4 . For larger VCs, the average symbol energy cannot be
minimized via Monte Carlo simulations. We validated that
choosing a random a ∈ Ω(Λ) does not affect the performance
significantly for large VCs [18]. The considered VCs only
achieve the shaping gains from Λs, and no coding gain is
provided due to the cubic coding lattice being used. The
asymptotic shaping gains (ASGs) [22] determined by Λs of
these VCs are also listed in Table I. The ASGs indicate the
maximum shaping gains these VCs can achieve over QAM in
the linear AWGN channel asymptotically, but these values do
not limit their performance gains (e.g., SNR gains over QAM
at the same BER) at a finite SNR. Higher ASGs might imply
higher performance gains in the nonlinear fiber channel.

Example 1: A simple example is D5
2 having a shaping lattice

which does not provide any shaping gain but is good for
illustration. The generator matrices of 4D2 and Zn are

Gs =

(
8 0
4 4

)
, G =

(
1 0
0 1

)
, (5)

and the offset vector a = (−1/2, 0). Fig. 1 illustrates the
mapping rule between bits and constellation points for this
example.

III. GMI ESTIMATION

The amount of information per symbol that a certain channel
can transmit with an arbitrarily small error probability, using
any (optimal or suboptimal) encoder/decoder pair, is known
as an achievable information rate (AIR). The maximum AIRs
over a certain channel indicating the fundamental limits of
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TABLE I: The VCs and their parameters considered in this paper.

Name Λ/Λs M m β a ASG [dB]

D5
2 Z2/4D2 32 5 5 (−0.5, 0) 0

D17
4 Z4/16D4 131072 17 8.5 (0.500, 0,−0.168, 0.334) 0.37

E24
8 Z8/8E8 16777216 24 6 ∈ Ω(Z8) 0.65

Λ60
16 Z16/8Λ16 ≈ 1.2× 1018 60 7.5 ∈ Ω(Z16) 0.86

Λ76
16 Z16/16Λ16 ≈ 7.6× 1022 76 9.5 ∈ Ω(Z16) 0.86

Λ92
16 Z16/32Λ16 ≈ 5.0× 1027 92 11.5 ∈ Ω(Z16) 0.86

L123
32 Z32/8L32 ≈ 1.1× 1037 123 7.6875 ∈ Ω(Z32) 0.94

L155
32 Z32/16L32 ≈ 4.6× 1046 155 9.6875 ∈ Ω(Z32) 0.94

L187
32 Z32/32L32 ≈ 2.0× 1056 187 11.6875 ∈ Ω(Z32) 0.94

Fig. 1: An illustration of the VC in Example 1.

a coded modulation scheme, are the MI and GMI, of which
the former applies to nonbinary codes or multilevel codes,
and the latter applies to binary interleaved coded modulation
(BICM) [27]. The MI and GMI of VCs transmitted in the
nonlinear fiber channel are definitely worth investigation.
However, their calculation usually requires full enumeration
of all constellation points, which is not applicable to high-
dimensional VCs with high cardinalities. Thus, a method based
on importance sampling [28, Ch. 9] was proposed to solve this
challenge in [19]. In this section, the same idea is extended to
the estimation of GMI for very large constellations in general
cases, and then specifically applied to VCs.

A. GMI estimation method based on importance sampling

We consider a modulation format X consisting of M
equally probable symbols with distinct binary labels of length
m = log2 M . For a memoryless discrete channel with the
conditional probability fY |X(y|x), where x ∈ X denotes the

transmitted symbol and y ∈ Rn denotes the received noisy
symbol, the GMI can be written as [27, Eq. (15)]

GMI ≜
1

M

m∑
k=1

∑
b∈{0,1}

∑
x∈X b

k∫
Cn

fY |X(y|x) log2
fk,b(y)

1
2 (fk,0(y) + fk,1(y))

dy, (6)

where X b
k ⊂ X is the set of constellation points with a bit b

at position k in their m-bit binary label, and

fk,b(y) =
2

M

∑
x∈X b

k

fY |X(y|x). (7)

If Ns samples are uniformly and independently drawn from
X and transmitted through the simulated channel fY |X(y|x),
then the GMI in (6) can be approximated using these Ns
channel realization pairs (x(i),y(i)), where the superscripts
represent the time index. Let the set Zb

k denote all the time
samples of input symbols x(i) that have a bit b at position k.
Then (6) can be approximated by

