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Figure 1: Overview: We demonstrate a system that automatically assesses whether query programs (𝑋,𝑌 ) complies with the
automotive Controller-Handler design pattern. The heart of the system is a neural language model pre-trained on source code.
The assessment process compares geometrical properties of the embeddings of query programs with that of a set of known
instances of the pattern. The comparison is then converted into a score that allows architects to interpret the level of compliance.

ABSTRACT
As the modern vehicle becomes more software-defined, it is be-
ginning to take significant effort to avoid serious regression in
software design. This is because automotive software architects
rely largely upon manual review of code to spot deviations from
specified design principles. Such an approach is both inefficient
and prone to error. In recent days, neural language models pre-
trained on source code are beginning to be used for automating a
variety of programming tasks. In this work, we extend the appli-
cation of such a Programming Language Model (PLM) to automate
the assessment of design compliance. Using a PLM, we construct
a system that assesses whether a set of query programs comply
with Controller-Handler, a design pattern specified to ensure hard-
ware abstraction in automotive control software. The assessment
is based upon measuring whether the geometrical arrangement of
query program embeddings, extracted from the PLM, aligns with
that of a set of known implementations of the pattern. The level
of alignment is then transformed into an interpretable measure of
compliance. Using a controlled experiment, we demonstrate that
our technique determines compliance with a precision of 92%. Also,
using expert review to calibrate the automated assessment, we in-
troduce a protocol to determine the nature of the violation, helping
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eventual refactoring. Results from this work indicate that neural lan-
guage models can provide valuable assistance to human architects
in assessing and fixing violations in automotive software design.
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1 INTRODUCTION
’If you think good design is expensive, try bad design’, goes the
aphorism. While this observation can headline any design effort, it
is certainly a prime motivator in the design of software. Very gener-
ally, the process of software design attempts to envision a software
solution that meets a given set of requirements [14]. The classic
design process achieves this using a combination of tools including
design principles, architecture models, interface specifications, etc.,
that parallelly guide, if not instruct top-down, the implementation
of the solution. Meeting core business requirements may be its pri-
mary objective, but software design often aspires further to address
several non-functional concerns to increase the likelihood that the
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solution operates and evolves sustainably [4]. The expanded set
of concerns inevitably complicates the design process, which now
becomes an act of trading-off concerns in multiple dimensions,
under the shadow of constant uncertainty. In recent years, neural
language models pre-trained on large source code corpora have
started becoming building blocks for automating a variety of com-
plex programming tasks like code completion and program repair
([13] and [25], for example). If such programming tasks, which
often require nuanced judgment, can be automated, can a similar
approach be applied to automate design tasks? In this work, we
take initial steps towards answering this question by investigating
a use case in automotive software design.
Need for assistance in automotive software design – The mod-
ern vehicle is increasingly software driven. Software plays a central
role in realizing a variety of in-vehicle functions like preventive
safety, driver assistance, energy management, etc. Not only is in-
creasing the footprint of software essential to meet the growing
demand for functionality, vehicle manufacturers are increasingly
realizing that well-designed software is a key requirement to meet
this demand sustainably [20]. However, there are several factors
that complicate the design and evolution of automotive software. A
strict regulatory environment, decades of legacy, complex integra-
tion chains, the strong influence of non-functional concerns like
safety and security, and strong hardware coupling are prominent
among them. Moreover, since the automotive industry has its roots
in traditional disciplines like mechanical and electrical engineering,
knowledge of principles and practices of software engineering is
less widespread. Therefore, delivering software at high cadence,
whileminimizing design compromises and preventingmajor threats
to sustainable evolution of the code base, remains a formidable
challenge. Currently, the industry relies upon experienced software
architects to manually assess the code for design violations and
intervene with changes when necessary. With violations from spec-
ified design being inevitable in practice, one advantage of manual
review is that the expert is able to exercise nuance and judgment
on whether a given violation is acceptable. The disadvantage, of
course, is that manually assessing thousands of lines of code is
effort-intensive. The intensity of effort alone increases the likeli-
hood that major violations are left undiscovered and the overall
design regresses, with harmful consequences for system evolution.
Automatic assessment of design, with levels of nuance compara-
ble to a human expert, would therefore provide vital assistance in
increasing the speed and effectiveness of design intervention.
Neural language models for software design – The application
of neural language models for automating programming tasks is
fundamentally based upon the naturalness hypothesis [1], which
recognizes that software is a form of communication. Neural Pro-
gramming Language Models (PLMs), pre-trained on code corpora,
exploit such infused elements of human communication to learn a
statistical model of programming. Such knowledge lies at the foun-
dation of its ability to automate complex programming tasks. In
our attempt to apply PLMs for automating design-related tasks, we
start by considering whether design information is also naturally
communicated in code. Generally, programmers choose to augment
self-explanation in code so that fellow-programmers find it easy
to extend. A basic explanatory technique like using well-worded

program statements, in a clearly evident sequence, accompanied
by lucid natural language comments clearly helps code extension
in relatively local scopes. In parallel, carefully wording and charac-
terizing entities like methods, modules, or classes, and the ways in
which they relate, interact, and are packaged, promote more global
extension. Infusing such explanation, which is largely complemen-
tary to program logic, clearly achieve many of the same objectives
of a top-down design exercise. In fact, the co-evolution of design and
solution – the ’code as design’ approach – is itself a natural byprod-
uct of using high-level PLs [26]. Put simply, with software naturally
containing algorithmic and explanatory channels, the latter is likely
to include information about design. Thus, irrespective of whether it
emerges bottom-up as a result of programming or top-down as a re-
sult of a design process, elements of software design occur naturally in
source code. Given that (1) PLMs successfully understand statistical
properties of natural programming, and (2) elements of design occur
naturally in source code, we reason that PLMs pre-trained on large
code corpora are likely to understand elements of design. The purpose
of this study is to both verify this reasoning and exploit its potential.
Problem statement – We envision a system S that uses a PLM F
to assess whether a set of query programs/files𝑄 , drawn from a cor-
pus Q, complies with a design patternD specified for the corpus. A
score𝑚 calculated by the system provides a measure of compliance.

𝑚 = S(𝑄, D; F ), 𝑄 ⊆ Q (1)
To construct and evaluate such a system, we pose the following
research questions.
RQ1 – Can the system S for assessing design compliance be con-
structed using a neural language model trained on code?
RQ2 – Does the assessment improve when the PLM is explicitly
provided with information relevant to design pattern D?
RQ3 – Can the measure𝑚 be communicated in a way that makes
it easy for an architect to understand the compliance of 𝑄 with D?
Results from our study1 show that it is indeed possible to construct
such a system for measuring design compliance. Such a neural
language modeling approach to automatically assess design compli-
ance has the potential to improve the chances of quickly identifying
(and subsequently correcting) design violations, thus promoting
sustainable evolution of the code base with increased cadence.

