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Abstract

Integrating 2D materials into high-quality optical microcavities opens the
door to fascinating many-particle phenomena including the formation of
exciton-polaritons. These are hybrid quasi-particles inheriting properties of
both the constituent photons and excitons. The corresponding change in the
dispersion relation has a large impact on the optics, dynamics and transport
behaviour of the materials.
In this thesis, we aim to microscopically understand the optical response
and propagation of exciton-polaritons in transition metal dichalcogenides
(TMDs). The theoretical method is based on the density matrix formal-
ism combined with the Hopfield approach. In particular, we investigate how
the diffusion of exciton changes in the strong coupling regime, i.e. when
exciton-polaritons are formed. Furthermore, we study the impact of dark
excitons on the optical response of upper and lower polariton branches in
absorption spectra of molybdenum- and tungsten-based TMDs, which are
known to be direct and indirect semiconductors, respectively. Furthermore,
we show how different experimentally accessible quantities, such as temper-
ature or mirror reflectance, can be exploited to tune the optical response of
polaritons. Our study contributes to an improved microscopic understanding
of exciton-polaritons and their interaction with phonons, potentially suggest-
ing experiments that could determine the energy of dark exciton states via
momentum-resolved polariton absorption.
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CHAPTER 1

Introduction

Excitons have been the object of study in several areas of research and differ-
ent materials [1, 2]. They are a bound pair of an electron and a hole, due to
the electron being excited from the valence to the conduction band in a semi-
conductor material. The easiest way to excite excitons is by optical excitation
[3]. However, the coupling to light strongly influences the physical properties
and energy spectrum of these particles [4]. So in the late 50s, in the works
of Agranovic [5] and Hopfield [6], the term polariton appeared to describe
the coupling of exciton-photons. However, the word polariton is not exclu-
sive to exciton-polaritons. Polaritons are hybrid states due to the interaction
between light and matter, between an elementary matter excitation and a
photon [7]. So, depending on the nature of this matter excitation we have
different types of polaritons, like the surface plasmon-polaritons [8], phonon-
polaritons [9], magnon-polaritons [10], among others. To be more specific,
the polariton is a coupled mode of the external electromagnetic field with
an electric or magnetic dipole-carrying excitation, meaning a normal mode
of the material which may couple in a linear manner to the electromagnetic
field by virtue of their electrical or magnetic character [7]. This external
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic illustration of an hBN-encapsulated TMD monolayer in a
Fabry-Perot cavity.

electromagnetic field can couple to single particle electronic excitations, as
interband transitions in insulators, or to collective electronic excitations, as
excitons. The exciton-polaritons are quasi-particles that maintain character-
istics of both photons and excitons, such as a small effective mass, which
makes them attractive for transport purposes [11–13].
Polaritons have been extensively studied in bulk semiconductor materials
[14, 15], thin films [16, 17], quantum wells [18, 19], etc. Exciton–polaritons
in microcavities have very particular properties resulting from the reduced di-
mensionality compared to other systems with no optical confinement [4, 20].
In particular, the strength of exciton–light coupling is greatly enhanced in
microcavities and is larger than (the difference of) cavity and non-radiative
exciton decay rates [21]. This results in the so-called strong-coupling regime
manifested by the anticrossing of the exciton-polariton modes [22]. This al-
lows the formation of polaritons as true new eigenmodes of the system, which
appeared to be split at the anticrossing point [6]. The energy difference be-
tween modes at this point is widely referred to as vacuum-field Rabi splitting
or simply Rabi splitting.

Exciton-polaritons were studied primarily on semiconductor quantum-well
systems, where many groundbreaking discoveries were made such as Bose-
Einstein condensation, polariton lasing and superfluidity [22–26]. Despite all
these outstanding achievements in fundamental science, applications based
on quantum-well systems were limited by their relatively small exciton bind-
ing energy, typically below room temperature thermal energy (≈ 26 meV).
However, with the discovery of 2D materials, a new interest in this area
reappeared. Particularly, with the integration of transition metal dichalco-
genides (TMDs) into optical cavities [27–29] (see schematic Fig.1.1), since
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polaritons in these materials show room-temperature stability, long-distance
propagation, and controllability through electric gating, valley-selective opti-
cal pumping, and precise thickness control. Consequently, this allowed, once
again, the study of intriguing effects, such as Bose-Einstein condensation
[30–32], (super)fluidity [33, 34], topological effects [35], and promising appli-
cations from lasing [36], to integrated circuits [37] and quantum computing
[38].

Previous studies have shown that TMD monolayers with their rich exciton
landscape, including dark and bright exciton states [39–41], exhibit inter-
esting spatio-temporal exciton dynamics resulting in an intriguing exciton
diffusion behaviour [2]. This includes non-classical diffusion [42], transient
negative diffusion [43], strain-dependent (increase of) diffusion [44], acceler-
ated hot-exciton diffusion [45] or formation of spatial rings (halos) [46–48]
and unconventional exciton funnelling effects [49]. However, heterostructures
of TMDs, both vertical and lateral, have very interesting properties too, like
interlayer or charge transfer excitons [50–61]. Once embedded in a cavity,
this gives rise to peculiar polaritonic effects [2, 62]. In view of their light
component, polaritons show an interesting transport behaviour resulting in
a fast propagation in the ballistic regime [11, 13]. The polariton diffusion has
already been observed e.g. in ZnSe and GaAs films [63, 64]. In this thesis, we
microscopically study the polaritonic diffusion coefficients. We combine the
exciton density matrix formalism [65, 66] with the Hopfield approach [6, 21],
where the exciton energies and wavefunctions in TMD monolayers are ob-
tained by solving the Wannier equation [67–69] including DFT input on the
characteristics of the electronic bandstructure [70]. We focus on an hBN-
encapsulated MoSe2 monolayer, which we find to be a direct semiconductor
with the bright KK excitons (electron and hole located at the K point) as
energetically lowest states [40]. In contrast, tungsten-based TMDs are known
to be indirect semiconductors with momentum-dark excitons as energetically
lowest states [40, 41, 71]. Since light-matter coupling is not directly affected,
we expect smaller polariton-induced changes in the diffusion coefficient for
tungsten-based materials. We investigate the change in the group velocity
and polariton-phonon scattering rates as crucial ingredients determining the
diffusion coefficient. Based on our microscopic approach, we predict a po-
lariton diffusion coefficient up to three orders of magnitude higher compared
to bare exciton diffusion.
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In the context of optoelectronics, the huge light-matter interaction demon-
strated by TMDs has made them highly attractive for practical device ap-
plications [27]. Liu et al were the first to confirm the formation of polariton
states in a MoS2 monolayer integrated into a microcavity by performing
angle-resolved reflectivity and photoluminescence measurements. The signa-
ture of dark excitons can be found in the optical spectrum of TMDs [39]. So,
we study the polariton absorption for hBN-encapsulated TMDs monolayers,
WSe2 and MoSe2. By comparing a direct and indirect TMD, we can deter-
mine the impact of the dark excitons. Also, the polariton absorption is espe-
cially informative as it unambiguously demonstrates strong coupling via the
Rabi splitting [4], and its magnitude is determined by the balance between
the polariton-phonon and cavity decay rates. Hence, besides the previous
theoretical framework used in diffusion, we also add the Heisenberg-Langevin
equations together with the input-output formalism [72]. This time, we cal-
culate the full valley- and momentum-dependent polariton-phonon scattering
rates that govern the optical response of TMD materials via both spectral
linewidths and magnitude. Our results found that dark excitons are signifi-
cantly important for WSe2, especially for the lower polariton.

This thesis is organized in the following way. First, we introduce the theoret-
ical framework in Chapter 2, in particular, we study the polariton dispersion
and group velocity, which will be necessary for the following chapters. Then,
we discuss the polariton-phonon scattering rates in Chapter 3. In Chapter 4,
we investigate the polariton diffusion coefficient (Paper I). Next, in Chapter
5 we study the polariton absorption coefficient (Paper II). Finally, we end
with a conclusion and future work prospects in Chapter 6.



CHAPTER 2

Theoretical Framework

In this chapter, we introduce the theoretical framework that constitutes the
basis of this thesis. We start with the excitonic basis, the Wannier equa-
tion and present the excitonic Hamiltonian. From this, we can perform the
Hopfield transformation and obtain the exciton-polariton Hamiltonian, with
the new eigenmodes and eigenfunctions. Finally, we introduce the polariton
equation of motion.

2.1 Excitons and the Wannier Equation

Semiconductor materials can be described as a many-particle system of in-
teracting electrons, photons, and phonons. Hence, the Hamiltonian of said
system in the second quantization includes: quasi-free electrons in a crystal
lattice, photons, phonons, and electron-light, electron-phonon and photon-
cavity interactions.

5



6 CHAPTER 2. THEORETICAL FRAMEWORK

Due to the strong Coulomb interaction in TMDs, electrons and holes can
form deeply bound pairs called excitons [3, 73, 74]. This can happen when
the material absorbs a photon with energy higher than the bandgap, hence
the electron is excited from the valence band to the conduction band leaving
a hole in the latter. Excitons govern the optoelectronic properties of TMDs,
even at room temperature [3, 75–78], due to this strong Coulomb interaction
and exhibit a rich exciton landscape, including bright and dark exciton states
[3, 39]. In particular the optical, as well as transport response, are often
dominated by 1s excitons. Therefore, it is convenient to change from the
electron-hole picture to an excitonic picture and restrict to 1s states, resulting
in a drastic reduction of the number of states. From this, we can also decouple
the relative and center of mass motion of the excitons and arrive at the
Wannier equation.

Excitonic Basis

Let us consider the microscopic polarization pv↑c↑k1k2
= ⟨â↑v,k1

â↑v,k2
⟩ and perform

a change of variable: pv↑c↑k1k2
→ pvcqQ with Q center of mass and q relative

momentum. This quantities are defined as: Q = k1−k2 and q = ανk1+βνk2,
with masses αν = mh/(mh + me), βν = me/(mh + me), mh the hole mass
and me the electron mass. Next, we want to decouple the relative movement
from the center of mass one,

pv↑c↑k1k2
→ pv↑c↑qQ =

∑

ν

φν
qp

ν
Q, (2.1)

where ν is the excitonic state, like the KK bright exciton. For the relative
motion, we can solve the Schrödinger equation for an electron and a hole in
momentum space, also commonly referred to as the Wannier equation,

ℏ2q2

2mν
r

φν
q −

∑

k

V exc(k)φν
q−k = ενφ

ν
q. (2.2)

The eigenstates of this equation form a new brand new basis, showing in
particular discretization in the relative momentum (i.e. 1s, 2s, etc). Note
that the label ν of the excitonic state contains information on this discretiza-
tion, however, in this thesis we only consider 1s states. Solving the Wannier
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equation gives us access to the exciton eigen-energies εν and eigenfunctions
φν
q. Importantly, these energies are quantized, showing values of. With these

energies, we write the exciton center of mass dispersion as

EX
νQ = Eν

g + εν +
ℏ2Q2

2Mν
, (2.3)

where Eν
g is the single particle bandgap corresponding to valley ν.

