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Abstract—We present a novel coded federated learning (FL)
scheme for linear regression that mitigates the effect of straggling
devices while retaining the privacy level of conventional FL. The
proposed scheme combines one-time padding to preserve privacy
and gradient codes to yield resiliency against stragglers and
consists of two phases. In the first phase, the devices share a
one-time padded version of their local data with a subset of
other devices. In the second phase, the devices and the central
server collaboratively and iteratively train a global linear model
using gradient codes on the one-time padded local data. To
apply one-time padding to real data, our scheme exploits a fixed-
point arithmetic representation of the data. Unlike the coded
FL scheme recently introduced by Prakash et al., the proposed
scheme maintains the same level of privacy as conventional FL
while achieving a similar training time. Compared to conventional
FL, we show that the proposed scheme achieves a training speed-
up factor of 6.6 and 9.2 on the MNIST and Fashion-MNIST
datasets for an accuracy of 95% and 85%, respectively.

I. INTRODUCTION

Federated learning (FL) [1]–[3] is a distributed learning
paradigm that trains an algorithm across multiple devices
without exchanging the training data directly, thus limiting
the privacy leakage and reducing the communication load. In
many applications of FL, such as in the Internet of Things
(IoT), due to the heterogeneous nature of the training devices
and instability of the communication links, the training latency
can be severely impaired by straggling devices, i.e., devices
that do not provide timely updates. Various FL algorithms
have been proposed in the literature to tackle stragglers. The
most popular is federated averaging [1], which mitigates the
effect of stragglers by dropping the slowest devices at the cost
of reduced accuracy. When data is non-identically distributed
across devices, which is typically the case in practice, the
loss in accuracy may be significant—in this case, dropping
stragglers makes the algorithm suffer from the client drift
phenomenon, i.e., the learning converges to the optimum of
one of the local models [4], [5]. Straggler mitigating schemes
for scenarios for which the data is identically distributed across
devices were presented in [6], [7], while the authors of [5], [8]–
[10] introduced asynchronous schemes to deal with scenarios
for which the data is non-identically distributed across devices.
The key idea here is to make use of stale information (e.g.,
gradients) from the stragglers rather than discarding them at
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the central server. Generally, schemes of such nature do not
converge to the global optimum. In particular, the authors of
[8] presented a scheme that controls the client drift, but with
a nonlinear convergence rate to the global optimum [5].

Mitigating the impact of stragglers has also been addressed
in the neighboring area of distributed computing in data centers
for matrix-vector and matrix-matrix multiplication [11]–[15],
distributed gradient descent [16], and distributed optimization
[17], as well as in the context of edge computing [18]–[20] and
FL [21]. The key idea is to introduce redundant computations
by means of an erasure correcting code—thereby increasing
the computational load at each server—so that the result
of a computation task can be obtained from the subtasks
completed by a subset of the servers. In FL, the fact that
the raw data is distributed across devices beforehand precludes
from introducing redundant computations in the same manner
as in distributed computing. The main idea in [21] is that
devices generate parity data, which is shared with the central
server to facilitate the training and provide resilience against
straggling devices. The sharing of the parity (coded) data with
the central server, however, leaks information of the raw data
to the central server, i.e., the coded FL scheme in [21] yields
a lower level of privacy than conventional FL.

In this paper, we propose a novel privacy-preserving coded
FL scheme for linear regression that mitigates the effect
of straggling devices and converges to the global optimum.
Hence, the proposed scheme yields no penalty on the accuracy
even for highly non-identically distributed data across devices.
Furthermore, unlike the scheme in [21], it retains the privacy
level of conventional FL against the central server and honest-
but-curious devices. The scheme consists of two phases: in
the first phase, the devices share a one-time padded version of
their local data with a subset of other devices. The sharing of
one-time padded data does not reveal any information about the
data to other devices but enables the use of erasure correcting
codes in the second phase. Particularly, in this phase, each
device uses a gradient code [16] to generate a partial gradient
on the local data and the padded data received from other
devices. The partial gradient is then shared with the central
server, which aggregates the received partial gradients—after
removing the random keys—and sends an updated global
model to the devices. We show that, for a realistic IoT
environment, the proposed coded FL scheme using kernel
embedding (for linearization) achieves a speed-up factor of 6.6

ar
X

iv
:2

10
9.