2 CHOOSING A CORPUS AND DESIGN
PATTERN FOR STUDY

We now describe (1) the corpus Q, from which query programs are
drawn, and (2) the patternD against which their design is assessed.
Truck Application Software corpus – In a modern vehicle, the
overall system which governs the automatic control of in-vehicle
functions is generally referred to as the Electrical/Electronic (E/E)
system ([15]). In this system, the basic unit of (electronic) hardware
is the Electronic Control Unit (ECU). It is typically amicrocontroller-
based platform that brings together the necessary elements of auto-
matic control – the control logic, sensors, actuators, and related I/O.
Software – deployed on ECUs to realize the control logic – is our
focus here. For this study, we use Truck Application Software (TAS),

1We release the implementation of our compliance assessment system here. Since the
test corpus Q is proprietary, we include examples that illustrate its content.
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a corpus of ∼5k files of C-language code, that implements in-vehicle
functionality for the Volvo Group’s truck platforms. Principles of
software design adopted in TAS stem mainly from the Automotive
Software Architecture (AUTOSAR) industry standard [3]. The basic
unit of software defined by AUTOSAR is the Software Component
(SWC), which is an independently deployable unit of functionality.
At the core of each SWC is a set of C files, called software mod-
ules, which collectively realize the functionality of the SWC. Upon
deployment, SWCs interact with each other to collectively realize
control applications (Figure 2a). The decomposition of control logic
into a set of SWCs is fundamental for achieving several objectives of
automotive software design including the management of complex-
ity, separation of concerns, and the promotion of reuse. Therefore,
the notion of a SWC is, de facto, also the basic tool for software de-
sign in TAS. Any design pattern of increased sophistication adopted
in this corpus, builds upon the idea SWCs. One such design pattern,
which we focus upon in this study, is described below.

1..*
Application 1..*SWC Module

0..*
Controller

1
Handler Device

Handles

0..*

0..* 0..*
Use Use

Use

Use

(a)

(b)

Figure 2: (a) SWCs collaborating to implement a vehicle func-
tion, (b) Controller-Handler software design pattern for au-
tomotive control systems

The Controller-Handler design pattern – Let us now consider
an example application2 in TAS – roof hatch control – and its design.
Trucks are sometimes equipped with a hatch on the roof, which the
driver can control to adjust the flow of air and the amount of ambi-
ent light. The hatch is equipped with motors that effect this control.
One design principle, used in TAS, to implement such a function is
the separation of the core logic for hatch adjustment, the Controller,
from the logic that handles the motors, the Handler. The main rea-
son for this separation is that the roof-hatch motors are physically
wired to specific hardware pins in a specific ECU. This means that
the handler needs to be deployed on this particular ECU and use
the designated pins to control the motor. In contrast, the applica-
tion logic in the controller is not bound to a specific ECU, which
allows more freedom in deciding where it can be deployed. Since
automotive ECUs (traditionally) are quite resource constrained, this
Controller-Handler (CH) pattern offers a way to efficiently utilize
the available resources. Moreover, such hardware abstraction is
essential to make cost-effective product offerings. A truck typically
needs to support a high level of product configuration to be able
to fit a variety of transport operations and market segments. A
roof hatch control application that properly implements CH can
2Refer to roofHatch in the released code for an illustration

help offer trucks with different variants of roof-hatch motors, each
tuned to meet a certain customer demand. Having separated the
application logic, the controller can be reused over all these variants.
Due to its prevalence in TAS we focus on the CH design pattern
in this study. Formally (see Figure 2b), the CH pattern advocates
the implementation of an in-vehicle control application using a set
of SWCs 𝑃 = {𝐶,𝐻1, 𝐻2, ...𝐻𝑁 }. Here, the Controller component
𝐶 , implements the core control logic, while Handler components
𝐻𝑖 , 𝑖 = 1...𝑁 implement hardware-specific logic. In practice, since
the handler components are usually independent of each other,
the CH design pattern can be defined as applying to each pair
𝑃 = (𝐶,𝐻𝑖 ) of controller and handler SWCs used to realize the over-
all application. Apart from roof hatch control, applications in TAS
that adopt this design pattern include washer and wiper control,
exterior lights control and accelerator pedal control.
While the reasoning behind the CH pattern is intuitive, compliance
is not always achievable in practice. For instance, the responsibility
split between the controller and handler must be at the right level to,
among other things, avoid duplication of logic across handler vari-
ants. Roof hatch control includes special logic to ensure electrical
safety during actuation. Placing all of this safety logic in the handler
(and not just motor-specific parts) leads to duplication. If there hap-
pens to be a violation in some handler variant which implements
more safety logic than necessary, spotting this is not easy for an ar-
chitect who was not intimately involved in its design. On the other
hand, there may be sufficient clues in tokens used in the compro-
mised handler source code that a neural PLM may find anomalous.

3 CONSTRUCTING A SYSTEM FOR ASSESSING
DESIGN COMPLIANCE

Having fixed the query corpus Q as TAS and the design pattern
D as Controller-Handler for the study, we restate our objective.
We aim to construct a system S that assesses whether an ordered
pair 𝑄 = (𝑋,𝑌 ), 𝑋, 𝑌 ∈ Q of SWCs comply with the Controller-
Handler design pattern. Though either of the SWCs in this pair
can be realized using multiple software modules (or programs), at
this point it is simpler to consider the case where each SWC is
realized as one program. We relax this condition at a later point.
The following sections describe the process of constructing the
compliance assessment system S that we envision in Eq.1.
Pre-training a PLM – In this work, we consider a program 𝑋 =

(𝑡1, 𝑡2, ..., 𝑡𝑁 ) to be a source code file containing a sequence of to-
kens. We then define a PLM to be a language representation model
of the form F (𝑋𝑀 ) → 𝑋 pre-trained as a masked language model,
first introduced in BERT [8]. The core task in pre-training such a
model is Masked Reconstruction (MR), shown in Eq.23. In this task,
the PLM is provided a masked program 𝑋𝑀 , which produced by
replacing a fraction of tokens in 𝑋 with a mask token t. The model
is then tasked to recover tokens in masked positions, as a result of
which it learns contextual meanings of programs.