Exciton Hamiltonian

We have introduced the exciton basis and excitons states, occupied by electron-
hole pairs. If we continue to work on the electron picture basis, the calcula-
tions of equations of motion become lengthy as instead of working with the
electron and hole momentum, we can simply have only one center-of-mass
momentum of 1s excitons. Therefore, an alternative is to write the excitonic
Hamiltonian, using the excitonic expansion scheme [79, 80]. Our new op-
erators are X̂†

νQ(X̂νQ), which creates and annihilates an exciton at state ν
with center-of-mass momentum Q. We can treat excitons as pure bosons
if we work on the low-density limit. The exciton Hamiltonian includes also
the exciton-photon and exciton-phonon interactions. For a more detailed
approach to obtain the exciton Hamiltonian see [79, 81].

Let us start from defining an electron-hole pair operator Â, which combines
conduction (âc) and valence (âv) band electrons as

Âkk′ = â†c,kâv,k′ (2.4)

and as we consider the low-density regime

[
Âk1k2 , Â

†
k3k4

]
≈ δk1k3δk2k4 (2.5)

we can obtain the fully bosonic commutation of electron-hole excitations.
Therefore, the transformations to the Hamiltonian are

â†c,kâc,k′ =
∑

l

Â†
klÂk′l, âv,kâ

†
v,k′ =

∑

l

Â†
lkÂlk′ . (2.6)
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This means we can transform the free and Coloumb Hamiltonian as free
excitonic Hamiltonian

∑

i,k

εkâ
†
i,kâi,k +

1

2

∑

ij,kk′q

Vqâ
†
i,k+qâ

†
j,k′−qâj,k′ âi,k → H0

X =
∑

νQ

EX
νQX̂

†
νQX̂νQ,

(2.7)

with i, j = c, v valence and conduction band electrons and using also the
expansion into excitonic eigenmodes

Â†
k1k2

=
∑

ν

X̂†
ν,k1−k2

φ(ανk1 + βνk2), (2.8)

which resembles the transformation of the polarization in equation (2.1). We
can apply the same procedure to the electron-photon and electron-phonon
Hamiltonian and in the end, we have

HX =
∑

νQ

EX
νQX̂

†
νQX̂νQ +

∑

νQ

gQ

(
ĉ†QX̂νQ + ĉQX̂

†
νQ

)

+
∑

νν′Qαq

Dνν′
αq X̂

†
νQ+qX̂ν′Q(b̂

†
α,−q + b̂αq). (2.9)

The first term in the Hamiltonian characterizes the exciton kinetic motion
with energy given by the equation (2.3). The second term expresses the
exciton-light interaction mediated by the exciton-photon coupling matrix
element gQ [69, 82], where photons need to have the same in-plane momentum
Q as excitons to fulfil the momentum conservation (hence restricting the
coupling only to the bright exciton states within the light cone, i.e. Q ≈ 0).
Lastly, we have the exciton-phonon term [69], where the exciton-phonon
coupling element is

Dνν′
αq = Dc

αq

∑

k

ψ∗ν(k)ψν′(k+ βνq)−Dv
αq

∑

k

ψ∗ν(k)ψν′(k− ανq). (2.10)

It describes the transition of an exciton from the state (ν,Q) → (ν ′,Q+ q)
aided by a phonon of mode α with relative momentum q. The exciton-
phonon coupling element is composed of the electron-phonon coupling ele-
ment weighted by excitonic form factors

∑
k ψ

∗ν(k)ψν′(k+q). Parameters for
phonons are found in [83], while electronic masses and other bandstructure
parameters are found in [70].
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Figure 2.1: Excitonic Landscape for a hole in the K valley. Schematic represen-
tation of electronic dispersions around the K and valley for (a) tungsten-based
TMDs (WS2 and WSe2) and (b) molybdenum-based TMDs (MoS2 and MoSe2).
Exciton dispersion in (c) WS2, (d) MoS2, (e) WSe2, and (f) MoSe2 in SiO2 sub-
strate calculated by solving the Wannier equation. The figure is taken from [40].

Excitonic Landscape

As mentioned in the introduction, monolayers of transition metal dichalco-
genides exhibit a considerable oscillator strength and exciton binding energies
in the range of hundreds of meV, governing the optoelectronic properties of
these materials [3, 75–78]. Hence, we briefly discuss the excitonic landscape,
which includes bright, dark, and localized excitons. As we can see in Fig. 2.1,
we have a variety of excitons. In this work, we focus on bright excitons and
momentum-forbidden excitons. Bright excitons are states where the electron
and hole have the same spin and momentum, i.e. they are both located
around the K-point in the Brillouin zone, lying within the light cone and are
referred to as KK excitons. These excitons are known as bright excitons as
they can be accessed directly with light.
For dark excitons, the electron and hole have a different spin and/or momen-
tum, ie., they are located in different valleys and/or can also have a different
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spin, see Fig 2.1(a,b). We consider only momentum-forbidden dark excitons
and with the hole always located in the K valley. Hence, the electron is lo-
cated in a different valley, like in the high symmetry points Λ and K ′. These
excitons are called dark as they are inaccessible by light due to the required
spin-flip and/or momentum transfer.

The energetic order of the different excitons is specific for each TMD, and
even in the same material, the order can be changed e.g. by different sub-
strates, which provide different binding energies for the different valleys. This
means that if the dark excitons are not optically accessible, as they lie close
to or even below the bright state, they can be possible scattering channels
for the decay of excitons and influence the dynamics [65, 84]. For tungsten-
based materials, the dark states are energetically below the bright state (see
Fig. 2.1 (c) and (e)) and can influence the scattering channels and linewidth
of the bright state [69, 85–87]. These dark states can also play an important
role in the exciton-polariton scattering rates, optical spectra and dynamics.

2.2 Exciton-polaritons and Hopfield Transfor-

mation

This section discusses the central part of this thesis: the exciton-polariton.
Here, we combine the density matrix formalism with the Hopfield approach
[6]. In this thesis, the system in study is an hBN-encapsulated TMD mono-
layer integrated into an optical microcavity. Thus, we have photons inside,
inner-cavity photons, and outside the cavity, outer-cavity photons. In Fig.
2.2 we have a schematic illustration of the system we study.

Let us first take the excitonic Hamiltonian from equation (2.9) and complete
it with the necessary cavity terms. We quantize separately a single internal
cavity mode of a Fabry-Perot resonator and the external radiation fields,
which are split into two sets of continuum modes corresponding to the left



2.2. EXCITON-POLARITONS AND HOPFIELD TRANSFORMATION11

Figure 2.2: Schematic illustration of a TMD monolayer in a Fabry-Perot cavity
with the fundamental cavity mode represented by the red curve. TMD excitons-
polaritons interact with photons and phonons as indicated by the creation (an-
nihilation) operators for photons (ĉ†(ĉ)) and phonons (b̂†(b̂)). The cavity system
interacts with the outside world via the operators B̂†(B̂).

and the right of the cavity (Fig.2.2).

HX =
∑

νk

EX
νkX̂

†
νkX̂νk +

∑

q

Eb
αqb̂

†
αqbαq +

∑

k

Ec
kĉ

†
kĉk+

+
∑

j=L,R

∑

k

∫ ∞

0

dωhω(k)B̂†
jkωB̂jkω

+
∑

νk

gk

(
ĉ†kX̂νk + ĉkX̂

†
νk

)
+
∑

νν′kαq

Dνν′
αq X̂

†
νk+qX̂ν′k(b̂

†
α,−q + b̂αq)+

+ iℏ
∑

j=L,R

∑

k

∫ ∞

0

dω

2π
aj,k(ω)[B̂†

jωkĉk − B̂jωkĉ
†
k]. (2.11)

The first four terms describe the free energy of excitons EX
vk, phonons E

b
αq

as well as the inner-cavity (Ec
k) and the outer-cavity (ℏω) photons. Here,

ν is the exciton index (we consider only 1s states), α the phonon mode,
k and q are the in-plane momentum of excitons/photons (center-of-mass
momentum for excitons) and phonons, respectively. Furthermore, we have
X̂†

νk(X̂νk), b̂
†
αq(b̂αq), ĉ

†
k(ĉk), B̂†

jkω(B̂jkω) as exciton, phonon, inner-cavity and
outer-cavity photon creation (and annihilation) operators, respectively.
In the third line of equation (2.11), we have Hx−c, which describes the

exciton-light interaction mediated by the exciton-photon coupling matrix
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element gk [69, 82]. In general, the out-of-plane component kz influences
the cavity energy and exciton-photon coupling. However, we assume the
existence of one resonant photon mode (i.e., EX

KK,0 = Ec
0).

The next contribution in the Hamiltonian ĤX−b describes the exciton-phonon
interaction [69], where the coupling strength is determined by the exciton-
phonon matrix element Dνν′

αq . Finally, the last term provides the interaction
between the inner- and outer-cavity photons [62, 72]. The free photons inter-
act with the cavity with a coupling parameter, aj,k(ω). Assuming broadband
end mirrors, taking the first Markov approximation and approximating this
parameter as frequency independent [72] is appropriate. This contribution
in the Hamiltonian leads to a consistent description of both the radiative
decay rate within the cavity as well as the coupling of polaritons to input
and output fields.

