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ABSTRACT

Machine learning has been increasingly used to solve various soft-

ware engineering tasks. One example of its usage is to predict the

outcome of builds in continuous integration, where a classifier is

built to predict whether new code commits will successfully com-

pile. The aim of this study is to investigate the effectiveness of

fifteen software metrics in building a classifier for build outcome

prediction. Particularly, we implemented an experiment wherein

we compared the effectiveness of a line-level metric and fourteen

other traditional software metrics on 49,040 build records that be-

long to 117 Java projects. We achieved an average precision of 91%

and recall of 80% when using the line-level metric for training, com-

pared to 90% precision and 76% recall for the next best traditional

software metric. In contrast, using file-level metrics was found to

yield a higher predictive quality (average MCC for the best software

metric= 68%) than the line-level metric (average MCC= 16%) for the

failed builds. We conclude that file-level metrics are better predic-

tors of build outcomes for the failed builds, whereas the line-level

metric is a slightly better predictor of passed builds.
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· Software and its engineering→ Software verification and

validation.
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1 INTRODUCTION

Continuous integration (CI) is a modern software engineering prac-

tice in which developers integrate their code into a shared repos-

itory to enable swift detection of quality issues and bugs before

releasing new features to end users [19].

A CI system typically attempts to launch a build job multiple

times a day, either for each new commit submitted to the version

control system or at set time intervals during the day [4]. The goal

of these jobs is to notify software engineers about faults in the

source code as quickly as possible in order to quickly fix them. A

typical build server runs tools such as compilers and static analyzers

to detect styling and quality related problems in the code that get

reported to developers. Failures produced by any of these tools

result in a build failure.

The completion of build jobs in a fast manner directly affects

the productivity of programmers [14], as they might get distracted

by other tasks while waiting for the build job to finish. As a con-

sequence, the number of code changes committed by developers

during a day will be reduced. For this reason, keeping a high pace

of the build job, and understanding the root cause of build failures

is key to improve the development productivity. In fact, a previous

analysis on the TravisTorrent database image, created on February

8, 2017, showed that the median time to build Java projects took

over 900 seconds (15 minutes) [8]. This means that developers will

incur, on average, a time latency of 15 minutes before receiving

feedback about their committed code from the CI environment.

Therefore, reducing the time-feedback to developers is necessary

to allow them to immediately start working on new development

tasks with confidence that their previously committed code will

pass the build phase.

To address the problem of time latency and reduced development

productivity in CI, several researchers utilized machine learning

(ML) models to predict the outcome of build jobs using a diversity

of product and process software metrics, such as code churn size,

number of commits, team size etc as features for characterizing build

outcome (failed/passed). For example, Hassan and Zhang [7] mined

a diversity of product and process metrics in historical projects,

such as the number of modified subsystems and certification results

of previous build for constructing an ML model for build prediction.

Their results indicate that training a decision tree classifier on such

information can yield to a correct prediction for 95% of passing

builds and 69% of failing builds. Xia and Li [16] evaluated the use of

nine classifiers on 20 software metrics for 126 open source projects.

Their results show that using the examined metrics result in an

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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F1-score higher than 0.7 for 21 of build outcomes. Thus, product

and process metrics have shown promising results when it comes

to prediction of build outcomes. In this study, we refer to these

metrics by using the term traditional software metrics (TSM).

Despite these promising results of TSM-based approaches, they

can only provide indications about which parts of the system, e.g.

what file, causes the build to fail. However, they cannot locate

the source of the failure, e.g. by indicate which lines of code might

potentially cause build failures. This research aims at filling this gap.

Using a textual analysis (TA) approach, we measure the frequency

count of token appearances in the source code (e.g., if and while) on

a line of code level. We use the term token frequency (TF) metric to

refer to the measurements produced by the TA approach. However,

in the context of build outcome prediction, it is unclear whether

a prediction of build failure made using a line-level metric, such

as TF, can be as precise and good as a prediction made using TSM,

which can use per file information.

Therefore, in this study we set off to examine the effectiveness

of the TF metric by empirically comparing its effectiveness against

a set of TSM in build outcome prediction for 117 Java open source

projects. We record the precision, recall, F1-score, and Mathews

Correlation Coefficient (MCC) measures attained after training a

classifier on each metric respectively. More concretely, we design

and implement a controlled experiment wherein fourteen different

TSM metrics extracted from the TravisTorrent [5] data-set, created

on February 8, 2017, and the token frequency metric are examined

for effectiveness across 49,040 builds. In our study, we address the

following research question:

How effective is the token frequency metric in compar-

ison with traditional software metrics for predicting

build outcomes in CI?

The specific contributions of this paper are as follows:

• we empirically investigate the effectiveness of a line-level

metric in learning build outcomes in CI, and compare its

effectiveness with a diversity of traditional software metrics

using 117 Java based open source projects.

• we found that using TF for training a classifier slightly out-

performs the effectiveness of file-level TSMs in predicting

passing builds, with a small effect size difference.

• we found that using file-level metrics is more effective than

TF in predicting build failures.

• we complement the TravisTorrent data-set from 2017 with a

new data-set that contains TSM and TF metrics for historical

code changes made in 117 Java based projects 1.