GMI ≈ 1

Ns

m∑
k=1

∑
b∈{0,1}

∑
i∈Zb

k

log2
fk,b(y

(i))
1
2

(
fk,0(y(i)) + fk,1(y(i))

) .
(8)

It can be noted that enumerating all constellation points in
X to calculate (7) is practically impossible when M it too
large. Extending the idea from [19], instead of enumerating
every point in X , we consider a much smaller importance
set I(y), such that the contribution to the sum fk,b(y) from
constellation points in X − I(y) is negligible. Then fk,b(y)
can be approximated by enumerating all constellation points in
Ik,b(y) = I(y) ∩ X b

k . The importance set I(y) can be further
divided into D disjoint subsets Id(y) for d = 1, . . . , D. From
each subset, Kd random samples xd,j for j = 1, . . . ,Kd are
drawn uniformly if Kd < |Id(y)|, unless |Id(y)| is small
enough so that enumerating all constellation points in it is
more computationally efficient, then xd,j for j = 1, . . . ,Kd

are all constellation points in Id(y), where Kd = |Id(y)|.
If we call the subscript j “sample indices”, and let the set
T k,b
d (y) ⊆ {1, . . . ,Kd} denote all the sample indices of the

random samples (or all constellation points in small subsets
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Fig. 2: The importance region for D5
2 in Example 2. The constellation

points inside the gray shaded region (including those falling on
the boundary) form the importance region for GMI estimation. The
constellation points falling on each “shell” form the subsets Id(y).

Id(y)) xd,j that have a binary label b at position k, then (7)
can be approximated as

fk,b(y) ≈
2

M

∑
x∈Ik,b(y)

fY |X(y|x) (9)

≈ 2

M

D∑
d=1

|Id(y)|
Kd

∑
j∈T k,b

d (y)

fY |X(y|xd,j). (10)

As D and Kd increase, (10) should converge to (7). So
far, combining (8) and (10), the expressions for estimating
the GMI of very large constellations are obtained. These
expressions are applicable to any analytical channel (or an an-
alytical auxiliary channel if the real channel is not analytically
known), and any structured modulation formats as long as the
importance set can be well defined. Generally, the important
set depends on the modulation format X and the channel law
fY |X(y|x). If the constellation points in the important set
cannot be enumerated, nor sampled, then it is infeasible to
estimate the GMI by the proposed method.

B. GMI estimation for the VCs

Since an analytical channel law of the nonlinear fiber
channel is not known, an auxiliary channel law qY |X(y|x)
is usually used to replace fY |X(y|x) in (7), generating a
lower bound on the GMI for the fiber channel. A common
and reasonable choice of the auxiliary channel is the Gaussian
channel, which has the conditional distribution

qY |X(y|x) = 1

(2πσ2/n)n/2
exp

(
−∥y − x∥2

2σ2/n

)
, (11)

where σ2 is the total noise power for n real dimensions. Then
the SNR is defined as Es/σ

2.
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(a) Example 2: D17
4
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)

(b) Example 3: E24
8

Fig. 3: The estimated value f
(D)
k,b (y) as a function of D in Examples

2 and 3. The black dashed lines are the corresponding benchmark
values fk,b(y) calculated using (7). Accurate estimation is validated
by the convergence of all curves to the benchmark values.

Upon receiving a noisy symbol y, according to (11), the
constellation points that are close to y have the most impact
on the GMI estimation. The nice structure of the cubic coding
lattice makes these constellation points easy to enumerate in
a “Euclidean ball” centered at ⌊y + a⌉ with radius R

B(y, R2) ≜ {x : ∥x+ a− ⌊y + a⌉ ∥2 ≤ R2, x+ a ∈ Zn},
(12)

where the squared radius R2 ∈ N. The ball can be further
divided into R2 + 1 “shells” defined as

S(y, r2) ≜ {x : ∥x+ a− ⌊y + a⌉∥2 = r2, x+ a ∈ Zn},
(13)

for r2 = 0, 1, . . . , R2.
The importance set in this specific application is not only a

function of y, but also depends on its squared radius R2, and
can be defined as

I(y, R2) = B(y, R2) ∩ Γ, (14)

which consists of D = R2 + 1 disjoint subsets
Id(y) = S(y, d− 1) ∩ Γ for d = 1, . . . , D.
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Fig. 4: The mapping of VCs to one wavelength. Integers from 1 to
n represent the information carried by the n dimensions of VCs. All
spectral efficiencies given in this paper are normalized to a single I/Q
plane (2 dimensions).

