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Abstract
We study methods for the exact solution of the unrelated parallel machine problem with makespan minimization,
generally denoted as R||Cmax. Our original application arises from the automotive assembly process where tasks needs to
be distributed among several robots. This involves the solutions of several R||Cmax instances, which proved hard for a
MILP solver since the makespan objective induces weak LP relaxation bounds. To improve these bounds and to enable
the solution of larger instances, we propose a branch–and–bound method based on a Lagrangian relaxation of the
assignment constraints. For this relaxation we derive a criterion for variable fixing and prove the zero duality gap property
for the case of two parallel machines. Our computational studies indicate that the proposed algorithm is competitive with
state-of-the-art methods on different types of instances. Moreover, the impact of each proposed feature is analysed.

Digital Object Identifier 10.5802/ojmo.4

Keywords unrelated parallel machine problem, makespan, variable fixing, binary knapsack, Lagrangian relaxation.

1 Introduction

We study the unrelated parallel machine problem (e.g., [29, 31]), which is to assign n tasks to m machines,
where the processing time of an assignment depends on both task and machine, and the goal is to minimize the
makespan (i.e., the finish time of the last machine); see [23]. By the three-field notation from scheduling theory,
cf. [20], this problem is denoted R||Cmax, where R denotes that the processing times are unrelated, || denotes
that there are no additional constraints on the tasks, and Cmax denotes that the makespan is to be minimized.
The R||Cmax problem is a classical problem in the field of scheduling and it can be utilized when scheduling
tasks on, e.g., production lines or multiprocess computers.

A previous study, considering an application from the automotive manufacturing industry, concerned the
makespan minimization of several industrial robots completing a set of welding tasks without entering each other’s
workspaces; it also included sequences of tasks, robot routing, and path planning; see [1, 3]. The requirement of
not intersecting each other’s workspaces while working on the robots’ respective assigned tasks resulted in an
extension of the R||Cmax with a few set packing side-constraints, the extension was iteratively solved in order to
provide candidate robot–task assignments. Each of these candidate assignments were later analysed in order to
find improved sequences of the tasks as well as the corresponding motions of the robots.

The main reasons to perform the study resulting in this article is that our suggested model proved hard to
solve with a general mixed–integer linear programming (MILP) solver; see [3], and that the issue of long computing
times remained when relaxing our model to the R||Cmax. Thus, this study aims to construct exact methods for
the R||Cmax, preferably such that can be generalized to our extension of the R||Cmax, and using considerably
less computing time as compared to a general MILP solver applied to the original R||Cmax formulation. For the
sake of generality, we consider general R||Cmax instances; see, e.g., [29, 32, 42]. The main contributions of our
study are a new variable fixing criterion and, for m = 2, a proof of no duality gap.

Related work on R||Cmax is reviewed in Section 2. Inspired by the strongest Lagrangian relaxation suggested
in [29], (i) the knapsack structure of the subproblems is utilized to derive a variable fixing criterion, (ii) a deflected
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2 Exact methods for the R||Cmax

subgradient method is used to maximize the dual function, (iii) the duality gap is investigated, and (iv) a
branch–and–bound rule is suggested in Section 3. A local search heuristic is presented in Section 4. Some MILP
approaches, test instances, and results are presented in Section 5 and conclusions are presented in Section 6.

We apply the Lagrangian relaxation suggested in [29], however, with a variable fixing criterion that differs
from their implementation. Moreover, in [29] the focus is on the branch–and–bound root node, in which several
heuristics are employed and the strong Lagrangian dual function is maximized, whereas in the child nodes only
weaker Lagrangian relaxations are utilized. We, however, apply local search heuristics and spend most of the
computational effort on maximizing the strong dual function using a deflected subgradient method in every
branch–and–bound node.

2 Related work

In 1975, Sandi [37] studied a mixture of R||Cmax and P ||Cmax, where P denotes that the processing times
are identical over the machines. In 1976, Horowitz and Sahni [23] were among the first to suggest an exact
solution method for the R||Cmax based on dynamic programming (however, exponential in nature) and in 1990,
Lenstra et al. [27] showed that no polynomial 3

2 -approximation algorithm for the R||Cmax can exist unless
P=NP, and that the R||Cmax is NP-hard even for m = 2. Hence, approximation algorithms are often suggested
for the R||Cmax, e.g., a classical 2-approximation algorithm based on rounding the linear programming (LP)
solution; see [27] and [40, Ch. 17]. For fixed values of m there exist fully polynomial-time (1 + ε)-approximation
algorithms; e.g., in 2001, Jansen and Porkolab [25] presented a running time of n(m/ε)O(m). If m and n are
not too large (e.g., m ≤ 20, n ≤ 200), exact algorithms are also applicable. In 1991, Velde et al. [39] suggested
a branch–and–bound algorithm based on Lagrangian relaxation. In 1997, Martello et al. [29] improved the
branch–and–bound algorithm by using several Lagrangian relaxations and so-called residual costs [14]. In 2002,
Mokotoff and Chrétienne [32] suggested a cutting plane method; by assuming integer valued processing times, the
value of the makespan is iteratively increased until a feasible solution exists. A branch–and–price algorithm was
suggested in 2007 by Wotzlaw [42] along with a survey of 2-approximation and heuristic algorithms comprising,
e.g., the one described in [16].

Local search heuristics are often applied in order to find good feasible solutions to the R||Cmax. In 1994, Glass
et al. [19] defined neighbourhoods as reassign a task to another machine and interchange two tasks between two
machines. Wotzlaw [42] emphasized the importance of applying local search techniques in a branch–and–price
implementation to allow early pruning. In 2004, Frangioni et al. [15] suggested two larger neighbourhoods, a
cyclic exchange and a path exchange of tasks, and showed that the problem of verifying that these neighbourhoods
do not contain an incumbent solution is NP-complete; similar but smaller neighbourhoods are employed in
our suggested methodology (see Section 4). In 2010, Fanjul-Peryro and Ruiz [12] introduced an iterated greedy
heuristic based on a destruction–reconstruction methodology and the local search heuristics suggested in [19];
they compared their result with a general MILP solver and found that, given a short time limit, their heuristic
generally outperformed the MILP solver. In 2005, Ghirardi and Potts [18] suggested a so-called recovery beam
heuristic for the R||Cmax; it uses a so-called truncated branch–and–bound algorithm, where the lower and upper
bounds in each node are computed as in [39] and [29], respectively.

The R||Cmax is a common relaxation of scheduling problems including additional constraints; hence, the
R||Cmax yields a lower bound for such problems. In 2014, such relaxations were used by Borba and Ritt [9] and
Vilá and Pereira [41]: both studied precedence constraints among tasks and used lower bounds for the R||Cmax
in their respective branch–and–bound algorithms. In 2017, Åblad et al. [3] solved the R||Cmax with additional
set packing constraints using a branch–and–cut solver.

3 A Lagrangian relaxation of the R||Cmax

In this section we present a MILP model for the R||Cmax and the corresponding Lagrangian relaxation of the
task-assignment constraints. We then exploit the lower bound of this relaxation and the structure in the resulting
subproblems to fix the values of variables which result in a reduction of the total computation time.