15
22

6v
2 

 [
cs

.L
G

] 
 1

5 
Fe

b 
20

22



and 9.2 compared to conventional FL when training on the
MNIST [22] and Fashion-MNIST [23] datasets for an accuracy
of 95% and 85%, respectively.

Notation. We use uppercase and lowercase bold letters for
matrices and vectors, respectively, italics for sets, and uppercase
sans-serif letters for random variables, e.g., X , x, X , and X
represent a matrix, a vector, a set, and a random variable,
respectively. An exception to this rule is ε, which will denote a
matrix. Vectors are represented as row vectors throughout the
paper. For natural numbers c and d, 1c×d denotes an all-one
matrix of size c×d. The transpose of a matrix X is denoted as
X>. The support of a vector x is denoted by supp(x), while
the gradient of a function f(X) with respect to X is denoted
by ∇Xf(X). Furthermore, we represent the Euclidean norm
of a vector x by ‖x‖, while the Frobenius norm of a matrix
X is denoted by ‖X‖F. Given integers a, b ∈ Z, a < b, we
define [a, b] , {a, . . . , b}, where Z is the set of integers, and
[a] , {1, . . . , a} for a positive integer a. Additionally, for a
real number e, bec is the largest integer less than or equal
to e. The expectation of a random variable Λ is denoted by
E[Λ], and we write Λ ∼ geo(1− p) to denote that Λ follows a
geometric distribution with failure probability p.

II. PRELIMINARIES

A. Fixed-Point Numbers

Fixed-point numbers are rational numbers that can be
split into an integer part and a fractional part. Let
s · (δk−f−2 . . . δ0 . δ−1 . . . δ−f ) be the binary representation of
a fixed-point number x̃, of value x̃ = s ·

∑k−f−2
i=−f δi2

i, where
s = sign(x̃) is the sign of x̃, k− f is the length of the integer
part (including the sign), and f the length of the fractional
part. Also, let x̄ = s ·

∑k−f−2
i=−f δi2

i+f ∈ Z. Then, x̃ = x̄2−f ,
i.e., fixed-point numbers can be seen as integers scaled by a
factor 2−f . Let Z〈k〉 = [−2k−1, 2k−1 − 1]. We define the set
Q〈k,f〉 , {x̃ = x̄2−f , x̄ ∈ Z〈k〉} of all fixed-point numbers
with range 2k−f and resolution 2−f .

B. Cyclic Gradient Codes

Gradient codes [16] are a class of codes designed to mitigate
the effect of stragglers in distributed gradient descent in data
centers. Consider a piece of data partitioned into D partitions,
which are distributed among D servers, each storing α ≤ D
partitions. An (α,D) fixed-point gradient code is characterized
by the matrices A ∈ QS×D〈k,f〉 and B ∈ QD×D〈k,f〉 of size S ×D
and D × D, respectively, where S denotes the number of
straggling patterns that the code can deal with. The i-th row
of B, i ∈ [D], is associated with the i-th server—the support
of the row corresponds to the partitions of the data assigned
to that server. Furthermore, we assume that the supports of the
rows of B, each of size α, follow a cyclic pattern. We will
refer to such cyclic gradient codes simply as gradient codes.
Now, let gi ∈ Qd〈k,f〉 denote the gradient of dimension d of
the i-th partition. The encoding of the gradients at each server
is given by B

(
g>1 , . . . , g

>
D

)>
, where the i-th row corresponds

to server i. Each server then sends the encoding of the local
gradients to a master server, whose aim is to linearly combine

any D − α + 1 of them to obtain
∑
i gi, thus mitigating

the impact of stragglers. We refer to this operation as the
decoding operation, which is determined by A. Particularly, if
the master server receives gradients from a subset of servers
A = {a1, . . . , a|A|}, it applies the linear combination of these
gradients with coefficient for server ai given by the ai-th
element of the row of A with support A. Moreover, it is
required that

AB = 1S×D . (1)

We refer the interested reader to [16, Alg. 1] and [16, Alg. 2]
for the construction of A and B, respectively.