In analogy with (8) and (10), the lower bound of the GMI
can be approximated as

G̃MI ≈ 1

Ns

m∑
k=1

∑
b∈{0,1}

∑
i∈Zb

k

log2
f̃k,b(y

(i))

1
2

(
f̃k,0(y(i)) + f̃k,1(y(i))

)
(15)

where

f̃k,b(y) ≈
2

M

D∑
d=1

|Id(y)|
Kd

∑
j∈T k,b

d (y)

qY |X(y|xd,j). (16)

In our simulations, we found that the subsums in I(k,b)
d (y)

for all d = 1, . . . , D in (16) can be approximated very well
with Kd = min{|Id(y)|, 105} samples. With this number of
samples in each subset, we increase D from 1, until the
condition

max
i=1,...,Ns

(
f̃
(D+1)
k,b (y(i))− f̃

(D)
k,b (y(i))

f̃
(D)
k,b (y(i))

)
< 0.5% (17)

is met for all k = 1, . . . ,m and b ∈ {0, 1}, where the
superscripts of the estimated f̃k,b(y

(i)) denote the number of
subsets being used. Then we believe that with no less than D
subsets, f̃k,b(y(i)) converges to the exact value (7). Finally,
accurate approximation of g̃k,b(y

(i)) for all i = 1, . . . , Ns

yields accurate estimation of G̃MI.
Example 2: We again take D5

2 as an example due to
the simplicity for illustration. Fig. 2 shows the importance
region I(y, 8) and its subsets when D = 9. Given a
noisy y, the importance region is centered at ⌊y + a⌉ − a,
which itself forms the first subset I1(y). In this example,
I4(y) = I7(y) = I8(y) = ∅.

Example 3: We transmit D17
4 over the Gaussian channel.

For random k and y, Fig. 3a shows the convergence of the
estimated f

(D)
k,b (y) using (10) to the benchmark values fk,b(y)

computed using (7) for different SNRs. In this example, Kd =
|Id(y)| for all d = 1, . . . , D.

Example 4: We transmit E24
8 over the Gaussian channel.

For random k and y, Fig. 3b shows the convergence of the
estimated f

(D)
k,b (y) using (10) to the benchmark values fk,b(y)

computed using (7) in the medium SNR range. In this example,
Kd = 105 uniform samples from Id(y) are used for subsets
with d > 8 and Kd = |Id(y)| for subsets with d ≤ 8.

TABLE II: The simulation parameters.

Parameters Values

Symbol rate 45 Gbaud
Pulse shape RRC, rolloff 0.1

Fiber attenuation 0.2 dB/km
Fiber nonlinear coefficient 1.27 W−1km−1

Dispersion parameter 17 pm/nm/km
EDFA noise factor 5 dB

Span length 80 or 100 km
Center frequency 1550 nm
Channel spacing 50 GHz

Oversampling factor in SSFM 32

Oversampling factor in DBP (if any) 32

Step size in SSFM 1 km
Pilot overhead 2%

Number of symbol time slots transmitting VC symbols 8× 104

IV. PERFORMANCE ANALYSIS

In this section, we study the BER, MI, and GMI perfor-
mance of 16-dimensional and 32-dimensional VCs in Table II
over the nonlinear fiber channel, since their ASGs are high,
which implies large potential shaping gains in the nonlinear
fiber channel. The benchmarks for comparison are the QAM
formats with the same spectral efficiencies. For transmission of
an n-dimensional VC, we consider (a) a single-channel system
in which n/4 time slots are needed to transmit one VC symbol,
and (b) a WDM system with n/4 wavelengths in which each
wavelength carries one VC symbol in n/4 time slots. The
mapping of VCs to one wavelength is depicted in Fig. 4. For
the WDM case, many other different ways of assigning VCs
to physical dimensions are possible. Nevertheless, our simula-
tions show no big performance difference using these different
ways. The experimental results of comparing different physical
realizations for another type of VC draw the same conclusion
[29]. Therefore, we choose the mapping in Fig. 4 because this
scheme does not need many coherent receivers to decode one
VC symbol.