𝑀𝑅(𝑋 ;F ) = F (𝑋𝑀 ) [ 𝑗] == 𝑋 [ 𝑗],
𝑗 = {𝑖 : 𝑡𝑖 = t, 𝑡𝑖 ∈ 𝑋𝑀 } (2)

Since our aim is to assess design compliance in TAS which is a
C-language corpus, we pre-train a monolingual PLM on C code.
3In practice, a differentiable cross-entropy loss is used
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As pre-training corpus P, we use ∼75M files of C code derived
from the GitHub public dataset4. The model is then pre-trained by
minimizing the objective shown in Eq. 3. Prior to being fed into a
PLM, each program is tokenized and split further into a sequence
of subwords using the Byte Pair Encoding (BPE) [28] mechanism.

F := argmin
F

E𝑋 ∈P 𝑀𝑅(𝑋 ; F ) (3)

The procedure described in Eq.1 assesses whether a set of programs
𝑄 complies with a design pattern D. Practically, however, feeding
an entire program into the PLM is an issue because C programs
tend to be long. The average length of a C program is ∼5k subwords
in the GitHub corpus and ∼7k subwords in the TAS corpus. The
Transformer architecture [32], which is the mainstay of several
previously reported foundational PLMs like CodeBERT [10], is typi-
cally configured to handle input sequences of length 512-1024. This
is because the vanilla self-attention mechanism is of quadratic com-
pute and memory complexity, which makes it impractical for longer
input sequences. To be able to assess long programs, we therefore
base the PLM F on the more efficient Reformer [17] architecture.
Combining locality-sensitive-hashing and reversible residual layers,
the Reformer handles long sequences much more efficiently. By
configuring the input sequence length to 8192, we are able to feed
around 80% of programs in the TAS corpus into the Reformer-based
F intact with manageable memory and computational complexity.
Longer programs are truncated to this length. The Reformer encoder
F of ∼180M parameters with 6 self-attention layers (each with 8
heads) was trained from scratch on 16 Nvidia Tesla V100 GPUs
until the MR accuracy on a validation set of 5k files reached 95.12%.
Assessing compliance by manual review – Recalling the CH
design pattern described in Section 2, let us now consider how a hu-
man architect would assess whether a query pair (𝑋,𝑌 ) of programs
complies with this pattern. The architect would normally do this by
reviewing the code (or the ‘naturalness’) of the programs and assess
whether𝑋 and𝑌 respectively embody core principles of a controller
and its associated handler. It is, however, important to note that
the CH pattern defines expectations jointly on the pair and not on
individual programs. Therefore, a starting point for the architect
would be to juxtapose related parts from the pair (sometimes men-
tally) and then conduct the assessment. We find it useful to refer to
such a juxtaposition as 𝑋𝑌 – the ‘jointness’ of the two programs. It
is on this – at times abstract – representation XY that the architect
assesses whether principles of the CH pattern are complied with. In
the example of roof hatch control, signs of compliance include that
the interface for the handler is a pure abstraction of the hardware
interface for the hatch motors. That is, the handler does not contain
extra logic e.g. to protect the motors from over usage. That kind
of logic would be part of the controller. Similarly, the controller
should make use of the handler interface only to interact with the
motors. Signs of deviation from the pattern are the opposite of what
has been described. That is, the handler contains too much control
logic or the controller interacts directly with the motors. Not only is
manually assessing the jointness 𝑋𝑌 for signs of deviation difficult,
there are several factors that complicate the process further. First,
any instance of the CH pattern is certain to contain code that falls
outside the purview of the pattern itself. Hence, an architect will
4https://console.cloud.google.com/marketplace/details/github/github-repos

have to identify and assess tenets of the pattern in a diluted context.
Second, as a relatively loose pattern, it can be realized in several
styles. An architect would therefore need to judge whether a given
style of implementation is legitimate. Third, it is practically difficult
to construct an ideal realization against which the query programs
can be assessed. Usually, the architect relies on a subjective mental
model of the pattern, which is not only difficult to explicitly state,
but also affects the objectivity of the assessment. Addressing these
concerns requires nuanced judgment, which is precisely what a
human expert applies. In using a PLM as an alternative to a human
expert, we now describe how we address some of these concerns.
Assessing compliance using program embeddings – The main
tool we use for PLM-based compliance assessment is the program
embedding 𝑒𝑋 , which is a vector representation of the program 𝑋

that reflects its semantic properties. As shown in [24], there are
different ways to extract embeddings from contextual language
models, each capturing different aspects of information. After some
trial and error, we empirically decide to use the normalized output
of the final (6th) layer of F as shown below.

𝑒𝑋 =
F6 (𝑋 )

| |F6 (𝑋 ) | |
(4)

The PLM F is pre-trained on the masked reconstruction task onmil-
lions of program examples. It is therefore reasonable to expect that
the embedding 𝑒𝑋 is a fairly robust representation of the program𝑋

and is insensitive to minor semantic variations. Thus, the process of
assessing whether (𝑋,𝑌 ) complies with the CH pattern is done, not
in the code space, but in a vector space using embeddings (𝑒𝑋 , 𝑒𝑌 ).
While this pair of embeddings sufficiently represent the programs
individually, an additional representation is needed to address the
joint perspective 𝑋𝑌 . One simple model to capture the jointness of
a pair of programs would be the offset between their embeddings.

𝑟𝑋𝑌 = 𝑒𝑌 − 𝑒𝑋 (5)

Should there exist a benchmark vector 𝑟 that captures the required
level of jointness as prescribed by the CH design pattern, then the
assessment of design compliance reduces to checking the align-
ment between 𝑟𝑋𝑌 and 𝑟 in the embedding space. Put otherwise,
if 𝑟 serves as an effective offset vector between the embeddings of
the pair of programs (𝑋,𝑌 ), i.e., if Eq.6 is satisfied, then this pair
comes close to realizing the principles specified by the CH pattern.

𝑒𝑌 := 𝑒𝑋 + 𝑟 ≈ 𝑒𝑌 (6)

As noted earlier among concerns in manual assessment, there is no
easy way to construct an ideal realization of the CH pattern in the
code space. This means that access to its embedding equivalent 𝑟
is equally difficult. As a practical alternative, we assess compliance
with the average realization of the CH pattern, extracted from a set
of known instances. That is, given a set 𝑉 = {(𝐶,𝐻 )}𝑁

𝑖=1 from the
TAS corpus that are known to implement the CH pattern, we define
a benchmark of average jointness (Eq. 7), that averages offset vec-
tors from pairs in 𝑉 . If this benchmark serves as an effective offset
for query programs (𝑋,𝑌 ), satisfying Eq. 6, then this pair comes
close to realizing the average implementation of the CHpattern seen
in |𝑉 | known instances. Apart from being an intuitive and practical
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benchmark, by pooling common traits from known instances, 𝑟 pro-
vides a stronger signature for the CH pattern compared to individual
instances, where signatures of the pattern are likely to be diluted.

