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Abstract—Deep Neural Networks (DNNs) on IoT devices are
becoming readily available for classification tasks using sensor
data like images and audio. However, DNNs are trained using
extensive computational resources such as GPUs on cloud ser-
vices, and once being quantized and deployed on the IoT device
remain unchanged. We argue in this paper, that this approach
leads to three disadvantages. First, IoT devices are deployed in
real-world scenarios where the initial problem may shift over
time (e.g., to new or similar classes), but without re-training,
DNNs cannot adapt to such changes. Second, IoT devices need to
use energy-preserving communication with limited reliability and
network bandwidth, which can delay or restrict the transmission
of essential training sensor data to the cloud. Third, collecting
and storing training sensor data in the cloud poses privacy
concerns. A promising technique to mitigate these concerns is
to utilize on-device Transfer Learning (TL). However, bringing
TL to resource-constrained devices faces challenges and trade-
offs in computational, energy, and memory constraints, which
this paper addresses. This paper introduces MicroTL, Transfer
Learning (TL) on low-power IoT devices. MicroTL tailors TL
to IoT devices without the communication requirement with the
cloud. Notably, we found that the MicroTL takes 3x less energy
and 2.8x less time than transmitting all data to train an entirely
new model in the cloud, showing that it is more efficient to retrain
parts of an existing neural network on the IoT device.

Index Terms—IoT, Transfer Learning, Quantization

I. INTRODUCTION

Compression methods like quantization and pruning [7],
[14], [29] have enabled the deployment of Deep Neural
Networks (DNNs) on resource-constrained devices [14], [18],
[24]. However, the training, optimization, and compression of
neural networks are commonly conducted before deployment
using vast computational resources like GPUs or even cloud
services. Once trained, compressed, and deployed, DNNs com-
monly remain static. We argue in this paper that this approach
leads to three drawbacks. First, IoT devices are deployed and
interact with real-world environments, and the initial domain
may shift to a different distribution [9]. For example, a user
might want to add or remove a class, such as adding a new
exercise activity on her smartwatch. With current methods, de-
ployed neural networks on IoT devices [14], [18], [24] cannot
adapt to such changes. The typical approach is to (re)train a
new DNN on the cloud, optimize it for the local hardware
(e.g., post-quantization [7], [14], [18] or quantization-aware
learning [12]), and re-download it from edge or cloud services.
Due to the large amount of data needed for training [10]

and the non-negligible size of the deep neural networks, an
IoT device needs to spend significant energy sending training
samples and downloading new models from cloud services
each time the problem domain changes. Second, resource-
constrained devices depend on energy-efficient communication
with limited reliability and network bandwidth. In practice,
this may delay or even prohibit the transmission of training
samples from the device. Third, uploading sensor data to the
cloud poses privacy concerns. As cloud services struggle to
address privacy issues, they may aggregate data from different
sources, where keeping independent and identically distributed
(iid) samples along with efficient communication is an open
challenge [30].

To avoid communication costs and address problem domain
shifts, we can use Transfer Learning (TL) [25]. TL utilizes pre-
trained deep neural networks and re-trains parts of the network
using a smaller dataset [25] for a smaller but related problem.
Today, TL is typically done on uncompressed floating-point
DNNs (i.e., non-quantized), with high dimensional training
data. Bringing transfer learning to quantized DNNs deployed
on resource-constrained devices creates trade-offs in compu-
tational, energy, and memory constraints and leads to two
main challenges. First, resource-constrained IoT devices have
minimal memory, such as 64-256 KBs of RAM and 32-64
MHz CPU, often operate on batteries, and are unable to store
and process high dimensional data. Second, typical quantize-
aware training methods [12] retain the precision of gradients
by duplicating all values of the neural networks, one with
floating points and one with quantized values, respectively.
This double-booking prohibitively increases the memory and
computational for resource-constrained IoT devices.

We present MicroTL, which tackles the above challenges by
tailoring Transfer Learning (TL) to resource-constrained IoT
devices. MicroTL combines parts of the output of quantized
hidden layer(s) of an existing deep neural network with new
fully connected layer(s) specialized to the new classes of the
problem domain. MicroTL enables (re)training parts of DNNs
on the IoT device, and thus no communication with the cloud
is required, thereby protecting sensitive information. More-
over, this enables the personalizing of deep neural networks
to the end-user using local data while preserving the user’s
privacy at the same time.

In summary, this paper makes the following contributions:



• We enable transfer learning on resource-constrained de-
vices, allowing neural networks to adapt to changes in the
problem domain and removing the need to communicate
with the cloud.