Now, we investigate the strong-coupling regime, where the exciton-photon
coupling strength gk has to be larger than the difference between the cav-
ity and the non-radiative exciton decay rates [21]. This allows forming of
polaritons as new eigenmodes of the system

Ŷ n
k = hnX,kX̂k + hnc,kĉk, (2.12)

where these polariton states consist of a coherent mixture of excitons and
photons with the in-plane momentum k, with the Hopfield coefficients =
hnX,k/ = hnc,k dictating this mixture. Applying this transformation, the Hop-
field transformation, to the Hamilton operator yields [6, 21]

Ĥ =
∑

k,n

En
k Ŷ

n†
k Ŷ n

k +H0
b +H0

B +
∑

kαqnn′

D̃n′n
kαq

(
b̂†α,−q + b̂αq

)
Ŷ n′†
k+qŶ

n
k +

+ iℏ
∑

k,n,j

∫ ∞

0

dω

2π
ajk(ω)

(
hnC,kB̂†

jkωŶ
n
k − hn∗C,kB̂jkωŶ

n†
k

)
. (2.13)

Here, the first term provides the free polaritonic Hamiltonian with Ŷ n†
k (Ŷ n

k )
denoting the polariton creation (annihilation) operator with polariton mode
n and momentum k. The energy of the corresponding polariton, En

k , includes
in particular lower and upper polariton branches (LP, UP) that are separated
in k = 0 by the Rabi splitting ℏΩR = EUP

0 − ELP
0 . Throughout this work,

we focus on the resonant case, i.e. EX
0 = Ec

0. In the strong coupling regime
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with a large gk, an avoided crossing occurs and two polariton branches are
formed. Their separation corresponds to the Rabi splitting ℏΩR = 2g0. The
two polariton branches can be visualized in optical spectra for large-enough
coupling g [88–90]. This is a consequence of mixing excitons and photons
(with the same center-of-mass and total momentum), as quantified by the
Hopfield coefficients, hnX,k and hnc,k [21]. We also include, for notation conve-
nience, polaritons steaming from momentum-dark excitons, although these
show no exciton-photon mixing. Nevertheless, we will show later their cru-
cial role in the polariton absorption via additional phonon-induced scattering
channels to the optically active polaritons. The second and the third term in
Eq. (2.13) are the free phonon and free outer-cavity photon contributions, re-
spectively, which are not affected by the Hopfield transformation. The fourth
term describes the interaction of polaritons with the outer-cavity photons,
mediated by the photonic Hopfield coefficients as only the photonic part of
polaritons couples to the external radiation field. Finally, the last term in Eq.
(2.13) describes the polariton-phonon interaction. Here, the matrix element
D̃ is related to the exciton-phonon coupling via D̃n′n

kαq = hn
′∗

X,k+qDn′n
αq h

n
X,k and

depends on the excitonic Hopfield coefficients hX [91], since phonons only
couple to the excitonic part of polaritons.

Polariton Dispersion

Now, we investigate the change of the excitonic band structure in the pres-
ence of a strong coupling regime. Both polariton energies En

k (Figure 2.3(a))
and Hopfield coefficients hnX,k and hnc,k (Figure 2.3(b)) can be obtained ana-
lytically (with subscript X and c referring to exciton and intra-cavity photon
component, respectively) [21].

E
LP/UP
k =

1

2
EX

k +
1

2
Ec

k ∓
1

2

√
4g2k +∆E2

k (2.14)

with ∆Ek = EX
k − Ec

k and the Hopfield coefficients hLPX,k = hUP
c,k = C+,k and

hLPc,k = −hUP
X,k = C−,k [6, 21], where

|C±,k|2 =
1

2

(
1±∆Ek

[
∆E2

k + 4g2k
]− 1

2

)
. (2.15)

For a vanishing exciton-phonon coupling gk, the lower/upper polariton branch
approaches the cavity and exciton energy (thin yellow and grey lines in Fig.
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Figure 2.3: (a) Polariton dispersion and (b) Hopfield coefficients for three typical
values of Rabi splitting. The bare exciton and photon energy are shown for com-
parison with thin grey and yellow lines, respectively.

2.3(a)), respectively.

Figure 2.3(a) illustrates the polariton dispersion for three values of the Rabi
splitting representing different exciton-photon coupling strengths. The latter
depends on the material’s oscillator strength and the optical cavity’s char-
acteristics. We investigate the polariton dispersion for typical Rabi split-
ting values of ℏΩR =10, 25, 50 meV [29], which are larger than the non-
radiative exciton linewidth (typically a few meV at low temperatures for
hBN-encapsulation TMDs [69, 92, 93]) and the cavity linewidth (ranging
from the meV [28] down to the µeV range [11, 94]), thus allowing for strong-
coupling regime [21]. At larger momenta, the LP and UP branches merge
with the exciton and photon dispersion, respectively. The larger ℏΩR, the
higher the momentum values at which this occurs, cf. Fig. 2.3(a). Polari-
tons are coherent superpositions of excitonic and photonic states with the
Hopfield coefficients defining the weights of the single constituents, cf. Fig.
2.3(b). The coefficient |C+,k|2 gives the exciton content of the lower polariton
and the photon content of the upper polariton, i.e. for |C+,k|2 =1 the LP

state |LP,k⟩ = Ŷ LP†
k |0⟩ coincides with the exciton state |X,k⟩ and the UP

state |UP,k⟩ corresponds to the photon state |c,k⟩.

Polariton Group Velocity and Occupation

From the polariton energies (2.14), we can calculate the polariton group
velocity and the polariton band occupation. In Fig. 2.4, we consider the
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Figure 2.4: Lower polariton group velocity at (a) T=20 K and (b) T=40 K for
two different Rabi splittings of ℏΩR = 25 and 50 meV. The corresponding band
occupation is overlaid on the polariton dispersion, see the colour map. For com-
parison, the excitonic group velocity is shown by the thin orange line.

polariton group velocity given by

vnk = ℏ−1dE
n
k

dk
, (2.16)

in particular focusing on the lower polariton branch, since the upper one has
a negligible occupation. We consider the two cases of Rabi splitting ℏΩR=25,
50 meV for the polariton group velocity and compare it with the excitonic
group velocity vXk = ℏk/MX , where MX is the exciton mass. We find that
the polariton group velocity is approximately 4 to 5 orders of magnitude
larger than the excitonic one for small momenta within the light cone, cf.
Fig. 2.4. Due to the rapidly changing polariton dispersion, we find group
velocities in the range of 10 µm/ps, thus principally opening the possibil-
ity of ballistic polariton propagation for 10µ. This has recently indeed been
observed in space- and angle-resolved photoluminescence experiments on a
WS2 monolayer in a distributed Bragg reflector cavity [13]. In addition to
the remarkable magnitude difference, the group velocity for polaritons also
has a qualitatively different momentum dependence. It shows a maximum in
correspondence to the inflexion point in the lower polariton branch and de-
creases toward the excitonic velocity for momenta of several µm−1. In short,
two subsets of states with considerably different group velocities coexist in a
cavity: The fast ones located within the light cone and the slow ones outside
of it coinciding with conventional excitons. Next, we overlay the occupation
of the lower polariton state on the line displaying the group velocity (red-
dish colours denote large occupation), cf. Fig. 2.4, assuming a thermalized
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Boltzmann distribution

fn
k ∝ e−En

k/kBT . (2.17)

While the excitonic occupation is momentum-independent in the considered
range of momenta (cf. the thin orange line in Fig. 2.4), strong variations
are observed for polaritons. At 20 K, the occupation of the states at larger
momenta is decreased by two orders of magnitude with respect to the exciton
case for both considered Rabi splittings (fLP/fX ≈ 10−5 at k ≈4µm−1), cf.
orange vs black colour in Fig. 2.4. The curvature of the polariton branch
induces a significant decrease in the occupation of the slow quasi-excitonic
states at large momenta, as the energetically lower states at k ≈0 are more
efficiently populated. Increasing the temperature, the population of the for-
mer starts to increase, particularly for the smaller Rabi splitting of 25 meV,
cf. Fig. 2.4(b). Regarding the behaviour at smaller momenta, we see that at
20 K, the occupation of states with the maximum group velocity is negligible
for ℏΩR=50 meV (black colour at approximately k ≈ 1.3µm−1). However,
when increasing the temperature to 40 K, we find a considerable occupa-
tion even at these states, indicating the possibility of a strongly accelerated
polariton diffusion. We will discuss the diffusion coefficient in chapter 4.

Heisenberg Equations of Motion for Polaritons

Until now, we have worked in the Schrödinger picture, where the operators
are constant in time. However, the Hamiltonian can give us access to the time
dynamics of the system. To accomplish that, we change into the Heisenberg
picture, and we find the time evolution of an observable (or, in our case, the
expectation value) is determined by the equation of motion

iℏ
d⟨O⟩
dt

= ⟨[H,O]⟩ (2.18)

Now, we want to calculate the polariton dynamics. We start from the Heisen-
berg equations of motion for the coherent population of polariton, and ex-
ternal radiation field, taking their expectation values. For this, we make a
correlation expansion including the dynamics of the phonon-assisted polar-
ization. We consider a coherent calculation, i.e. the input laser is coherent
and creates a coherent population of polaritons ⟨Y ⟩ = Y ̸= 0, but not coher-
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ent phonons, i.e. ⟨b⟩ = 0. Hence, the equations of motion are

iℏ
d

dt
Ŷ n
k (t) = En

k Ŷ
n(t)− iℏ

∑

j=L,R

∑

k

∫ ∞

0

dω

2π
aj,k(ω)h

n
c,k⟨Bjk(t)⟩+

+ ℏ
∑

q,n′,n

D̃n′n
kαq⟨Ŷ n′

k−q(t)
(
b̂†α,−q(t) + b̂αq(t)

)
⟩, (2.19)

iℏ
d

dt
⟨B̂jkω(t)⟩ = ⟨[B̂jk, Ĥ]⟩ = ℏωB̂†

jkω(t) + iℏaj,k(ω)
∑

n

hnc,kŶ
n
k (t), (2.20)

iℏ
d

dt
⟨b̂αq(t)⟩ = ⟨[b̂αq, Ĥ]⟩ = ℏ

∑

n,n′k

D̃n′n
α,−q⟨Ŷ n,†

k−q(t)Ŷ
n
k (t)⟩ = 0, (2.21)

iℏ
d

dt
S+,n
kαq(t) =

(
En

k−q − Eb
αq

)
S+,n
kαq(t) + ℏ

∑

n′

D̃n′n
kα,−qn

b
αqŶ

n′
k (t), (2.22)

iℏ
d

dt
S−,n
kαq(t) =

(
En

k−q + Eb
αq

)
S−,n
kαq(t) + ℏ

∑

n′

D̃n′n
kα,−qn

b
αqŶ

n′
k (t), (2.23)

where n characterizes each polariton branch and S
+/−,n
k is the phonon-assisted

polarizations . Next, we write a formal solution for the photon bath operator
in terms of an arbitrary initial time solution t0 with t > t0. This operator
depends on the state of the bath at a time t0 and on the past history of the
polaritons, i.e. they are leaking light into the photonic reservoir. We find

B̂jkω(t) = B̂jkω(t0)e
−iω(t−t0) + aj(ω)

∑

i

hnc,k

∫ t

t0

dt′Ŷ n
k e

−iω(t−t′). (2.24)

Inserting this solution into the second term of Eq. (2.19) and assuming that
the coupling parameter aj,k(ω) =

√
κj,k/2 is not frequency dependent [72],

we obtain

iℏhnc,k
∑

k,j=L,R

∫ ∞

0

dω

2π
aj,k(ω)⟨Bjkω(t)⟩ = − (κL,k + κR,k)

∑

n′

hn,∗c,kh
n′
c,kŶ

n′
k (t)

+ hn,∗c,k

√
2κL,kb1,k(t)− hn,∗c,k

√
2κR,kb2,k(t). (2.25)

with the input fields

b1,k(t) = −
∫ ∞

−∞

dω

2π
B̂Lkω(t0)e

−iω(t−t0), b2,k(t) =

∫ ∞

−∞

dω

2π
B̂Rkω(t0)e

−iω(t−t0).

