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ABSTRACT
We perform a numerical analysis of a class of randomly perturbed Hamil-
tonian systems and Poisson systems. For the considered additive noise
perturbation of such systems, we show the long-time behaviour of the
energy and quadratic Casimirs for the exact solution. We then propose
and analyse a drift-preserving splitting scheme for such problems with
the following properties: exact drift preservation of energy and quadratic
Casimirs, mean-square order of convergence 1, weak order of convergence
2. These properties are illustrated with numerical experiments.
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1. Introduction

Hamiltonian systems are widely used models in science and engineering. In the deterministic case,
one main feature of such models is that the solution conserves exactly the Hamiltonian energy for all
times. The design and study of energy-preserving numericalmethods for such problems has attracted
much attention in the recent years, see for instance [7,8,12,17,22,23,29,30,34,37–39,49] and references
therein.

For an additive white noise perturbation of such Hamiltonian systems, the energy is no longer
constant along time, but grows in average linearly for the exact solution, which reveals non trivial to
reproduce by numericalmethods, see [9,13,14,19,21,28,43,44], and extensions to the case of stochastic
partial differential equations in [3,4,15,18,41].

In this paper, we propose and analyse a drift-preserving scheme for stochastic Poisson systems
subject to an additive noise perturbation. Such problems are a direct generalization of the stochastic
differential equations (SDEs) studied recently in [13], as well as in all the above references, but the
proposed numerical integrator is not a trivial generalization of the one given in [13].

In Section 2, we propose a new numerical method that exactly satisfies a trace formula for the
linear growth for all times of the expected value of the Hamiltonian energy and of the Casimir of the
solution. Such long-time behaviour corresponds to the one of the exact solution of stochastic Poisson
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systems and can also be seen as a long-time weak convergence estimate. For the sake of complete-
ness, in Section 3, we prove mean-square and weak orders of convergence of the proposed numerical
method under classical assumptions on the coefficients of the problem. Finally, Section 4 is devoted to
numerical experiments illustrating the main properties of the new numerical method for stochastic
Hamiltonian systems and Poisson systems.

2. Drift-preserving scheme for stochastic Poisson problem

This section presents the problem, introduces the drift-preserving integrator and shows some of its
main geometric properties.

2.1. Setting

For a fixed dimension d, letW(t) ∈ R
d denote a standard d-dimensional Wiener process defined for

t> 0 on a probability space equipped with a filtration and fulfilling the usual assumptions. For a fixed
dimensionm and a smooth potential V : R

m → R, we consider the separable Hamiltonian function
of the form

H(p, q) = 1
2

m∑
j=1

p2j + V(q). (1)

We next set X(t) = (p(t), q(t)) ∈ R
m × R

m and consider the following stochastic Poisson system
with additive noise

dX(t) = B(X(t))∇H(X(t)) dt +
(

�

0

)
dW(t). (2)

Here, B(X) ∈ R
2m×2m is a smooth skew-symmetric matrix and � ∈ R

m×d is a constant matrix. The
initial value X0 = (p0, q0) of the problem (2) is assumed to be either non-random or a random vari-
able with boundedmoments up to any order (and adapted to the filtration). For simplicity, we assume
in the analysis of this paper that (x, y) �→ B(x)∇H(y) is globally Lipschitz continuous onR

2m × R
2m

and that H and B are C7, resp. C6-functions with all partial derivatives with at most polynomial
growth. This is to ensure existence and uniqueness of solutions to (2) for all times t> 0 as well
as bounded moments at any orders of such solutions. These regularity assumptions on the coeffi-
cients B and H will also be used to show strong and weak convergence of the proposed numerical
scheme for (2). We observe that one could weaken these assumptions, but this is not the aim of the
present work. The present setting covers, for instance, the following examples: simplified versions of
the stochastic rigid bodies studied in [45,47], the stochastic Hamiltonian systems considered in [13]
by taking

B(X) = J =
(

0 −Idm
Idm 0

)
the constant canonical symplectic matrix, for which the SDE (2) yields

dp(t) = −∇V(q(t)) dt + � dW(t), dq(t) = p(t) dt,

the Hamiltonian considered in [9] (where the matrix � is diagonal), the linear stochastic oscillator
from [44], and various stochastic Hamiltonian systems studied in [36, Chap. 4], see also [35], or
[26,27,42,50].