𝑟 :=
1
|𝑉 |

∑︁
(𝐶,𝐻 ) ∈𝑉

𝑒𝐻 − 𝑒𝐶 (7)

As shown using an example in Figure 3, serving as an offset vector
from 𝑒𝑋 , if 𝑟 is able to predict a handler embedding 𝑒𝑌 that is reason-
ably close to its actual counterpart 𝑒𝑌 , programs (𝑋,𝑌 ) are likely to
comply with the CH pattern. Such closeness between 𝑒𝑌 and 𝑒𝑌 is
easily measurable using the cosine similarity between these two vec-
tors.With this method, the assessment system for the CH design pat-
tern D, originally envisioned as Eq.1, can be re-written as follows.

𝑚 = S((𝑋,𝑌 ),D; F ,𝑉 ) = 𝑒𝑌 · (𝑒𝑋 + 𝑟 )
| |𝑒𝑌 | |2 | |𝑒𝑋 + 𝑟 | |2

(8)

𝑒𝑋
𝑟

𝑒𝑌
𝑒𝑋 + 𝑟

𝑒𝑊

𝑒𝑍

𝑚

Figure 3: The alignment between the actual handler embed-
ding 𝑒𝑌 and the predicted one 𝑒𝑋 + 𝑟 reflects compliance.
Vectors 𝑒𝑊 , 𝑒𝑍 illustrate embeddings of programs𝑊,𝑍 ∈ Q

Using cosine similarity as the metric measure – standard practice
for comparing language model embeddings – results in −1 ≤ 𝑚 ≤ 1.
Then,𝑚 ≈ 1means that the predicted handler embedding 𝑒𝑌 closely
aligns with that of the actual handler 𝑒𝑌 , indicating compliance.
Thus, as a way to assess compliance with the CH design pattern,
we substitute a complex code review process with a vastly simpler
comparison of embeddings extracted from a neural language model.
Easing interpretation of compliance – With cosine similarity,
while it is clear that 𝑚 = 1 and 𝑚 = −1 indicate perfect compli-
ance and non-compliance respectively, such perfect scores are rare.
Scores in between, which are most likely in practice, are difficult to
interpret. In order to provide intuitive human-readable assessment,
we convert similarity𝑚 into a rank 𝑘 . The discrete rank 𝑘 means
that the predicted handler embedding is the 𝑘𝑡ℎ most similar to
that of the actual handler, when compared to the embeddings of all
other programs in the TAS corpus. The best indicator of compliance
is a rank of 𝑘 = 1 when, among all programs in the TAS corpus Q
(excluding the controller𝑋 ) there is no better handler than𝑌 for the
controller 𝑋 , as assessed by the benchmark 𝑟 . Conversely, a rank of
|Q| − 1means that the predicted embedding is least similar and any
other program in the TAS corpus is a better handler than 𝑌 . This is
the worst indicator of compliance. While the rank may be a more
interpretable measure, its value is now dependent upon the spread
of embeddings around 𝑒𝑌 . In the example shown in Figure 3, even
if the prediction is reasonably good, it is of rank 𝑘 = 2, since there
is another program 𝑍 ∈ Q, whose embedding is closer to that of the

actual handler program 𝑌 . If there is considerable clustering in the
close neighborhood of 𝑒𝑌 , then even a good prediction is unlikely to
result in a rank close to 1. We therefore use a simple rule of thumb,
where if the predicted embedding lies within 10% of embeddings
most similar to 𝑒𝑌 , we define the assessment 𝑙 = True that the query
(𝑋,𝑌 ) complies with the CH pattern. If the predicted embedding lies
among those of 90% of the least similar programs, we label the pair
as non-compliant. The discrete rank 𝑘 , in addition to a true/false
binary assessment of compliance 𝑙 , eases human comprehension of
our PLM-based process of assessing design compliance. The com-
plete process of compliance assessment is described in Procedure 1.

Procedure 1: Compliance assessment system S
Parameters :Test input (𝑋,𝑌 ) , PLM F, TAS corpus Q, known

instances of the CH pattern𝑉
1 Function𝑀 (𝑒𝐴, 𝑒𝐵 ) :
2 𝑚 =

𝑒𝐴 .𝑒𝐵
| |𝑒𝐴 | |2 | |𝑒𝐵 | |2

3 return𝑚
4 Function S(𝑋,𝑌 ; F,𝑉 ) :

/* Note: 𝑒𝑋 = F6 (𝑋 )/| | F6 (𝑋 ) | | */

5 𝑟 = 1
|𝑉 |

∑
(𝐶,𝐻 ) ∈𝑉 𝑒𝐻 − 𝑒𝐶

6 𝑐 = [𝑀 (𝑒𝑍 , 𝑒𝑋 + 𝑟 ) : 𝑍 ∈ Q \ {𝑋 } ]
7 𝑘 = indexof (sort(𝑐 ), 𝑀 (𝑒𝑌 , 𝑒𝑋 + 𝑟 )) // rank