(2.26)
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To calculate the third term in Eq. (2.19), we need to determine the dynamics
of the phonon-assisted polarizations S+,n

kαq(t) = ⟨Ŷ n
k−qb

†
α,−q⟩ and S−,n

kαq(t) =

⟨Ŷ n
k−qbαq⟩ appearing in Eqs. (2.22) and (2.23). These can be formally solved

within the Markov approximation yielding [91]

S+,n
kαq(t) = −iπ

∑

n′

D̃n′n
kα,−qn

b
αqŶ

n′
k (t)δ(ωn′

k − ωn
k−q + ωb

αq), (2.27)

S−,n
kαq(t) = −iπ

∑

n′

D̃n′n
kα,−q(1 + nb

αq)Ŷ
n′
k (t)δ(ωn′

k − ωn
k−q − ωb

αq). (2.28)

Furthermore, we determine the dynamics of the coherent polariton amplitude

iℏ
d

dt
Ŷ n
k (t) = − i

ℏ
En

k Ŷ
n
k (t)−

∑

n′

[hn,∗c,kh
n′
c,k(κL,k + κR,k + iℏΓn′,n

k ]Ŷ n′
k (t) (2.29)

and in the limit of a perfect cavity, κL = κR = 0, we find [91]

d

dt
Ŷ n
k (t) = − i

ℏ
En

k Ŷ
n
k (t)−

∑

n′

Γn′,n
k Ŷ n′

k (t), (2.30)

where Γn′,n
k is the polariton-phonon scattering rate. Assuming that phonons

do not induce oscillations between different polaritons, we obtain

iℏ
d

dt
Ŷ n
k (t) = (Ei

k − iℏΓn
k)Ŷ

n
k (t)− iℏ

∑

n′

[hn,∗c,kh
n′
c,k(κL,k + κR,k)]Ŷ

n′
k (t)

+ iℏhn,∗c,k

√
2κL,kb1,k(t)− iℏhn,∗c,k

√
2κR,kb2,k(t) (2.31)

This equation is similar to the expression found in Ref. [62], except that
we have an additional term describing distinct phonon-induced damping for
each polariton. Neglecting the excitation from the right-hand side of the
cavity and performing the Fourier transform yields

Ŷ n
k (ℏω) =

−ℏ
∑

n′ [h
n,∗
c,kh

n′
c,k(κL,k + κR,k)]Ŷ

n′
k (ω) + ℏhn,∗c,k

√
2κL,kb1,k(t)

i(En
k − ℏω) + ℏΓn

k

(2.32)

with the polariton scattering rates

Γn
k =2π

∑

n′αk′

|D̃n′,n
α,k−k′|2

(
1

2
± 1

2
+ nb

α,k−k′

)
Lγ̃0

(
En′

k′ − Ek
k ± ℏωb

α,k−k′

)
,

(2.33)
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with D̃n′,n
α,k−k′ the polariton-phonon matrix element, nb

α,k−k′ the Bose-Einstein

distribution, ℏωb
α,k−k′ the phonon energy of the mode α with momentum

q = k′ − k, and Lγ̃0 (ℏω) the Lorentzian function with a broadening γ̃0,

Lγ̃0 (ℏω) =
1

π

γ̃0
γ̃20 + ℏω2

. (2.34)

This result is similar to the exciton scattering rates [82, 95], where one
can replace the exciton energies with the polaritons ones and the exciton-
phonon matrix element with the renormalized polariton-phonon matrix ele-
ment. This is due to only the excitonic part of the polariton coupling to the
phonons.
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CHAPTER 3

Phonon-induced Scattering Rates

In this chapter, we turn our focus on the phonon-induced polariton scatter-
ing rates. These serve as a basis for the discussion in the next chapters, as
they are one of the key pieces for the diffusion coefficient and the polariton
optical absorption.

Let us start by retrieving the polariton-phonon scattering rate, calculated in
chapter 2,

Γn
k =2π

∑

n′αk′

|D̃n′,n
α,k−k′|2

(
1

2
± 1

2
+ nb

α,k−k′

)
Lγ̃0

(
En′

k′ − En
k ± ℏωb

α,k−k′

)

(3.1)

where D̃n′,n
α,k−k′ is the polariton-phonon matrix element, nb

α,k−k′ the Bose-

Einstein distribution, ℏωb
α,k−k′ the phonon energy of the mode α with mo-

mentum q = k′ − k, and Lγ̃0 (ℏω) the Lorentzian function with a broaden-
ing γ̃0. In our work, we partially include some effects beyond the so-called

21
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completed-collision limit [96] introducing a Lorentzian function instead of a
Delta function. This is similar to the damping introduced in the second-
order Born approximation, including higher-order effects leading e.g. to a
collisional broadening [97, 98]. We use the value of 0.1 meV, which provides
a low estimation of the scattering rates.

Considering the diverse excitonic landscape, we divide the chapter into two
sections. First, we discuss the intra-valley scattering in the KK valley and
then move to the inter-valley scattering by adding the Λ and K ′ valleys. We
neglect the scattering with defects/disorder [13].

3.1 Intra-valley Scattering

First, we start with the intra-valley polariton-phonon scattering rates, which
we plot in Fig. 3.1 for a temperature of 40K. We choose this temperature
as we see interesting physics around this temperature point, which will be
discussed in detail in chapter 4. Note that only the scattering into LP states
out of the light cone is efficient due to the limited number of receiving partner
states available that exist within the light cone as well as due to the negligibly
small Hopfield coefficient hUP

X for large-momenta UP states. This implies
that the receiving LP state is quasi-excitonic, cf. Fig. 2.3, i.e. the associated
coefficient hLPX ≈ 1, as the scattering with phonons is driven by the excitonic
component of the emitting polariton. With this in mind, one would expect
larger scattering rates for LP states, as the excitonic constituent is dominant
in the polariton. Surprisingly, our microscopic calculations of scattering rates
show a much more efficient scattering for the UP branch, cf. Fig. 3.1(b),
which we will explain below.

Let us first discuss the LP scattering rates for MoSe2 shown in Fig. 3.1(a).
For states around k=0, we find two orders of magnitude smaller polariton-
phonon scattering compared to the exciton case (thin black line), while the
Hopfield coefficient |C+|2 = 0.5 would only imply a decrease by a factor of
two. The reason for the dramatic decrease is related to the change in the
dispersion relation in the strong coupling regime. The energy of acoustic
phonons, ℏvsk, is smaller than the polariton on and appears to be almost
flat due to the smaller velocity compared to the polariton group velocity (cf.
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Figure 3.1: Polariton-phonon scattering rates at T = 40 K for (a) and (c) the
lower polariton branch for MoSe2 and WSe2, respectively. (b) and (d) the upper
polariton branch for MoSe2 and WSe2, respectively. Dashed lines show the case
without the contribution of acoustic phonons. Note that in (a) and (c), all three
dashed lines lie close to each other and are nearly momentum-independent, illus-
trating the crucial role of acoustic phonons for the increased scattering at large
momenta.

orange and red line in Fig. 3.2(a), respectively). Consequently, when low-
momentum polaritons absorb acoustic phonons, they are not able to find a
resonant scattering partner. This is only possible if they are very close to the
exciton energy EX

0 . The increase of the scattering rate at larger momenta
can be traced back to non-resonant scattering with acoustic phonons (cf. the
dashed line in Fig. 3.1(a) excluding acoustic phonons). This is due to the
width of the Lorentzian in Eq. 3.1, whose origin can be related to higher-
order scattering contributions inducing a softening of the energy selection
rules. Note that the scattering rates show a quantitative dependence on this
phenomenologically introduced width parameter. However, the qualitative
behaviour remains unaffected. Looking at figure 3.1(c), which is for WSe2,
we can see that the tungsten material exhibits the same behaviour as MoSe2
in Fig. 3.1(a). The difference is that in WSe2 the scattering rates are smaller
than for MoSe2 because the intravalley scattering in MoSe2 is stronger than
for WSe2 as also seen for excitons.
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Figure 3.2: (a) Schematic representation of possible scattering channels induced
by emission and absorption of acoustic and optical phonons. (b) Crossing points
of optical phonon dispersion with the upper polariton branch for different ℏΩR

explaining the resonances appearing in Fig. 3.1(b).