Remark 2.1: We emphasize that our analysis is not restricted to the above form of the Hamiltonian.
Indeed, the results below as well as the proposed numerical scheme can be applied to themore general
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problem (no needed of partitioning the vector X neither to have the separable Hamiltonian (1))

dX(t) = B(X(t))∇H(X(t)) dt +
(

�

0

)
dW(t),

as long as the Hessian of the Hamiltonian has a nice structure. One could for instance consider a
(linear in p) term of the form Ṽ(q)p or most importantly the case when the Hamiltonian is quadratic
as in the example of a stochastic rigid body problem. See below for further details.

Applying Itô’s lemma to the function H(X) on the solution process X(t) of (2), one obtains

dH(X(t)) =
(

∇H(X(t))�B(X(t))∇H(X(t)) + 1
2
Tr

((
�

0

)�
∇2H

(
�

0

)))
dt

+ ∇H(X(t))�
(

�

0

)
dW(t). (3)

Using the skew-symmetry of thematrixB(X), we have∇H(X)TB(X)∇H(X) = 0. Furthermore, using
that the partial Hessian ∇2

ppH(X) = Idm is a constant matrix, thanks to the separable form of the
Hamiltonian (1), and rewriting the above equation in integral form and taking the expectation, one
finally obtains the so-called trace formula for the energy of the stochastic Poisson SDE (2):

E [H(X(t))] = E [H(X0)] + 1
2
Tr
(
���

)
t. (4)

This shows that the expected energy of the exact solution of (2) grows linearly with time for all t> 0.

Remark 2.2: Observe that the form of the noise term in equation (2) makes the term

Tr

((
�

0

)�
∇2H

(
�

0

))
= Tr

(
���

)
in (3) independent of the stochastic process X(t). Hence one obtains the linear growth along time of
the expected energy in (4). In general, this is not the case if one would consider a non-zero additive
noise in all the component or a multiplicative noise in (2). Note however that the linear growth prop-
erty of the expected energy is still valid if one considers amore general Hamiltonian function (1) with
kinetic energy given by 1

2p
�M−1p, with a given invertible mass matrixM.

Our objective is to derive and analyse a new numerical scheme for (2) that possesses the same trace
formula for the energy for all times.

2.2. Definition of the numerical scheme

The numerical integrator studied in [13] cannot directly be applied to the stochastic Poisson sys-
tem (2). Our idea is to combine a splitting scheme with one of the (deterministic) energy-preserving
schemes from [17]. Observe that a similar strategy was independently presented in [20] in the par-
ticular context of the Langevin equation with other aims than here. We thus propose the following
time integrator for problem (2), which is shown in Theorem 2.2 to be a drift-preserving integrator for
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all times:

Y1 := Xn +
(

�

0

)(
W(tn + h

2
) − W(tn)

)
,

Y2 := Y1 + hB
(
Y1 + Y2

2

)∫ 1

0
∇H(Y1 + θ(Y2 − Y1)) dθ ,

Xn+1 = Y2 +
(

�

0

)(
W(tn+1) − W

(
tn + h

2

))
.

(5)

In the above formulas, we denote the step size of the drift-preserving scheme with h> 0 and discrete
times with tn = nh.

Remark 2.3: (Numerical implementation) The middle step in Equation (5) requires, in general, the
solution to a nonlinear system of equations. Even in higher dimension, if the problem is not stiff, this
can be solved by fixed point iterations rather than Newton iterations, whichmakes the computational
complexity similar to that of an implicit Runge–Kutta scheme with two stages, see [17, Section 2.2]
or [24, Chapter VIII.6] for instance.