VCs can have non-integer spectral efficiencies from the
definition of (3), as β is not guaranteed to be an integer.
The performance of VCs should be compared with QAM
constellations at the same spectral efficiencies. Thus, for QAM
transmission, in order to have a non-integer spectral efficiency,
two two-dimensional QAM formats with different cardinalities
M1 and M2 can be assigned to different I/Q pairs, resulting
in a spectral efficiency of

βQAM =
d1 log2 M1 + d2 log2 M2

d1 + d2
[bits/symbol/dimension-pair],

where d1 and d2 are the number of I/Q pairs in Fig. 4 transmit-
ting M1-QAM and M2-QAM, respectively, and d1+d2 = n/2.
The QAM constellation having the same spectral efficiency
as Λ76

16 has parameters d1 = 4, d2 = 4, M1 = 1024, and
M2 = 512; for the QAM corresponding to L155

32 , we should
set d1 = 11, d2 = 5, M1 = 1024, and M2 = 512. The
two constituent QAM constellations are scaled to the same
minimum distance, which maximizes the minimum distance
of the resulting hybrid-QAM constellation for a given n-
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Fig. 5: The BER as a function of the OSNR for VCs compared
with QAM constellations in the B2B scenario. Dashed lines represent
QAM constellations. Lines with the same colors represent the same
spectral efficiencies.

dimensional symbol energy Es [30, Ch. 4.3]. For modeling the
fiber channel, the Manakov equation [31] is adopted and the
split-step Fourier method (SSFM) [32] is used to simulate the
channel, which is sufficiently accurate to capture the nonlinear-
ities in a real fiber. In the digital signal processing (DSP) chain
at the receiver side, a one-time chromatic dispersion (CD)
compensation is performed. Alternatively, a full-field digital
backpropagation (DBP) can be implemented to increase the
transmission distance of VCs with high spectral efficiencies.
Also, we use a simple pilot-aided DSP algorithm, in which
a certain percentage of 4-QAM pilot symbols are added in
front of the transmitted symbols in each polarization to further
compensate for the phase rotation in each channel due to
fiber nonlinearities. The QAM formats are Gray labeled and
detected with the maximum likelihood decoder. The simulation
parameters are listed in Table II.

In experiments, other impairments such as phase noise,
frequency offset, transceiver impairments, etc., may need to
be compensated using a more sophisticated DSP chain. In
general, standard DSP algorithms designed for QAM work for
VCs as well without modification. In [20], a pilot-based DSP
algorithm described in [33] has been used for transmission of
VCs in experiments.

A. Back-to-back case

A back-to-back (B2B) scenario reflects the performance
of VCs in the absence of fiber nonlinearities. The BER
performance of the considered VCs depends on the spectral
efficiencies, number of dimensions, and the labeling scheme.
Fig. 5 presents the BER performance of the considered VCs
compared with QAM in the B2B scenario. The optical signal-
to-noise ratio (OSNR) is calculated assuming that it is mea-
sured in a reference optical bandwidth of 12.5 GHz (0.1-
nm wavelength). VCs with higher spectral efficiencies have
larger OSNR gains. Up to 1 dB power gains are observed at a
BER of 10−3 for Λ76

16. The 32-dimensional VCs do not show
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Fig. 6: The maximum AIRs as a function of the OSNR for (a) 16-
dimensional and (b) 32-dimensional VCs in the B2B scenario. Solid
and dashed lines without markers represent the MI and GMI of QAM,
respectively. Lines with the same colors represent the same spectral
efficiencies β (see Table I).

higher gains than 16-dimensional VCs, since the bit labeling
scheme is more efficient in 16-dimensional VCs. To compare
the labeling performance for these very large VCs, one could
calculate the Gray penalty [34], [35] using Algorithm 5 in
[17]. For example, Λ76

16 has a Gray penalty of approximately
1.33, which is smaller than that of L155

32 (1.40).
Fig. 6 shows the estimated MI and GMI as a function

of OSNR in the B2B scenario. The MI is estimated using
the method in [19, Sec. V-B] and parameters are chosen as
suggested therein. The GMI is estimated using the method and
parameters proposed in section III-B. The results show that
VCs outperform QAMs throughout the whole OSNR range in
terms of MI. Up to 0.33 bits/symbol/dimension-pair MI gains
over QAMs can be observed. However, as for the GMI, VCs
only outperform QAM in a limited OSNR range, and VCs with
higher spectral efficiencies tend to have larger GMI gains. A
0.21 bits/symbol/dimension-pair GMI gain is observed for Λ92

16
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Fig. 7: The BER as a function of the launch power for VCs in
the single-channel case with electronic CD compensation. Dashed
lines with the same colors represent QAM having the same spectral
efficiencies β as VCs.

when the GMI is close to β. Compared with 16-dimensional
VCs, the 32-dimensional VCs have almost no GMI gains due
to the worse labeling performance.