Next, we discuss the UP scattering rates for MoSe2, as we did for LP, illus-
trated in Fig. 3.1(b). At very small momenta, the scattering with acoustic
modes is more efficient and reaches a value that is approximately only two
times smaller than for excitons, as expected by the Hopfield coefficient (Fig.
2.3(b)). Since the UP branch is higher in energy compared to excitons, it
is possible to find resonant scattering partners, cf. the crossing between the
phonon dispersion (top orange line) and LP energy in Fig. 3.2 (a)). As
a result, scattering via acoustic phonons is possible. At larger momenta,
we observe the appearance of pronounced A and B resonances reflecting the
emission of optical phonons. To better understand their origin, in Fig. 3.2(b)
we plot the UP dispersion and the optical phonon energies (with respect to
the exciton energy EX

0 ) and find crossing points precisely at the position of
the A and B peaks in the scattering rate. Note that the different weight of
these peaks for different Rabi splitting is due to the Hopfield coefficients. For
ℏΩR=50 meV, the A peak appears at k ≈ 1µm−1, where |C+|2 ≈ 0.4, while
at 10 meV it appears at k ≈ 1.5µm−1 with |C+|2 ≈ 0.04 resulting in a much
smaller scattering efficiency. The UP scattering rates are dominated by reso-
nant scattering. Hence the width of the Lorentzian plays a minor role. As in
the case of MoSe2, the scattering rates close to k ≈ 0 for WSe2 are dominated
by acoustic modes and, in general, the behaviour of the curves is explained
by the same arguments. We only see the appearance of one peak as the three
optical modes are very close in energy (ℏωTO = 30.5 meV, ℏωLO,A1 = 30.8
meV) However, in this material the optical emission is not as efficient as in
the molybdenum case. Before, we had an increase of almost an order for the
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ℏΩR = 50 meV case, while in Fig. 3.1(d) it only increases around 2 times.
We can also see that the dashed lines in WSe2 are more apart than for MoSe2.
The difference in magnitude is also reflected in the value of the bare exciton
case as they differ by one order of magnitude. This difference between the
two materials is due to the higher value of deformation potential for MoSe2
[83].

In a nutshell, the polariton-phonon intra-valley scattering is strongly affected
by the polariton dispersion resulting in suppressed scattering with acoustic
phonons for LP and an enhanced emission of optical phonons for UP states.

3.2 Inter-valley Scattering

Now, we allow polaritons to scatter into the dark valleys. We explicitly
consider it by including K ′ and Q′ phonons, which allow scattering into
polaritons coinciding with KK ′ and KΛ excitons, respectively. Following
the scheme in the previous section, in Figure 3.3 (a) and (c) we plot the
lower polariton branch for MoSe2 and WSe2, while in (b) and (d) we plot the
upper polariton. We again consider three values of Rabi splitting ℏΩR = 10,
25 and 50 meV, but this time for a temperature of 77 K. This time we choose
the liquid point of nitrogen as we aim to approach our results to possible
experimental setups. Let us start with MoSe2. As discussed in chapter 2,
this material is a direct band gap semiconductor hence, we expect a small
contribution from the dark channels to the scattering rates, since the dark
states are energetically above the bright state. Observing Fig. 3.3(a) and
(b), we see that the thin lines (corresponding to the intravalley scattering)
are very close to the thick lines (full scattering rates). In both branches for
ℏΩR = 10 meV, we do not see a qualitative change in the behaviour of the
curve, as dark excitons only slightly increase the magnitude of the scattering
rates. As we increase the value of Rabi splitting, we can see the opening of
emission channels into the dark valley with acoustic modes, as can be seen in
Fig. 3.4. However, these contributions are small (especially when compared
later with WSe2, see discussion below).

Opposed to the intravalley case, we can find resonant scattering partners
for the lower polariton with acoustic phonons in the dark valleys as these
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Figure 3.3: Polariton-phonon full scattering rates at T = 77 K for (a) and (c) the
lower polariton branch for MoSe2 and WSe2, respectively. (b) and (d) the upper
polariton branch for MoSe2 and WSe2, respectively. The thin lines show the case
without the contribution of dark excitons. Note that in (a) and (b), all these thin
lines lie close to the full contribution (thick lines).

phonons have a flat dispersion and are treated the same way as optical
phonons. We see the two steps corresponding to the LA and TA acous-
tic phonons with energies ℏωLA = 16.6 meV and ℏωTA = 19.9 meV. In figure
3.4, we show the crossing of the phonon dispersion with the respective polari-
ton, and it corresponds to the position of the marked steps in Fig. 3.3(a) and
(b) (A′ and B′ for LP, and C and D for UP). In the upper polariton branch,
we can also see crossing for the curves with ℏΩR=10, 25 meV, however, the
corresponding peaks in Fig. 3.3(b) are quite weak, due to the Hopfield coef-
ficients, as explained for the intravalley case.

Now, moving toWSe2. In the upper polariton case, all the scattering channels
into the dark valleys are open even from k = 0. Hence, the presence of
dark excitons only increases the magnitude of the scattering, where the only
peak A is due to the intravalley optical emission, as discussed in the previous
section. For the lower polariton, we can see several step-like behaviours in the
curves, as in the case of MoSe2, and the scattering rates are hugely increased
in magnitude. This means that the scattering from the lower polariton is
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Figure 3.4: Crossing points of acoustic phonon dispersion for MoSe2 with the lower
(a) and upper polariton branch (b) for different ℏΩR explaining the resonances
appearing in Fig. 3.3(a) and (b), respectively.

no longer weak when we include the intervalley scattering. At momentum
k = 0, the energy ELP

0 for ℏΩR = 50 meV of the lower polariton is too low to
allow scattering into the KΛ exciton via emission of phonons (Fig. 3.2(a))) as
ELP

0 −EX
Λ,0 ≈ 11.2 meV, which is just smaller than the energy of 11.4 meV of

intervalley TA phonons [83]. When k reaches the threshold value of k ≈ 0.3
µm−1, the scattering channel into KΛ states opens, resulting in the abrupt
increase of Γn

k, cf. also the schematic in Fig. 3.2(a). The second step at k=0.8
also corresponds to the acoustic emission with a phonon energy of 14.3 meV.
Acoustic emission into KΛ dominates the ℏΩR = 50 meV curve, however,
there are other step-like increases (although weaker). They correspond to
optical emission into KΛ valley (step E′ at k=2.4 µm−1) and to KK ′ (steps
C′ and D′). For ℏΩR = 10 (1 step) and 25 meV (3 steps) curves, the steps
correspond to the opening of optical emission of phonons to the KΛ valley
with energies ℏωTO = 27.3 meV, ℏΩTO = 32.5 meV and, ℏωA1 = 30.4 meV.

Next, we study the linewidth of the lower and upper polariton as a function of
temperature for WSe2 to see the impact of the dark excitons. In Figs. 3.5(a)
and (b) we show the temperature-dependent for WSe2 polariton-phonon scat-
tering rates at k = 0 for the UP and LP branches, respectively. We add up
different scattering channels including intravalley scattering within the K
valley (KK) and intervalley scattering into momentum-dark exciton states
(KK ′ and KΛ). For both polariton branches, the most significant contri-
bution to the linewidth comes from the intervalley scattering into dark KΛ
excitons reflecting the efficient scattering plus the three-fold degeneracy of
the Λ valley, similar to the excitonic case [99]. Furthermore, intervalley scat-
tering within the K valley is also essential at room temperature. At 20K,
the LP linewidth is determined to a large extent by scattering into the dark
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Figure 3.5: Temperature study for WSe2. Polariton-phonon scattering rate Γn
k for

the (a) upper (UP) and (b) lower polariton branch (LP) at k = 0 as a function of
temperature (for Qf ≈160). We identify the contributions of the intravalley (KK)
as well as intervalley (KK ′, KΛ) scattering channels (shaded areas).

KK ′ excitons. We stress that here we focus on the scattering from the k = 0
polariton state. There are further possible scattering channels at larger mo-
menta, as shown in Fig.3.4(c). Increasing the temperature to 300K increases
the LP linewidth by around one order of magnitude as the absorption of
intervalley phonons becomes possible. At 77 K the intravalley contribution
to the phonon-scattering rates is very small, in accordance with Fig.3.3(c).
The linewidth of the upper polariton is at 20K, much larger compared to the
LP branch since emission into dark excitons is possible even at k = 0 thanks
to the much higher polariton energy. Hence, the increase in UP from 20K
to 300K is not as substantial as in the LP case. Overall, Figs. 3.5(a,b) illus-
trate the considerable impact of dark exciton states on the polariton-phonon
scattering rates.

The study of the phonon-induced polariton scattering rates opens the door
to the study of different polariton properties, like diffusion coefficient (see 4),
which has been observed in other materials [63, 64]. In terms of optics, we
can use this quantity to determine the absorption coefficient and study how
dark exciton influence the polariton optical spectrum, as we will discuss in
chapter 5.



CHAPTER 4

Diffusion

The transport of exciton-polaritons is strongly influenced by their excitonic
nature. In this chapter, we introduce Paper I, where we focus the study on
the polariton diffusion coefficient.

4.1 Theoretical Background

Polaritons, in general, show peculiar transient spatio-temporal dynamics re-
sulting in a long ballistic propagation even at room temperature [13], as well
as a non-linear transport behaviour [33, 34]. While full spatio-temporal po-
lariton dynamics is beyond the scope of this thesis, we focus the investigation
on polariton diffusion coefficients in the steady-state limit. In TMD mono-
layers, excitons show - after an initial unconventional diffusion [43, 45] - a
regular steady-state diffusion behaviour, i.e. exhibiting a linear increase of
the square width of the spatial distribution as a function of time [46, 100–

29
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103]. The rate of this increase is given by the diffusion coefficient D [45, 104].
Such a regime appears when a local thermalized distribution is reached and
when the scattering processes are fast enough, leading to a quick thermaliza-
tion compared to the transport timescale [104].
The starting point to calculate the diffusion coefficient for polaritons is the
same as for excitons, and it is defining the local distribution

f(k, r, t) = f0(k, r, t) + δf(k, r, t) (4.1)

where f0 is in local quasi-equilibrium. From this, one defines the spatially-
dependent current

J(r, t) =
1

V

∑

nk

vn
kf(k, r, t) =

1

V

∑

nk

vn
kδf(k, r, t) (4.2)

with vn
k the group velocity of the n polariton. Now, we define the Boltzmann

equation, considering no losses

∂tf((k, r, t) = −vnk · ∇rf(k, r, t) + dtf(k, r, t)|scattering, (4.3)

where the first term on the right side of the equation gives the free evolution
for isotropic parabolic dispersion and the last term provides the effect of
scattering, which here we evaluate through the (spatially-local) Boltzmann
collision term (for f << 1)

dtf(k, r, t)|sca. =
[∑

k′

(Γkk′f(k′, r, t)− Γk′kf(k, r, t))