The remainder of this paper is organized as follows. Section

2 provides an overview of related work that propose approaches

for CI build prediction. In Section 3 we present the experimental

design and operations carried out in this study. Section 4 presents

the results of our study. Section 5 discusses the threats to validity.

Finally, Section 6 concludes the paper and outlines future work.

2 RELATED WORK

In this section, we present related work on build outcome prediction

and reasons of build failures in CI.

1https://doi.org/10.5281/zenodo.6784987

2.1 Software Metrics for Build Prediction

Several studies have proposed approaches for modelling the rela-

tionship between build statuses (passed/failed) and softwaremetrics

[8, 10, 16]. Ni and Li [10] adopted cascaded classifiers to predict

build outcomes using 18 software metrics to characterize historical

build jobs for 532 Java and Ruby projects. The results showed that

using ‘Historical Statistic’ metrics are the most useful features in

predicting the build outcome with an accuracy rate of 75.3%. Hassan

and Wang [8] employed a random forest classifier for predicting

build outcomes using features derived from error logs in historical

build records. The results of their work showed an average F-score

rate of 87% in the prediction of build outcomes. Another example

is the work conducted by Xia and Li [16], where the authors evalu-

ated the performance of nine different classifiers using traditional

software metrics in build predictions. Their results showed that

a Decision tree, gradient boosting and random forest classifiers

outperform the other algorithms in F1-score, achieving a 17% more

F-score on average. With these classifiers, build outcomes for a

quarter of the analyzed projects can be predicted with F1-score

over 60%. In another empirical study conducted by Xia et al. [17],

the authors evaluated the performance of six classifiers for build

outcome prediction. The results of their study revealed that a Deci-

sion Tree classifier performs the best in comparison with the other

five classifiers with a score of 17% for F1-score on average.

Despite the promising results that the majority of these studies

achieved, non of them has investigated the effectiveness of metrics

that operate on a line of code level for build prediction. In this paper,

we characterize historical changes of source code on a line-level of

abstraction and analyze its effectiveness in predicting build failures.

2.2 Reasons of Build Failure in CI

Over the recent years, studies on identifying factors that result in

build failures are increasingly gainingmore attention by researchers

[4, 9, 13]. Rausch et al. [13] investigated factors that result in build

failures. The findings drawn from the analyses of historical build

logs suggest that failing integration tests, code quality, and compila-

tion errors are the most common factors that lead to build failures.

Luo et al. [9] used the TravisTorrent data-set to investigate factors

that cause build failures. They found that in our study, the number

of commits in a build (git_num_all_built_commits) is the most im-

port factor that has significant impact on the build result. Beller et

al.[4] conducted an in-depth quantifiable study using TravisTorrent

data-set to investigate the effect of testing on build failures. The

results of their work concluded that testing is the most important

factors that leads to build failure. Moreover, the programming lan-

guage has a strong impact on the number of executed tests, the time

they take to execute, and their proneness to fail. In this paper, we

expand on these empirical studies by examining the effectiveness

of a new metric (token frequency) which can potentially identify

the root cause of build failures in the source code.

3 EXPERIMENT DESIGN AND OPERATIONS

This section describes the experiment design, the data-sets, and the

operations carried out to implement this experiment.

3.1 Data Collection and Preprocessing

TravisTorrent is a synthesized open-source data-set that consists

of 2,640,825 build job records belonging to 1,300 projects (402
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Java projects and 898 Ruby projects) [5]. Every build job record

in the data-set synthesizes information from three data sources:

The project’s git repository, data extracted from GitHub, and data

from Travis’s API. In total, the data-set provides 55 software metric

values for each historical build.

3.1.1 Traditional Software Metrics. In this study, we utilized the

BigQuery interface for the TravisTorrent data-set, created on Febru-

ary 8, 2017, to mine historical build records for fourteen traditional

software metrics. Table 3 provides a brief summary of each metric.

We chose to only examine the effectiveness of these metrics as they

characterize changes made to the source code (product specific)

and the process, whereas the remaining metrics in TravisTorrent

characterize test related aspects (e.g., tests added and tests deleted).

Further all the selected traditional software metrics were previously

examined in different build prediction studies such as [8, 10].

Since the goal of this study is to evaluate the effectiveness of

different software metrics in learning build outcome (pass/fail), we

restrict the sample of collected historical build records and projects

to fulfill the following two criteria. First, we filtered out all records

whose build status (tr_build) values resolved to errored or canceled,

and only kept track of those that resolved to passed/failed. Second,

we only queried projects that were written in the Java programming

language and included at least one failing/passing build job record.

The outcomewas a data-set that comprised of 117 Java projects with

a total of 49,040 build records. Information about the distribution of

the collected build status records and project names are summarized

in columns ‘Failing Builds’ and ‘Passing Builds’ in Table 1.