B. Single-channel case

Fig. 7 shows the BER performance of the considered VCs
over a nonlinear fiber channel. Only CD compensation is
performed at the receiver. The BER is presented between 10−4

and 10−2, which covers most commonly-used hard-decision
forward error correction limits for fiber communications [36].
The simulated transmission distances are short, since the
spectral efficiencies are high. It shows that the considered VCs
reduce the minimum BER over QAM by 25%–58%, and show
launch power gains ranging from 1.0–2.3 dB over QAM at
the minimum BER achieved by QAM, larger than the OSNR
improvements realized in the B2B case, which are less than 1
dB.
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Fig. 8: The BER as a function of the launch power for VCs in the
single-channel case with a small step size DBP. Dashed lines with
the same colors represent QAM having the same spectral efficiencies
β as VCs.

The considered VCs are shown to be suitable for short-
distance transmission. Despite this, we also study their perfor-
mance when a full-field DBP with a rather small step size (1
km) is used to support the high SNR needed by these VCs for
longer transmission distances. As an example, Λ76

16 and L155
32

still maintain good launch power gains as shown in Fig. 8 even
when most of the nonlinearities are compensated in the DBP.
This extreme case shows the advantage of transmitting VCs
over long distances if high complexity is allowed in the DSP.

Fig. 9 shows the maximum AIR performance for the VCs
with and without DBP. With only CD compensation, 0.36–
0.44 bits/symbol/dimension-pair MI gains of VCs over QAM
can be observed throughout the whole launch power range.
However, small GMI gains are only observed for Λ76

16 in a
limited launch power range. With a small step size DBP, VCs
achieve similar MI gains as without DBP. The GMI gains
tend to be somewhat higher when the SNR is higher. If we
assume an FEC code with 20% overhead, which reduces the
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Fig. 9: The maximum AIRs as a function of the launch power of
VCs in the single-channel case. In (a), a one-time electronic CD
compensation is performed. In (b), a full-field 1-km step size DBP is
used. Solid and dashed lines without markers represent the MI and
GMI of QAM, respectively. Lines with the same colors have the same
spectral efficiencies β. For each VC, two horizontal dash-dotted lines
are drawn at 80% and 87% of β, corresponding to an FEC overhead
of 25% and 15%, respectively.

spectral efficiency to 83% of the uncoded spectral efficiency
β, 0.17 and 0.11 bits/symbol/dimension-pair GMI gains are
observed for Λ76

16 and L155
32 , respectively. VCs only outperform

QAM when the GMI is above 80% and 85% of β for Λ76
16

and L155
32 , respectively. This means that there exists a BICM

scheme with an FEC overhead smaller than around 25% and
18% for Λ76

16 and L155
32 , respectively, in which using VCs as

modulation formats achieves better performance than QAM.
Fig. 10 shows the maximum AIRs as a function of the

transmission distance, in which the launch power is optimized
for each distance. For medium distance range, VCs can achieve
up to 0.50 bits/symbol/dimension-pair MI gains over QAM
at the same transmission distance. Without any compensation
of nonlinearities, at around 310 km, Λ76

16 and L123
32 increase

the reach by 96 km achieving the same MI. No significant
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Fig. 10: The maximum AIRs as a function of the transmission
distance for the VCs in the single-channel case, with a span length
of 80 km. Solid and dashed lines without markers represent the MI
and GMI of QAM, respectively. Lines with the same colors have the
same spectral efficiencies β.

gains are shown in terms of GMI. With DBP at the receiver
(10-km step size), Λ76

16 realizes larger MI and GMI gains, or
reach increase at the same MI and GMI, compared with the
case without DBP. For example, at the same GMI value, Λ76

16

increases the transmission distance of QAM from 198 to 240
km. For short transmission distances (40–120 km) without
DBP, VCs maintain large MI gains and reach increase at
the same MI, and realize up to 0.30 bits/symbol/dimension-
pair GMI gains. The maximum observed MI and GMI gains
over QAM are up to 0.50 and 0.30 bits/symbol/dimension-
pair, respectively, which are larger than the maximum ob-
served MI and GMI gains in the B2B case (0.33 and 0.21
bits/symbol/dimension-pair), respectively.