]
=

=
∑

k′

[Γkk′f0(k
′, r, t)− Γk′kf0(k, r, t)] +

+
∑

k′

Γkk′δf(k′, r, t)−
(∑

k′

Γk′k

)
δf(k, r, t) ∼= (4.4)

∼= −τ−1
k δf(k, r, t), (4.5)

where the terms with f0(k, r, t) are zero by the definition of the quasi-
equilibrium distribution, Γkk′/Γk′k are the in/out-scattering rates, and since∑

k δf(k, r, t) = 0 the third term in equation (4.4) is much smaller than the
last one. Inserting the result of Eq. (4.5) into equation (4.3) we have [104]

δf(k, r, t) = −τk [∂tf(k, r, t) + vn
k · ∇rf(k, r, t)] . (4.6)
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In turn, inserting this equation into the current equation (4.2) with the ap-
proximation f ≈ f0

J(r) =
1

V

∑

nk

vn
k(−τk)∂tf0(k, r, t)−

1

V

∑

nk

τkv
n
kv

n
k · ∇rf0(k, r, t) = (4.7)

= − 1

dV

∑

nk

τk|vnk|2∇rf0(k, r, t), (4.8)

where the first term in (4.7) is zero as the group velocity is an odd function
while the other terms are even functions in momentum, hence when we sum
over k this term is zero and d is the dimension of the system. Considering
the completed collision limit, meaning f << 1,

f0(k, r, t) ∼= e−En
k/kBT eµ(r)/kBT (4.9)

where En
k is the polariton energy, T the temperature, kB the Boltzmann

constant and from which it follows

∇rf0(k, r, t) =
1

kBT
e−En

k/kBT eµ(r)/kBT∇rµ(r) =
f0(k, r, t)

kBT
∇rµ(r) =

= −∂f0(k, r, t)
∂En

k

∂µ(r)

∂N(r)
∇rN(r) (4.10)

and the current becomes simply

J = −D∇rN(r) (4.11)

with

D = − 1

dV

∑

nk

|vnk|2τk
∂f0(k, r, t)

∂En
k

∂µ(r)

∂N(r)
(4.12)

which coincides with the result in [104], considering an exciton dispersion
EX

k = ℏ2k2/2m and a group velocity vk = ℏk/m. Now, let us take the term

1

V

∑

k

f0(k, r, t) = N(r) =
1

V
eµ(r)/kBT

∑

k

e−En
k/kBT (4.13)

hence

∂f0(k, r, t)

∂En
k

= − 1

kBT
f0(k, r, t) = − 1

kBT

N(r)e−En
k/kBT

V −1
∑

k e
−En

k/kBT
(4.14)

∂µ(r)

∂N(r)
=

kBT

N(r)
(4.15)



32 CHAPTER 4. DIFFUSION

and, finally, [104]

D =
1

d

∑
nk τk|vnk|2e−En

k/kBT

∑
k e

−En
k/kBT

(4.16)

or simply, in our case, as

D =
ℏ
2

∑

k,n

|vnk|2
Γn
k

fn
k

Z , (4.17)

with a thermalized Boltzmann distribution fn
k ∝ e−En

k/kBT in the low-density
limit Z the partition function, and Γn

k = ℏτ−1
k the polariton scattering rates

via phonon interaction. Note that this approximation can generally lead to
an overestimation of the actual occupation of quasi-photonic polariton states
in the upper polariton branch. However, in the considered regime of resonant
exciton and cavity energies, not too high temperatures and relatively large
Rabi splittings, these effects are found to be small.

The many-particle mechanisms behind the diffusion can differ considerably
when moving from TMD monolayers to TMD bulk materials. In the mono-
layer case, the reduced screening leads to large excitonic binding energies.
As a consequence, diffusion is typically dominated by excitons. Neverthe-
less, contributions from the faster diffusing electron-hole plasma can still
appear for substrates with a large dielectric constant, as observed for hBN-
encapsulated TMDs at higher temperatures [105]. Bulk materials are ex-
pected to have smaller excitonic effects and thus higher diffusion coefficients
in the range of 10 cm2/s, as observed e.g. for MoS2 [100] and MoTe2 [106].

4.2 Polariton Diffusion Results

According to Eq. (4.17), the crucial quantities determining the polariton
diffusion are the polariton group velocity viQ (see chapter 2), the polariton-
phonon scattering rate Γi

Q (see chapter 3) and the occupation of polariton
states f i

Q. Figure 4.1(a) shows the diffusion coefficient as a function of tem-
perature and Rabi splitting. Based on our microscopic approach, we predict
polariton diffusion coefficients that are two to three orders of magnitude
larger than the ones from the bare exciton. This can be explained by: (i)
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Figure 4.1: (a) Polariton diffusion as a function of temperature and Rabi splitting
with (b) cuts evaluated for fixed splittings of 10, 25 and 50 meV. Here, thin lines
show the diffusion stemming only from lower polaritons.

the polariton dispersion exhibiting huge group velocities, (ii) effective occu-
pation of fast polaritonic states, and (iii) reduced scattering with phonons of
the occupied lower polariton states. These features concern, however, only
small-momentum polaritons, while the diffusion coefficients also depend on
large-momentum states. The latter is unaffected by points (i) and (iii), as
the polariton dispersion and scattering rates correspond to the excitonic val-
ues at large momenta (Figs. 2.3, 3.1). Only the relative population remains
affected by the presence of lower-lying polariton states at small momenta. As
a result, the polariton diffusion coefficient results from a non-trivial interplay
between the few very fast states within the light cone and excitonic-like states
outside the cone. Interestingly, for ℏΩR = 50 meV, we observe a maximum in
the polariton diffusion at around 40K. This can be traced back to the occu-
pation discussed in chapter 2 Fig. 2.4: At 40 K, fast polariton states with a
maximum group velocity at approximately Q ≲ 1.3µm−1 are efficiently pop-
ulated resulting in a maximum diffusion. Further increasing the temperature
occupies states at higher momenta (and a smaller group velocity), inducing
a decrease of D.

In Fig. 4.1(b), we show the temperature dependence of the polariton diffusion
coefficient at three fixed values for the Rabi splitting in comparison with the
excitonic value (thin grey line). For increasing temperature, the polariton
diffusion decreases towards the bare exciton diffusion (with D in the range of
a few cm2/s) and this occurs faster for smaller Rabi splittings ℏΩR. At higher
temperatures, the amount of occupied slower quasi-excitonic states outside
the light cone becomes larger. Comparing the total diffusion coefficient with
the contribution stemming only from the lower polariton states (thin lines),
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Figure 4.2: Polariton diffusion assuming exciton-phonon scattering rates illustrat-
ing the impact of the changed scattering for polaritons.

we find that the LP contribution is dominant for ℏΩR = 25 and 50 meV, as the
UP states are only marginally occupied for the considered low temperatures.
For the lower Rabi splitting of ℏΩR=10 meV, we find that the total and the
LP diffusion start to deviate at higher temperatures indicating the increasing
weight of the UP diffusion.

To illustrate the impact of the polariton-phonon scattering on the diffusion,
we calculate in a ”thought” experiment the polariton diffusion assuming ex-
citon scattering rates, cf. the dashed line in Fig.4.2. We observe a significant
decrease in the polariton diffusion by more than one order of magnitude,
indicating the important role of polariton-phonon scattering. Note, however,
that the polariton diffusion coefficient still remains considerably higher than
the exciton one (thin grey line), reflecting the strong impact of the polariton
group velocity. Interestingly, the peak at 40 K shown in the full polaritonic
case disappears as the excitonic scattering rates decrease the distinction be-
tween fast and slow polariton states in view of their weak momentum depen-
dence (Fig. 2.4(a)).



CHAPTER 5

Optical Absorption

The polariton absorption spectrum is especially informative as it unambigu-
ously demonstrates strong coupling via the Rabi splitting.
In this chapter, we introduce Paper II, investigating how the excitons-polariton
optical absorption spectra behave and differ for different TMDs.

5.1 Theoretical Background

Cavity polaritons represent an open system that can couple via their pho-
tonic part to the outside universe. We can model them using the Heisenberg-
Langevin equations along with the input-output relations [72]. Notably, the
input-output approach allows us to connect the internal dynamics of the
cavity with the external radiation field, which is what is measured in ex-
periments. Therefore, we calculate the equation of motion for polaritons,
including the external radiation field and the interaction with phonons. We

35



36 CHAPTER 5. OPTICAL ABSORPTION

consider the situation, where the input laser creates a coherent population of
polaritons. The starting point is the Heisenberg equations of motion for the
coherent population of polariton and external radiation field. For this, we
make a correlation expansion including the dynamics of the phonon-assisted
polarization. The derivation of the polariton equations of motions is found
in chapter 2, where the polariton dynamics in Fourier space are determined
by equation (2.32). Now, we consider the full-time-reversed system to derive
the input-output relations. The photon reservoir dynamics is now solved in
terms of the output fields [62]. Furthermore, the dynamics of the polariton
recombination must be solved in terms of a future time. For simplicity, we
consider only restricted-time reversal [107] (i.e. loss remains as loss and does
not transform into gain); hence, the input-output relations can be shown not
to be impacted by the presence of phonons in the system, thus let us start
from equation (2.31)

iℏ
d

dt
Ŷ n
k (t) = (Ei

k − iℏΓn
k)Ŷ

n
k (t)− iℏ

∑

n′

[hn,∗c,kh
n′
c,k(κL,k + κR,k)]Ŷ

n′
k (t)

+ iℏhn,∗c,k

√
2κL,kb3,k(t)− iℏhn,∗c,k

√
2κR,kb4,k(t) (5.1)

to give

hn,∗c,k

√
2κL,kb1,k(t)− hn,∗c,k

√
2κR,kb2,k(t) =

∑

n′

[
hn,∗c,kh

n′
c,k(κL,k + κR,k)

]
Ŷ n′
k (t)+

+ hn,∗c,k

√
2κL,k

∑

n′

hn
′

c,kŶ
n′
k (t)− b4,k(t) (5.2)

with the output fields

b3,k(t) = −
∫ ∞

−∞

dω

2π
B̂Rkω(t1)e

−iω(t−t1), (5.3)

b4,k(t) = +

∫ ∞

−∞

dω

2π
B̂Lkω(t1)e

−iω(t−t1). (5.4)

To better visualise the input and output fields bi,k(t) in figure 5.1 we have
a schematic representation to show the roles of the four fields. The input-
output relations are found by switching off each port in turn:

κR,k = 0 : b1,k(t) =
√

2κL,k
∑

n′

hn
′

c,kŶ
n′
k (t)− b4,k(t), (5.5)

κL,k = 0 : b2,k(t) =
√
2κR,k

∑

n′

hn
′

c,kŶ
n′
k (t)− b3,k(t). (5.6)
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Figure 5.1: Schematic representation of the input and output fields bi,k(t) in the
system.