A MILP model for the R||Cmax (cf. [39]) is the following: let I := {1, . . . ,m} denote the set of machines,
J := {1, . . . , n} the set of tasks, and pij ∈ Z+ the processing time of task j ∈ J on machine i ∈ I. Define

xij =
{

1, if machine i performs task j,
0, otherwise,

i ∈ I, j ∈ J . (1)
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Introducing the set

X(z) :=
{
x ∈ Bmn

∣∣∣∣∣ ∑
j∈J

pijxij ≤ z, i ∈ I

}
, z ∈ R, (2a)

in which each machine must respect the makespan value z, and the set

Xsa :=
{
x ∈ Bmn

∣∣∣∣∣ ∑
i∈I

xij = 1, j ∈ J
}
, (2b)

in which each task is assigned to exactly one machine (semi-assignments, sa), the R||Cmax is formulated as

minimize
x∈Bmn, z∈R

{z | x ∈ X(z) ∩Xsa} . (3)

We also let S := {(x, z) ∈ Bmn × R | x ∈ X(z) ∩Xsa} denote the feasible set of (3).
A Lagrangian relaxation of the constraints in (2a) (as suggested in [39]) yields a subproblem that is

polynomially solvable, while relaxing the constraints in (2b) (as suggested by Martello et al. [29]) leads to a
subproblem involving m binary knapsack problems, which are NP-hard. Moreover, as shown in [29], it leads to a
stronger lower bound. We consider the Lagrangian relaxation of the constraints in (2b), which results in the
expression of the Lagrangian dual function h : Rn 7→ R as

h(u) :=
∑
j∈J

uj + minimum
z≤z≤z

(z − f(z,u)) , (4a)

f(z,u) :=
∑
i∈I

maximum
xi·∈Xi(z)

∑
j∈J

ujxij , (4b)

where Xi(z) := {xi· ∈ Bn |
∑
j∈J pijxij ≤ z} (i.e., X(z) = X1(z) × · · · ×Xm(z)), u ∈ Rn is the Lagrangian

multiplier vector, and z and z are the current best known lower and upper bounds on the optimal objective value
z∗ of (3), respectively. The optimal value of the Lagrangian dual is found by maximizing h(u) over u ∈ Rn.

Note that the constraints z ≤ z ≤ z are redundant in (3), however, tight bounds can improve the lower
bound h(u). For example, if h(u) > z for some u ∈ Rn then z := dh(u)e, where the ceiling operation is valid
due to the integrality of pij . Hence, the dual function (4a) gets redefined whenever tighter bounds z and z are
found, cf. Section 3.3. The lower bound z is initialized using the LP relaxation of (3) and updated using h(u)
and branch–and–bound. The upper bound is provided and updated by our heuristics; see Section 4.

For fixed values of z and u the problem (4b) amounts to solving m binary knapsack problems. In [29] these
knapsack problems are solved by a branch–and–bound algorithm; we, however, employ the classical dynamic
programming approach presented in [30, p. 38]. Although a more sophisticated dynamic programming approach
can be applied (see, e.g., [34, 28]), our preliminary tests indicated that the classical implementation suffices for
our instances, where twenty years of development in computer memory size and speed might be the enabler.
This classical approach also provides a direct computation of bounds to be used in the variable fixing procedure
specified next, whereas a more sophisticated dynamic programming approach might not provide the computation
of these bounds and is thus left for future studies. The variable fixing is one of our main contributions. Moreover,
in Section 3.3 we emphasize the strength of the lower bound (4a) and describe how to maximize it in Section 3.2.

3.1 Variable fixing using the subproblem solution
Given a lower bound for a problem with a binary variable restricted to one, if this bound exceeds a known
upper bound for the unrestricted problem then the variable can be set to zero; this is called variable fixing. This
lower bound is often deduced by the reduced costs of the LP relaxation of the problem, being a special case of
residual cost, cf. [14]. However, we will compute h(u | xı̄̄ = 1) and f(z,u | xı̄̄ = 1), i.e., restricting xı̄̄ to one by
replacing the set Xı̄(z) in (4b) by Xı̄(z) ∩ {xı̄· ∈ Bn | xı̄̄ = 1} for some ı̄ ∈ I, ̄ ∈ J . Moreover, the feasible set
Xsa is respected by also restricting xī = 0, i ∈ I \ {ı̄}, i.e., the task ̄ is assigned to only machine ı̄. Thus, if
h(u | xı̄̄ = 1) ≥ z, we may fix xı̄̄ = 0, since the constraint xı̄̄ = 1 does not allow for an improved upper bound.

Before describing the computation of h(u | xı̄̄ = 1) we present the classical dynamic programming approach
([30, p. 38]) for solving binary knapsack problems. For each i ∈ I a value matrix V i ∈ Rn×(z̄+1)

+ is introduced
and to find an optimal solution to the i-th binary knapsack problem, the items are recursively inserted as

V ijw :=
{
V i(j−1)w, w ∈ {0, . . . , pij − 1},
max{V i(j−1)w, V

i
(j−1)(w−pij) + uj}, w ∈ {pij , . . . , z̄},

j ∈ J , (5)
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where V i
0· := 0. As a result, for any z ∈ {0, . . . , z̄}, V ijz is the optimal value of the knapsack of size z using items

{1, . . . , j}; hence, f(z,u) =
∑
i∈I V

i
nz. Thus, these value matrices enable a direct evaluation of the Lagrangian

dual function h(u).
A variable fixing criterion is available as a by-product of the value matrices V i, i ∈ I. This is accomplished

by bounding f(z,u | xı̄̄ = 1) from above, by having xī unrestricted for i ∈ I and ensuring that a duplicate
item of xı̄̄ is inserted in the ı̄-th knapsack, resulting in

f(z,u | xı̄̄ = 1) ≤ ū + V ı̄n(z−pı̄̄) +
∑

i∈I\{ı̄}

V inz. (6)

By using the inequality in (6) a lower bound on h(u | xı̄̄ = 1) is available at low computational cost when the
knapsack subproblems in (4b), are solved using the dynamic programming approach. We next show how the
value matrices can be utilized to compute f(z,u | xı̄̄ = 1) and h(u | xı̄̄ = 1) without having to resolve the
subproblem for each ı̄ ∈ I, ̄ ∈ J .

The idea is to also compute the entities Ṽ ijz by an analogous recursion as for V ijz, where the items are inserted
in reversed order: j = n, . . . , 1. Hence, for each i ∈ I, Ṽ ijz is the optimal value of the i-th knapsack of size z
using items {j, . . . , n}. According to Lemma 1, the value of f(z,u | xı̄̄ = 1) can be computed by combining V ijz
and Ṽ ijz. As a result, the inequality h(u | xı̄̄ = 1) ≥ z can be efficiently checked; if it holds the corresponding
variable xı̄̄ can be fixed to zero.

I Lemma 1. For i ∈ I, ̄ ∈ J , W i
̄z := maximumv∈{0,...,z}{V i(̄−1)v + Ṽ i(̄+1)(z−v)} is the optimal value of the

knapsack i with capacity z and the items J \ {̄}. Moreover, f(z,u | xı̄̄ = 1) = ū +W ı̄
̄(z−pı̄̄) +

∑
i∈I\{ı̄}W

i
̄z.