• We show that combining the outputs of the hidden
layer(s) with fully connected layer(s) is sufficient for
learning without duplicating the values of the network.

• We design and implement MicroTL, an open-source1

transfer learning system for resource-constrained IoT
devices. We provide a discussion of implementation chal-
lenges and trade-offs.

• We quantify the performance of MicroTL in terms of ac-
curacy, computation, memory, and energy consumption.
Notably, we find that for a particular dataset it takes 3x
less energy and 2.8x less time than transmitting all the
local data to the cloud to create a new model.

Paper outline. We organize the paper as follows. Section II
provides the necessary background. Section III introduces the
system design of MicroTL. Section IV presents the evaluation
of MicroTL. Section V discusses related work, and Section VI
concludes the paper.

II. BACKGROUND

In this section, we provide the necessary background on
transfer learning and quantization.

A. Transfer Learning

Transfer learning (TL) aims to reduce the amount of training
data and speed up the training process. The motivation of
TL [25] is to utilize existing neural networks pre-trained on
large data sets for a generic problem domain referred to as
the source domain and adapt for similar smaller domain
referred to as the target domain. TL uses the hidden layers
of a pre-trained network as feature extractors from the source
domain to append and train end-layer(s) on the target domain.
A typical approach of transfer learning consists of three steps.
First, it removes the Fully Connected (FC) layers at the end of
a pre-trained network. Second, it appends a new FC layer(s)
with output matching the number of the target domain classes.
Third, it freezes the weights (no backward calculations) of all
layers prior to FC layer(s) and trains the network using the
target domain data set by updating only the weights of FC
layer(s).

B. Quantization

In order to deploy deep neural networks on IoT devices for
inference, we need to train and optimize them using another
library (e.g., PyTorch [21], Tensorflow [27]) on cloud services.
Due to the resource constraints of IoT devices, it is common
to compress the neural networks using quantization [12], [19].
Fixed-point quantization represents real numbers with integers
using fixed-length fractional parts. Int-8 quantization [14], [18]
is the most common approach to compress DNN using 7-
bits for fixed-point representation of original values, plus 1-
bit for the sign (8-bits in total). It reduces the size without

1https://github.com/chrpro/MicroTL

changing the original architecture of the network and affecting
the overall accuracy by a margin [14]. The quantized function
requires both the scaling of the min-max range of real numbers
to integers and a shift offset because the zero-point in the
integer domain is different from the real number domain due
to the quantization. There are two widely used methods to
produce the final quantized version of the network: post-
training and quantization-aware training.

Post-training quantization. In this method [7], [14], [18],
the neural network is training as usual with floating-point. The
network is statically quantized using the min-max range of the
weights from floating-point to integers. However, this method
needs a representative data-set from the device to calibrate the
activation output of each layer. This happens only once, and
the weights never change after deployment.

Quantization-Aware Training (QAT). This method [12]
simulates the quantization effect during training by duplicating
all the weights and bias, one in 8-bit integers for the forward
pass, and one in 32-bit floating-points for the backward pass,
together with meta-data regarding rounding effects. During
the forward-pass, it utilizes the 8-bit integer weights of the
network, but during the back-propagation, it calculates the
gradient using the 32-bit floating-point weights. At the end
of each iteration, it quantizes the floating-point weights to 8-
bit integer weights. With this method, the quantization error is
part of the learning process providing better accuracy, but the
quantization parameters become part of the overall training.

III. MICROTL DESIGN

MicroTL’s main objective is to personalize deep neural
networks to end-user preferences without the communication
dependency on sending sensor data from IoT devices to the
cloud and neural network updates from cloud to IoT devices.
MicroTL allows training fully connected layers personalized
to the end-user, and it keeps the data on the device, avoid-
ing sending sensitive or private data to the cloud. MicroTL
assumes a pre-initialization step of downloading or flashing a
pre-trained neural network on IoT devices, as they are widely
available today with CMSIS-NN [14] or Tensorflow-micro [7].

A. System Challenges

We identify two main system challenges when designing
MicroTL. First, deep neural networks for low-power IoT
are typically quantization-aware trained or post-quantized to
address memory and computational constraints. Even though
inference after quantization is straightforward, reversing the
effects of quantization for additional learning is an open
challenge [8]. Second, low-power IoT devices have memory
and computational limitations for storing training samples and
computing learning parameters.