3.1.2 The Token FrequencyMetric. To instrument themeasurement

of the token frequency metric, we implemented a TA based tool

that follows the procedure introduced in [2]. The procedure enacts

three sequential steps that can be summarized as follows:

Step 1 (extraction of code changes): This step involves extracting

code changes committed to the development repository of each

analyzed project. For each project, we extract modified/added lines

of code between pairs of consecutive builds. All extracted lines

between each pair are then labeled with the execution outcome

(passed/failed) of the newer build. The build execution outcomes are

provided in TravisTorrent under the field ‘build_status’. Thereafter,

we save the extracted lines of code for every project in a ‘csv’ file

for every analyzed project. A total of 117 csv files (one file for each

project) were collected and stored locally before being processed in

step 2 of the TA procedure2.

Step 2 (features extraction): The second step utilizes a textual

analysis tool [11] to convert the corpus of extracted code changes

in step 1 into feature vectors. For each line of code in the collected

corpus, the tool:

• creates a vocabulary for all lines of code (using the BoW

technique, with a cut-off parameter of how many words

should be included3)

• creates a token for words that fall outside of the frequency

defined by the cut-off parameter of the bag of words

• finds a set of predefined keywords in each line,

2https://anonymous.4open.science/r/CIbuilds_TSM_TF-CE19/
3BoW is essentially a sequence of tokens, which are descendingly ordered according
to frequency. This cut-off parameters controls how many of the most frequently used
words are included as features ś e.g. 10 means that the 10 most frequently used words
become features and the rest are ignored.

• checks each word in the line to decide if it should be tok-

enized or if it is a predefined feature.

The output of this step is a large array of numbers, each rep-

resenting the the token frequency of a specific feature in the bag

of words space of vectors. Table 2 illustrates an exemplary output

of the bag of words vectors for a simple code fragment written in

the C language. In this study, we chose to use a bi-gram model

for representing the feature vectors, as it was previously shown

to produce good learning performance in a similar context (e.g.,

[2]). Notice how the feature values in Table 2 correspond to the

frequency counts of each token that appears in every line of code

in the code example.

Step 3 (training a classifier): Finally, the extracted set of feature

vectors from step 2 are fed into an ML model for learning how to

classify new lines of code as triggering to CI builds pass/failure. The

result of applying the TA technique on the collected projects re-

sulted in extracting historical code changes made to every collected

project, as summarized in Table 1 under the ‘Lines’ column. The

distribution of classes assigned to the extracted lines is specified

under the columns ‘Failing lines’ and ‘Passing lines’ in Table 1.

3.2 Independent Variables

In this study, software metric is the only independent variable

(treatment) examined for effectiveness on the performance of a

build prediction model. A total of 15 variations (software metrics)

to the independent variable were examined, as summarized in Table

3. Detailed description about metrics 1 to 14 can be found in the

TravisTorrent database [5], whereasmetric fifteen (token frequency)

is a measure of the frequency count of code tokens in the analyzed

programs using textual analysis.

3.3 Evaluation Metrics

We chose four state-of-the-art metrics to evaluate the performance

of a classifier for build outcome prediction that we train on the

TSM and TF metrics respectively. The four metrics are precision,

recall, F1-score, and Matthews Correlation Coefficient.

While precision is the proportion of correctly identified passing

builds, recall is the proportion of relevant builds that were identified

as such. Having both precision and recall high ensures the detection

of larger amount of passing builds and the reduction of false alarms

about failing builds.

The F1-score indicates whether the predictive model is perform-

ing well in identifying builds that are actually passing (high preci-

sion) and generating little false alarms about failing builds (high

recall). One drawback in using the F1-score metric is the fact that

it only accounts for three elements in the confusion matrix (true

positives, false positives, and false negatives), which might lead to

misleading conclusions if the distribution of the binary classes in

the training data is imbalanced [18].

To mitigate these drawbacks that suffice in F1-score, we decided

to measure the model’s MCC, which takes into account the four ele-

ments in the confusion matrix [18]. In the context of build outcome

prediction, a high MCC indicates that the predictions obtained by

the model are good in both classes (passing and failing builds), as

MCC takes the four elements of the confusion matrix into account.

Thus, MCC considers what share of the elements (builds or lines)
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Table 1: Distribution of Build Outcomes and Lines of Code Changes in the Analyzed Projects