8 𝑙 = 𝑘 ≤ 0.1 ∗ |Q | // binary assessment of compliance

9 return 𝑘 , 𝑙

4 EXPERIMENTS
This section describes how we experiment with the system based
upon parameters identified in Eq. 8.
Query (𝑋,𝑌 ) and benchmark programs 𝑉 – The objective of
the assessment process is to check whether a pair of query SWCs
(𝑋,𝑌 ) complies with the average realization of the CH pattern seen
in a separate set 𝑉 of known instances. With the help of architects
who are familiar with the TAS corpus, we first identify 21 known
instances of the CH pattern and curate them into a setV . Next, we
design a controlled experiment by selecting two types of queries.
• The positive query – where the query 𝑄+ ∈ V is known to
be an implementation of the CH pattern that is likely to satisfy
the condition specified in Eq.7. The benchmark set in this case is
𝑉 = V\{𝑄+}, which is all known instances of the pattern excluding
the instance chosen as the test input.
• The negative query –where the query𝑄− ∈ Q\V is known to not
implement the CH pattern and is therefore unlikely to satisfy Eq.7.
Here, the benchmark set 𝑉 = V includes all known instances of
the CH pattern in the TAS corpus. Since we expect negative queries
to perform poorly during the assessment, they help establish a
baseline for the evaluating the accuracy of the assessment process.
Consider a pair of SWCs (𝐶,𝐻 ) ∈ V , that is known to implement
the CH pattern. While it is most straightforward to implement
each SWC in the pair as one program, this is not always practi-
cal. As shown in Figure 2a, some SWCs include a lot of function-
ality in which case it is necessary to split its code into several
programs or files. Practically, therefore, the SWCs are of the form
𝐶 = {𝐶1,𝐶2, ...,𝐶𝑀 } and 𝐻 = {𝐻1, 𝐻2, ..., 𝐻𝑁 }, each of them being
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implemented using multiple programs. This complicates the assess-
ment process since the systemS is designed only to handle a pair of
programs and not a pair of sets. A simple way to circumvent this lim-
itation is to ‘unroll’ the setV into a Cartesian product set as follows.

V∗ = {(𝑐, ℎ) : 𝑐 ∈ 𝐶,ℎ ∈ 𝐻 : (𝐶,𝐻 ) ∈ V} (9)

For every known instance of the CH pattern (𝐶,𝐻 ) ∈ V , the prod-
uct set V∗ pairs each program in the controller SWC 𝐶 with every
program in the handler component𝐻 . This process results in a total
of 63 pairs, which we use as likely queries in our experiments. By
drawing queries 𝑄+ ∈ V∗, the advantage is that we exhaustively
present all combinations in a paired form that is suitable for assess-
ment using Eq.8. The disadvantage is that even if at the component
level every pair (𝐶,𝐻 ) ∈ V is a known instance of the CH pattern,
not every pair (𝑐, ℎ) ∈ V∗ at the program level is a ‘true’ controller-
handler pair that implements elementary aspects of the CH pattern.
Considering that several instances of the CH pattern are imple-
mented using multiple programs, and that the assessment system is
currently designed to work only with a pair of programs, we accept
the risk and loosen the definition of the CH pattern. Every pair in
the product set V∗ is considered as a true pair and is presented
as a positive case for testing, while also being used to calculate
𝑟 . Negative queries 𝑄− are simply drawn by picking two random
programs from TAS as long as neither of them appear inV∗.
The PLM F – As the heart of the automated compliance assess-
ment system, the neural PLM F can be seen as the machine coun-
terpart of a human architect who conducts the same assessment
manually. With such an analogy, we now reason about the level of
information with which F is trained and its relation to the quality
of assessment. The model pre-trained using Eq.3 on a C-language
corpus extracted from GitHub – which we now denote as F𝐴 –
is a C-programming expert. Using this model is akin to asking
a human expert in C-programming, but one who has no experi-
ence in automotive application design and development, to assess
compliance with the CH pattern. While it is not impossible for
such an expert to conduct this assessment, it is reasonable that an
awareness of relevant domain and design concepts would ease the
process. To a C-programming expert, we contend that such aware-
ness can be introduced in three stages. The first stage would be to
increase awareness about the automotive-domain, i.e. the pattern of
token usage (its naturalness) in its application code. Second comes
design-related knowledge, mainly the concept of SWCs, which is
fundamental to the definition of the CH pattern. Third, would be
the concept of controllers and handlers, the subjects of assessment.
Like [? ], we achieve the first stage – improving domain-familiarity
– by simply continuing to pre-train F𝐴 on code from TAS. The
second stage requires inducing the knowledge of a SWC – a set
of programs that jointly realize functionality. We do this by first
assembling a set 𝐶 = {(𝐴, 𝑃, 𝑁 )}𝑀

𝑖=1 of programs from TAS, such
that 𝐴 and 𝑃 belong to the same SWC, while 𝑁 belongs to a dif-
ferent SWC. Then, we use the triplet loss to cluster embeddings of
programs that belong to a SWC, while keeping those of programs
from different SWCs further apart. To simultaneously ensure that
this SWC-based clustering does not majorly disrupt the embedding
geometry, and to impart domain familiarity, we combine the MR

task on the TAS corpus with SWC-clustering as shown below.
F𝐵 = argmin

F
E(𝐴,𝑃,𝑁 ) ∈𝐶 𝑇𝑅(𝐴, 𝑃, 𝑁 ; F ) +𝑀𝑅(𝐴; F )

𝑇𝑅(𝐴, 𝑃, 𝑁 ; F ) = ( | |𝑒𝐴 − 𝑒𝑃 | |2 − ||𝑒𝐴 − 𝑒𝑁 | |2)
(10)

The resulting fine-tuned model F𝐵 is thus more familiar with do-
main and design concepts related TAS in comparison to F𝐴 . For
the third stage of inducing knowledge about controller and handler
programs, we follow a similar approach of encouraging the PLM
to respectively cluster these programs by type. To achieve this, we
assemble (1) a set 𝐷𝐶 = {(𝐶1,𝐶2, 𝐴)}𝑀𝑖=1 with 𝐶1 and 𝐶2 being con-
trollers and𝐴 being a non-controller program from the TAS corpus,
and (2) a set 𝐷𝐻 = {(𝐻1, 𝐻2, 𝐵)}𝑁𝑖=1, with 𝐻1 and 𝐻2 being handler
programs and𝐵 being a non-handler program.We then fine-tuneF𝐵
using the triplet loss on the combined set𝐷 = 𝐷𝐶 ∪𝐷𝐻 , resulting in
a model F𝐶 that is aware of the concept of controllers and handlers.

F𝐶 = argmin
F
E(𝐴,𝑃,𝑁 ) ∈𝐷 𝑇𝑅(𝐴, 𝑃, 𝑁 ; F ) +𝑀𝑅(𝐴; F ) (11)

By assessing design compliance using models F𝐴 , F𝐵 , and F𝐶 , re-
spectively representing increasing awareness of concepts relevant
to the assessment, we analyze the influence of such awareness. This
assessment is conducted on an equal number of positive (𝑄+) and
negative (𝑄− ) queries. For each query, results are collected in terms
of a discrete rank and a binary label (see Procedure 1).

5 RESULTS
The primary tool which we use for analyzing the results are the
labels 𝑙 collected for each query. This binary label indicates whether
the query has been evaluated by the system S to comply with or de-
viate from the CH pattern. The controlled experiment using positive
and negative queries, which are known to comply and deviate from
the pattern, allows collection of results of each of these cases into
lists 𝐿+ and 𝐿− respectively. Thus, true positive (TP) assessments
are those labels in 𝐿+ that evaluate to True and false negatives
(FN) are those that evaluate to False. False positive (FP) and true
negative (TN) assessments are similarly identifiable from 𝐿− , as
shown below.