1) Learning after quantization: Due to common gradient
descent optimization methods in deep learning [10], any
training algorithm needs to calculate and retain the precision
of the gradients. Low-power IoT devices lack the resources to
keep duplicate weights (like QAT, as explained in section II),
and there are no standard methods to reverse quantized layers
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Fig. 1. The two-step MicroTL approach for transfer learning on IoT devices.
First, it stores the output of the last hidden layer in int-8 format during the
forward pass. Second, it de-quantizes the samples during training and trains
a fully connected layer in floating-point format.

for additional learning [8]. The IoT device can only utilize
the local quantization scale factors and does not have access
to other parameters used during training as opposed to QAT.

2) Device Resource Constraints: The collection of large
sample data is restricted on IoT devices primarily due to com-
putational and memory constraints. The forward pass latency
on low-power devices is still one of the main bottlenecks
for processing samples [24]. Current approaches for transfer
learning send the data to the edge and cloud that do not face
such resource limitations. These edge or cloud-based methods
typically use data sets in high-dimensional inputs, focusing
mainly on training latency. Transfer learning on low-power
devices needs to address trade-offs between computational,
energy, and memory constraints on low-power IoT devices. For
example, in the Imagenet data set, the image size is 256x256,
occupying 196 KB, almost all the RAM space of a low-power
IoT device. Even with smaller image sizes like CIFAR-10,
an image (32x32) will occupy 4 KB, which is a significant
amount for a low-power device.

B. MicroTL Overview.

The IoT device has a pre-installed quantized neural network
trained for a generic problem (source domain). The IoT device
interacts with the environment and collects new sensor data.
The IoT application forwards the data to the neural network for
inference. MicroTL provides two main operations on top of the
quantized network. First, the sample collection takes control of
the hidden layer outputs and creates a local training data set.
For examples, when a user using a smartwatch and engages
in activities, the device creates a training set by using another
sensor or asking the user through user interaction. Second,
when the training set is filled with enough data, it initiates
the training of appended Fully Connected (FC) layer(s). In
Figure 1, we illustrate the overview of MicroTL.

C. Dequantization.

In order to employ training on resource-constrained devices,
we enforce the optimization and the proper placement of the
dequantization process. In Figure 2, we present in detail where
we collect the intermittent outputs and which operations are
involved. After the convolution operation and adding bias, the
matrix is shifted due to zero-point. We collect the output

ReLUQuantized 
Layer

Input 
 (int-8) + Output

Int-8 scale  
factors Float-32

De-Quantization

<< Q-shift

Bias

>> Q-shift

Fig. 2. Overview of the forward pass on a quantized network together with
MicroTL’s dequantization operation. The figure demonstrate the operation
over a single input. In MicroTL we collect several outputs and perform the
de-quantization during training. Q-shift is the offset because of the zero-point
difference in the real and integer domains. Scale factors come from the min-
max quantization.

Algorithm 1: MicroTL Algorithm
Batch Size: 4 / 8 / 16 / 32
Pre-install: 8-bit Neural Net
Constants: Learning rate, Momentum, Decay

1 // Collecting Training Data
2 while sensor-data d do
3 Label := Receive user label yt;
4 Forward pass (Net, d);
5 Hidden layer output := Net.layer(s).output;
6 // 8-bit int format
7 TrainingData (yi, xi) := (Label, Hidden layer output);
8 end
9 // Training Process

10 FC := Randomized Fully Connected Layer(s)
11 for epoch e = 1, ... , E do
12 for batch m in TrainingData do
13 // 32-bit floating point format
14 Y (i), X(i) := de-quantize (m, Q-factors, Q-shift);
15 Y (j) := Forward (FC, X(i));

16 delta := −
m∑
i=1

yilog(yj) // cross entropy loss

17 Back propagation (FC, delta);
18 Update weights (FC, Learning rate, Momentum,

Decay);
19 end
20 end

before applying ReLU to avoid consecutive zeros. Due to
quantization, we have Q-shift, an offset of the difference
between the integer domain’s zero-point and real numbers.
We need to reverse both the min-max scale factors between
integer and real numbers and shift back and reverse the zero-
point offset.

D. Pre-trained Neural Networks

MicroTL utilizes the hidden layers of the existing pre-
trained neural network as feature extractors for applying trans-
fer learning of fully connected layers. MicroTL freezes the
pre-trained hidden layers and trains only the Fully-Connected
(FC) layer(s) depending on the target domain, specialized
to the end-user. MicroTL manages the memory allocation
together with the computations of forwarding pass for FC
layers. The weights of the FC layer are stored in floating-point



precision. The floating-point precision enables the computation
of adequate gradients for training with the back-propagation
algorithm.