III. SYSTEM MODEL

We consider an FL scenario in which D devices collaborate
to train a machine learning model with the help of a central
server. Device i ∈ [D] has local data Di = {(x(i)

j ,y
(i)
j ) |

j ∈ [ni]} consisting of ni training points. We denote by
m the total number of data points across all devices, i.e.,
m =

∑
i ni. The scheme proposed in Section IV is based

on one-time padding, which cannot be applied over the reals.
To circumvent this shortcoming, our scheme works on the
fixed-point representation of the data. Hereafter, we assume
that x(i)

j ∈ Qd〈k,f〉 and y
(i)
j ∈ Qc〈k,f〉 are the fixed-point

representations of the corresponding real-valued vectors. Note
that practical systems operate in fixed-point, hence the proposed
scheme does not incur in a limiting assumption.

We represent the data in matrix form as

X(i) =
(
x
(i)>
1 , . . . ,x

(i)>
ni

)>
,

Y (i) =
(
y
(i)>
1 , . . . ,y

(i)>
ni

)>
,

where X(i) is of size ni × d and Y (i) of size ni × c. The
devices and the central server collaboratively try to infer a
linear global model Θ ∈ Qd×c〈k,f〉 as y = xΘ, where x is a
feature vector and y its corresponding label, using federated
gradient descent.

A. Federated Gradient Descent

For convenience, we collect the whole data (consisting of
m data points) in matrices X and Y as

X =

x1

...
xm

 =

X
(1)

...
X(D)

 and Y =

y1...
ym

 =

Y
(1)

...
Y (D)

 ,

where X is of size m× d and Y of size m× c. Inferring the
linear model Θ can be formalized as the minimization problem

arg min
Θ

f(Θ) ,
1

2m

m∑
l=1

‖xlΘ− yl‖2 +
λ

2
‖Θ‖2F , (2)

where f(Θ) is the global loss function and λ the regularization
parameter.

Let fi(Θ) denote the local loss function corresponding to the
data at device i, i.e., fi(Θ) = 1

2ni

∑ni
j=1 ‖x

(i)
j Θ−y(i)

j ‖2. Then,



f(Θ) in (2) can be expressed as f(Θ) =
∑D
i=1

ni
m fi(Θ) +

λ
2 ‖Θ‖

2
F .

Federated gradient descent proceeds iteratively to train the
model Θ. At each epoch, the devices compute the gradients of
the respective loss functions and send them to the central server,
which aggregates the received gradients to update the model.
More precisely, during the e-th epoch, device i computes the
gradient

G
(e)
i = ni∇Θfi(Θ

(e)) = X(i)>X(i)Θ(e) −X(i)>Y (i) ,
(3)

where Θ(e) denotes the current model estimate. Upon reception
of the gradients, the central server aggregates them to update
the model according to

∇Θf(Θ(e)) =

D∑
i=1

1

m
G

(e)
i + λΘ(e) , (4)

Θ(e+1) = Θ(e) − µ∇Θf(Θ(e)) , (5)

where µ is the learning rate. The updated model Θ(e+1) is
then sent back to the devices, and (3) to (5) are iterated E
times until convergence, i.e., until Θ(E+1) ≈ Θ(E).

B. Computation and Communication Latency

Let Tcomp
i be the time required to compute ρi multiply and

accumulate (MAC) operations by device i. Similar to [19], we
model Tcomp

i as a shifted exponential random variable,

Tcomp
i =

ρi
τi

+ Λi ,

where {Λi} are independent exponential random variables with
E[Λi] = 1/ηi representing the random setup times required
by the devices, and τi is the number of MAC operations per
second performed by device i.