Id Project Builds
Failing
builds

Passing
builds

lines
extracted

Failing
lines

passing
lines

Id Project Builds
Failing
builds

Passing
builds

Lines
extracted

Failing
lines

Passing
lines

1 OpenRefine 192 14 178 3684 332 3352 61 picard 284 11 273 10306 378 9928
2 psi-probe 200 4 196 50471 100 50371 62 hivemall 173 17 156 20219 159 20060
3 error-prone 152 3 149 91072 26 91046 63 seyren 281 14 267 7141 136 7005
4 u2020 245 8 237 4404 135 4269 64 lenskit 274 22 252 54601 808 53793
5 metrics 279 23 256 8504 1667 6837 65 springside4 226 57 169 19121 6279 12842
6 rewrite 184 72 112 13399 3693 9706 66 onebusaway-android 187 9 178 19743 63 19680
7 checkstyle 1368 30 1338 93435 357 93078 67 rxjava-jdbc 192 2 190 7847 17 7830
8 ProjectRed 268 66 202 1075 385 690 68 core 516 6 510 75569 375 75194
9 brightspot-cms 548 62 486 8737 2753 5984 69 selendroid 445 47 398 58650 17944 40706
10 assertj-android 118 36 82 14267 3349 10918 70 nutz 924 367 557 57793 20243 37550
11 LittleProxy 287 42 245 7806 916 6890 71 jphp 300 34 266 142552 18063 124489
12 blueprints 432 127 305 41217 15106 26111 72 owner 387 7 380 20248 240 20008
13 cassandra-reaper 262 20 242 7688 1004 6684 73 twilio-java 221 8 213 28005 5547 22458
14 restlet-framework-java 436 277 159 109038 48701 60337 74 restlet-framework-java 436 277 159 109038 48701 60337
15 nodeclipse-1 238 13 225 21274 24 21250 75 azkaban 176 8 168 56976 6026 50950
16 rultor 1156 275 881 33023 10185 22838 76 nodeclipse-1 238 13 225 21274 24 21250
17 jmonkeyengine 714 9 705 69466 782 68684 77 idea-gitignore 187 45 142 26477 4148 22329
18 pdfsam 336 91 245 108882 20235 88647 78 keywhiz 240 2 238 12128 5 12123
19 robospice 74 29 45 13307 7575 5732 79 jsprit 210 4 206 20950 118 20832
20 pushy 333 21 312 4281 9 4272 80 stubby4j 571 144 427 36510 12346 24164
21 parceler 227 4 223 15645 232 15413 81 qulice 413 33 380 10885 243 10642
22 dynjs 320 20 300 32833 899 31934 82 jinjava 227 3 224 11092 8 11084
23 mybatis-3 471 15 456 94630 572 94058 83 auto 251 34 217 11912 126 11786
24 HikariCP 326 17 309 29153 3490 25663 84 xtreemfs 272 41 231 50048 2097 47951
25 thredds 333 100 233 24625 6308 18317 85 jmxtrans 400 22 378 7752 173 7579
26 maven-git-commit-id-plugin 201 31 170 14030 1499 12531 86 less4j 647 71 576 72745 7426 65319
27 dagger 302 24 278 3205 105 3100 87 cas-addons 229 7 222 7022 63 6959
28 jade4j 207 11 196 15059 265 14794 88 goclipse 228 20 208 66453 462 65991
29 jsonld-java 196 13 183 32630 76 32554 89 ccw 331 142 189 13859 3678 10181
30 webcam-capture 342 22 320 32386 227 32159 90 unirest-java 301 17 284 3558 225 3333
31 jInstagram 219 7 212 18103 242 17861 91 waffle 203 23 180 19207 160 19047
32 spring-cloud-config 251 22 229 22734 1206 21528 92 MozStumbler 517 12 505 7707 15 7692
33 gpslogger 265 36 229 14238 918 13320 93 HearthSim 234 11 223 59681 347 59334
34 jcabi-http 221 34 187 4329 596 3733 94 rexster 324 23 301 34909 464 34445
35 p6spy 333 100 233 13584 5920 7664 95 retrofit 747 5 742 17656 335 17321
36 htm.java 442 4 438 49931 413 49518 96 DSpace 1242 43 1199 77447 2099 75348
37 go-lang-idea-plugin 780 81 699 31476 1212 30264 97 structr 740 252 488 105605 58803 46802
38 Singularity 152 36 116 7302 1861 5441 98 airlift 253 123 130 21916 13609 8307
39 android 671 46 625 13857 3885 9972 99 traccar 1324 24 1300 67666 138 67528
40 jcabi-github 502 146 356 17052 5765 11287 100 querydsl 1153 194 959 33926 809 33117
41 sms-backup-plus 248 20 228 14921 195 14726 101 yobi 24 2 22 90790 3531 87259
42 truth 96 18 78 17907 1260 16647 102 openwayback 229 29 200 10976 30 10946
43 joda-time 186 5 181 18153 34 18119 103 cloudify 4137 717 3420 287810 50339 237471
44 logback 183 49 134 66311 1775 64536 104 play-authenticate 178 27 151 4823 295 4528
45 mockito 320 56 264 66687 2774 63913 105 RoaringBitmap 247 21 226 38994 685 38309
46 Hystrix 508 202 306 38633 16536 22097 106 jPOS 285 10 275 36033 148 35885
47 blueflood 744 80 664 39209 4160 35049 107 javaslang 722 8 714 384967 3997 380970
48 java-design-patterns 630 5 625 69967 51 69916 108 frontend-maven-plugin 273 27 246 2598 106 2492
49 DDT 183 62 121 55702 10375 45327 109 jodd 439 23 416 141987 1363 140624
50 dropwizard 1048 64 984 48830 1070 47760 110 quickml 222 43 179 13670 421 13249
51 nokogiri 439 117 322 23572 9520 14052 111 okhttp 1341 335 1006 64755 15756 48999
52 android-maven-plugin 224 141 83 74259 4096 70163 112 bnd 459 24 435 31434 3355 28079
53 jcabi-aspects 304 34 270 5354 858 4496 113 AcDisplay 371 187 184 31453 17569 13884
54 intellij-elixir 107 2 105 237184 952 236232 114 jedis 427 61 366 36361 878 35483
55 jsonschema2pojo 294 1 293 12985 3 12982 115 Hydra 210 35 175 6662 525 6137
56 lorsource 1470 58 1412 31970 656 31314 116 storio 192 11 181 13058 747 12311
57 analytics-android 206 17 189 6896 490 6406 117 Jest 370 71 299 22414 2460 19954
58 storm 65 36 29 28317 16622 11695
59 basex 322 40 282 56481 1947 54534
60 spark 249 13 236 5507 83 5424

Table 2: Output From the Feature Vectors Using Bag of Words

Filename Path if int a Aa Content

firstFile.c c:/folder 1 0 3 2 if(condition == true) printf("Hello World");

firstFile.c c:/folder 0 0 2 0 printf("\n");

secondFile.c c:/folder 0 1 1 0 int i = 10;

in the failing class are correctly identified as failing. If the share is

low then MCC is worse than if the share is high.