E. Sample Storage

Typical deep learning approaches store high-dimensional
training samples on large databases. For low-power IoT de-
vices, this will overwhelm the limited resources. One key
observation is that deep hidden layers can reduce the di-
mensions of the input data. In Table I, we can observe that
hidden layer outputs have a smaller dimension (shape) than
the input data. Since we train only the weights of the last
fully connected layers, in principle, we can pre-compute the
outputs of the last hidden layer and store them in a lower
dimension data set. MicroTL collects, during inference, the
output of the last convolution or recurrent layer and stores it
into 8-bit integer-format data set. The training data set is stored
locally and MicroTL does not transmit any sensor data or
intermittent results to the cloud. The training data is discarded
after training, preserving the privacy of the user.

F. MicroTL Training Algorithm

MicroTL’s training algorithm uses back-propagation with
mini-batch stochastic gradient descent and cross-entropy as
a loss function to train the fully connected layers. MicroTL
uses 32-bit floating-point representation for the fully connected
weights to achieve convergence when calculating the gradients
in the backward phase. The pseudo-code version of the training
process is presented in Algorithm 1. The algorithm works
with batches of 8, 16, or 32, depending on the device’s
available memory. It de-quantizes a batch sample by dividing
the Q-factors and bit-shifting with Q-shift (see Figure 2).
However, a key observation is that the division is a power of
2 which can also be done using bit-shifting, and most cross-
compilers can highly optimize and combine these operations.
The scale factors and Q-shift are pre-calculated using min-max
quantization [29]:

qx =
(2n − 1)/2

max(abs(X.min), abs(X.max))

MicroTL temporarily stores the batch for each training
epoch. The learning rate, momentum, and decay are hy-
perparameters controlling the learning process. The training
process randomly initializes the Fully Connected (FC) layer(s)
weights. Next, for each epoch, MicroTL de-quantizes the
batch, computes the output loss, and performs backpropaga-
tion. Finally, the training process minimizes the loss function
(cross-entropy) given the hyperparameters.

IV. PERFORMANCE EVALUATION

This section presents the evaluation of MicroTL on low-
power IoT devices. It gives answers to the contributions listed
in the introduction on three specific questions: (a) Is transfer
learning feasible on low-power IoT devices? (b) What is the
accuracy of on-device training compared to edge or cloud-
based training? (c) What is the overhead of transfer learning
in terms of computation, memory, and energy consumption?

TABLE I
THE NEURAL NETWORKS USED IN OUR EXPERIMENTS. THE TABLE SHOWS

THE SHAPE SIZE, AND THE LAYER OUTPUT IN BYTES FOR EACH LAYER.

Pre-trained RNN on HAR-UCI-3a

Freezed Layers Shape Bytes

Input (128, 9) 1,152
Conv1D (43, 9) 387
LSTM (43, 32) 1,376
GRU (43, 64) 5,504
GRU (43, 32) 2,752
GRU (43, 6) 258

Trainable Layers (MicroTL)
Fully Connected (258, 32) 33,024
Fully Connected (32, 3) 384

Pre-trained CNN on CIFAR-7

Freezed Layers Shape Bytes

Input (32, 32, 3) 3,072
Conv2D (30, 30, 64) 57,600
MaxPool (15, 15, 64) 14,400
Conv2D (13, 13, 32) 5,408
MaxPool (6, 6, 32) 1,152
Conv2D (4, 4, 16) 256

Trainable Layers (MicroTL)
Fully Connected (256 , 32) 32,768
Fully Connected (32, 3) 384

Outline. The evaluation is divided into five parts. First, we
present the implementation details. Second, we present the
training set and neural network of experiments. Third, we
present a comparison of MicroTL with edge and cloud-based
approaches. Fourth, we present the evaluation of MicroTL on
low-power devices. Fifth, we discuss our results and remaining
challenges.

A. Experimental Setup

Software & hardware implementation. We define, train,
and quantize each deep neural network using PyTorch in
Python 3.8. The quantized pre-trained layers are listed in
Table I. We utilize CMSIS-NN [14] library for the inference
part on IoT devices. We implement MicroTL in C, using
the Arm-gcc 9.2.1. We evaluate MicroTL on nRF-52840-DK
board featuring: a 32-bit ARM Cortex-M4 with an FPU at 64
MHz, a DSP co-processor, 256 KB of RAM, and 1MB KB of
flash. The board has wireless communication capability with
Bluetooth Low Energy (BLE), Thread, and Zigbee. The chip
of this board is widely used on low-power IoT applications like
wearable and smart-watches [20]. Finally, we use the Nordic-
Semiconductors Power Profiler Kit (PPK) v1.1 [23] to measure
the power consumption.