Proof. For each i ∈ I, consider the binary knapsack formulation where the ̄-th item is not present:

max
xi·∈Bn

{ ∑
j∈J\{̄}

ujxij

∣∣∣∣∣ ∑
j∈J\{̄}

pijxij ≤ z

}
. (7)

First, consider the cases ̄ = 1 and ̄ = n, the corresponding optimal values of (7) are Ṽ i(̄+1)z and V i(̄−1)z,
respectively. Moreover, V i0z = Ṽ i(n+1)z = 0, hence W i

̄z is the optimal value of (7). Second, assume ̄ ∈ J \ {1, n}
and let x̄i· be feasible in (7) and let v̄ :=

∑̄−1
j=1 pij x̄ij . Then (x̄i·, v̄) is feasible in the following formulation:

max
v∈{0,...,z}

{
max
xi·∈Bn

{ ∑
j∈J\{̄}

ujxij

∣∣∣∣∣
̄−1∑
j=1

pijxij ≤ v,
n∑

j=̄+1
pijxij ≤ z − v

}}
. (8)

Similarly, let (x̂i·, v̂) be feasible in (8). By aggregating the constraints in (8) it follows that x̂i· is feasible in (7).
Thus, the formulations (7) and (8) are equivalent. For a fixed value v = ṽ, the inner maximization problem in (8)
decomposes into two knapsack problems using only the items before ̄ and after ̄, respectively. The optimal
values of these two knapsack problems are thus V i(̄−1)ṽ and Ṽ i(̄+1)(z−ṽ), respectively. Hence, by maximizing the
decomposed problem (8) for every v ∈ {0, . . . , z}, the value of the knapsack without item ̄ can be computed by
the proposed formula for W i

̄z. By the definition of W i
̄z for i ∈ I, ̄ ∈ J , and size z, the value of knapsack ı̄ ∈ I

restricted by xı̄̄ = 1 (i.e., with feasible set Xı̄(z) ∩ {xı̄· ∈ Bn | xı̄̄ = 1}) equals W ı̄
̄(z−pı̄̄) + ū while the values

of the knapsacks i ∈ I \ {ı} that are restricted by xī = 0 (i.e., with feasible sets Xi(z) ∩ {xi· ∈ Bn | xī = 0})
equal W i

̄z. The sum of these values then yields the proposed formula for f(z,u | xı̄̄ = 1). J

I Remark 2. In contrast to the by-product (6), using Lemma 1 for variable fixing requires computing W i
jz for

z ∈ {max{0, z − pij}, . . . , z − pij} ∪ {z, . . . , z}, i ∈ I, j ∈ J . However, the variable fixing is done once in each
branch–and–bound node, whereas finding suitable values of u (see Section 3.2) typically requires solving many
subproblem instances. Our preliminary results indicated that less than 5% of the overall computation time was
spent on the variable fixing.

I Remark 3. Our idea of using V ijz and Ṽ ijz originates from the bidirectional search approach suggested in [24]
for the computation of residual costs of a shortest path problem with resource constraints. Moreover, in [36] V ijz,
Ṽ ijz, and the set Xsa are also used to assign a job exactly once and to compute the similar residual costs for the
generalized assignment problem. However, our approach considers minimizing the makespan.
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We found that the variable fixing is highly useful for reducing the computation time. Hence, we suggest a
further variable fixing similar to the dominance criterion suggested in [29]. Given a machine ı̄ ∈ I and two tasks
j, ̄ ∈ J , we attempt to assign both tasks to the machine and use a bound similar to that in (6), i.e.,

f(z,u | xı̄j = xı̄̄ = 1) ≤ uj + ū + V ı̄n(z−pı̄j−pı̄̄) +
∑

i∈I\{ı̄}

V inz. (9)

If the bound (9) does not allow an incumbent solution (i.e., if it implies that h(u | xı̄j = xı̄̄ = 1) ≥ z) then the
inequality xı̄j + xı̄̄ ≤ 1 can be introduced and the following dominance criterion can be checked. Let Ij ⊂ I
denote the subset of machines i available for task j, i.e., those that have not been removed by variable fixing or by
branching. If the inequalities pı̄j ≤ pı̄̄ and pij ≥ pī hold for all i ∈ Ij \ {ı̄}, it follows that any solution satisfying
xı̄̄ = 1 and xı̄j = 0 is dominated by a solution satisfying xı̄̄ = 0 and xı̄j = 1, hence the variable xı̄̄ can be fixed
to zero; cf. [29]. We also apply the dominance criterion suggested in [29], where the inequality xı̄j + xı̄̄ ≤ 1 is
instead ensured by the decisions in the branch-and-bound tree. Note that computing f(z,u | xı̄j = xı̄̄ = 1) as in
Lemma 1 for each combination of ı̄, j, and ̄, would be computationally too expensive.

3.2 Maximizing the Lagrangian dual
In order to find the best lower bound z on z∗, the Lagrangian dual function h : Rn 7→ R, which is non-smooth
and concave, should be maximized. Hence, we need to find h∗ := maxu∈Rn h(u). This maximization is often
done using subgradient optimization methods; e.g., Martello et al. [29] used it for the R||Cmax. However, since
evaluating h(u) comprises solving m binary knapsack problems (which are NP-hard) we need to limit the number
of such evaluations. Note that, by the non-negativity of pij , the search can be restricted to u ≥ 0, since uj < 0
is dominated by uj = 0 in (4a).

An issue with the classical subgradient algorithm is that it often stalls due to zigzagging; cf. [6]. We therefore
employ the modified deflected subgradient (MDS) method by Belgacem and Amir [7], which combines, the
modified gradient technique (MGT) by Camerini et al. [10] and the average direction strategy (ADS) by Sherali
and Ulular [38]. The MDS method reduces the zigzagging behaviour by determining the step direction as a
weighted average of a current subgradient and the previous step direction.

Letting sk be a subgradient of h at uk and dk be the step direction, and defining [x]+ := max{0,x}, we
employ the formulas

dk := sk + ΓkMDSd
k−1, ΓkMDS := (1− αk)ΓkMGT + αkΓkADS, (10a)

ΓkMGT :=
[
−ηk

(sk)>dk−1

‖dk−1‖2

]
+

, ΓkADS := ‖sk‖
‖dk−1‖

. (10b)

Following the suggestions in [7], we let ηk := 1
2−αk

and αk :=
[
− (sk)>dk−1

‖sk‖‖dk−1‖

]
+
.

To determine the step lengths, we follow the classical rule given by Polyak [35] and let the step length
parameter δk > 0 decrease as suggested by Held et al. [22], i.e.,

uk+1 := [uk + tkd
k]+, tk := δk

zk − h(uk)
‖dk‖2

, k = 0, 1, . . . (11)

where δ0 := 1
2 , and if no improvement has been made to h(uk) over the last twenty iterations then δk+1 := δk

2 ;
otherwise δk+1 := δk. The algorithm (11) is terminated when δk < δ, where we use δ = 10−3, which in our
preliminary tests showed to be a reasonable choice.