3.4 Experimental Hypotheses

We hypothesize that using token frequency features for construct-

ing a predictive model is more effective in learning build prediction

than traditional software metrics. The hypotheses are based on
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Table 3: Descriptions of The Examined Software Metrics

Id Metric Description

1 gh_num_commits_in_push
Number of commits in the push that

started the build

2 git_prev_commit_resolution_status
String, žmerge foundž if this build is a

merge otherwise žbuild foundž

3 gh_team_size
Size of the team contributing to this

project within 3 months of last commit
4 git_num_all_built_commits Number of all commits in this build

5 gh_num_commit_comments
The number of comments on

git commits on GitHub

6 git_diff_src_churn
How much (lines) production code
changed by the new commits in this

build

7 gh_diff_files_added
Number of files added by the new

commits in this build

8 gh_diff_files_deleted
Number of files deleted by the new

commits in this build

9 gh_diff_files_modified
Number of files modified by the new

commits in this build

10 gh_diff_src_files
Number of production files in the new

commits in this build

11 gh_diff_doc_files
Number of documentation files in the new

commits in this build

12 gh_diff_other_files
Number of remaining files which are neither
production code nor documentation in the

new commits in this build

13 gh_num_commits_on_files_touched
Number of unique commits on the
files included in this build within 3

months of last commit

14 gh_sloc
Number of executable production source
lines of code, in the entire repository

15 token frequency
The frequency count of code tokens in the analyzed

source code.

the assumption that build failures are triggered when faults in the

code base are introduced. Accordingly, four hypotheses are defined

and tested for statistical significance. The hypotheses are formally

defined as follows:

• H0p: The mean precision is the same for a model trained on

token frequency and each traditional software metrics.

𝜇1𝑝 = 𝜇2𝑝 (1)

.

• H0r: The mean recall is the same for a model trained on token

frequency and each traditional software metrics.

𝜇1𝑟 = 𝜇2𝑟 (2)

• H0f: The mean F1-score is the same for a model trained on

token frequency and each traditional software metrics.

𝜇1𝑓 = 𝜇2𝑓 (3)

• H0mcc: The mean MCC is the same for a model trained on token

frequency and each traditional software metrics.

𝜇1𝑚𝑐𝑐 = 𝜇2𝑚𝑐𝑐 (4)

3.5 Data Analysis Methods

To decide whether to run a parametric or non-parametric statistical

test for analysis, we begin the analysis by running a normality

test on the distribution of the four evaluation metrics under the 15

treatment levels. We chose to use the Shapiro Wilk test to evaluate

the normality of the distributions. Based on the normality test

results, we decided to run the Kruskal-Wallis (a non-parametric

test) for comparing the precision, recall, F1-score, and MCC values

between the different treatment levels.

While the Kruskal-Wallis statistical test is used to determine

statistical significance between the treatment levels and the evalua-

tion metrics (i.e., if the treatment has an effect on precision, recall,

F1-score, and MCC), they do not quantify the amount of difference

between the groups. Hence, we decided to complement the analysis

by calculating the effect size between the precision, recall, F1, and

MCC scores attained when using the TF and the next best tradi-

tional software metric. For this purpose, we used the ‘effsize’ library

available in R-studio (release 2022.02.3). We used the Cliff’s Delta

analysis method (a non-parametric statistical test) to measure the

effect size. An effect size of +1.0 or -1.0 indicates that there is no

overlap between the distribution of precision, recall, F1-score, and

MCC. An effect size of 0.0 indicates that the distribution between

each pair of evaluation metrics overlaps completely.

3.6 Prediction Model

In this study, we chose to employ a random forest (RF) model for

learning build outcome prediction. This was mainly because RF

1) has a white-box nature that can be utilized to extract the set

of features that influences the prediction, and 2) tends to perform

well with discrete and high-dimensional input data [6]. The hyper-

parameters of the model were kept in their default state as found

in the scikit-learn library (version 0.20.4). The only alteration that

we made was in the n_estimator (the number of trees) parameter,

where we changed its value from 10 to 100. This was a design choice

that we made based on the findings reported in a previous study [1]
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in which the authors experimented the use of an RF for predicting

test case execution outcomes. The findings showed that using an

RF model with the same default parameters would outperform four

other deep learning and tree models in test case outcome prediction.

3.7 Experimental Subjects and Class Balancing

We began the experiment by applying 10-fold stratified cross valida-

tion on the build records to create the experimental subjects. Each

generated subject (fold) was used for validating the RF classifier,

which we trained on the remaining nine folds for each TSM metric.