Remark 2.4: (Further extensions) Let us observe that the (deterministic) energy-preserving scheme
from [17] present in the term in the middle of (5) could be replaced by another (deterministic)
energy-preserving scheme for (deterministic) Poisson systems, see for example: [6,8,10,48] or a
straightforward adaptation of the energy-preserving Runge–Kutta schemes for polynomial Hamil-
tonians in [11]. Let us further remark that it is also possible to interchange the ordering in the
splitting scheme by considering first half a step of the (deterministic) energy-preserving scheme, then
a full step of the stochastic part, and finally again half a step of the (deterministic) energy-preserving
scheme. Finally, let us add that one could add a damping term in the SDE (2) to compensate for
the drift in the energy thus getting conservation of energy for such problems (either in average or
a.s.). In this case, one would add the damping term in the first and last equations of the numerical
scheme (5) in order to get a (stochastic) energy-preserving splitting scheme. An example of applica-
tion is Langevin’s equation, a widely studied model in the context of molecular dynamics. We do not
pursue further this question.

We now show the boundedness along time of all moments of the numerical solution given by (5).

Lemma2.1: Let T> 0. Apply the drift-preserving numerical scheme (5) to the Poisson systemwith addi-
tive noise (2) on the compact time interval [0,T]. One then has the following bounds for the numerical
moments: for all step sizes h assumed small enough and all m ∈ N,

E[|Xn|2m] ≤ Cm,

for all tn = nh ≤ T, where Cm is independent of n and h.

Proof: To show boundedness of the moments of the numerical solution given by (5), we use [36,
Lemma 2.2, p. 102], which states that it is sufficient to show the following estimates:

|E [Xn+1 − Xn|Xn]| ≤ C (1 + |Xn|) h and |Xn+1 − Xn| ≤ Mn(1 + |Xn|)
√
h,

where C is independent of h andMn is a random variable with moments of all orders bounded uni-
formly with respect to all h small enough. Since the numerical scheme (5) is a splitting method, it is
more convenient to apply [36, Lemma 2.2, p. 102] to the Markov chain {X0,Y1,Y2,X1, . . .} instead of
the Markov chain {X0,X1, . . .}. This makes the verification of the above estimates immediate using
the linear growth property of the coefficients of the SDE (2), a consequence of their Lipschitzness. �
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2.3. Exact drift preservation of energy

Weare now inposition to prove themain feature of the proposednumericalmethod (5)which benefits
from the very same trace formula for the energy as the one for the exact solution to the stochastic
Poisson problem (2), hence the name drift-preserving integrator for this numerical scheme.

Theorem 2.2: Consider the numerical scheme (5) applied to the Poisson system with additive noise (2).
Then, for all time steps h assumed small enough, the expected energy of the numerical solution satisfies
the following trace formula:

E [H(Xn)] = E [H(X0)] + 1
2
Tr
(
���

)
tn (6)

for all discrete times tn = nh, where n ∈ N.

Proof: The first step of the drift-preserving scheme can be rewritten as

Y1 = Xn +
∫ tn+ h

2

tn

(
�

0

)
dW(s)

and an application of Itô’s formula gives

E [H(Y1)] = E [H(Xn)] + h
4
Tr
(
���

)
.

Since the second step of the drift-preserving scheme (5) is the deterministic energy-preserving
scheme from [17], one then obtains

E [H(Y2)] = E [H(Y1)] .

Finally, as in the beginning of the proof, the last step of the numerical integrator provides

E [H(Xn+1)] = E [H(Y2)] + h
4
Tr
(
���

)
= E [H(Y1)] + h

4
Tr
(
���

)
= E [H(Xn)] + h

2
Tr
(
���

)
.