Code availability. We provide the complete source code of
MicroTL in a public repository.2

B. Training Sets and Neural Networks

We use two representative machine learning datasets for
image classification and human activity recognition. For image
classification, we use CIFAR-10 [13], reflecting computer
vision IoT applications. For human activity recognition, we use
HAR-UCI [1] reflecting typical IoT health tracker applications.

CIFAR-10. The data-set consists of 60,000 colored 32x32
images, where 50,000 are for training and 10,000 for testing.
There are ten classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. We use seven classes (plane, car,
cat, deer, dog, horse, ship), named it CIFAR-7, and use it as
source domain. CIFAR-7 has 40,000 training and 7,000 testing
images. We use the remaining three mutually exclusive classes
(bird, frog, truck) for transfer learning as the target domain.

2https://github.com/chrpro/MicroTL



TABLE II
AVERAGE ACCURACY OVER THE COMPLETE TEST SET REPORTED AS A

PERCENTAGE (%). UPLINK REFERS TO THE DATA WE NEED TO BE
TRANSMITED IN KB.

HAR-UCI-3b CIFAR-3
Training Accuracy (%) Uplink Accuracy (%) Uplink
Sample MicroTL Edge-TL (KB) MicroTL Edge-TL (KB)

100 78±0.4 77±0.4 115 84±0.8 83±0.3 307
200 82±0.2 80±0.2 230 88±0.3 84±0.2 614
300 83±0.1 81±0.1 346 89±0.2 84±0.2 922
400 85±0.1 82±0.1 461 91±0.2 87±0.1 1,230
500 87±0.1 83±0.1 576 92±0.1 88±0.1 1,540
600 87±0.1 83±0.1 692 92±0.1 88±0.1 1,840

ALL
(Cloud-QAT) 88±0.1 4,210 93±0.1 46,100

We named the data set CIFAR-3 with 10,000 training and
3,000 test images.

HAR-UCI. The data-set is a human activity recognition
data set. HAR-UCI is based on time-series of sensors (ac-
celerometer and gyroscope) captured by smartphone (Samsung
Galaxy S II), and it has six classes (activities): 1) walking, 2)
walking upstairs, 3) walking downstairs, 4) sitting, 5) standing,
6) laying. The data type is a time series of signals needing pre-
processing before use. Our experiments parse the data per 128
time-step and apply min-max normalization over the nine-axis
(final dimension 128x9), leading to 7,300 training samples and
3,000 testing samples. We use the following three classes as
the source domain (HAR-UCI-3a): walking upstairs, walking
downstairs, and standing. HAR-UCI-3a has 3,650 samples for
training and 1,500 for testing. We use the other three classes as
the target domain: walking, sitting, and lying. We named the
data set as HAR-UCI-3b, and it has 3,650 samples for training
and 1,500 for testing.

Pre-trained networks. Our experiments use two pre-trained
and quantized neural networks based on CMSIS-NN example
models [14]. For the CIFAR image classification problem,
we utilize a convolutional neural network (CNN). For the
HAR-UCI we utilize a Recurrent Neural Network (RNN). We
remove the last fully connected layers and append the Fully
Connected (FC) layers of MicroTL. We report the shape size
and the output of each hidden layer in bytes. Finally, we list
the appended Fully Connected (FC) layers for transfer learning
(MicroTL).

MicroTL training sets. We draw balanced (all classes
equally represented) random samples of size from 100 to 600
from each training set (CIFAR-3, and HAR-UCI-3b). We split
the training set to 90% for training and 10% for validation,
and we repeat 50 times the training experiments of MicroTL
for each training sample size. We use validation-based early
stopping [10] to avoid over-fitting. We use momentum [10]
to accelerate training and weight decay [10] to adapt learning
rates and set the batch size to 8 for all experiments. Finally,
we report the standard deviation as ±.