Similarly, 10-fold stratified cross validation was applied on the set

of code changes that we extracted from each project.

One aspect that is known to affect the performance of predictive

models is related to class imbalance, where the number of training

instances in the data for one class outnumbers instances that belong

to the other class [3]. The effect of training a model on imbalanced

data-set lies in creating a model that is biased towards one of the

classes. In order to control the effect of this aspect, we achieved

a balanced distribution of build records and lines of code in the

minority class of of each training fold in every analyzed project. To

that end, we used the ‘resample’ module provided in the Scikit-learn

library [12] whenever more than 50% of build records or lines of

code at each project belonged to either one of the binary classes.

Note that the resampling procedure was applied to the training

data-sets only, as wewanted to evaluate the model’s generalizability

on real-world scenarios where data-sets come unbalanced.

4 RESULTS

This section describes the results of the statistical tests conducted

to evaluate the four hypotheses and answer the research question.

4.1 Evaluation of Metrics effectiveness

To evaluate the effectiveness of the TSM and TFmetrics, we begin by

calculating the descriptive statistics of the precision, recall, F1-score,

and MCC for the RF model that we trained on each fold in every

analyzed project. Table 4 presents descriptive statistics describing

the mean and standard deviation (SD) of precision, recall, F1-score,

and MCC for the total number of folds (N) in the entire set of ana-

lyzed projects. The descriptive statistics reveal that learning build

prediction is most effective when using the token frequency and the

gh_num_commits_on_files _touched metrics 4. While the token

frequency metric slightly outperformed the gh_num_ commits_on_

files_touched metric with respect to precision, recall, and F1-

score, the gh_num_commits_on_files_touched metric surpassed

the latter with respect to MCC. A big difference between F1 and

MCC can happen if the classes in the data-set are not balanced.

While we balanced the training data-set, we did not for the test

data-set as explained above. Hence, the number of failing lines that

are falsely predicted as passing by TF is fairly small compared to the

lines correctly predicted to pass and incorrectly predicted to fail, a

line that is failing is not unlikely to be predicted as passing using

TF. Figure 1 is a bar plot that visualizes the mean scores of the four

evaluation metrics for each software metric across the 117 projects.

The x-axis represents the metric names, and the y-axis corresponds

to the evaluation metrics’ values. From the dotted frame in Figure

4We are aware of the wide spread in the distribution of precision, recall, F1-score,
and MCC (high SD) values. Therefore, we used non-parametric statistical tests for
comparing the distribution of values.

1, it can be seen that by far the greatest mean precision, recall, and

F1-score were achieved when using the gh_num_ commits_on_

files_touched and the token frequency metrics.

Figure 1: Mean Performance Scores of Each Metric.

To gain a better understanding of the effectiveness of eachmetric,

we plotted the distribution of precision, recall, F1-score and MCC

values for every project. Figures 2a, 2b, 2c and 2d are boxplot charts

that visualize the distributions. By inspecting the distributions, we

observe the following:

• there exists a large disparity in the distribution of the four

evaluation metrics with respect to the majority of the exam-

ined software metrics.

• the TF metric yields better MCC scores than all the other

metrics in several other projects.

• the lowest attained precision, recall, and F1-score values

when using TF is higher than the lowest value attained when

using the other TSM metrics.

4.2 Hypotheses Testing

4.2.1 Significance Testing. We begin the hypotheses testing by con-

ducting a normality test for the distribution of the four evaluation

metrics. The statistical test results of normality for the four evalua-

tion metrics when learning a classifier from the 15 software metrics

show that the assumption of normality can be rejected for all the

four evaluation metrics (𝑝 <0.05). Therefore, we decided to use a

non-parametric statistical test for testing the hypotheses. To answer

the research question of How effective is the token frequency metric

in comparison with traditional software metrics for predicting build

outcomes in CI?, we started the analysis by running the Kruskal-

Wallis test for comparing the distribution of the evaluation metrics

attained when using the TSM and TF metrics. The Kruskal-Wallis

test results show that there is a statistically significant difference

between the precision, recall, F1-score, and MCC variables with

respect to the 15 software metrics (𝑝-value <0.05). Table 5 sum-

marizes the Kruskal-Wallis test results for each evaluation metric

respectively. Since the Kruskal-wallis test is an omnibus statistical

test i.e., it cannot tell which variable is statistically significantly

different, we decided to run a Dunn’s post hoc statistical test. To
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Table 4: Descriptive Statistics for the Precision, Recall, F1-score, and MCC