The identity (6) then follows by induction on n. A recursion now completes the proof. �

2.4. Splittingmethods with deterministic symplectic integrators and backward error
analysis: linear case

As symplectic integrators for deterministic Hamiltonian systems or Poisson integrators for determin-
istic Poisson systems have proven to be very successful [25, Chapters VI and VII], it may be tempting
to use them in a splitting scheme for the SDE (2). One could for instance replace the (deterministic)
energy-preserving scheme in the middle step of Equation (5) by a symplectic or Poisson integrator,
such as for instance the second-order Störmer–Verlet method [24, Sect. 5] which turns out to be
explicit in the context of a separable Hamiltonian (1). Using a backward error analysis, see [40, Chap-
ter 10], [25, Chapter IX], [32, Chapter 5], or [5, Chapter 5], one arrives at the following result in the
case of a linear Hamiltonian system with additive noise (2) (i.e. for a quadratic potential V), where
the proposed splitting scheme is drift-preserving for a modified Hamiltonian.

Proposition 2.3: For a quadratic potential V in (1), consider the numerical discretisation of the Hamil-
tonian system with additive noise (2) (where B(x) = J for ease of presentation) by the drift-preserving
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numerical scheme (5), where the energy-preserving scheme in the middle Y1 �→ Y2 is replaced by a
deterministic symplectic partitioned Runge–Kutta method of order p. Then, there exists a modified
Hamiltonian H̃h which is a quadratic perturbation of size O(hp) of the original Hamiltonian H, such
that the expected energy satisfies the following trace formula for all time steps h assumed small enough,

E
[
H̃h(Xn)

] = E
[
H̃h(X0)

]+ 1
2
Tr
(
��σ̃h�

)
tn, (7)

for all discrete times tn = nh, where n ∈ N, and σ̃h = ∇2
ppH̃h(x) is a constant matrix (independent of x).

Proof: By backward error analysis and the theory ofmodified equations, see for instance [25, Chapter
IX], the symplectic Runge–Kutta method Y1 �→ Y2 solves exactly a modified Hamiltonian system
with initial condition Y1 and modified Hamiltonian H̃h(x) = H(x) + O(hp) given by a formal series
which turns out to be convergent in the linear case for all h small enough (and with a quadratic
modified Hamiltonian). Following the lines of the proof of Theorem 2.2 applied with the modified
Hamiltonian H̃h, and observing that the partial Hessian ∇2

ppH̃h(x) is a constant matrix independent
of x (as H̃h is quadratic), we deduce the estimate (7) for the averaged modified energy. �

Observe in (7) that the constant scalar 1
2Tr(�

�σ̃h�) = 1
2Tr(�

��) + O(hp) is independent of x
and a perturbation of sizeO(hp) of the drift rate for the exact solution of the SDE in (6).

Finally, note that an analogous result in the nonlinear setting (with nonquadratic potential V
in (1)) does not seem straightforward due in particular to the non-boundedness of the moments
of the numerical solution over long times and the fact that the modified Hamiltonian H̃h(p, q) is
nonquadratic with respect to p in general for a nonquadratic potential V.

2.5. Exact drift preservation of quadratic Casimir’s

We now consider the case where the ordinary differential equation (ODE) coming from (2), i.e.
Equation (2) with � = 0, has a quadratic Casimir of the form

C(X) = 1
2
X�AX,

with a symmetric constant matrix

A =
(

a b

b� c

)
with a, b, c ∈ R

m×m. Recall that a function C(X) is called a Casimir if ∇C(X)�B(X) = 0 for all X.
Along solutions to the ODE, we thus have C(X(t)) = Const. This property is independent of the
Hamiltonian H(X).

In this situation, one can show a trace formula for the Casimir as well as a drift-preservation of this
Casimir for the numerical integrator (5).

Proposition 2.4: Consider the numerical discretisation of the Poisson system with additive noise (2)
with the Casimir C(X) by the drift-preserving numerical scheme (5). Then,

(1) the exact solution to the SDE (2) has the following trace formula for the Casimir

E [C(X(t))] = E [C(X0)] + a
2
Tr
(
���

)
t, (8)

for all times t> 0.
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(2) the numerical solution (5) has the same trace formula for the Casimir, for all time steps h assumed
small enough,

E [C(Xn)] = E [C(X0)] + a
2
Tr
(
���

)
tn, (9)

for all discrete times tn = nh, where n ∈ N.