Then, we Fourier transform these equations and use Eq. (2.32). Let us
calculate the transmission, with b2 = 0

itnk(ω) =
b3,k(ω)

b1,k(ω)
= − Ωk(ω)

√
2κR,k

√
2κL,k

1 + Ωk(ω)[
√
2κL,k +

√
2κR,k],

(5.7)

with

Ωk(ω) =
∑

n

|hnc,k|2
i(ωn

k − ω + Γn
k)
. (5.8)

Similarly for reflection:

rnk(ω) =
b4,k
b1,k

=
−1 + Ωk(ω)[κL,k − κR,k]

1 + Ωk(ω)[κL,k + κR,k]
. (5.9)

In the end, we can simply use the transmission and reflection coefficient
assuming the case of a single polariton and for a symmetric cavity κL = κR:

itnk(ℏω) = − 2γnk
i(En

k − ℏω) + Γn
k + 2γnk

, rnk(ℏω) =
i(En

k − ℏω) + Γn
k

i(En
k − ℏω) + Γn

k + 2γnk
,

(5.10)

with γnk as the effective cavity decay rate. Here, we have neglected interfer-
ence effects between polaritons. Finally, we obtain an Elliot-like formula for
the polariton absorption [62]

An
k(ℏω) = 1− |rnk(ℏω)|2 − |itnk(ℏω)|2 =

4γnkΓ
n
k

(En
k − ℏω)2 + (2γnk + Γn

k)
2
, (5.11)
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for each polariton branch and momentum n,k. The obtained equation is
similar to the expression found in Ref. [62]. However, the key difference lies
in the microscopic treatment of polariton-phonon interaction. This means
that phonons can change the momentum of the excitonic component of the
polariton, leading to a momentum-dependent scattering rate. In Eq. (5.11)
we introduced the decay rates

γnk = ℏc(1− |rm|2)|hc,k|2/(4Lcav), (5.12)

Γn
k = 2π

∑

n′αk′

|D̃n′n
α,k′−k|2

(
1

2
± 1

2
+ nb

α,k′−k

)
×

× Lγ̃0

(
En′

k′ − En
k ± Eb

α,k′−k

)
, (5.13)

where γnk is the effective cavity decay rate of one port and Γn
k is the polariton-

phonon scattering rate. Here we are summing over all possible scattering
channels from a polariton n,k to all possible receiving polaritons n′,k′ via
interaction with a phonon with mode α and momentum q, such that the
overall momentum is conserved. The quality factor of the cavity reads
Qf = Ec

0Lcav/[ℏc(1 − |rm|2)|)], where rm is the reflectivity of the cavity.
In this work, if not stated otherwise, we use the default value of rm = 0.99.
Crucially, the polaritonic Elliot formula offers insight into how underlying
microscopic decay channels manifest in the absorption of light by polaritons,
which would not be possible using the more commonly used classical transfer-
matrix method [4]. Evaluating Eq. (5.11) at resonance reveals that absorp-
tion is maximized when the two effective polariton decay rates are closest in
value. It follows that maximum absorption of 0.5 is possible at the so-called
critical coupling condition [108, 109] of 2γnk = Γn

k, i.e. when the leakage out
of both ports of the cavity is equal to the exciton dissipation rate within
the TMD layer in the cavity. The maximum possible absorption of 50% is a
well-known constraint for mirror-symmetric two-port systems that support a
single resonance [110, 111]. We expect the presence of dark excitons to sig-
nificantly increase the polariton-phonon scattering rates in tungsten-based
TMDs (as there they are the energetically lowest states). The opening of
intervalley scattering channels is expected to strongly impact the balance
between the effective radiative coupling and scattering loss, which should
translate into measurable signatures in polariton absorption spectra.
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Figure 5.2: Polariton absorption. (a) Surface plot of absorption in an hBN-
encapsulated WSe2 monolayer as a function of momentum and energy at a tem-
perature of 77 K, assuming a Rabi splitting of ℏΩR = 50 meV and a cavity quality
factor of Qf=160. The dashed white lines correspond to the bare exciton and
cavity dispersion, while the solid black lines describe the polariton dispersion. (b)
Absorption cuts as a function of energy for three different momenta.

5.2 Polariton Absorption of WSe2

First, we evaluate Eq. (5.11), using numerically calculated polariton-phonon
scattering rates from chapter 3, to study the polariton absorption in the
strong-coupling regime for an hBN-encapsulated WSe2 monolayer integrated
into a Fabry-Perot cavity with a quality factor of Qf ≈ 160 and a Rabi
splitting of ℏΩR = 50 meV. Figure 5.2(a) presents an energy- and in-plane
momentum-resolved surface plot of the polariton absorption. Interestingly,
we find the upper polariton to be much higher in intensity than the lower
polariton at k = 0 µm−1 (cf. also the blue lines in Fig.5.2(b)). Previous
reports in GaAs have shown that in the case of zero detuning (also called
resonant case), the lower and upper polariton peak intensities are similar
[112, 113]. In the resonant case, the two polaritons have an equal photonic
and excitonic contribution at k = 0. Hence, the cavity decay rate, γnk , is
the same for both polaritons. As a result, the phonon-induced decay rate
of polaritons must be responsible for the observed difference in the height
of absorption peaks. Furthermore, we find that the absorption is enhanced
for increasing momenta for the lower polariton (ALP ) up to approximately
k = 1.6 µm−1, while it is reduced for the upper polariton (AUP ), (cf. also
the absorption cuts in Fig. 5.2(b)). Moreover, we observe that not only
the absorption intensity but also the linewidth of ALP becomes larger for
increasing in-plane momentum before it is again reduced for momenta higher
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than k = 1.6 µm−1. The absorption intensity and the spectral linewidth of
polariton resonances can be ascribed to the interplay of the cavity decay and
non-radiative decay of polaritons via scattering with phonons.

5.3 Critical Coupling

To explain the different behaviours in the absorption spectra of the upper
and lower polariton branch, we plot the maximal absorption An

k for UP and
LP branch at 77 K in Fig. 5.3(a). The absorption intensity of the UP branch
generally decreases with the momentum, however, there is one exception at
approximately k = 1 µm−1, where we observe a small increase (blue line).
In contrast, we find an enhanced absorption for the lower polariton branch
until approximately k = 1.6 µm−1 where it achieves the maximum value of
A = 0.5 (red line). The resonant absorption also includes several steep step-
like enhancements until the maximum is reached. To better understand the
change of the absorption as a function of the in-plane momentum and the
opposite behaviour of the upper and the lower polariton branch observed in
Fig. 5.3(a), we investigate in Fig. 5.3(b) the momentum-dependent cavity
decay rate γnk and polariton-phonon scattering rate Γn

k, cf. Eqs. (5.12) and
(5.13). We find that for the lower polariton branch, the critical coupling
condition of Γn

k = 2γnk is reached at k = 1.6 µm−1, as denoted with the black
vertical line in Fig. 5.3(b). This corresponds exactly to the momentum
where the maximal absorption of ALP = 0.5 is reached. The microscopic
calculation of polariton-photon scattering rates explains the step-like increase
in the absorption of both the UP and LP polariton branch. These can be
clearly attributed to an increase of the polariton-phonon scattering rates at
certain momenta (at k ≈ 0.3, 0.8, 2.4 and 3.1 µm−1 for ΓLP

k and at 1 µm−1 for
ΓUP
k ). Importantly, each of the steep increases for the LP absorption/rates

is a signature of an opening of an intervalley scattering channel into dark
exciton states. In Fig. 5.3(c), we plot the lower polariton dispersion in
relation to the bright exciton energy together with the phonon dispersion for
LA, TA and TO modes that are responsible for the scattering into the dark
KΛ excitons. For a more detailed description of the step-like behaviour of
the lower polariton, see chapter 3. We point that the cavity decay rate γnk
increases/decreases smoothly with k for the UP/LP branch, cf. the dashed
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Figure 5.3: Critical coupling. (a) Maximal absorption at the resonant energy as
a function of momentum for the lower (red, LP) and upper (blue, UP) polariton
at 77 K and ℏΩR = 50 meV, Qf ≈160. (b) Polariton-phonon scattering rate Γn

k

(solid lines) and cavity decay rate γnk (dashed lines) as a function of momentum
for the upper and lower polariton (same colours as in (a)). The maximum value of
absorption of An = 0.5 identifies the critical coupling conditions Γn

k = 2γnk for the
respective polariton and it is marked by a vertical black line. The grey lines show
the case without considering dark states and only taking into account the bright
KK excitons. (c) Lower polariton dispersion (red line) and phonon energies (plus
the energy of the dark KΛ exciton) showing the opening of emission channels into
the dark exciton states at k ≈ 0.3, 0.8, 2.4 and µm−1.

lines in Fig. 5.3(b). This increase/decrease is determined by the photonic
Hopfield coefficient, which increases for the UP and decreases for the LP
branch.

To illustrate the importance of dark excitons, we also show the polariton
absorption and the polariton-phonon scattering rates without including dark
exciton states, i.e. we only take into account the bright KK excitons (grey
lines in Figs. 5.3(a,b)). We find that for the lower polariton the resonant
absorption is drastically reduced at small momenta, with the critical coupling
condition shifted to higher momenta. We also find that the steep increases
step-like increases found for these polaritons disappear (red vs. lower grey
line), as they stem from scattering into dark excitons.
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Figure 5.4: Critical coupling momentum kc as a function of temperature for the
upper (blue) and lower polariton (red). The shaded area corresponds to the range
0.5 ≥ An ≥ 0.495.