Precision Recall F1-score MCC

Metric N Mean SD Mean SD Mean SD Mean SD

gh_num_commit_comments 1170 0.38 0.35 0.48 0.49 0.348 0.353 0.03 0.08

gh_num_commits_in_push 1170 0.66 0.25 0.52 0.33 0.516 0.257 0.24 0.25

gh_num_commits_on_files_touched 1170 0.90 0.15 0.76 0.17 0.816 0.157 0.68 0.27

gh_prev_commit_resolution_status 1170 0.50 0.30 0.48 0.39 0.427 0.288 0.08 0.18

gh_sloc 1170 0.84 0.27 0.60 0.36 0.653 0.325 0.55 0.41

gh_team_size 1170 0.48 0.35 0.52 0.43 0.470 0.357 0.15 0.40

git_diff_doc_files 1170 0.36 0.33 0.47 0.48 0.354 0.350 0.03 0.10

git_diff_files_added 1170 0.62 0.27 0.58 0.41 0.495 0.287 0.19 0.20

git_diff_files_deleted 1170 0.52 0.33 0.55 0.47 0.422 0.334 0.10 0.16

git_diff_files_modified 1170 0.68 0.21 0.60 0.27 0.601 0.209 0.31 0.26

git_diff_other_files 1170 0.63 0.22 0.60 0.33 0.558 0.240 0.23 0.23

git_diff_src_churn 1170 0.82 0.18 0.67 0.22 0.715 0.176 0.52 0.26

git_diff_src_files 1170 0.68 0.20 0.61 0.26 0.614 0.198 0.31 0.25

git_num_all_built_commits 1170 0.57 0.30 0.54 0.44 0.440 0.311 0.13 0.18

token frequency 1170 0.91 0.13 0.80 0.15 0.846 0.133 0.16 0.21

(a) Precision. (b) Recall.

(c) F1-score. (d) MCC.

Figure 2: The Distribution of the Evaluation Metrics For the TSM and TF metrics Across All Analyzed Projects.
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(a) Precision. (b) Recall.

(c) F1-score. (d) MCC.

Figure 3: Heatmaps showing the distribution of p-values when performing pairwise comparisons between the scores of each

evaluation metric for each pair of metrics. Darker cells indicate smaller p-values, and lighter cells indicate larger p-values.

Orange cells indicate no statistically significant difference.

control possible family-wise error rate that may occur as a result of

performing multiple pairwise comparisons, we used the Bonferroni

correction method for adjusting the p-values.

Table 5: The Kruskal-Wallis Test Results For Comparing the

Performance Values of All Software Metrics.

Evaluation Metric Precision Recall F1-score MCC

Kruska Wallis H 5096.809 442.331 4212.293 6134.276

Sig. <0.05 <0.05 <0.05 <0.05

Figures 3a, 3b, 3c and 3d are heatmap plots that visualize the

distribution of p-values obtained from each post hoc pairwise com-

parison between the precision, recall, F1-score and MCC variables.

The lower the p-value between each pair of software metrics (<0.05),

the more confident we can be that there is a statistically significant

difference between them. By inspecting the p-values in Figures 3a,

3b, 3c and 3d, we draw the following observations:

• predicting build outcomes using the token frequency or the

gh_num_commits_on_files_touched metrics results in a

statistically significantly different recall and F1 scores than

those attained when using each of the other TSM metric

(with p <0.05).

• the precision scores attained when using the token frequency

metric is significantly different compared to the precision

scores attainedwhen using themajority of the other software

metrics. The only two exceptionswerewith the git_diff_src

_churn and the gh_sloc metrics, where no statistically sig-

nificant difference could be drawn.

• using the gh_num_commits_on_files_touched results in

a statistically significant difference with respect to MCC

compared with all the other examined metrics (p <0.05).
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Based on these observations, the hypothesis that The mean pre-

cision is the same for a model trained on token frequency and each

traditional software metrics (H0p) can be rejected except for the

git_diff_src_churn and the gh_sloc metrics, since no signifi-

cant difference was captured with these. This observation brings us

to believe that using the token frequency metric is more effective

than twelve of the fourteen other traditional software metrics in

identifying passing builds. Similarly, our results reveal that the preci-

sion scores recordedwhen training amodel on the gh_num_commits_

on_files_touched metric were significantly different than all the

other precision scores attained when using each software metric.

Thus, we observe that using the count of unique commits on the

files included in builds within 3 months of last commit is a more

reliable predictor for identifying passing builds, compared to the

other metrics.

On the other hand, the hypotheses that The mean recall and F1-

score are the same for a model trained on token frequency and each

traditional software metrics (H0r and H0f) can be rejected. This is

because a statistically significant difference was captured between

the recall scores attained when using token frequency and every

other software metric. Hence, using the token frequency metric for

training a classifier on predicting build outcomes is more effective

for identifying the highest amount of relevant builds that will pass.

Similarly, the hypothesis that the mean MCC is the same for a

model trained on token frequency and each traditional software met-

rics (H0mcc) can be rejected for all of the other traditional software

metrics except for the gh_team_size and the gh_num_all_built

_commits, which were not statistically significantly different with

the MCC scores attained by the token frequency metric.

4.2.2 Effect Size. Table 6 summarizes the effect size results for the

TF and gh_num_commits_on_files_touchedmetrics. The gh_num_

commits_on_files_touched metric was chosen since it outper-

formed the other TSMs with respect to precision, recall, F1-score,

and MCC.While the calculated p-values in Figures 3a, 3b, 3c, and 3d

indicate that there is a statistically significant difference between

the precision, recall, and F1-score produced when using TF and

gh_num_commits metrics, the Cliff’s Delta analysis shows that

the difference in effect size between the two metrics is relatively

small (<|0.3|). On the other hand, the effect size between the MCC

scores was found to be large, indicating a large difference when

using the two metrics respectively (>|0.8|).