3.3 Duality gap
The strength of the Lagrangian relaxation as defined in (4a) was studied in [29], where the corresponding lower
bound h∗ ≤ z∗ was found to be stronger than the LP bound. In Theorem 4, we strengthen this result further
and show that for m = 2, either h∗ > z or h∗ = z∗ hold. Hence, the best known lower bound z can be increased
until z = z∗ holds. For convenience, we first restate the Lagrangian dual function (4a) in its original form where
the structure of the set X(z) has not yet been utilized:

h(u) =
∑
j∈J

uj + minimum
(x,z)∈Bmn×[z,z]

{
z −

∑
i∈I

∑
j∈J

ujxij

∣∣∣∣∣x ∈ X(z)
}
. (12)
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I Theorem 4. Let m = 2. If h∗ ≤ z then h∗ = z∗.

Proof. By the relation between the Dantzig–Wolfe reformulation ([11, Ch. 8.2]) and Lagrangian relaxation, it is
holds that

h∗ = minimum
α≥0

∑
k∈K

αkz
k, (13a)

such that
∑
k∈K

αk
∑
i∈I

xkij = 1, j ∈ J , (13b)∑
k∈K

αk = 1, (13c)

where (xk, zk), k ∈ K, denote the extreme points of the polytope conv {(x, z) ∈ Bmn × [z, z] | x ∈ X(z)}; cf. (12).
Let α∗ be an optimal solution to the Dantzig–Wolfe master problem (13) and define the set K̄ := {k ∈ K | α∗k > 0}.
It holds that zk = z for all k ∈ K̄, since otherwise the strict inequality h∗ > z must hold. Moreover, let
J kl := {j ∈ J |

∑
i∈I x

k
ij = l}, k ∈ K̄, and Kjl := {k ∈ K̄ |

∑
i∈I x

k
ij = l}, j ∈ J , l ∈ {0, 1, 2}. From (13b)

and (13c) it then follows that

2
∑
k∈Kj

2

α∗k +
∑
k∈Kj

1

α∗k −
∑
k∈K̄

α∗k = 0 =⇒
∑
k∈Kj

2

α∗k =
∑
k∈Kj

0

α∗k, j ∈ J . (14)

Now, assume that the inequalities∑
j∈J k

0

pij >
∑
j∈J k

2

pij , k ∈ K̄, i ∈ I, (15)

hold, scale the inequalities (15) by α∗k and sum over k ∈ K̄, for each i ∈ I. Then, it follows that

∑
k∈K̄

α∗k
∑
j∈J k

0

pij >
∑
k∈K̄

α∗k
∑
j∈J k

2

pij =⇒
∑
j∈J

pij

( ∑
k∈Kj

0

α∗k −
∑
k∈Kj

2

α∗k

)
> 0. (16)

Then, inserting the rightmost equality of (14) in (16) yields a contradiction. We conclude that the inequalities
in (15) cannot all hold, and hence that there exists a k̄ ∈ K̄ and an ı̄ ∈ I such that the inequality

∑
j∈J k̄

0
pı̄j ≤∑

j∈J k̄
2
pı̄j holds. Thus, there exists an x̄ ∈ Xsa ∩X(zk̄) such that x̄ı̄j = 1 for j ∈ J k̄0 , x̄ı̄j = xk̄ı̄j for j ∈ J k̄1 ,

x̄ı̄j = 0 for j ∈ J k̄2 , and x̄(3−ı̄)j = xk̄(3−ı̄)j for j ∈ J . Now since zk̄ = z and (x̄, zk̄) ∈ S it follows that zk̄ = z∗,
and hence that h∗ =

∑
k∈K̄ α

∗
kz
k = z = z∗. J

I Remark 5. A consequence of Theorem 4 is that there is no duality gap for m = 2, since either the lower bound
z can be strengthened, or the bound coincides with the optimal value.

I Remark 6. From (13) follows that h∗ ≥ z also for m > 2. However, if h∗ = z then the lower bound z cannot
be strengthened and the duality gap z∗ − h∗ can be non-zero. Consider the following counterexample for m = 3,
n = 6, z = 4, z = 5, and K ⊆ {1, 2}:

p =

6 1 2 2 3 6
1 6 3 3 6 1
1 1 6 6 4 2

, x1 =

0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 0 1 0

, x2 =

0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 1

, α1 = α2 = 1
2 . (17)

It can be verified that z1 = z2 = 4 and z∗ = 5 and that α1 and α2 constitute a feasible solution to the LP master
problem (13). Hence, the relations 4 = z ≤ h∗ ≤ 4 < z∗ hold, i.e., the duality gap is non-zero.

I Remark 7. In Theorem 4, the Dantzig–Wolfe reformulation was used. Preliminary results indicated that this
is, however, an inefficient approach for computing h∗, because (i) when z was increased, most of the generated
columns became infeasible and needed to be discarded from the master problem and (ii) solving the master
problem was computationally expensive. Consider instead maximizing the Lagrangian dual function (4a) using a
subgradient optimization method; then there is no negative computational impact of increasing the value of z.
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In [29] it was shown that the lower bound h(u) can be improved according to

h̄(u) := minimum
z∈{z,...,z}

{
z

∣∣∣∣∣ ∑
j∈J

uj ≤ f(z,u)
}
, (18)

i.e., that the inequality h(u) ≤ h̄(u), holds for all u ∈ Rn. The fact that f is an non-decreasing function
of z was used to efficiently evaluate h̄(u), unlike our approach of computing f(z,u) for every z ∈ {z, . . . , z}
(recall Section 3.1). Despite being the strongest bound suggested in [29], the authors stated that since h̄(u) was
cumbersome to maximize their weaker bounds were sometimes more useful.

Note that the maximum of h̄(u) will not provide an improved bound compared to h∗, as shown in Lemma 8
below. However, since h∗ is not always retrieved due to early termination of the subgradient algorithm, the
improved bound (18) is evaluated for all values of u encountered. Moreover, we suggest not to use the improved
bound (18) in the subgradient based algorithm (11) to decide the step length and direction. This motivated by
Lemma 8 and because h̄ is a discrete function and thus progress becomes less frequent and less regular, resulting
in a quickly diminishing step size.

I Lemma 8. If h∗ ≤ z, where h∗ = maxu∈Rn h(u), then h̄(u) ≤ h∗, ∀ u ∈ Rn.

Proof. From (13) it is clear that h∗ ≥ z; thus our assumption implies that h∗ = z holds. Moreover, in every
optimal solution α∗ of (13) we have that α∗k = 0 for all k ∈ K such that zk > z. Hence, restricting (13) to the
subset of extreme points satisfying zk = z does not modify the set of optimal solutions. As a consequence, the
feasible set to the minimization in (4a) can be restricted to z = z, i.e., it holds that

h∗ = max
µ∈Rn

{∑
j∈J

µj + z − f(z,µ)
}
≥
∑
j∈J

uj + z − f(z,u), u ∈ Rn. (19)

Now assume that ∃ ū ∈ Rn : h̄(ū) > z, where h̄(u) is defined by (18). It follows that∑
j∈J

ūj − f(z, ū) > 0 =⇒ h∗ > z, (20)

which contradicts our assumption that h∗ ≤ z. Hence, h̄(u) ≤ z must hold for all u ∈ Rn and the lemma follows,
since the equality h∗ = z holds. J

3.4 Strategies for the branch–and–bound algorithm
For the primal–dual pair z∗ and h∗ there might be a non-zero duality gap. Hence, the branch–and–bound
algorithm is used in order to find an optimal solution. In order to get a small branch–and–bound tree we choose
to use the worst–first node selection strategy, i.e., always choose the branch–and–bound node with the highest
lower bound. To determine which task to branch on we use the rule suggested in [29, §4], but employ our residual
costs c̄ij := h(u | xij = 1) − h(u), i.e., ̄ ∈ arg maxj∈J:|Ij |>1{m − |Ij | + Θ mini∈Ij c̄ij}, where Ij is the set of
machines available for task j and Θ = 20, as suggested in [29]. For a selected task j, we partition the available
machines into two equally sized sets by repeatedly assigning the unassigned machine having the maximum c̄ij ,
in an alternating fashion. The idea is to make the two branches equally promising, and preliminary results
indicated that this approach is more effective than branching on a single variable. We think that a more advanced
partitioning rule, such as reliability branching [4], local branching [13], or machine learning based branching [5],
could improve our algorithm and intend to develop these ideas in future research.