C. MicroTL Learning Accuracy

Baselines. Our experiments compare the accuracy obtained
with MicroTL on low-power IoT devices (on-device learning)

with the accuracy we would have obtained if we have trained
in edge/cloud services. We create two baselines. Edge-TL is
the straightforward approach to send training data and apply
Transfer Learning (TL) in the edge, where a copy of the
deployed neural network (before quantization) is stored. The
transfer learning in the Edge-TL happens in Python libraries
(e.g, TensorFlow), and the network is post-quantized to fit
the memory constraints of the IoT device. Cloud-QAT is an
approach where the device sends all training data to the cloud
by applying Quantization-Aware Training (QAT) to optimize
a new neural network from scratch. For both Edge-TL and
Cloud-QAT, we use the same Python version, and we report
the results of the network in the final form to be deployed in
the IoT device.

Communication. For the data transmission of the IoT
device to the edge and cloud, we assume a Low-Power
Bluetooth (BLE) connection, typically available on low-power
devices. We report the transmission latency using the standard
throughput of 700 kbps (payload) using the default 1 Mbps
mode [20]. For energy, we report the energy consumption
using the average current drawn from the BLE radio evaluated
in previous work [20] (using PPKv1.1) by applying 3 V, which
is 7.5 mA.

Accuracy. In Table II, we present the average test accu-
racy of MicroTL and baselines, Edge-TL and Cloud-QAT.
The accuracy is over the complete test set reported as a
percentage (%). With 100 training samples, MicroTL has
marginally higher accuracy (on test-set) than Edge-TL, but
Cloud-QAT can achieve almost 10% higher accuracy than
MicroTL. The accuracy improves with more samples, and
MicroTL can reach accuracy close to Cloud-QAT on CIFAR-3
and on HAR-UCI-3b. For example, with 500 training samples,
the accuracy on test set of MicroTL on CIFAR-3 is 92% close
to 93% of Cloud-QAT. Similarly with HAR-UCI-3b MicroTL
achieves 87% close to 88% of Cloud-QAT. Finally, we notice
that transfer learning in the Edge (Edge-TL) achieves lower
accuracy than MicroTL. The main reason is that the MicroTL
carefully collects and de-quantizes intermittent outputs in high
precision for the fully connected layers. Edge-TL uses standard
post-quantization to produce the final network. On the other
hand, Cloud-QAT uses quantization-aware training to simulate
and duplicate the quantization effect over the full network
and outperforms both Edge-TL and MicroTL with respect to
accuracy, but the communication cost is higher.

MicroTL training cost. We plot in Figure 3 the average
train and validation accuracy together with energy consump-
tion for 20 epochs, using a 500 training samples, where we
achieve high accuracy on MicroTL. The green bar is the
total energy consumption aggregated with each training epoch.
Figure 3a shows the same experiment for HAR-UCI-3b. We
achieve 89% validation accuracy after 10 epochs and consume
430 mJ energy. In order to increase the accuracy by a 1-2%
margin, we need to spend another 400 mJ. Figure 3b shows
the same experiment for CIFAR-3. We achieve 88% validation
accuracy after 10 epochs and consume 400 mJ. In order to
achieve a 1% margin, we need to consume another 335 mJ.
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Fig. 4. Performance Evaluation of MicroTL in terms of memory, computation and energy consumption.

However, the training and validation accuracy diverges after
10 epochs, indicating that the network starts over-fitting, and
in practice, the algorithm applies early stopping.

Communication cost. In Table II, we report uplink as the
amount of data in KB we need to transmit to the edge and
cloud (Edge-TL and Cloud-QAT baselines). Downlink is fixed
in both baseline, the device needs to receive the new fully
connected layers in Edge-TL, which 9 KB for CIFAR-3, 8KB
for HAR-UCI-3-b. In the case of Cloud-QAT, the device needs
to download a new model, which is 85 KB for CIFAR-3, and
61 KB for HAR-UCI-3-b. However, the device needs to send
to the Cloud-QAT a total of 4,210 KB for HAR-UCI-3b, and
46,100 KB data for CIFAR-3. Using BLE for communication
will take 50 seconds and consume 1,238 mJ for HAR-UCI-
3b, and 552 seconds and consume 13,662 mJ for CIFAR-3.
Compared to MicroTL with 500 training samples, achieving
similar accuracy, the device will consume a total of 840 mJ
and takes 40 s for HAR-UCI-3b. When training on CIFAR-3
it takes 32 s and consumes 735 mJ, on average. Overall, the
training process with CIFAR-3, it takes 2.8x less time, and 3x
less energy with MicroTL compared to Cloud-QAT to achieve
similar accuracy, similarly with HAR-UCI-3b.