𝑇𝑃 : {𝑙 | 𝑙 == 𝑇𝑟𝑢𝑒, 𝑙 ∈ 𝐿+} 𝐹𝑁 : {𝑙 | 𝑙 == 𝐹𝑎𝑙𝑠𝑒, 𝑙 ∈ 𝐿+}
𝐹𝑃 : {𝑙 | 𝑙 == 𝑇𝑟𝑢𝑒, 𝑙 ∈ 𝐿−} 𝑇𝑁 : {𝑙 | 𝑙 == 𝐹𝑎𝑙𝑠𝑒, 𝑙 ∈ 𝐿−}

(12)

Using this, we build the confusion matrix (Table 1) and performance
metrics of the assessment process (Table 2). These metrics help us
answer the research questions posed in our problem statement.

Table 1: Compliance assessment – confusion matrix1,2

Queries
Prediction (𝑙 ) F𝐴 F𝐵 F𝐶

True False True False True False
Positive (𝑄+) - 63 22 (0.35) 41 (0.65) 37 (0.59) 26 (0.41) 50 (0.80) 13 (0.20)

Negative (𝑄−) - 63 8 (0.13) 55 (0.87) 7 (0.11) 56 (0.89) 4 (0.06) 59 (0.94)

1 Confusion matrix on labels 𝐿+ and 𝐿− calculated according to Eq.12
2 For definition of each label 𝑙 ∈ 𝐿+𝑜𝑟𝐿− refer to Procedure 1

RQ1: assessing design compliance using neural PLMs – Per-
formance metrics in Table 2 show encouraging signs that a system
for assessing compliance of programs (𝑋,𝑌 ) with the CH design
pattern can be constructed using a neural language model trained
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Table 2: Compliance assessment – performance metrics

Metric with F𝐴 with F𝐵 with F𝐶
Accuracy 0.611 0.738 0.860
Recall 0.349 0.587 0.790

Precision 0.733 0.840 0.920
F1 score 0.473 0.691 0.850

on nothing but source code. Even with the model F𝐴 , which is
pre-trained purely on non-automotive code, the system is capable
of identifying instances of the CH pattern with a precision of more
than 0.70. As also seen in Table 1, with a high True Negative Rate
(TNR) (0.87), the system is particularly adept at correctly identify-
ing non-compliant instances of the pattern. The main concern, seen
from the same table, is of course the very high False Negative Rate
(FNR) of 0.65. That is, the system built using F𝐴 is misclassifying
a majority of known instances of the CH pattern as non-compliant.
The high FNR, in turn, lowers the accuracy, precision and F1 score.
Thus, while the performance of design compliance assessment us-
ing F𝐴 is encouraging, it remains unsatisfactory. We reason that
there are three main factors that could explain the high FNR. The
first is the product set V∗, which considers all possible pairs of
programs from applications that are known instances of the CH
pattern. The introduction of doubtful pairs could taint both the
average jointness benchmark 𝑟 and whether a positive test input
is genuinely so. The second reason could be the lack of familiarity
with TAS domain and design in F𝐴 , due to which program embed-
dings are arranged in such a way that the benchmark vector 𝑟 does
not serve as a good offset. The third reason could be some weakness
in assessment using the average jointness benchmark 𝑟 . Results
from testing with models F𝐵 and F𝐶 shows that it is less likely to
be due to a weakness in the assessment approach.
RQ2: assessment using PLMs with increased knowledge –
Having been pre-trained only using the GitHub corpus, one weak-
ness in F𝐴 is that it is less aware of domain and design-related spe-
cializations in the TAS corpus. This is precisely whywe trainmodels
F𝐵 and F𝐶 by explicitly providing this information. Assessment us-
ing F𝐵 , which learns domain-specific naturalness and the concept of
SWCs used in the TAS corpus, leads to a strong reduction of the FNR
to 0.41. The consequent improvement in the F1 score to 0.7 is also
noteworthy. This clearly indicates that inducing the knowledge of
SWCs directly leads to an improvement in the quality of assessment.
Using model F𝐶 – which is trained to understand controller and
handler programs – for the assessment leads to yet another strong
reduction in the FNR to 0.2, due to which the precision and F1 score
commendably increase to 0.92 and 0.85 respectively. The clustering
objectives (Eqs. 10 and 11), are therefore likely to have resulted in
an arrangement of embeddings that better satisfies Eq. 7. These ob-
servations clearly indicate that using a PLM with an increased level
of awareness about the domain and its design, results in a much
more accurate assessment. Even with a marked improvement in the
quality of assessment, the FNR remains a concern. To analyze this,
there is a need to go beyond binary assessment to a finer method.
RQ3: easing interpretation of assessment – Analyzing the bi-
nary labels of compliance (𝐿+ and 𝐿−), using the confusion matrix

and metrics derived from it, helps evaluate the performance of the
assessment system. While this is necessary to build confidence
in the system, from the perspective of an architect or developer,
it is equally important to understand why the system assesses a
query as complying or deviating from the CH pattern. Since this
requires much more nuance than a binary label, we turn to the
rank 𝑘 to gain a finer interpretation of the assessment. Specifically,
we analyze the distribution of 𝐾+ and 𝐾− of ranks respectively
collected for positive and negative queries. For brevity, we confine
our analysis to the best performing system that uses the model F𝐶 .
First we begin by visualizing the spread of ranks shown in Figure 4.
Inspecting the spread of ranks for the positive cases 𝐾+, allows us
to demarcate three intervals of ranks where results cluster. Next, we
sample queries from each interval and have them assessed by archi-
tects who are familiar with TAS. The manual assessment of sampled
queries follows an approach similar to the one described in Section 3.
Using expert review we calibrate the results of the PLM-based com-
pliance assessment system within each interval as described below.

Figure 4: Calibrating the results of assessment into inter-
pretable intervals using expert review

• Interval 1 (ranks 1-100) – The interval where a majority of pos-
itive cases cluster, it consists mostly of queries that are assessed
by architects to be good implementations of the CH design pat-
tern. Some are even judged to be textbook cases with the right
interface and responsibility split between controller and handler
programs. The best ranking instances in this interval are also those
which exhibit bidirectional exchange of information between the
two programs. The exchange follows standard practice of using
the AUTOSAR Runtime Environment (RTE), seen in their use of
RTE_read and RTE_write methods5. Cases that perform relatively
worse within this interval (rank close to 100) are observed to im-
plement unidirectional interaction, where the controller only reads
from the handler, which is perfectly legitimate. Therefore, expert
review generally considers test inputs that rank in this interval to
be compliant with the CH pattern, with no need for refactoring.
This is further strengthened by the fact that not a single negative
test case is ranked by the system as being in this interval.