So far, we have only considered the polariton absorption at 77K, where the
critical coupling condition can only be reached for the lower polariton branch.
To further investigate this, we present in Fig. 5.4 the critical coupling mo-
mentum kc as a function of temperature for the upper (blue line) and the
lower polariton (red line). The blue- and red-shaded areas correspond to the
region 0.5 ≥ An ≥ 0.495 to take into account uncertainties in the experi-
mental measurement of the maximal absorption. As we increase the tem-
perature, the critical coupling occurs at smaller momenta for the LP branch
due to increased scattering with phonons. Since the cavity decay rates γik
are temperature-independent within our model, the overall increase in Γn

k

at higher temperatures results in smaller kc fulfilling the critical coupling
conditions. Interestingly, for the UP branch, we find that there is no crit-
ical coupling for temperatures below approximately 125K. We show in Fig.
5.3(b) that at k = 0 the cavity decay rate γnk is larger than Γn

k. However,
while γLPk decreases for increasing momenta, thus approaching the smaller
values of Γn

k, the opposite takes place for γUP
k . Thus, for upper polaritons,

the critical coupling can only occur at higher temperatures, where Γn
k is con-

siderably enhanced. Interestingly, we find that at around 200K two different
momenta fulfil the critical coupling condition for UP (blue lines in Fig. 5.4).
At these temperatures, the cavity decay rate crosses the polariton-phonon
scattering rate in the region of the opening of the optical emission (step-like
increase), where we can have the same value of scattering and cavity-decay
rates for two (or more) momenta.
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Figure 5.5: Absorption of MoSe2. (a) Surface plot of polariton absorption of an
hBN-encapsulated MoSe2 monolayer as a function of momentum and energy (77K,
ℏΩR = 50 meV and Qf ≈160) and (b) Absorption cuts as a function of energy for
three different momenta.

5.4 Polariton Absorption of MoSe2

So far we have studied the polariton absorption for WSe2 monolayers, where
dark excitons turned out to play a crucial role. Now we investigate the MoSe2
monolayer exhibiting a different energetic alignment of dark and bright states.
With the latter being the lowest ones in MoSe2 [3, 41, 69], we expect only a
negligible contribution from dark excitons.
Similarly to the case of WSe2, we show in Fig. 5.5(a) the absorption of po-
laritons as a function of momentum and energy for the zero-detuning case
at T =77 K. We find a drastic reduction in absorption as well as in the
linewidth of the LP absorption compared to WSe2 (Fig. 5.2(a)). This can be
clearly observed in the momentum cuts shown in Fig. 5.5(b). Although the
intensity of the resonant absorption increases for larger momenta, similar to
the case of WSe2, quantitatively the increase is much slower, reaching only
a maximal value of approximately 0.1 at k = 1.5µm−1 (compared to almost
0.5 predicted for WSe2). Interestingly, for larger momenta, we also find an
increase of the absorption for the UP branch (Fig. 5.5(b)) - opposite to the
case of WSe2 (Fig. 5.5(b)). In addition, we observe a large increase in the
spectral width of polariton resonances at larger in-plane momenta k.
To microscopically understand the qualitative as well as quantitative differ-
ences of the momentum-resolved absorption in MoSe2 and WSe2, we inves-
tigate the intensity of the resonant polariton absorption and the underlying
polariton-phonon and cavity decay rates. We assume the same value of re-
flectivity rm = 0.99 as in Fig. 5.3, resulting in similar cavity decay rates γnk
as for WSe2. We show both the absorption and decay rates also for the case



44 CHAPTER 5. OPTICAL ABSORPTION

Figure 5.6: Absorption of MoSe2. (a) Absorption intensity as a function of mo-
mentum for the lower (LP) and the upper (UP) polariton branch. (b) Decay rates
Γn
k and 2γnk as a function of momentum for the LP and UP branches. The thin

grey lines in (a) and (b) correspond to the case without dark excitons (considering
only the bright KK excitons).

without dark excitons (grey lines in Figs. 5.6(a,b)). As expected, in MoSe2
there is only a minor contribution of dark states (as we previously saw in
the scattering rates, see chapter 3). Nevertheless, the decrease of the cavity
decay rate γnk with increasing momenta allows for the critical coupling con-
dition at the very high momenta of kc = 3.25 µm−1 (cf. Fig. 5.6(b)), where
the LP absorption reaches its maximum value of An = 0.5 (Fig. 5.6(a)). In-
terestingly, even though dark excitons have only a small contribution, their
presence shifts the critical coupling condition to a smaller momentum (cf.
grey vs red line in Fig. 5.6(a)). For the upper polariton, the intra-valley
scattering contribution is the dominant (only small deviations between the
grey and blue line). In contrast to WSe2, we observe a large increase in
the phonon-scattering rates for the UP branch, reflecting a more efficient
intravalley scattering with optical modes in MoSe2 [83]. This leads to the
much broader spectral width of the resonances observed in Fig. 5.5(b). The
contribution of dark excitons is minor, however, we still observe an opening
of an emission channel into dark states, cf. the step-like increase of ΓUP

k at
k ≈ 0.4 µm−1. This opening is important for understanding the increase of
the resonant absorption when going from k = 0 to k = 0.75 µm−1 observed in
Fig. 5.5(b) (in contrast to the prediction for WSe2 in Fig. 5.2(a)). Without
dark states, there would be a decrease of the absorption up to approximately
0.9 µm−1 (cf. the grey line in Fig. 5.6(a)). In MoSe2, the upper polariton ful-
fils the critical coupling condition at the four different momenta kc ≈ 1, 1.2,
1.3 and 1.6 1/µm. The lowest two are a consequence of polariton scattering
into dark exciton states.



CHAPTER 6

Conclusion and Outlook

In this thesis, we have provided a microscopic description of transport and
optics of exciton-polaritons in atomically thin semiconductors. The theo-
retical approach presented here is based on the density matrix formalism
combined with the Hopfield approach. In particular, we used our model
to study the polariton diffusion coefficient in an hBN-encapsulated MoSe2
monolayer. To calculate the polariton absorption coefficient we used the
Heisenberg-Langevin equations, together with the input-output formalism.
Our work provides insight into (1) accelerated polariton diffusion, which
opens the door to ballistic polariton propagation, and (2) the impact of dark
excitons on optical absorption, potentially suggesting experiments that could
determine the energy of these dark exciton states.

So far, we consider the case where the energy of the cavity was in resonance
with the energy of the exciton. However, recent experiments have shown that
we can use detuning to make the lower polariton the lowest energetic state
of WSe2 monolayers, and, consequently brighten the dark material [114].
In the second part of my PhD, we want to study how detuning affects the
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polariton absorption for the tungsten-based material as we predict a decrease
in the absorption of the lower polariton with an increased negative detuning.
Furthermore, we mentioned that the change in the polariton dispersions has
effects on the optics, transports and dynamics properties of the material.
While we have performed studies on optics and transport so far, we will
focus on exciton-polaritons and temporally resolve the polariton physics in
2D materials.



Acknowledgments

First of all, I would like to thank my supervisor, Ermin Malic, for his con-
sistent support, guidance and encouragement. I would also like to thank
Roberto Rosati for his endless patience towards my numerous questions and
for his contagious enthusiasm and encouragement.

Further, I thank my examiner, Jari Kinaret, for carefully reading and for the
useful comments on my thesis and Thilo Bauch for taking the time for being
my opponent.

I could not forget to thank all the members of the Ultrafast Quantum Dy-
namics group in Marburg and Chalmers, especially Jamie Fitzgerald for all
the interesting conversations on polaritons, but also Raul, Daniel and Joakim
for the coffee and lunch breaks.

Finally, a big thanks to my family and friends in Portugal. It does not
matter if there are so many kilometres separating us, you keep supporting
and helping me in every way you can, through the good and bad days. To
my boyfriend, I only say 143.

47



48



Bibliography

[1] PJ Dean, B Fischer, DC Herbert, J Lagois, and PY Yu. Excitons,
volume 14. Springer Science & Business Media, 2012.

[2] Raul Perea-Causin, Daniel Erkensten, Jamie M Fitzgerald, Joshua JP
Thompson, Roberto Rosati, Samuel Brem, and Ermin Malic. Exci-
ton optics, dynamics, and transport in atomically thin semiconductors.
APL Materials, 10(10):100701, 2022.

[3] Thomas Mueller and Ermin Malic. Exciton physics and device appli-
cation of two-dimensional transition metal dichalcogenide semiconduc-
tors. NPJ 2D Mater. Appl, 2(1):29, Sep 2018.

[4] Alexey V Kavokin, Jeremy J Baumberg, Guillaume Malpuech, and
Fabrice P Laussy. Microcavities, volume 21. Oxford university press,
2017.

[5] Obafunso A Ajayi, Jenny V Ardelean, Gabriella D Shepard, Jue Wang,
Abhinandan Antony, Takeshi Taniguchi, Kenji Watanabe, Tony F
Heinz, Stefan Strauf, X-Y Zhu, and James C Hone. On the influ-
ence of reabsorption on the decay of fluorescence in molecular crystals.
Optika i Spectr., 3(3):84, 1957.

49



50

[6] JJ Hopfield. Theory of the contribution of excitons to the complex
dielectric constant of crystals. Phys. Rev., 112(5):1555, 1958.

[7] DL Mills and E Burstein. Polaritons: the electromagnetic modes of
media. Reports on Progress in Physics, 37(7):817, 1974.

[8] JM Pitarke, VM Silkin, EV Chulkov, and PM Echenique. Theory of
surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys,
70(1):1, 2006.

[9] Zubin Jacob. Hyperbolic phonon–polaritons. Nature Mat.,
13(12):1081–1083, 2014.

[10] Dengke Zhang, Xiao-Qing Luo, Yi-Pu Wang, Tie-Fu Li, and JQ You.
Observation of the exceptional point in cavity magnon-polaritons. Na-
ture communications, 8(1):1–6, 2017.

[11] Mark Steger, Gangqiang Liu, Bryan Nelsen, Chitra Gautham, David W
Snoke, Ryan Balili, Loren Pfeiffer, and Ken West. Long-range ballistic
motion and coherent flow of long-lifetime polaritons. Phys. Rev. B,
88(23):235314, 2013.

[12] J Vondran, F Spitzer, M Bayer, IA Akimov, A Trautmann, M Re-
ichelt, C Meier, N Weber, T Meier, R André, et al. Spatially asym-
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Bernhard Urbaszek. Two-dimensional semiconductors in the regime of
strong light-matter coupling. Nat. Commun., 9(1):1–9, 2018.

[30] Jacek Kasprzak, Murielle Richard, S Kundermann, A Baas, P Jeam-
brun, Jonathan Mark James Keeling, FM Marchetti, MH Szymańska,
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