D. MicroTL Performance on low-power IoT devices

This section presents the evaluation of MicroTL in terms of
memory, time, and energy consumption. We report the average
peak (maximum amount) for memory consumption on RAM
and flash. We report the average training time and forward-
pass based on the cycle clock register. We report the average
energy consumption based on the average electric current draw

in mA, by applying 3 V on Power Profile Kit. We repeated
each experiment 50 times, and we report the standard variation
as ±.

Memory consumption. In Table III, we report the RAM
and Flash consumption for each training set. We observe that
Flash remains the same through all experiments as it stores
only static parts and the code sections. In Figure 4a, we
demonstrate the average peak memory consumption of RAM
divided into three parts: the pre-trained network (CMSIS-NN),
transfer learning (MicroTL), and the training data set. The dif-
ferent parts consume memory as follows. CMSIS-NN allocates
static memory for storing the quantized network. MicroTL
dynamically allocates memory for storing the weights of the
fully connected layers and allocates temporary memory for the
de-quantized batches during training, along with the gradient
matrixes for the backpropagation. Finally, the data set is the
inference output collected during the forward pass of CMSIS-
NN in an 8-bit integer format.

For example, with CIFAR-3 data set, the pre-trained net-
work (CMSIS-NN) consumes 30% of RAM, and MicroTL
consumes 17% of RAM. The data set size is related to the
size of the last hidden output, where on CIFAR-3 is 256 bytes
(see Table I). A sample size of 100 requires storing 25,600
bytes of data (10% of the RAM), and a training sample of size
500 consumes 49% of the RAM, while a sample size of 600
together with CMSIS-NN and MicroTL exceeds the memory
capacity (red dotted-line). With HAR-UCI-3b, we need 258
bytes per sample (see Table I), a data set of 100 consumes
11%, and a data set of 600 consumes 50% of RAM.

Execution time. Next, we evaluate the execution time of



training (MicroTL) and the forward-pass of the pre-trained
networks (CMSIS-NN). The training time highly depends on
the input of fully connected layers. In all experiments, we use
two fully connected layers. The first layer has the input size of
the last hidden layer of the pre-trained network and an output
of 32 nodes. The final layer takes the 32 nodes and creates
an output of the number of classes (specific to each task).
In Figure 4b, we observe that the average execution of the
forward-pass on CMSIS-NN can take up to 25-27% more time
than the training part of MicroTL on average. For example,
with 100 training samples of CIFAR-3, the forward-pass takes
22 s while the training part of MicroTL takes 7 s on average.

Finally, in Figure 4c, we plot the inference time for a
quantized fully connected layer (CMSIS-NN) compared to a
floating-point (MicroTL). We can see a cost using MicroTL
floating-point over fix-point CMSIS-NN. For example, with
a shape of 256x32 and 8,192 neuron connections, it takes
23 ms on MicroTL compared to 5 ms on quantized CMSIS-
NN. However, the latency is relatively small on the overall
inference time, but as we increase the number of neurons, we
expect the FC layers to affect the inference time. A complete
evaluation of CMSIS-NN is out of scope, and it has been
presented by others’ work [14], [24].

Energy consumption. The average current drawn during
training using MicroTL is lower than the forward-pass of
CMSIS-NN, as illustrated in Figure 3c. MicroTL draws 7 mA
on average using the FPU unit to execute the training process.
CMSIS-NN draws 8 mA on average using the DSP co-
processor for the inference part. The energy consumption
depends on the training time, which takes longer as we
increase the training data. In Table III, we report the energy
consumption of MicroTL for all experiments. For example,
with 600 samples, training consumption can go up to 1,008 mJ
on average. However, the accuracy is not improving as we
increase the training data, and we get similar accuracy with
500 training samples by spending less energy.

E. Discussion and Limitations

In this section, we discuss the trade-offs of transfer learning
on low-power devices and the remaining challenges.

Hidden layers. The first trade-off we face is the depth of the
hidden layers. The pre-trained network needs to have adequate
depth so as the hidden layers reduce the input dimension size.
However, a deeper network takes more time to execute on
forward-pass. On the other hand, a smaller and faster neural
network will need more memory to store the higher dimension
output of the hidden layers.

Resource constraints. One of the main challenges of Mi-
croTL is the limited resources in terms of energy and memory
storage. We have observed that the training set can occupy up
to 50% of RAM, and training can consume up to 1,010 mJ.
However, to achieve similar accuracy with other methods, we
will need to send sensor data to the edge or cloud. Besides
the privacy concerns, the large number of data needed to train
a deep neural network will shortly overwhelm low-power IoT
devices. For example, sending all training data of CIFAR-3

TABLE III
THE COMPLETE EVALUATION OF MICROTL.