C. WDM case

The BER performance of VCs compared with QAM in
WDM systems without and with a small step size DBP are
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Fig. 11: The BER as a function of the launch power for VCs in single-
span WDM transmission with CD compensation in DSP. Dashed
lines with the same colors represent QAM having the same spectral
efficiencies β as VCs.

shown in Fig. 11 and Fig. 12, respectively. The shown BER
is the average BER over all wavelengths, not from one of the
two center channels as usual, which however is shown to not
affect the performance analysis significantly, since there is no
big difference among the BER of each single channel; see the
dotted curves in Fig. 12a. Both with and without DBP, the
considered VCs reduce the minimum BER of QAM by 18%–
50%, and show 1.3–2.4 dB launch power gains over QAM at
the minimum BER achieved by QAM.

Fig. 13 reports some MI and GMI results as a function of
the launch power. Around 0.23–0.36 bits/symbol/dimension-
pair MI gains over QAM are achieved by the VCs for the
whole studied launch power range, whereas the GMI gains are
subject to the SNR. An extreme example is L155

32 transmitted at
80 km without DBP, whose GMI performance is much worse
than for QAM. On the other hand, for Λ76

16 transmitted at 80 km
with DBP, up to 0.15 bits/symbol/dimension-pair GMI gains
are observed in a limited launch power range.

10 12 14 16 18 20
10−4

10−3

10−2

10−1

2.4 dB

2.2 dB

Launch power P [dBm]

B
E

R

Λ76
16 3× 100 km

Λ76
16 5× 100 km

(a) 16-dimensional constellations

10 12 14 16 18 20 22
10−4

10−3

10−2

10−1

2.1 dB

1.4 dB

Launch power P [dBm]

B
E

R

L155
32 2× 100 km

L155
32 3× 100 km

(b) 32-dimensional constellations

Fig. 12: The BER as a function of the launch power for VCs in the
WDM case with a small step size (1 km) DBP. Dashed lines with the
same colors represent QAM having the same spectral efficiencies β
as VCs. In (a), the two dotted red curves above the solid Λ76

16 curve
represent the BERs of the two center channels, and the two below
are from the two side channels.

Fig. 14 illustrates the maximum AIRs as a function of
the transmission distance. For the whole studied medium
distance range, without DBP, VCs achieve up to 0.29
bits/symbol/dimension-pair MI gains and allow for larger
potential reach than QAM at the same MI, whereas the
GMI gains are negligible. With a 10-km step size DBP
at the receiver, the MI gains and reach increase are larger
than without DBP. For short distances, VCs achieve higher
maximum AIR gains than for medium distances, and in-
crease the transmission distance by 10%–20% at the same
MI. Overall, the AIR gains in WDM are marginally smaller
than in the corresponding single-channel case. This might be
due to that the fiber nonlinearities, especially the cross-phase
modulation, might have a slightly stronger impact on VCs than
QAM formats. However, the maximum observed MI gain of
VCs over QAM is still found higher than in the B2B case
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Fig. 13: The maximum AIRs as a function of the launch power of
VCs in the WDM case (a) without and (b) with a 1-km step size
DBP. Solid and dashed lines without markers represent the MIs and
GMIs of QAM, respectively. Lines with the same colors represent
the same spectral efficiencies β. For each VC, two horizontal dash-
dotted lines are drawn at 80% and 87% of β, corresponding to an
FEC overhead of 25% and 15%, respectively.

(0.39 > 0.33 bits/symbol/dimension-pair), which is consistent
with the observation in the single-channel case.

V. CONCLUSION

We have simulated transmission of 16- and 32-dimensional
Voronoi constellations with a cubic coding lattice over the
nonlinear fiber channel and studied their performance in both
single-channel and WDM systems. The BER, MI, and GMI
performance of VCs are compared with QAM constellations at
the same spectral efficiencies. Extended from the MI estima-
tion method from our previous work [19], a GMI estimation
method for very large constellations is proposed and applied
to the considered VCs. The MI and GMI performance of VCs
in fiber-optic communications are first demonstrated to our
knowledge. The launch power gains of VCs over QAM imply
that they can achieve better performance than QAM in systems
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Fig. 14: The maximum AIRs as a function of the transmission
distance for VCs in the WDM case, with a span length of 80 km.
Solid and dashed lines without markers represent the MI and GMI
of QAM, respectively. Lines with the same colors represent the same
spectral efficiencies β.

with hard-decision FEC decoding. However, in systems with
BICM and soft-decision decoding, where the GMI is the right
predictor for the post-FEC BER, the performance gains of
VCs might be limited. However, their good MI gains over
QAM imply that designing a multilevel code specifically for
the considered VCs might achieve these potential rate gains
and reach increases for fiber communications, which remains
as future work.
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