In the root node, the LP dual solution is utilized as a starting point. This provides an initial lower bound z
and initial values for the Lagrangian multipliers u as the corresponding LP dual variable values. In the child
nodes, the Lagrangian multipliers are initialized from the parent node. Note that, as in [29] the Lagrangian
relaxation of the constraints in (2a) is used to compute the LP dual solution.

4 Heuristics

In Section 3 we seek to improve the lower bound z ≤ z∗; however, its usefulness relies on a tight upper bound.
As noted in Section 2, there are many heuristic algorithms that provide feasible solutions to the R||Cmax (3).
First, to find a feasible solution from a solution to (4a) we use a greedy destruction–reconstruction heuristic
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that removes machines from multiply-assigned tasks, and assign a machine to each unassigned task, always
greedily minimizing the makespan. Second, we construct a fractional solution as the convex combination of all
subproblem solutions xk (from the current branch–and–bound node) weighted proportionally to the step lengths
tk; this forms a so-called ergodic sequence of subproblem solutions; see [26, 33] for details. To construct a binary
solution each job is assigned to the machine with the highest fraction. Third, we use a local search heuristic
with the two neighbourhoods 3-cycle and 2-1-swap defined below; preliminary results indicated these to be
sufficiently small w.r.t. the overall computing time. These neighbourhoods include the reassign and interchange
neighbourhoods from [19] and are partially included in cyclic exchange and path exchange from [15].

tasks, j

m
a
ch

in
e
s,

i

1 2 3 4 5 6

1

2

3

(a) 3-cycle

tasks, j

m
a
ch

in
e
s,

i

1 2 3 4 5 6

1

2

3

(b) 2-1-swap

Figure 1 Examples of operations allowed within the two neighbourhood definitions; each dot
represents a variable xij and a filled dot encodes the value 1.

3-cycle: All perturbations of a feasible solution such that one task is assigned to another machine. The
receiving machine can reassign one of its tasks to a third machine; the third machine can reassign one of its
tasks to any of the two previous machines. See the illustration in Figure 1a. This is thus a special case of either
a cyclic exchange or a path exchange.

2-1-swap: All perturbations of a feasible solution such that two tasks, assigned to a machine with zero slack
in (3), are reassigned to another machine and one task from this machine is reassigned to the first machine. See
the illustration in Figure 1b.

The neighbourhoods are searched (greedily) in the following order: task reassign, task interchange, 2-1-swap,
and 3-cycle. Note that the entire neighbourhoods are searched, not just partially as done in [15] for the cyclic
exchange and path exchange neighbourhoods. The heuristics described in this section are used in the branch–and–
bound algorithm described in Section 3.4. We found it beneficial to run the heuristics every tenth iteration of
the subgradient algorithm in the root node while only in the final iteration in the child nodes.

5 Tests and results

Our computational results were generated on a computer with an AMD Ryzen 9 3900X 12-Core 3.79 GHz and
32GB of RAM. To simplify the presentation of the results, all algorithms were limited to run on a single core,
and report the CPU time. The implementations, see [2], are made in C++.

The instances and the algorithms tested are presented in Section 5.1. An analysis of the features of the
Lagrangian relaxation algorithm is presented in Section 5.2. An overview of the performance is given in Section 5.3,
and details on the results are given by type of test instances in Sections 5.4–5.6.

5.1 Test instances and algorithms
Since we were unable to use previously published work (instances and implementations), we use the MILP
solver Gurobi 9 [21] as a point of reference by solving (3). Further, to ease future comparisons our instances
are available online. In addition to this, we solve an extended formulation of (3) that includes the following
aggregated variables subject to integrality constraints:

yi =
∑
j∈J

xij , yi ∈ Z+, i ∈ I. (21)

The idea behind the inclusion of these aggregated variables is the ability to branch on the number of tasks
assigned to a machine, which is beneficial in particular when a machine contributing to the makespan is assigned
a fractional number of tasks; after branching it is assigned more tasks in one of the branches and thus the
makespan is likely to increase, leading to an improved quality of the lower bound. We disable presolve when
using the aggregated variables to prevent them from being removed. A technique for branching based on presolve
information is suggested in [17], hence presolve might not need to be disabled in other MILP solvers.



Edvin Åblad, Ann-Brith Strömberg & Domenico Spensieri 9

We have tested our formulations and algorithms on three sets of instances denoted: (i) uncorrelated,
(ii) correlated jobs, and (iii) correlated machines. All combinations of the sizes m ∈ {3, 5, 10, 15, 20} and
n ∈ {30, 50, 80, 100, 200} were tested, with ten random instances for each combination. Uncorrelated means that
the processing times possess no correlation between machines or jobs, i.e., pij is generated from a discrete uniform
distribution with the support {10, 11, . . . , 100}, denoted U{10, 100}. Correlated jobs means that the processing
times correlate with jobs, i.e., pij = dij + bj , where bj and dij are generated from U{1, 100} and U{1, 20},
respectively. Correlated machines means that the processing times correlate with machines, i.e., pij = ai + dij ,
where ai and dij are generated from U{1, 100} and U{1, 20}, respectively. Our instance settings are nearly
identical to the ones used in [42], where we do not use U{1, 100} for the uncorrelated instances, since such
instances are solved faster (see, e.g., [12]) and since U{10, 100} is a more common choice (see, e.g., [29, 32]).

Each instance is solved by eight different algorithms. DEF: solve the model (3) (default algorithm). CUT: solve
model (3) using the aggressive cuts parameter setting in Gurobi. MOK: use the cutting plane method by Mokotoff
and Chrétienne [32], with two differences: we use (a) Gurobi instead of CPLEX and (b) our heuristics instead
of the suggested one to initialize the upper bound. DEF+y, CUT+y, and MOK+y: include the aggregated
variables and the constraints (21) in the models of the three methods, DEF, CUT, and MOK, respectively. LR:
use the branch–and–bound algorithm based on the Lagrangian relaxation (4a), with the local search heuristic
from Section 4. LR-F: LR with the variable fixing based on the reduced costs of the LP relaxation instead of
Lemma 1.

The use of CUT and CUT+y are motivated by the fact that Gurobi’s parameter tuning tool detected that
the aggressive cuts parameter reduced the CPU time the most. For MOK and MOK+y the tuning tool did
not find any significant reductions as compared with the default parameters. All algorithms were given a time
limit of 120 s to solve each instance (to verified optimality). The components of the LR algorithm is analysed
separately in Section 5.2.