We assume that communication between the central server
and the devices may fail. To enable communication, the devices
and the central server repetitively transmit during the uplink and
downlink phases until the first successful transmission occurs.
Let Nu

i ∼ geo (1−pi) and Nd
i ∼ geo (1−pi) denote the number

of transmissions needed for successful communication in the
uplink and downlink, respectively, where pi denotes the failure
probability of a single transmission between the central server
and device i. Also, let γu and γd be the transmission rates
between the central server and the devices in the uplink and
downlink, respectively. Then, the time required to successfully
communicate b bits during uplink and downlink, denoted by
Tu
i and Td

i , respectively, is

Tu
i =

Nu
i

γu
b and Td

i =
Nd
i

γd
b .

In our model, all communication between any two devices
happens over a secured link and is relayed through the central
server, i.e., any two devices share an encrypted communication
link and the central server learns nothing about the exchanged
messages.

IV. LOW-LATENCY FEDERATED GRADIENT DESCENT

The proposed scheme builds on one-time padding and
gradient codes. Note, however, that one-time padding cannot
be applied to data over the reals. To bypass this problem, we
consider a fixed-point representation of the data and apply
fixed-point arithmetic operations. In the following, we first
discuss how to preserve privacy in performing operations using
fixed-point arithmetic and then present the proposed scheme.

A. Privacy-Preserving Operations on Fixed-Point Numbers

The authors of [24] were the first to address the problem of
performing secure computations (in the context of multiparty
computation) using fixed-point numbers. The idea is to map
fixed-point numbers to finite-field elements, and then perform
secure operations (addition, multiplication, and division) of two
secretly-shared numbers over the finite field. In this paper, we
use a similar approach as the one in [24] but define a different
mapping and a simplified multiplication operation, leveraging
the fact that we only need to multiply a secretly-shared number
with a public number, as discussed in the next subsection. The
resulting protocol is more efficient than the one in [24].

Consider the fixed-point datatype Q〈k,f〉 (see Section II-A).
Secure addition on Q〈k,f〉 can be performed via simple integer
addition with an additional modulo operation. Let (·)Z〈k〉 be the
map from the integers onto the set Z〈k〉 given by the modulo
operation. Furthermore, let ã, b̃ ∈ Q〈k,f〉, with ã = ā2−f

and b̃ = b̄2−f . For c̃ = ã + b̃, with c̃ = c̄2−f , we have
c̄ = (ā+ b̄)Z〈k〉 .

Multiplication on Q〈k,f〉 is performed via integer multiplica-
tion with scaling over the reals in order to retain the precision of
the datatype and an additional modulo operation. For d̃ = ã · b̃,
with d̃ = d̄2−f , we have d̄ = (bā · b̄ · 2−fc)Z〈k〉 .

Proposition 1 (Perfect privacy). Consider a secret x̃ ∈ Q〈k,f〉
and a key r̃ ∈ Q〈k,f〉 that is picked uniformly at random. Then,
x̃+ r̃ is uniformly distributed in Q〈k,f〉, i.e., x̃+ r̃ does not
reveal any information about x̃.

Proposition 1 is an application of a one-time pad, which
was proven secure by Shannon in [25].

Proposition 2 (Retrieval). Consider a public fixed-point
number c̃ ∈ Q〈k,f〉, a secret x̃ ∈ Q〈k,f〉, and a key r̃ ∈ Q〈k,f〉
that is picked uniformly at random. Suppose we have the
weighted sum c̃(x̃ + r̃) and the key. Then, we can retrieve
c̃x̃ = c̃(x̃+ r̃)− c̃r̃ +O(2−f ).

The above proposition tells us that, given c̃, c̃(x̃+ r̃), and r̃,
it is possible to obtain an approximation of c̃x̃. Moreover, if
we choose a sufficiently large f , then we can retrieve c̃x̃ with
negligible error.