Proof: The above results can be obtain directly by applying Itô’s formula and using the property of
the Casimir function C(X). �

Stochastic models with such a quadratic Casimir naturally appear for a simplified version of a
stochastic rigid bodymotion of a spacecraft from [45] which has the quadratic CasimirC(X) = ‖X‖22
or a reduced model for the rigid body in a solvent from [47]. See also the numerical experiments in
Section 4.3.

3. Convergence analysis

In this section, we study the mean-square and weak convergence of the drift-preserving scheme (5)
on compact time intervals under the classical setting of globally Lipschitz continuous coefficients.

3.1. Mean-square convergence analysis

In this section, we show themean-square convergence of the drift-preserving scheme (5) on compact
time intervals under the classical setting of Milstein’s fundamental theorem [36, Theorem 1.1].

Theorem 3.1: Let T> 0. Consider the Poisson problem with additive noise (2) and the drift-preserving
integrator (5). Then, for all time steps h assumed small enough, the numerical scheme (5) converges with
order 1 in the mean-square sense: (

E[‖X(tn) − Xn‖2]
)1/2 ≤ Ch,

for all tn = nh ≤ T, where the constant C is independent of h and n.

Proof: Denoting f (x) = B(x)∇H(x), a Taylor expansion of f in the exact solution of (2) gives

X(h) = X0 + hf (X0) +
(

�

0

)
W(h) + hf ′(X0)

(
�

0

)∫ h

0
W(t) dt + REST1,

where the term (denoting f ′′ the bilinear form for the second order derivative of f )

REST1 = f ′(X0)

∫ h

0

∫ t

0
f (X(s))ds +

∫ h

0

∫ 1

0
(1 − θ)f ′′(X0 + θ(X(t) − X0))

× (X(t) − X0,X(t) − X0) dθ dt

is bounded in the mean and mean-square sense as follows:

E[REST1] ≤ Ch2 and E[‖REST1‖2]1/2 ≤ Ch2, (10)

whereC is a constant independent of h, but that depends onX0 = xwith atmost a polynomial growth.
Performing a Taylor expansion of f in the numerical solution (5) gives, after some straightforward
computations,

X1 = X0 + hf (X0) +
(

�

0

)
W(h) + hf ′(X0)

(
�

0

)
W
(
h
2

)
+ REST2,
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where the term REST2 analogously satisfies the bounds (10).
The above computations result in the following local error estimates,

E[X(h) − X1] = O(h2), E[‖X(h) − X1‖2]1/2 = O(h3/2), (11)

where the constants in O depend on X0 = x with at most a polynomial growth. An application
of Milstein’s fundamental theorem, see [36, Theorem 1.1], finally shows that the scheme (5) con-
verges with global order of convergence 1 in the mean-square sense, as consequence of the local error
estimates (11) and Lemma 2.1. This concludes the proof. �

3.2. Weak convergence analysis

The proof of weak convergence of the drift-preserving scheme (5) on compact time intervals easily
follows from [46, Proposition 6.1], where convergence of the Strang splitting scheme for SDEs is
shown. See also [2,31] for related results.

Theorem 3.2: Let T> 0. Consider the Poisson problem with additive noise (2) and the drift-preserving
integrator (5). Then, there exists h∗ > 0 such that for all 0 < h ≤ h∗, the numerical scheme converges
with order 2 in the weak sense: for all� ∈ C6

P(R
2m,R), the space of C6 functions with all derivatives up

to order 6 with at most polynomial growth, one has

|E[�(X(tn))] − E[�(Xn)]| ≤ Ch2,

for all tn = nh ≤ T, where the constant C is independent of h and n.

4. Numerical experiments

In this section, we illustrate numerically the above analysis of the proposed drift-preserving
scheme (5), denoted by DP below. Furthermore, we compare it with the well-known integrators,
in particular the Euler–Maruyama scheme (denoted by EM) and the backward Euler–Maruyama
scheme (denoted by BEM). The first and second Hamiltonian test problems considered (linear
stochastic oscillator and stochastic mathematical pendulum) use parameter values similar to those
in [13]. The third test problem is a stochastic rigid body model which is a Poisson system perturbed
by white noise, but not a Hamiltonian system. For nonlinear problems, we use fixed-point iterations
for the implementation of the schemes, but one could use Newton iterations as well, see Remark 2.3.