5.2 Sensitivity analysis of the Lagrangian relaxation algorithm
In Sections 3 and 4 several features of the LR algorithm were presented; the impact of each of these is analysed
here. The idea is to switch all of these features on and off and measure the corresponding overall solution times.
Moreover, when a feature is switched off, a well-known alternative is sometimes used instead.

Var. fix. denotes the use of the variable fixing based on Lemma 1 (on) or based on the reduced costs of the
LP relaxation of the R||Cmax (3) (off). Both options apply the fixing in each branch–and–bound node.
Subgr. iter. denotes few (off) / many (on) subgradient iterations, to emphasize the importance of maximizing
the strong dual function (4a). Few uses a maximum of 300 and 10 subgradient iterations in the root and
child nodes respectively (cf. [29]). The corresponding numbers for many are 1000 and 100. Note that a small
step length parameter δk also terminates the subgradient algorithm; cf. Section 3.2.
Deflect denotes the use of the subgradient deflection method MDS (on) (recall Section 3.2) or to not deflect
the subgradient sk, i.e., letting dk := sk in (11) (off).
LNBH denotes the use of large neighbourhoods 3-cycle and 2-1-swap from Section 4 (on), or to only use the
reassign and interchange neighbourhoods (off).
Erg. heur. denotes the use of the rounding heuristic on fractional values retrieved by the ergodic sequence
(on), or to use only the destruction–reconstruction heuristic on subproblem solutions (off) (recall Section 4).
The local search heuristic is used to improve the solutions in both cases (on and off).
All combinations of using and not using each of the above stated features, and the resulting performance

ratios Tall/T , are presented in Figure 2; where T and Tall denote the execution time for an instance using a
certain combination of features and using all features, respectively. Each combination of features was executed
on ten uncorrelated and correlated jobs instances, with m=10 machines and n=100 tasks. We found that the ten
uncorrelated instances were solved by every feature combination whereas the ten correlated jobs instances were
solved only by a few of them. The correlated machines instances were also easy to solve (see Section 5.6); hence,
to get a balanced set of instances these are not included here. Note that when an instance is not solved then the
time limit T = 120 s is reported and the true execution time Ttrue ≥ 120 s is underestimated; hence the ratio
Tall/T is an overestimate. However, for each of the 20 instances Tall ≤ 3.47 s, hence the error introduced by the
time limit is bounded by Tall

T −
Tall
Ttrue
≤ 3.47

120 ≤ 2−5.
Figure 2 shows the consistent benefit (by higher distributed scores) of using the variable fixing from Lemma 1

rather than basing it on the reduced cost from an LP relaxation. The figure also shows the importance of
maximizing the Lagrangian dual function, since more computational effort (many subgradient iterations) pays-off,
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Figure 2 The impact of not using (off, white) or using a feature (on, black). T denotes each execution
time on ten uncorrelated instances and ten correlated jobs instances of size m = 10 and n = 100. The
score for each instance and feature is the ratio between switching all features on (Tall) and T . The
scores for the 20 instances and each feature combination are presented with boxplots (median, lower
and upper quartiles, and the most extreme values in the 1.5·IQR (inter-quartile range)), outliers (grey
circles), and mean (blue squares).

especially when considering the median values. This is expected due to the strong bound it provides (recall
Section 3.3). However, using many subgradient iterations have a negative impact on less demanding instances,
thus affecting the mean values. On the primal heuristic side, we observe that searching the larger neighbourhood
(i.e., LNBH ) generally pays off in terms of the median values. For the instances considered in this section, there
is no major improvement by using the ergodic sequence heuristic (i.e., Erg. heur.). However, for some larger
correlated jobs instances in Section 5.5 these were slightly useful. Similarly, for the 20 instances in this section,
the dominance criterion (9) did not have a measurable impact and is thus not illustrated in the figure; however,
for some larger correlated jobs it was slightly beneficial, consequently; this criterion is always applied.

Another trend that is visible in Figure 2 is that usage of more features, especially var. fix. and subgr. iter.
decreases the spread of computing times. This more robust behaviour is expected since more computational
effort is made in each node aiming at decreasing the number of nodes that will need to be visited. Hence, some
computationally easy instance might get an increase in computing time whereas a decrease is expected for harder
instances. This manifests when employing all features except LNBH, which results in high mean and median
scores, at the cost of roughly 25% of the instances having a score of a 2−1 or lower. Moreover, the deflected
subgradient method seems dependent on using LNBH. We suspect that this is due to the smoother trajectory
of the deflected version, which tends to improve the lower bound but also to reduce the variety of subproblem
solutions; thus, the upper bound suffers without the LNBH. Related to the deflected method is that we also
attempted to use the ADS deflection method, which had a bit slower convergence of the lower bound but found
better feasible solutions faster. The overall difference between MDS and ADS was, however, not significant.

5.3 Overall performance
Figure 3 presents the fraction of solved instances by the eight algorithms described above as a function of CPU
time. The figure indicates that the Lagrangian based branch–and–bound method is both the fastest and the
most robust, i.e., it is able to solve the most instances within the given time limit of 120 s. Moreover, using the
variable fixing from Lemma 1 seems to enable the solution of more instances. Another trend that is observed
(although less prominent) is that the inclusion of the aggregated variables y reduces the computing time and
enables the solution of more instances, in particular within the algorithms DEF+y and MOK+y.

To establish the observed utility of using the aggregated variables y, two statistical tests, cf. [8], are used. First,
the McNemar’s test considers the hypothesis that two algorithms (A and B) solve equally many instances. Let
sA and sB denote the number of instances solved by only algorithm A and B, respectively; if the differences are
random then (sA−sB)2

sA+sB follows a χ2–distribution with one degree of freedom. Second, the one-sample Wilcoxon’s
signed rank test considers the hypothesis that the logarithm of the solution time ratios, i.e., log(TAi /TBi ),
originates from a distribution with zero median, i.e., that the two algorithms are equally fast. Here TAi and TBi
denote the CPU times for the two algorithms, and only instances i solved by both algorithms are included. As a
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Figure 3 The seven algorithms applied to all the instances, uncorrelated, correlated jobs, and correlated
machines.

result, both of these hypotheses are rejected with a certainty greater than 99.9% when comparing DEF with
DEF+y and MOK with MOK+y, where the average speed up (geometric mean of the ratios TAi /TBi ) are in
both cases 1.5. However, the hypotheses are not rejected when comparing CUT with CUT+y and the speed up is
1.0. To conclude, the reason why the algorithms DEF+y and MOK+y solve more instances faster as compared
to DEF and MOK, respectively, is very unlikely to be a coincidence.