B. Data Sharing Scheme

We are now ready to introduce the proposed privacy-
preserving scheme. It consists of two phases: in the first phase,
discussed in this subsection, we secretly share data between
devices, which enables the use of gradient codes in the second



phase to perform privacy-preserving coded federated gradient
descent while conferring straggler mitigation.

The central server first generates two sets of keys, K1 =
{∆1, . . . ,∆D} and K2 = {Ξ1, . . . ,ΞD}, where ∆i and Ξi

are sent to device i,1 ∆i is a matrix of size d× c, and Ξi is
a symmetric matrix of size d× d. Using its keys and its data
Di, device i computes

Ψi = G
(1)
i + ∆i , (6)

Φi = X(i)>X(i) + Ξi , (7)

whereG(1)
i is the gradient of device i in the first epoch (see (3)).

The above matrices are one-time padded versions of the
gradient and transformed data. Sharing Ψi and Φi does not
leak any information about the data of device i, but it is critical
nevertheless, as it introduces redundancy of the data across
devices, which enables the use of gradient codes in the second
phase. In the following, we describe the sharing process.

Let α ≤ D be the number of local datasets to be stored at
each device (including its own), and B the encoding matrix
of an (α,D) gradient code in fixed-point representation with
entries bij . Each device i has to send Ψi and Φi to α−1 other
devices given by the support of the i-th row of B. We denote
the support of the i-th row of B as {ω1i, . . . , ωαi}. Note that i
is always in the support of row i and the devices do not have to
send data to themselves. Hence, each device shares its padded
data and gradient with only α− 1 other devices. We assume
that the devices are equipped with full-duplex technology and
have orthogonal channels to the central server, i.e., the devices
can share their data simultaneously.

Once the padded gradient and data have been shared, device
i computes

Ci = (bi,ω1i , . . . , bi,ωαi)
(
Ψ>ω1i

, . . . ,Ψ>ωαi
)>
, (8)

C̄i = (bi,ω1i , . . . , bi,ωαi)
(
Φ>ω1i

, . . . ,Φ>ωαi
)>
, (9)

which completes the sharing phase. Equation (8) corresponds
to the encoding at device i via a gradient code of the padded
gradients at epoch 1. Similarly, (9) corresponds to the encoding
at device i of the available padded data.

C. Coded Gradient Descent

After the transmission phase, the central server and the
devices iteratively train a global model using gradient descent.
Consider the e-th epoch and let

Θ(e) = Θ(1) + ε(e) (10)

be the model parameter at the e-th epoch, where ε(e) is the
update matrix and Θ(1) the initial model estimate. Instead of
sending Θ(e) to the devices, as is standard for gradient descent,
in the proposed coded gradient descent, the central server sends
the update matrix ε(e).

1Note that we consider the communication cost of transmitting keys to
be negligible since, in practice, it is enough to send a (much smaller)
pseudorandom number generator seed instead of the random numbers.

Upon reception of ε(e), the devices compute the gradients
G̃

(e)
i on the encoded padded data. Particularly, in the e-th

epoch, device i computes the gradient

G̃
(e)
i = Ci + C̄iε

(e)

(a)
=

α∑
j=1

bi,ωji

(
G(1)
ωji + ∆ωji

)

+

α∑
j=1

bi,ωji

(
X(ωji)>X(ωji) + Ξωji

)
ε(e)

(b)
=

α∑
j=1

bi,ωji

(
G(1)
ωji +X(ωji)>X(ωji)ε(e)

)

+

α∑
j=1

bi,ωji

(
∆ωji + Ξωjiε

(e)