5Refer to roofHatch in released code for an example
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• Interval 2 (ranks 100-1000) – Expert review indicates that positive
queries in this interval show subtle deviations from the standard
implementation of the CH pattern. One deviation is that, while the
responsibility split is correct, the controller and handler programs
do not interact directly with each other. The actual interaction, in
this case, usually happens through some other program in the con-
troller SWC, which is excluded due to the constraint that the system
operates only on pairs of programs. This is, therefore, not a genuine
violation and results simply due to a limitation in the system. More
significantly, the other observed deviation is where there is direct
interaction, but it does not take place through the AUTOSAR RTE.
This is a subtle deviation which could benefit from refactoring. The
fact that the assessment system consistently places such cases in the
second interval is an encouraging observation. However, the devia-
tions observed by expert review in this interval also seem to be char-
acteristics observable in pairs of programs that are not controllers
or handlers. For instance, it is plausible that random sampling from
the relatively small TAS corpus results in a pair of non-interacting
programs, one of which contains some application-like code and the
other containing some code related to hardware. This could explain
why some negative cases end up being ranked in this interval. In
general, when the system ranks a query in this interval, it could
be a candidate for refactoring. However, it is best if the automated
assessment is manually verified to ensure that it is a genuine case.
• Interval 3 (ranks 1000-5000) – Very few positive cases rank in this
interval. In some cases, the test input implements diagnostic rou-
tines, and not application logic. In others, the controller program is
very small, containing only a few lines of code. Generally, therefore
positive cases seem to rank in this interval because they are marked
outliers compared to the average CH implementation. A cause for
concern are the handful of cases which are genuine false negatives
and are, in fact, assessed to be good implementations of the CH
pattern. Moreover, a query ranked in this interval seems to deviate
from the average implementation to such an extent that it is barely
distinguishable from random queries drawn from TAS. A result in
this interval therefore requires manual review by an expert.

Thus, the greatest advantage of the system is its ability to identify
true compliance with the CH pattern. Such cases, as verified by
experts, rank in the first interval. Also, its tendency to rank subtle
variations – possible candidates for refactoring – in the second
interval shows its ability make nuanced judgments. Finding such
deviations is a strong indicator of its practical utility. The inconclu-
sive nature of results in the third interval, and the presence of some
negative cases in the second, indicate the boundaries of this process.
Overall observations – First, queries that fall within the first two
intervals are remarkably similar in character, meaning that observa-
tions apply quite consistently to cases within a given interval. This
reflects the consistency of automated assessment using the average
jointness benchmark. Second, this consistency eases practical use
because when a query ranks within an interval, we have a reason-
ably good idea why this happens. This means that any subsequent
design intervention can be precisely targeted to rectify suspected
deviations. Third, the calibration process makes it possible to decide
the conditions under which it is necessary for an architect to inter-
vene. Ranks in the first interval do not require human verification,
while those in the second and (especially) third intervals need active

intervention. These observations thus point to the ingredients of
a protocol for interpreting the results and, thus, practically using
the system. However, we also observe a few caveats in the process
which we now list. First, under the current process, the benchmark 𝑟
needs to be recalculated whenever there is a new instance of the CH
pattern. Since this is not a computationally heavy process, we do not
rate this as a major concern. An alternative would be to fix ‘golden’
instances of the pattern so that the benchmark 𝑟 is itself fixed.While
choosing such instances, it is important to ensure that legitimate
variations are included. It would also be necessary to periodically
audit the golden instances to ensure that they are up-to-date with
the latest understanding of the pattern. Second, the ranking process
depends upon all programs in the TAS corpus, meaning that the
addition of new programs needs a recalibration of the results. In
the worst case, the inclusion of a new set of highly specialized
programs could severely disrupt the calibration. However, it is im-
portant to note that such risks are inherent to any benchmark that
is derived from an evolving corpus. Third, there is a need to better
understand the relationship between pattern compliance and rank.
Consider the test input with a rank close to 100 (and thus in interval
1), but deviates from the textbook implementation because here the
controller only reads from, and does not write to, the handler. Such
a deviation seems sufficient for ∼100 programs in the TAS corpus
to come in between the predicted and actual handler embeddings.
While the empirical calibration process allows us to circumvent this,
it is essential to understand the nature of intervening program em-
beddings. This is an investigation that we prioritize for future work.
Overall, results from this study demonstrate a promising method
to construct an automated system for measuring design pattern
compliance using neural language models trained on source code.