5.4 Uncorrelated instances
In Table 1, the average CPU times over ten instances and the number of unsolved instances for the uncorrelated
instances are presented. Comparing the two first columns it seems that the algorithm DEF+y is faster than
DEF for large problem instances. Likewise, for the tuned Gurobi parameters, the third and fourth columns

Table 1 The average computing time [s] for solving ten uncorrelated instances of size m× n. Within
parentheses are the numbers of instances exceeding the time limit of 120 s; these instances do not
contribute to the average computing times. The average number of branch–and–bound nodes and the
average gap ( z−z

z
) in the root node is presented for LR.

m n DEF DEF+y CUT CUT+y MOK MOK+y LR-F LR LR nodes LR root gap [%]
3 30 0.02 0.02 0.02 0.03 0.04 0.03 0.0 0.0 1.0 0.0

50 0.02 0.02 0.03 0.03 0.04 0.03 0.0 0.0 1.0 0.0
80 0.02 0.03 0.07 0.07 0.04 0.04 0.0 0.0 1.0 0.0
100 0.03 0.04 0.13 0.16 0.07 0.06 0.0 0.0 1.0 0.0
200 0.05 0.07 0.14 0.15 0.13 0.12 0.02 0.02 1.0 0.0

5 30 0.04 0.04 0.06 0.07 0.05 0.05 0.0 0.0 1.0 0.0
50 0.06 0.08 0.09 0.11 0.1 0.09 0.0 0.0 1.0 0.0
80 0.12 0.1 0.17 0.27 0.12 0.1 0.0 0.0 1.0 0.0
100 0.11 0.16 0.29 0.32 0.17 0.14 0.02 0.02 1.5 0.02
200 0.91 1.34 2.75 1.84 1.4 0.84 0.17 0.14 2.9 0.02

10 30 0.11 0.12 0.12 0.15 0.16 0.12 0.0 0.0 1.0 0.0
50 0.43 0.25 0.24 0.54 0.66 0.26 0.01 0.01 1.0 0.0
80 12.8 0.75 2.08 2.21 8.8 (2) 0.63 0.03 0.02 2.2 0.07
100 17.1 (7) 10.3 (1) 6.37(1) 9.27 21.9 (5) 8.54 0.09 0.06 3.8 0.11
200 0.39(7) 1.07(7) 15.9 (3) 19.7 (1) 35.5 (7) 17.5 0.85 0.44 7.6 0.14

15 30 0.15 0.11 0.1 0.14 0.03 0.06 0.01 0.0 1.0 0.0
50 0.68 0.21 0.31 0.45 0.17 0.34 0.01 0.01 1.0 0.0
80 13.1 (2) 3.8 (1) 1.82 1.15 19.8 9.18 0.16 0.05 2.4 0.22
100 24.7 (3) 17.4 (3) 7.48 10.3 22.9 (1) 14.3 0.21 0.1 8.4 0.18
200 84.7 (9) 43.8 (8) 28.0 (5) 37.5 (4) 57.0 (8) 27.8 (5) 3.19 0.58 29.6 0.19

20 30 0.16 0.12 0.08 0.12 0.01 0.03 0.01 0.01 1.0 0.0
50 0.52 0.5 0.25 0.29 0.11 0.1 0.01 0.01 1.0 0.0
80 1.25(1) 2.6 0.9 0.92 7.97(2) 2.23 0.04 0.04 1.0 0.0
100 7.53(3) 3.9 (1) 3.75 2.98 34.1 (3) 22.0 (1) 0.12 0.08 1.2 0.13
200 — 80.7 (8) 65.0 (8) 38.4 (5) 28.8 (8) 62.4 (7) 17.4 1.09 95.3 0.56
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show that the algorithm CUT+y is faster than CUT for the largest instances. The same result holds for the
algorithms MOK+y and MOK, for which the importance of the variables y seem to be the greatest. Apart from
the LR algorithm, it seems that CUT+y, or possibly MOK+y, are the fastest and most robust methods for
these instances.

Moreover, the LR algorithm is able to solve every uncorrelated instance in our test-bed, and branching
is necessary only for large instances, verifying the strength of the Lagrangian lower bound (4a), whereas the
variable fixing from Lemma 1 only marginally decreases the computing times. To get another point of reference,
consider that the number of branch–and–bound nodes required by Martello et al. [29] to solve corresponding
(unfortunately not identical) instances of size 10× 80 was on average 5723, whereas the corresponding number for
our algorithm is 2.2; a similar difference in magnitude holds for all large uncorrelated instances. This improvement
is mainly explained by our focus to maximize the Lagrangian lower bound also in the child nodes. Note that the
variable fixing also reduce the computing times but it is more important for harder instances; compare LR-F
with LR.

5.5 Correlated jobs instances
In Table 2, the average CPU times over ten instances and the number of unsolved instances for the correlated
jobs instances are presented. The most obvious difference from the uncorrelated instances is that the correlated
jobs instances are harder to solve, and for the largest instance size none of the algorithms can solve all instances
within the given time limit. Another different property of for the correlated jobs instances is that the aggregated
variables y seem to be of less use for the algorithms DEF+y and CUT+y, which for some instances require longer
computing time and even exceed the time limit. For the algorithm MOK+y the result is, however, unchanged
w.r.t. the uncorrelated jobs instances: this algorithm seems preferable among the first six algorithms.

The LR algorithm dominates the other algorithms on most instance sizes and it often requires the stronger
variable fixing (i.e., Lemma 1). One reason for LR not being able to solve some instances, is that the local search
heuristics failed to find the optimal solution. Moreover, we attempted to use a sophisticated heuristic such as the
destruction–reconstruction heuristic described in [12], but this yielded no significant improvement as compared

Table 2 The average computing time [s] for solving ten correlated jobs instances of size m × n.
Within parentheses are the numbers of instances exceeding the time limit of 120 s; these instances do
not contribute to the average computing times. The average number of branch–and–bound nodes and
the average gap ( z−z

z
) in the root node is presented for LR.

m n DEF DEF+y CUT CUT+y MOK [s] MOK+y LR-F LR LR nodes LR root gap [%]
3 30 0.02 0.04 0.06 0.09 0.04 0.03 0.0 0.0 1.0 0.0

50 0.07 0.08 0.08 0.12 0.07 0.06 0.0 0.0 1.0 0.0
80 0.08 0.09 0.18 0.2 0.12 0.05 0.01 0.01 1.0 0.0
100 0.1 0.12 0.15 0.19 0.09 0.09 0.02 0.02 1.0 0.0
200 0.08 0.06 0.1 0.17 0.06 0.07 0.09 0.1 1.0 0.0

5 30 4.31 1.65 3.52 2.42 3.72 1.21 0.0 0.0 1.0 0.0
50 12.3 8.46 9.61 13.9 8.7 3.77 0.05 0.04 3.9 0.06
80 7.18(1) 9.03 14.1 32.3 13.9 3.46 0.15 0.12 6.0 0.04
100 26.5 21.1 (1) 43.1 (1) 35.7 (3) 22.0 5.35 0.33 0.28 5.6 0.05
200 15.6 9.83(1) 36.5 14.1 (1) 15.9 4.26 2.21 1.85 16.7 0.04

10 30 33.4 (3) 40.3 (2) 22.5 (1) 20.6 (2) 34.4 (5) 24.5 0.03 0.02 4.6 0.14
50 40.6 (8) — 65.3 (9) 72.0 (8) — 27.4 (9) 0.29 0.09 13.2 0.37
80 — — 114 (9) — — 29.3 (9) 9.26 0.75 273.1 0.39
100 — — — — — — 28.6 1.8 599.0 0.42
200 — — — — — — 48.9 (8) 10.1 1611.3 0.23

15 30 3.93(1) 1.32 1.19 2.45 0.94 2.89(1) 0.01 0.01 1.0 0.0
50 — — — — — — 1.15 0.27 122.8 1.01
80 — — — — — — 28.9 3.51 1565.1 0.84
100 — — — — — — 42.7 (9) 14.5 5466.8 0.94
200 — — — — — — — 87.5 (9) 23 162.3 0.44