4.1. The linear stochastic oscillator

The linear stochastic oscillator has extensively been used as a test model since the seminal work [44].
We thus first consider the SDE (2) with B(X) = J the constant 2 × 2 Poissonmatrix and the following
Hamiltonian

H(p, q) = 1
2
p2 + 1

2
q2.

Furthermore, the initial values are (p0, q0) = (0, 1) and we consider a one dimensional noise with
parameter � = 1.

For this problem, the integral present in the drift-preserving scheme (5) can be computed exactly,
resulting in an explicit time integrator:

Y1 := Xn +

⎛⎜⎝
(
W
(
tn + h

2

)
− W(tn)

)
0

⎞⎟⎠ ,
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Y2 := 1

1 + h2
4

⎛⎜⎜⎝1 − h2

4
−h

h 1 − h2

4

⎞⎟⎟⎠Y1,

Xn+1 = Y2 +

⎛⎜⎝
(
W(tn+1) − W

(
tn + h

2

))
0

⎞⎟⎠ .

This numerical scheme is different from the one proposed in [13].
In Figure 1, we compute the expected values of the energy H(p, q) for various numerical integra-

tors. This is done using the step sizes h = 5/24, resp. h = 100/28, and the time intervals [0, 5], resp.
[0, 100]. For the numerical discretisation of the linear stochastic oscillator, we choose the (backward)
Euler–Maruyama schemes (EM and BEM), the drift-preserving scheme (DP), and also the stochastic
trigonometric method from [14] (STM). For the considered problem, the stochastic trigonometric
method (STM) also has an exact trace formula for the energy, see [14] for details. We approximate
the values of the expected energies using averages overM = 106 samples. Similarly to the stochastic
trigonometricmethod (STM) from [14], one can observe the perfect long-time behaviour of the drift-
preserving scheme with exact averaged energy drift along time, as stated in Theorem 2.2. In contrast,
the left picture of Figure 1 illustrates that the expected energy of the classical Euler–Maruyama scheme
drifts exponentially with time, while the backward Euler–Maruyama scheme exhibits an inaccurately
slow growth rate, as emphasized in [44].

In Figure 2, we illustrate numerically the strong rate of convergence of the drift-preserving
scheme (5) and compare with the other schemes. To this aim, we discretize the linear stochastic
oscillator on the time interval [0, 1] using step sizes ranging from h = 2−6 to h = 2−10 and we use
as a reference solution the stochastic trigonometric method with small time step href = 2−12. The
expected values are approximated by computing averages over M = 106 samples. One can observe
the mean-square order 1 of convergence of the drift-preserving scheme (5) with lines of slope 1 in
Figure 2, which corroborates Theorem 3.1.

Next, Figure 3 illustrates theweak convergence rate of the drift-preserving scheme (5). For simplic-
ity, we only display the errors in the first and secondmoments since explicit formulas are available for
these quantities.We take the noise scaling parameter� = 0.1 and step sizes ranging from h = 2−4 to
h = 2−16. The remaining parameters are the same as in the previous numerical experiment. The lines

Figure 1. Linear stochastic oscillator: numerical trace formulas for E[H(p(t), q(t))] on the interval [0, 5] (left) and [0, 100] (right).
Comparison of the Euler–Maruyama scheme (EM), the stochastic trigonometric method (STM), the drift-preserving scheme (DP),
the backward Euler–Maruyama scheme (BEM), and the exact solution.
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Figure 2. Linear stochastic oscillator: mean-square convergence rates for the backward Euler–Maruyama scheme (BEM), the
Euler–Maruyama scheme (EM), the drift-preserving scheme (DP), and the stochastic trigonometric method (STM). Reference lines
of slopes 1, resp. 1/2.