6 DISCUSSION
Relationship with embedding regularities – The central idea
of our PLM-based system for design compliance, captured in Eq.7,
is whether the representation of average jointness 𝑟 serves as an
effective offset vector for query embeddings (𝑒𝑋 , 𝑒𝑌 ). For this con-
dition to hold across several possible queries, the embeddings of
controller and handler programs need to follow a specific pattern
of arrangement. The geometrical relationship between the embed-
dings of semantically related entities has been the focus of extensive
study in neural natural language processing. Most famously, [21]
studied regularities in the embeddings of word pairs that are associ-
ated by a similar concept. Using pairs of words (𝑀𝑎𝑛,𝑊𝑜𝑚𝑎𝑛) and
(𝐾𝑖𝑛𝑔,𝑄𝑢𝑒𝑒𝑛), the word2vec language model has been shown to
learn embeddings such that 𝑒𝐾𝑖𝑛𝑔−𝑒𝑀𝑎𝑛 +𝑒𝑊𝑜𝑚𝑎𝑛 ≈ 𝑒𝑄𝑢𝑒𝑒𝑛 . If the
model has a proper understanding of the analogical relationship be-
tween these pairs of words then, as shown by [21], these four word
embeddings approximate a parallelogram. Building upon this idea,
[34] showed that embeddings of pairs of sentences that are related
by the same concept show a similar parallelogram geometry. Our
entire approach can be reinterpreted as examining the embedding
regularities of pairs (𝑋,𝑌 ) of programs that are related by the same
concept – the CH design pattern. If the neural PLM F used in the as-
sessment system correctly encodes the jointness that underlies the
CH design pattern, embeddings of pairs of programs (𝐶1, 𝐻1) and
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(𝐶2, 𝐻2) that implement this pattern should approximate a parallel-
ogram. In which case, 𝑒𝐶2 + (𝑒𝐻1 − 𝑒𝐶1 ) ≈ 𝑒𝐻2 must hold, which is
a special case of the average jointness benchmark with one known
pattern instance. If this parallelogram geometry consistently holds
across several instances of the pattern, the average jointness vector
𝑟 naturally serves as an effective offset between the program embed-
dings of any given instance (𝑋,𝑌 ). Further, since regularity is essen-
tial for compliance using 𝑟 as the offset, we reason that clustering ob-
jectives (Eqs.10 and 11) strengthens it, improving the quality of the
assessment process. Additionally, [9] formalized the idea of testing
the regularity of one pair of related words using the average offset of
other pairs of similarly related words – a technique that they refer to
as 3CosAvg. Their use of the average offset closely reflects our con-
struction of the average jointness 𝑟 as the benchmark for assessment.
The fact that the system we design for design compliance assess-
ment is firmly grounded in extensively studied properties of neural
language models, inspires further confidence in our approach.
The quality of program embeddings – The system we construct
for assessing compliance with a design pattern is built upon pro-
gram embeddings, which are vector representations of programs
extracted from the PLM F . The quality of the assessment process is
therefore highly dependent upon the quality of the representation.
Among the factors that influence this quality, perhaps the most
important is the objective that is used to train the model. PLMs used
in our study are primarily trained using the masked reconstruction
task shown in Eq.3. The simplicity of the MR task is undoubtedly its
key advantage. However, a major shortcoming of the BERT mask-
ing recipe is that, by uniformly choosing 15% of the tokens to be
masked, only tokens that are numerically abundant – but semanti-
cally less significant (like ;) – are more likely to be masked. In order
to successfully reconstruct a token like ; it is often sufficient to
simply learn concepts in a local scope, like the likelihood of the end
of a statement. Thus, with the model rarely being tasked with recon-
structing tokens that are semantically significant, it is less equipped
to learn global concepts like design. This could explain why the base
model F𝐴 , which is pre-trained only usingMR, performsworst. This
weakness of MR is well-documented in literature and several inter-
esting alternatives have been proposed that encourage the model
to learn more global concepts. One option is to modify the mask-
ing recipe like [29], which masks selected phrases and [16], which
masks larger spans of tokens. Another option is to use [6] and [18],
which task a model to detect replaced, permuted, inserted or deleted
tokens. As tasks that are more complex than reconstructing simple
tokens, they encourage the model to gain a deeper understanding of
program contexts. Another interesting alternative class of training
objectives are those that selectively obfuscate tokens. For instance, a
de-obfuscation objective proposed by [27] obfuscates class, method,
and variable names before tasking the model to recover them. Since
the successful completion of this task requires a deeper and broader
understanding of the program, they may lead to embeddings that
are better suited for a design assessment. While we reason the fine-
tuning objectives that improve domain and design-related aware-
ness (Eqs.10 and 11) are likely to remain important, setting a task
that is more complex than MR may result in a much more powerful
base model F𝐴 . We leave this investigation for future work.

Training beyond code – Our results clearly show that it is possible
to construct a system for assessing design compliance using PLMs
trained on source code. However, we do not necessarily advocate
a code-only training approach for imparting design knowledge. In
addition to source code, automotive software engineering, which
follows the AUTOSAR standard, captures additional engineering
information using the standard ARXML modeling language. From
the perspective of design awareness, would it therefore be helpful
to explicitly train PLMs with ARXML models? The answer depends,
of course, upon whether such models provide additional design
awareness. If most of the information in ARXML models is likely
to be replicated in code, then using them for training is unlikely
to enhance design understanding. Otherwise, if design models do
contain some information not discernible in code, it may indeed be
helpful to additionally train with such information. Assessing the
usefulness of engineering information in ARXML for design compli-
ance assessment is an investigation that we leave for future work.

7 RELATEDWORK
To the best of our knowledge, our work is the first attempt to apply
neural language models for measuring design compliance. In soft-
ware engineering, our work closely relates with the task of design
pattern detection. A recent survey of this area [33] reveals that
around 20% of reported methods take a machine learning approach,
mostly using classical algorithms. Examples include [30] which
compares pattern instances by modeling them as graphs, and [23]
and [22] which use artificial neural network and random forest
models respectively to classify pattern instances. We reason that
the key advantage of our use of neural language models is the level
of nuance that it can apply for judging design. A BERT-like PLM,
which has been shown to learn nuanced contextual information,
could be vital for assessing design, where firm judgments are rare.
Also, unlike the majority focus on pattern detection, we develop
a technique for measuring compliance with a given pattern, includ-
ing steps to identify the source of deviation. Moreover, our study
focusing upon embedded control systems would also be a useful
addition to an area that mostly focuses on object-oriented design.
As discussed in detail in Section 6, our approach for compliance
assessment closely relates to the property of linguistic regularity ob-
served in neural natural languagemodels [21]. Most experiments, as
surveyed in [2], study this property as a way to evaluate the quality
of word embeddingmodels. Few of them apply this property in a pre-
dictive setting by framing an analogy completion task where, given
a triplet (𝐴, 𝐵,𝐶), they predict𝐷 such that (𝐴, 𝐵) and (𝐶, 𝐷) are ana-
logical pairs. Studies [11] and [19] approach this task respectively
using popular word2vec and GloVe embedding models, while [7]
uses sense embeddings derived from word2vec. An example of the
property being studied in a specialist domain is [5] which fine-tunes
GloVe on a corpus related to radiology, and uses its embeddings for
the analogy completion task. Similar to our departure fromword em-
bedding models, [31] studies this property in pre-trained contextual
neural language models. The work we survey can therefore be seen
to relate to parts of our assessment system, but we build a pipeline
that not only analyzes embedding regularity, but also interprets it
within the context of software and its design. In doing so, we also
tie the property of embedding regularities to a concrete application.
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8 CONCLUSIONS
This work demonstrates how neural language models trained on
source code can be used to measure whether a set of programs
comply with desired design properties. Compliance is measured by
inspecting the geometrical properties – specifically the regularity –
of query program embeddings. Our work also includes techniques
to significantly improve the accuracy of the assessment by explicitly
providing the model with domain and design-related information.
Experiments performed on an automotive code corpus result in a
prediction precision of 92%. We also present how the model predic-
tions can be incorporated into a design reviewmethodology in order
to provide valuable feedback to automotive software architects.
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