)
(c)
=

α∑
j=1

bi,ωji

(
G(e)
ωji + Ξωjiε

(e) + ∆ωji

)
,

where (a) follows from (8) and (9) together with (6) and (7), (b)
is a reordering, and (c) follows from (3) and (10). Device i then
sends G̃(e)

i to the central server, which updates the global model
as explained next. The central server waits for the first D−α+1
gradients it receives, subtracts the keys (as it knows B and the
keys K1 and K2), and performs a decoding operation based on
matrix A, where A is the decoding matrix for the gradient code
given byB. Let A ⊂ [D], |A| = D−α+1, be the set of indices
of the D−α+1 fastest devices to finish the computation of G̃(e)

i .
After removing the keys from G̃

(e)
i , ∀i ∈ A, the central server

obtains P (e)
i =

∑α
j=1 bi,ωjiG

(e)
ωji . Next, it decodes according

to A as follows. Let as = (as,1, as,2, . . . , as,D) be the s-th
row of A such that supp(as) = A. Then,

∑
i∈A

as,iP
(e)
i

(a)
=

D∑
i=1

G
(e)
i

(b)
= m

(
∇Θf(Θ(e))−λΘ(e)

)
, (11)

where (a) follows from the property of gradient codes in (1)
and (b) follows from (4). Lastly, Θ(e+1) is obtained according
to (5) for the next epoch. Note that for the central server to
obtain the correct global model update, the devices can perform
only one epoch of local training between two successive global
updates. This restriction means that our scheme can only be
applied to federated gradient descent and not to federated
averaging, where devices perform multiple local model updates
before the central server updates the global model.

Proposition 3. The proposed (α,D) coded FL scheme is
resilient to α− 1 stragglers, and achieves the global optimum,
i.e., the optimal model obtained through gradient descent for
linear regression.

Proof: From (11), we see that during each epoch, e, the



central server obtains

∇Θf(Θ(e)) =
1

m

D∑
i=1

G
(e)
i + λΘ(e)

=
1

m
X>(XΘ(e) − Y ) + λΘ(e) ,

using the coded data obtained from the D − α + 1 fastest
devices. It further obtains an updated linear model using (5),
which is exactly the update rule for gradient descent.

V. NUMERICAL RESULTS

We simulate a wireless setting with D = 25 devices and a
central server which want to perform FL on the MNIST [22]
and Fashion-MNIST [23] datasets. To simulate non-identically
distributed data, we sort the training data corresponding to
the labels and then we divide the training data into D = 25
equal parts, one for each device. Each device pre-processes its
assigned data using kernel embedding as done by the radial
basis function sampler of Python’s sklearn package (with 5
as kernel parameter and 2000 features) to obtain the (random)
features X(i) and then stores X(i)>X(i). We assume that the
pre-processing step is performed offline. For conventional FL,
the devices use 32-bit floating point arithmetic, whereas in
the proposed coded FL scheme, the devices work on fixed-
point numbers with k = 48 bits out of which f = 24 bits are
for the fractional part. Furthermore, for conventional FL the
data at the devices is divided into five smaller batches and
we perform mini-batch learning to speed up the process by
reducing the epoch times. The mini-batch size is chosen as a
compromise between the two corner cases: a mini-batch size of
1 is difficult to parallelize, whereas a large mini-batch size may
exceed the devices’ limited parallelization capabilities leading
to an increased computational latency at each epoch. We select
a mini-batch size of 480 as a middle ground, which allows to
utilize the parallelization capabilities of the considered chips
while keeping the computational load at each epoch reasonable.

We consider devices with heterogeneous computation ca-
pabilities, which we model by varying the MAC rates τi. In
particular, we have four classes of devices: 10 devices have
a MAC rate of 25 · 106 MAC/s, 5 devices have 5 · 106, 5
have 2.5 · 106, and the last 5 have 1.25 · 106, whereas the
central server has a MAC rate of 8.24 · 1012 MAC/s. We
chose these MAC rates based on the performance that can be
expected by using devices with chips from Texas Instruments
of the TI MSP430 family [26]. We sample the setup times Λi

at each epoch and assume that they have an expected value
of 50% of the deterministic computation time, i.e., device i
performing ρi MAC operations at each epoch yields ηi = 2τi

ρi
.