Figure 3. Linear stochastic oscillator: weak convergence rates for the backward Euler–Maruyama scheme (BEM), the
Euler–Maruyama scheme (EM), the drift-preserving scheme (DP), and the stochastic trigonometric method (STM). Refer-
ence lines of slopes 1, resp. 2. (a) Errors in the first moments E[q(t)] (left) and E[p(t)] (right), (b) Errors in the second moments
E[q(t)2] (left) andE[p(t)2] (right).
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Figure 4. Linear stochastic oscillator: numerical trace formulas forE[H(p(t), q(t))] on the interval [0, 100]. Comparison of the drift-
preserving scheme (DP), the splitting methods with, respectively, the symplectic Euler method (SYMP), the Störmer-Verlet method
(ST), the explicit Euler method (splitEULER), the Heun method (splitHEUN), and the exact solution.

of slope 2 in Figure 3 illustrates that the drift-preserving scheme has a weak order of convergence 2
in the first and second moments, as stated in Theorem 3.2.

As symplectic integrators for deterministic Hamiltonian systems have proven to be very successful
[25], it may be tempting to use them in a splitting scheme for the SDE (2). To study this, in Figure 4,
we compare the behaviour, with respect to the trace formula, of the drift-preserving scheme and of
the symplectic splitting strategies discussed in Section 2.4. We use the classical Euler symplectic and
Störmer–Verlet schemes for the deterministicHamiltonian and integrate the noisy part exactly. These
numerical integrators are denoted by SYMP, resp. ST below. As a comparison with non-geometric
numerical integrators, we also use the classical Euler and Heun’s schemes in place of a symplectic
scheme. These numerical integrators are denoted by splitEULER and splitHEUN. We discretize the
linear stochastic oscillator on the time interval [0, 100] with 27 step sizes. It can be observed that the
splitting method using the non-symplectic schemes splitEULER or splitHEUN behaves as poorly as
standard explicit schemes for SDEs: we hence display in Figure 4 only part of their numerical values
due to their exponential growth. Although not having the exact growth rates, the two symplectic
splitting schemes behave much better than the classical Euler–Maruyama scheme with a linear drift
in the averaged energy with a perturbed rate, as predicted by Proposition 2.3.

4.2. The stochastic mathematical pendulum

Let us next consider the nonlinear SDE (2) (with B(X) = J the constant canonical Poisson matrix)
with the Hamiltonian

H(p, q) = 1
2
p2 − cos(q)

and a noise in dimension one with parameter � = 1. We take the initial values (p0, q0) = (1,
√
2).

We again compare the behaviour, with respect to the trace formula, of the DP, SYMP, ST and spli-
tEULER schemes. To do this, we integrate numerically the stochastic mathematical pendulum on
the time interval [0, 100] with 27 step sizes. The results are presented in Figure 5. Again, we recover
the fact that the drift-preserving scheme exhibits the exact averaged energy drift, as predicted in
Theorem 2.2. Furthermore, one can still observe a good behaviour of the symplectic strategies from
Section 2.4 analogously to the linear case in Section 4.1, although the analysis in Proposition 2.3 is
only valid for the linear case.
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Figure 5. Stochastic mathematical pendulum: numerical trace formulas forE[H(p(t), q(t))] on the interval [0, 100]. Comparison of
the drift-preserving scheme (DP), the splitting methods with, respectively, the symplectic Euler method (SYMP), the Störmer-Verlet
method (ST), the explicit Euler method (splitEULER), and the exact solution.

Figure 6. Stochastic rigid body problem: numerical trace formulas for the energy E[H(X(t))] (left) and for the Casimir E[C(X(t))]
(right) for the drift-preserving scheme (DP), the Euler–Maruyama scheme (EM), the backward Euler–Maruyama scheme (BEM), and
the exact solution.

4.3. Stochastic rigid body problem

We now consider an Itô version of the stochastic rigid body problem studied in [1,16,33] for instance.
This system has the following Hamiltonian:

H(X) = 1
2
(
X2
1/I1 + X2

2/I2 + X2
3/I3

)
,

the quadratic Casimir

C(X) = 1
2
(
X2
1 + X2

2 + X2
3
)
,

and the skew-symmetric matrix

B(X) =
⎛⎝ 0 −X3 X2

X3 0 −X1
−X2 X1 0

⎞⎠ .
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Figure 7. Stochastic rigid body problem: mean-square convergence rates for the backward Euler–Maruyama scheme (BEM), the
drift-preserving scheme (DP), and the Euler–Maruyama scheme (EM). Reference lines of slopes 1, resp. 1/2.