HAR-UCI-3b CIFAR-3
Sample RAM Flash Time Energy RAM Flash Time Energy
Size (KB) (KB) (s) (mJ) (KB) (KB) (s) (mJ)

100 63 123 8±0.2 168±0.2 70 98 7±0.2 147±0.2
200 89 123 16±0.1 336±0.1 95 98 14±0.1 294±0.1
300 115 123 24±0.1 504±0.1 121 98 21±0.1 441±0.1
400 141 123 32±0.1 672±0.1 146 98 28±0.1 588±0.1
500 167 123 40±0.1 840±0.1 171 98 32±0.1 735±0.1
600 193 123 48±0.1 1,008±0.1 197 98 41±0.1 882±0.1

will require 46 MB. It will take more time and energy to send
the data using BLE communication than train on the device
using MicroTL.

Number of classes. Our approach works for a relatively
small number of classes. We can increase the number of
classes by using larger Fully Connected (FC) layers, but it
will lead to two issues. First, FC layers will need more data
and time to train, and second, it will increase inference time.
Overall, solving more complex problems with transfer learning
will lead to higher energy consumption.

V. RELATED WORK

This section lists the related work regarding different meth-
ods for learning on edge devices, and other compression
methods for neural networks.

Edge learning. Machine Learning (ML) is primarily asso-
ciated with cloud services, but recently we have experienced
a move from cloud-centric ML, where training and inference
happen in the cloud, to learning on edge devices. For example,
TensorFlow Lite [27] offers solutions to use on-device learning
for mobile phones. Different promising on-device methods
have been proposed like transfer learning [2], incremental
learning [3], meta-learning [6], and few-shot learning [26].
In all these methods, the device adds new classes or makes
predictions based on a limited number of samples. This paper
focuses on bringing transfer learning from edge to resource-
constrained devices.

Transfer learning. DeepCham [16] and IoTTL [2] have
shown the feasibility of transfer learning on edge devices (e.g.,
Raspberry Pi). However, they overlook the challenges of low-
power devices, especially the energy and memory limitations,
and they do not consider quantized pre-trained networks.
Moreover. their models require MBs of RAM and floating-
point precision networks. In contrast, MicroTL tailors transfer
learning on low-power IoT devices running on 32-64 MHz and
KBs of RAM by addressing their recourse constraints, without
needing extra parameters for training and by dynamically
utilizing personalized data.

Federated learning. With federated learning, multiple de-
vices train a global neural network using multiple datasets
located locally on the device. Training methods of federated
algorithms often use Homomorphic Encryption (HE) [11]
or Secure Multiparty Computation (SMC) [5] to protect the
privacy of the users. Due to this, federated learning today is
commonly done on edge class devices. These requirements are
demanding for low-power devices. With our work, we bring



on-device learning to low-power IoT class devices. Federated
learning can be used to create a joint global model, and
MicroTL can personalize the model locally on the device.

Network search and compression. Other methods for
compression neural network for IoT devices include: prun-
ing [17], Network Architecture Search (NAS) [22] This paper
focuses on 8-bit quantized methods due to the wide support
and success on low-power devices and keeping the accuracy
close to the original networks. Even though pruning and NAS
can significantly reduce the network’s size, they suffer from
accuracy drops. Other methods using quantized neural network
is feasible, for example, with half-wave Gaussian quantiza-
tion [4] and low-bit neural networks [15], [28]. However, they
have a significant accuracy drop.

VI. CONCLUSION

Inference with Deep Neural Networks (DNNs) is readily
available on embedded devices. However, the current ap-
proaches assume that training and compression of DNNs
happen in the cloud. These approaches overlook three key
issues. First, IoT devices are deployed and interact in real-
world environments, and their initial problem can change.
Second, uploading personalized data to cloud service to re-
train neural networks poses privacy concerns. Third, resource-
constrained devices need to use energy-efficient communica-
tion with limited reliability and network bandwidth, which
can delay or restring access of training samples to the cloud.
This paper presents MicroTL, an approach to tackle the above
challenges by tailoring Transfer Learning (TL) to resource-
constrained IoT devices. MicroTL focuses on personalizing
deep networks for end-users without sending sensitive IoT
data to the cloud and allows IoT devices to adapt to changes
in the problem domain. We evaluate MicroTL in terms of
accuracy, computation, memory, and energy consumption.
Notably, training with MicroTL takes 3x less energy and 2.8x
less time than transmitting all data to the edge/cloud.
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