Table 6: The Cliff’s Delta Analysis Results Between the

Four Evaluation Metrics, Comparing Token Frequency and

gh_num_commits_on_files_touched

Name
Effect size

(delta_estimate)
Lower Upper

Precision -0.23 -0.28 -0.18

Recall 0.12 0.07 0.17

F1 0.09 0.04 0.14

MCC -0.83 -0.85 -0.80

While the difference in effect size between TF and gh_num_

comments_on_files_touched is small with respect to precision,

recall, and F1-score, the advantage that TF has over the TSM is

the fact that it operates on a fine-grained level, which allows de-

velopers to pinpoint lines of code that require debugging before

committing new code changes. A line of code example from the

‘Cloudify’ project 5 that was correctly identified by the TF-trained

model to trigger a build failure is "\t\t\t\t\tif (!(Boolean)

session.get(Constants.INTERACTIVE_MODE)) {".

RQ. How effective is the token frequency metric in com-

parison with traditional software metrics for predicting

build outcomes in CI?

Our experiment on 117 Java projects revealed that using

the token frequency metric for training a classifier on build

outcome prediction yields a slightly better predictive quality

for the passed builds than when using the best traditional

software metrics. On the other hand, the majority of the exam-

ined traditional software metrics were found to yield higher

predictive quality than the token frequency metric when it

comes to the failed builds.

Overall, the findings of this study suggest that both line and file

level metrics are effective for learning build outcome predictions in

CI. However, the usage of each metric type may vary depending on

the business needs and target domain in which the system operates.

For instance, practitioners that would prioritize fast releases over

capturing issues in the system might opt to use line-level metric

for training as it allows developers to be more confident to start

using the code base for implementing new features without wait-

ing for the build to finish running if it was predicted to pass. This

assumption needs to be validated in future studies. On the other

hand, if practitioners are working on developing safety critical sys-

tems, then capturing all issues in the system is prioritized over fast

releases. In this case, using the file level metrics is more desirable

since those were shown to yield higher effectiveness rate in alerting

developers about issues in the code that require fixing.

5 THREATS TO VALIDITY

In this section, we discuss the limitations of our paper using the

framework recommended by Wohlin et al. [15].

External Validity: Our study investigates the effectiveness of

fifteen different software metrics in predicting build outcomes for

117 Java projects. Hence, we are aware that we can not generalize

the conclusions drawn in this study to projects that are written

in different programming languages. The results reported in this

study may vary if we observe projects that are written in other

languages or ones that are linked with different CI services. New

studies are needed to validate the effectiveness of the TF metric for

projects written in different languages and CI services.

Construct validity: The most tangible threat to construct validity

is that we can not assert whether all collected build records with

‘failed’ status were due to, for example, environmental breakages or

faults in the code. Hence, the likelihood of analyzing build records

that failed due to factors that are not related to the code-base can

not be ruled out. Another threat lies in the validity of the number

of build records that we extracted from the TravisTorrent data-set,

and whether these records truly mirror the actual builds in Github.

5https://github.com/CloudifySource/cloudify

50



PROMISE ’22, November 17, 2022, Singapore, Singapore Khaled Al-Sabbagh, Miroslaw Staron, and Regina Hebig

However, we minimize these threats by collecting and analyzing a

large sample of build records and lines of code from 117 projects.

Internal Validity: A potential internal threat is the presence of

undetected flaws in the measurement tools used for extracting both

the TSM and the TF. This threat was reduced by carefully inspecting

the scripts and testing them on different subsets of data.

Conclusion validity: The main conclusion drawn from this em-

pirical study suggests that using the a line-level metric produces

similar predictive quality as file-level metrics in predicting passing

builds. This conclusion is based on measuring the effect size of TF

and one file-level metric on four predictive performance metrics.

Hence, the results might differ if we measure the effect size of TF

and another file-level metric, such as gh_sloc. However, we chose

the gh_num_comments_on_files_touched metric since it scored

highest in mean precision, recall, F1-score, and MCC values, and

since it showed a significant difference with almost every metric.

6 CONCLUSION AND FUTUREWORK

In this paper, we conducted an empirical study to examine the effec-

tiveness of a line-level metric in learning build outcome prediction,

and compared its effectiveness with fourteen traditional software

metrics. We found a a small difference in effect size between to-

ken frequency and the best traditional software metrics metric for

the passed builds, and a large difference for the failed builds. We

conclude that using the line-level metric for training a classifier

on build outcome prediction is slightly more effective than the file

level metrics for the passed builds, but substantially less effective

when it comes to the failed builds. The benefit that token frequency

has over traditional software metrics is its ability to pinpoint lines

of code that require fixing.

While our analysis revealed promising results regarding the

effectiveness of line-level metric for build prediction, future work

aims at analyzing additional software metrics such as those related

to testing (e.g., gh_tests_ added) and others that operate on line-

level. Another future direction is to experiment the use of token

frequency on software written in different programming languages.

Finally, we would like to evaluate the effectiveness of using both

types of metrics - line and file levels - on the predictive quality of a

model for build outcome predictions in CI.
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