Figure 8. Stochastic rigid body problem: weak convergence rates in the first moment E[X1(tn)] (left) and second moment
E[X1(tn)2] (right) for the drift-preserving scheme (DP), the Euler–Maruyama scheme (EM), and the backward Euler–Maruyama
scheme (BEM). Reference lines of slopes 1, resp. 2.

Here, we denote the angular momentum by X = (X1,X2,X3)
� and take the moments of inertia to

be I = (I1, I2, I3) = (0.345, 0.653, 1). The initial value for the SDE (2) is given by X(0) = (0.8, 0.6, 0)
and we consider a scalar noiseW(t) with � = 0.25 (acting on the first component X1 only).

Observe that, even if theHamiltonian has not the desired structure (1), one still has a linear drift in
the energy since the Hamiltonian is quadratic and thus the Hessian matrix present in the derivation
of the trace formula has the correct structure as noted in Remark 2.1.

In Figure 6, we compute the expected values of the energy H(X) and the Casimir C(X) using
N = 25 step sizes on the time interval [0, 4] (in order to see also the behaviour of the Euler–Maruyama
scheme) along various numerical solutions. The expected values are approximated by computing
averages over M = 106 samples. The exact long-time behaviour with respect to the energy and the
Casimir averaged growths of the drift-preserving scheme can be observed in Figure 6, which corrob-
orates Theorem 2.2 and Proposition 2.4. As in the previous numerical experiment, one can also see
that the growth rates of the Euler–Maruyama schemes are in contrast qualitatively wrong.

Similarly to the previous example, we numerically illustrate in Figure 7 the strong convergence rate
of the drift-preservation scheme (5) for the stochastic rigid body problem. To this aim, we discretize
the problem on the time interval [0, 0.75] using step sizes ranging from h = 2−6 to h = 2−10 and
compare with a reference solution obtained with scheme (5) with href = 2−12. We compute averages
over M = 105 samples to approximate the expected values present in the mean-square errors. One
observes again mean-square convergence of order 1 for the drift-preserving scheme.
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Figure 9. Stochastic rigid body problemwith two-dimensional noise: numerical trace formulas for the energyE[H(X(t))] (left) and
for theCasimirE[C(X(t))] (right) for theCasimirE[C(X(t))] (right) for thedrift-preserving scheme (DP), the Euler–Maruyama scheme
(EM), the backward Euler–Maruyama scheme (BEM), and the exact solution.

Next, Figure 8 illustrates the weak convergence rate of the drift-preserving scheme (5). We plot
the weak errors in the first and second moments of the first component of the solutions using the
parameters: � = 0.1, T = 1,M = 2500 samples, and step sizes ranging from h = 2−10 to h = 2−20.
The rest of the parameters are as in the previous numerical experiment. One can observe weak order
2 in the first and second moments for the drift-preserving scheme (up to Monte Carlo errors), which
confirms again the statement of Theorem 3.2.

Finally, in Figure 9, we take the same parameters as in the first experiment of this subsection but
we consider a noise in dimension two with the matrix

� =
(
0.25 0
0 0.25

)
.

We then compute the expected values of the energy H(X) and the Casimir C(X) using N = 26 step
sizes along various numerical solutions and display the trace formula for the energy

E [H(X(t))] = E [H(X0)] + 1
2
Tr
(

��
(
1/I1 0
0 1/I2

)
�

)
t

and the trace formula for the Casimir

E [C(X(t))] = E [C(X0)] + 1
2
Tr
(
���

)
t.

Again, one can observe in Figure 9 the excellent behaviour of the drift-preserving scheme as stated
in Theorem 2.2 and Proposition 2.4.
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