The communication between the central server and the devices
is based on the LTE Cat 1 standard for IoT applications and the
corresponding rates are γd = 10 Mbit/s and γu = 5 Mbit/s. The
probability of transmission failure between the central server
and the devices is constant across devices, with pi = 0.1,
∀i ∈ [D], and we assume a header overhead of 10% for each
packet. Lastly, we use regularization parameter λ = 9× 10−6
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Fig. 1: Training time for the proposed coded FL scheme with different
values of α, the coded FL scheme in [21], and conventional FL.

and initial learning rate µ = 6. The learning rate µ is updated
as µ← 0.8µ at epochs 200 and 350.

In Fig. 1(a), we plot the training time of the proposed coded
FL scheme and compare it with that of conventional FL and the
scheme in [21] using the MNIST dataset. For our scheme, we
consider α ∈ {6, 16, 23, 25}. Note that α = 25 corresponds to
a replication scheme and all the padded data will be available
at all devices. As α increases, so does the time required to
complete the encoding and sharing phase (note that there is
no encoding and sharing phase for conventional FL). This
induces a delay in the start of the training phase, which can
be observed in the figure by the initial offset of the coded
FL curves. However, once the sharing phase is completed, the
time required to finish an epoch reduces as α increases, as
the central server only needs to wait for the gradients from
the D − α + 1 fastest devices to perform the model update.
We see that the proposed coded FL with α = 23 requires the
least training time to achieve an accuracy of 95%, yielding
a speed-up of approximately 6.6 compared to conventional
FL, where we have to wait for the slowest device in each



epoch. For different target accuracy levels, different values
of α will yield the lowest latency. If the target accuracy lies
below 90%, it turns out that conventional FL outperforms the
proposed scheme. Furthermore, too low values of α, such as
α = 6, will never yield a lower latency for a given accuracy
than conventional FL. The scheme in [21] trades off efficient
training with privacy. To quantify the amount of parity data
introduced, in [21], the authors define a parameter δ as the
amount of parity data per device over the total amount of raw
data across devices. Here, we choose two extreme values for δ,
namely 0.1 and 0.8. Note that the higher δ is, the more data
is leaked to the central server. Our proposed scheme achieves
a faster training time than the scheme in [21] with δ = 0.1 for
an accuracy of 95%, while it achieves a slightly worse training
time than the scheme in [21] with δ = 0.8. It is important to
realize, though, that a large δ goes against the spirit of FL: it
leaks almost all data to the central server.

A similar behavior is observed for the Fashion-MNIST
dataset in Fig. 1(b), for which α = 25 gives the best
performance for an accuracy of 85% with a speed-up factor of
approximately 9.2 compared to conventional FL. However, if
the target accuracy is between 80% and 85%, nontrivial coding
schemes (i.e., α < 25) perform best.

We still see gains when comparing our scheme to conven-
tional FL where we drop the slowest devices at each epoch.
However, due to space limitations, we do not include the results
here.

VI. CONCLUSION

We proposed a novel coded FL scheme for linear regression
that provides resiliency to straggling devices, while preserving
the privacy level of conventional FL. The proposed scheme
combines one-time padding—exploiting a fixed-point arithmetic
representation of the data—to retain privacy and gradient codes
to mitigate the effect of stragglers. For a given target accuracy,
the proposed scheme can be optimized to minimize the latency.
For the MNIST dataset and an accuracy of 95%, our proposed
coded FL scheme achieves a training speed-up factor of 6.6
compared to conventional FL, while for the Fashion-MNIST
dataset our scheme achieves a training speed-up factor of
9.2 for an accuracy of 85%. Furthermore, our scheme yields
comparable latency performance to the coded FL scheme in
[21], without incurring the additional loss in privacy of this
scheme. While the focus of this paper is in linear regression, the
proposed scheme can also be applied to nonlinear optimization
problems, e.g., classification, by transforming the dataset using
kernel embedding.
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