20 30 0.63 0.15(1) 0.42 0.89 0.01(1) 0.14 0.01 0.01 1.0 0.0
50 79.4 (9) 66.1 (8) 66.5 (9) 5.28(9) 9.77(8) 58.4 (7) 0.38 0.17 42.5 0.97
80 — — — — — — 54.0 (4) 6.46 2903.3 1.33
100 — — — — — — — 39.8 (2) 19 980.4 1.18
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Table 3 The average computing time [s] for solving ten correlated machines instances of size m× n.
Within parentheses are the numbers of instances exceeding the time limit of 120 s; these instances do
not contribute to the average computing times. The average number of branch–and–bound nodes and
the average gap ( z−z

z
) in the root node is presented for LR.

m n DEF DEF+y CUT CUT+y MOK MOK+y LR-F LR LR nodes LR root gap [%]
3 30 0.01 0.02 0.03 0.03 0.02 0.02 0.0 0.0 1.0 0.0

50 0.03 0.02 0.03 0.07 0.04 0.03 0.0 0.0 1.0 0.0
80 0.05 0.03 0.08 0.05 0.07 0.05 0.0 0.0 1.0 0.0
100 0.04 0.04 0.06 0.05 0.06 0.06 0.0 0.0 1.0 0.0
200 0.06(1) 0.07 10.1 0.2 0.31 0.1 0.02 0.02 1.0 0.0

5 30 0.03 0.02 0.07 0.03 0.03 0.03 0.0 0.0 1.0 0.0
50 0.08 0.05 0.07 0.06 0.07 0.06 0.0 0.0 1.0 0.0
80 0.25(1) 0.2 1.1 0.6 0.21 0.16 0.02 0.02 1.3 0.04
100 0.63(1) 0.47 0.5 0.62 10.4 0.14 0.02 0.02 1.0 0.0
200 6.97(3) 3.98 0.83(2) 1.67 5.14(2) 0.67 0.11 0.12 1.0 0.0

10 30 0.11 0.07 0.19 0.16 0.11 0.1 0.0 0.0 1.0 0.0
50 0.24 0.09 0.21 0.21 0.15 0.14 0.01 0.01 1.0 0.0
80 0.41 0.18 0.52 0.35 5.78 0.22 0.03 0.03 1.2 0.05
100 0.54 0.19 0.48 0.35 0.48 0.33 0.02 0.02 1.0 0.0
200 1.19(3) 0.63 2.3 (1) 1.24 1.89(1) 0.93 0.61 0.38 1.2 0.01

15 30 0.22 0.1 0.17 0.16 0.07 0.06 0.0 0.01 1.0 0.0
50 0.46 0.16 0.39 0.32 0.18 0.22 0.01 0.01 1.0 0.0
80 0.74 0.46 0.44 0.48 0.3 0.24 0.02 0.02 1.0 0.0
100 1.14 0.61 0.65 0.6 0.36 0.37 0.03 0.03 1.0 0.0
200 4.66 1.28 2.1 1.47 10.6 0.97 1.63 0.57 4.3 0.03

20 30 0.29 0.16 0.27 0.26 0.07 0.07 0.01 0.01 1.0 0.0
50 0.56 0.4 0.53 0.41 0.15 0.15 0.02 0.02 1.0 0.0
80 0.97 0.72 1.22 0.72 0.48 0.46 0.05 0.05 1.0 0.0
100 1.08 1.07 1.45 0.91 0.52 0.54 0.07 0.07 1.0 0.0
200 2.67(2) 2.28 2.54 2.15 7.94 1.1 0.38 0.4 1.0 0.0

to our simple local search heuristic. When an optimum was found, the verification of optimality was usually
quite immediate. Hence, for these unsolved instances the weakness is in the upper bound. Note, however, that
the gap is roughly 1% or less in the root node, thus the quality of either bound is still quite good. Moreover, for
the instances we were able to solve, e.g., for m = 10 we also computed the lower gap, i.e., z

∗−z
z∗ : its value of

roughly 0.05–0.1% again suggests that the issue is not the strength of the lower bound but the weakness of the
upper bound.

5.6 Correlated machines instances
In Table 3, the average CPU times over ten instances and the number of unsolved instances for the correlated
machines instances are presented. We observe that the three Gurobi-based algorithms benefit from the inclusion
of the aggregated variables; e.g., DEF+y is preferred over DEF. Furthermore, similarly to the uncorrelated
instances, the algorithm MOK+y seems to be the fastest and most robust among the first six algorithms. Unlike
for the previously reported instances, it also seems to be competing with the algorithm LR. Note that the LR
algorithm almost never needs to branch on these instances, since the bounds from the root node are sufficient to
determine optimality.

6 Conclusion

We have developed and analysed an exact algorithm for the solution of the R||Cmax, based on the Lagrangian
relaxation suggested by Martello et al. [29]. We derived a variable fixing strategy based on the solution of the
subproblem consisting of m binary knapsack problems, in order to reduce the problem size. We showed that
for m = 2 the Lagrangian relaxation has no duality gap. We performed a sensitivity analysis of our proposed
algorithm features by computing their individual contribution to the overall algorithm performance. We also
compared our method with several MILP formulations, e.g., including the aggregated variables in a standard
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model for R||Cmax and in the model suggested by Mokotoff and Chrétienne [32]. These models are of special
interest since they can also be applied to extensions of the R||Cmax, for example with side-constraints.

For the majority of our 750 instances with sizes ranging from m = 3, n = 30 to m = 20, n = 200, our
branch–and–bound algorithm based on Lagrangian bounds is superior to the other algorithms tested, including
our versions of the cutting plane algorithm from [32], both with and without branching on the aggregated
variables. The numbers of nodes traversed in the branch–and–bound tree are magnitudes fewer than that reported
in [29]. This property indicates the strength of the Lagrangian relaxation and the high impact of our variable
fixing strategy. Moreover, the sensitivity analysis indicates that our proposed variable fixing outperforms variable
fixing based on the LP reduced costs and also that a careful maximization of the Lagrangian dual function
successfully reduces the computation time.

Furthermore, we found that, by including the aggregated variables in the model suggested in [32], the
algorithm (i.e., MOK+y) was able to solve more instances within the given time limit. The general trend is that
these variables contribute to an efficient partitioning of the solution space which increases the LP lower bounds.

To conclude, we have identified some possible further studies to conduct. First, we have highlighted some
potential improvements to our branch–and–bound method: (i) a further development of the branching strategies,
(ii) the efficient solution of the subproblems, (iii) a tuning of the subgradient algorithm, (iv) a concurrent traversal
of the branch–and–bound tree, (v) the possibility of branching also on the aggregated variables suggested for the
MILP models. Second, it will be interesting to investigate the inclusion of set packing constraints (see Section 1)
in the model to find out if a generalization of our Lagrangian based method can still outperform a general MILP
solver. Third, since the inclusion of the aggregated variables seems to be beneficial for most problem instances
and for both MILP models, we expect that there exist many other applications that can benefit of this kind
of extension. Such an extension could be a generalization of the R||Cmax with additional side-constraints, or
another problem with a makespan objective.
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